
Chapter 12
Evolutionary Fuzzy Systems: A Case Study
in Imbalanced Classification

A. Fernández and F. Herrera

Abstract The use of evolutionary algorithms for designing fuzzy systems provides
them with learning and adaptation capabilities, resulting on what is known as Evo-
lutionary Fuzzy Systems. These types of systems have been successfully applied in
several areas of Data Mining, including standard classification, regression problems
and frequent pattern mining. This is due to their ability to adapt their working pro-
cedure independently of the context we are addressing. Specifically, Evolutionary
Fuzzy Systems have been lately applied to a new classification problem showing
good and accurate results. We are referring to the problem of classification with
imbalanced datasets, which is basically defined by an uneven distribution between
the instances of the classes. In this work, we will first introduce some basic concepts
on linguistic fuzzy rule based systems. Then, we will present a complete taxonomy
for Evolutionary Fuzzy Systems. Then, we will review several significant proposals
made in this research area that have been developed for addressing classification with
imbalanced datasets. Finally, we will show a case study fromwhich wewill highlight
the good behavior of Evolutionary Fuzzy Systems in this particular context.

12.1 Introduction

Among all available strategies to be used in real application areas of engineering,
those related to Computational Intelligence or Soft Computing have typically shown
a good behavior [1]. In addition, wemust stress that the collaboration among the com-
ponents of Computational Intelligence can further improve the results than applying
them on isolation. For this reason, hybrid approaches have attracted considerable
attention in this community. Among them, the most popular is maybe the synergy

A. Fernández
Department of Computer Science, University of Jaén, 23071 Jaén, Spain
e-mail: alberto.fernandez@ujaen.es

F. Herrera (B)
Department of Computer Science and Artificial Intelligence,
University of Granada, 18071 Granada, Spain
e-mail: herrera@decsai.ugr.es

© Springer International Publishing Switzerland 2016
T. Calvo Sánchez and J. Torrens Sastre (eds.), Fuzzy Logic and Information Fusion,
Studies in Fuzziness and Soft Computing 339, DOI 10.1007/978-3-319-30421-2_12

169



170 A. Fernández and F. Herrera

between Fuzzy Rule Based Systems (FRBSs) [2] and Evolutionary Computation [3,
4] leading to Evolutionary Fuzzy Systems (EFSs) [5, 6].

The automatic definition of an FRBS can be seen as an optimization or search
problem. Regarding the former, the capabilities of Evolutionary Algorithms (EAs)
[7] makes them an appropriate global search technique. They aim to explore a large
search space for suitable solutions, only requiring a performancemeasure. In addition
to their ability to find near optimal solutions in complex search spaces, the generic
code structure and independent performance features of EAs allow them to incor-
porate a priori knowledge. In the case of FRBSs, this a priori knowledge may be in
the form of linguistic variables, fuzzy membership function parameters, fuzzy rules,
number of rules and so on. Furthermore, this approach has been recently extended by
usingMulti-Objective EvolutionaryAlgorithms (MOEAs) [8, 9], which can consider
multiple conflicting objectives, instead of a single one. The hybridization between
MOEAs and FRBSs is currently known as Multi-Objective Evolutionary Fuzzy Sys-
tems (MOEFSs) [10].

As stated previously, the adapting capabilities and goodness of EFSs has made
their use to be spread successfully into different Data Mining areas [11]. Among
these, possibly the most common application is related to classification problems.
When working in this framework, we may find that they frequently present a very
different distribution of examples inside their classes, which is known as the problem
of imbalanced datasets [12, 13]. In the context of binary problems, the positive or
minority class is represented by few examples, since it could represent a “rare case”
or because the acquisition of this data is costly. For these reasons, the minority class
is usually the main objective from the learning point of view. Therefore, the cost
related to a poor classification of one example of this class is usually be greater than
on the majority class.

Linguistic FRBSs have shown the achievement of a good performance in the
context of classification with imbalanced datasets [14]. Specifically, linguistic fuzzy
sets allow the smoothing of the borderline areas in the inference process, which is also
a desirable behavior in the scenario of overlapping, which is known to highly degrade
the performance in this context [15, 16]. In accordance with the former, and with
aims at improving the behaviour and performance of these systems, a wide number
of approaches have been proposed in the field of EFS for addressing classification
with imbalanced datasets [15, 17, 18].

In this chapter, we will first introduce the existent taxonomy for the different types
of EFSs, together with their main properties. Then, we focus on the main aim in this
contribution, which is to present the use of EFSs in imbalanced classification, and to
provide a list of the most relevant contributions in this area of work. Finally, we will
show the goodness of this type of approaches presenting a case study on the topic
over highly imbalanced datasets using the GP-COACH-H algorithm [19], a fuzzy
rule-based technique based on genetic programming specifically designed to address
the imbalance in data.

For achieving these objectives, the remainder of this chapter is organized as fol-
lows. In Sect. 12.2, we provide an overview of FRBSs. In Sect. 12.3, we focus our
attention to EFSs. Section12.4 is devoted to the application of EFSs in classification
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with imbalanced datasets, describing the features of this problem, presenting those
EFSs approaches that have been designed for addressing this task, and introducing
a brief case study to excel the good behaviour of EFSs in this work area. Finally, in
Sect. 12.5, we provide some concluding remarks of this work.

12.2 Fuzzy Rule Based Systems

The basic concepts which underlie fuzzy systems are those of linguistic variable and
fuzzy IF-THEN rule. A linguistic variable, as its name suggests, is a variable whose
values are words rather than numbers, e.g., small, young, very hot and quite slow.
Fuzzy IF-THEN rules are of the general form: IF antecedent(s) THEN consequent(s),
where antecedent and consequent are fuzzy propositions that contain linguistic vari-
ables. A fuzzy IF-THEN rule is exemplified by “IF the temperature is high THEN
the fan-speed should be high”. With the objective of modeling complex and dynamic
systems, FRBSs handle fuzzy rules by mimicking human reasoning (much of which
is approximate rather than exact), reaching a high level of robustness with respect to
variations in the system’s parameters, disturbances, etc. The set of fuzzy rules of an
FRBS can be derived from subject matter experts or extracted from data through a
rule induction process.

In this section, we present a brief overview of the foundations of FRBSs, with the
aim of illustrate the way they behave. In particular, in Sect. 12.2.1, we introduce the
important concepts of fuzzy set and linguistic variable. In Sect. 12.2.2, we deal with
the basic elements of FRBSs. Finally, in Sect. 12.2.3 we describe the fuzzy inference
system proposed by Mamdani for the output of an FRBS, as in this work we focus
on linguistic systems.

12.2.1 Preliminaries: Fuzzy Set and Linguistic Variable

A fuzzy set is distinct from a crisp set in that it allows its elements to have a degree
of membership. The core of a fuzzy set is its membership function: a surface or line
that defines the relationship between a value in the set’s domain and its degree of
membership. In particular, according to the original ideal of Zadeh [20], membership
of an element x to a fuzzy set A, denoted as μA(x) or simply A(x), can vary from 0
(full non-membership) to 1 (full membership), i.e., it can assume all values in the
interval [0, 1]. Clearly, a fuzzy set is a generalization of the concept of a set whose
membership function can take only two values {0, 1}.

We must point out that this is clearly a generalization and extension of multi-
valued logic, in which degrees of truth are introduced in terms of the aforementioned
membership functions. These functions can be seen as mapping predicates into FSs
(or more formally, into an ordered set of fuzzy pairs, called a fuzzy relation). Fuzzy
logic can thus be defined as a logic of approximate reasoning that allows us to work
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Fig. 12.1 Membership
function

with FSs [21, 22]. In this manner, it allows a simplicity and flexibility which makes
them superior with respect to classical logic for some complex problems. This can
be achieved as they are able to cope with vague, imprecise or uncertain concepts that
human beings use in their usual reasoning [23].

The value of A(x) describes a degree of membership of x in A. For example, con-
sider the concept of high temperature in an environmental context with temperatures
distributed in the interval [0, 40] defined in degree centigrade. Clearly 0 ºC is not
understood as a high temperature value, and we may assign a null value to express its
degree of compatibility with the high temperature concept. In other words, the mem-
bership degree of 0 ºC in the class of high temperatures is zero. Likewise, 30 ºC and
over are certainly high temperatures, and we may assign a value of 1 to express a full
degree of compatibility with the concept. Therefore, temperature values in the range
[30, 40] have a membership value of 1 in the class of high temperatures. From 20 to
30 ºC, the degree ofmembership in the fuzzy set high temperature gradually increases,
as exemplified in Fig. 12.1, which actually is a membership function A : T → [0, 1]
characterizing the fuzzy set of high temperatures in the universe T = [0, 40]. In this
case, as temperature values increase they become more and more compatible with
the idea of high temperature.

Linguistic variables are variables whose values are not numbers but words or
sentences in a natural or artificial language. This concept has clearly been developed
as a counterpart to the concept of a numerical variable. In concrete, a linguistic
variable L is defined as a quintuple [24–26]: L = (x, A, X, g, m), where x is the base
variable, A = {A1, A2, . . . , AN } is the set of linguistic terms of L (called term-set),
X is the domain (universe of discourse) of the base variable, g is a syntactic rule for
generating linguistic terms and m is a semantic rule that assigns to each linguistic
term its meaning (a fuzzy set in X). Figure12.2 shows an example of a linguistic
variable Temperature with three linguistic terms “Low, Medium and High”. The
base variable is the temperature given in appropriate physical units.

Each underlying fuzzy set defines a portion of the variable’s domain. But this
portion is not uniquely defined. Fuzzy sets overlap as a natural consequence of their
elastic boundaries. Such an overlap not only implements a realistic and functional
semantic mechanism for defining the nature of a variable when it assumes various
data values but also provides a smooth and coherent transition from one state to
another.
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Fig. 12.2 Example of linguistic variable Temperature with three linguistic terms

12.2.2 Basic Elements of FRBSs

The essential part of FRBSs is a set of IF-THEN linguistic rules, whose antecedents
and consequents are composed of fuzzy statements, related by the dual concepts of
fuzzy implication and the compositional rule of inference.

An FRBS is composed of a knowledge base (KB), that includes the information
in the form of IF-THEN fuzzy rules;

IF a set of conditions are satisfied
THEN a set of consequents can be inferred

and an inference engine module that includes:

• A fuzzification interface, which has the effect of transforming crisp data into fuzzy
sets.

• An inference system, that uses them together with the KB to make inference by
means of a reasoning method.

• A defuzzification interface, that translates the fuzzy rule action thus obtained to a
real action using a defuzzification method.

Linguistic models are based on collections of IF-THEN rules, whose antecedents
are linguistic values, and the system behavior can be described in natural terms. The
consequent is an output action or class to be applied. For example, we can denote
them as:

Rj : IF xp1 IS Aj1 AND · · · AND xpn IS Ajn THEN y IS Bj

with j = 1 to L, and with xp1 to xpn and y being the input and output variables, with
Aj1 to Ajn and Bj being the involved antecedents and consequent labels, respectively.
They are usually called linguistic FRBSs or Mamdani FRBSs [27].
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Fig. 12.3 Structure of an FRBS

In linguistic FRBSs, the KB is comprised by two components, a data base (DB)
and a rule base (RB).

• ADB, containing the linguistic term sets considered in the linguistic rules and the
membership functions defining the semantics of the linguistic labels.
Each linguistic variable involved in the problem will have associated a fuzzy par-
tition of its domain representing the fuzzy set associated with each of its linguistic
terms. Reader is referred to recall Fig. 12.2 where we showed an example of fuzzy
partition with three labels. This can be considered as a discretization approach
for continuous domains where we establish a membership degree to the items
(labels), we have an overlapping between them, and the inference engine manages
the matching between the patterns and the rules providing an output according to
the rule consequents with a positive matching. The determination of the fuzzy par-
titions is crucial in fuzzy modeling [28], and the granularity of the fuzzy partition
plays an important role for the FRBS behavior [29].

• A RB, comprised of a collection of linguistic rules that are joined by a rule con-
nective (“also” operator). In other words, multiple rules can be triggered simulta-
neously for the same input.

The generic structure of an FRBS is shown in Fig. 12.3.

12.2.3 Mamdani Fuzzy Inference Process

The inference engine of FRBSs acts in a different way depending of the kind of
problem (classification or regression) and the kind of fuzzy rules. It always includes
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a fuzzification interface that serves as the input to the fuzzy reasoning process, an
inference system that infers from the input to several resulting outputs (fuzzy set,
class, etc.) and the defuzzification interface or output interface that converts the fuzzy
sets obtained from the inference process into a crisp action that constitutes the global
output of the FRBS, in the case of regression problems, or provide the final class
associated to the input pattern according to the inference model.

According to Mamdani principles [30], the fuzzy inference process includes five
parts, which contain a very simple structure of “max-min” operators, specifically
fuzzification of the input variables, application of the fuzzy operator (AND or OR)
in the antecedent, implication from the antecedent to the consequent, aggregation of
the consequents across the rules and defuzzification. These five operations can be
compressed into three basic steps, which are described below:

Step 1. Computation of the Matching Degree. The first step is to take the inputs
and determine the degree to which they belong to each of the fuzzy sets
considering the membership functions. In order to compute the matching
degree to which each part of the antecedent is satisfied for each rule, a
conjunction operator C is applied. Specifically, Mamdani recommended the
use of the minimum t-norm.

μAj (xp) = C(μAj1(xp1), . . . , μAjn(xpn)), j = 1, . . . , L. (12.1)

Step 2. Apply an Implication Operator. In this step, the consequent is reshaped
using a function associated with the antecedent (a single number). The input
for the implication process is a single number given by the antecedent, and
the output is a fuzzy set. Implication is implemented for each rule. Usually,
two approaches for the implication operator I are employed, i.e. minimum t-
norm,which truncates the output fuzzy set, and product t-norm,which scales
the output fuzzy set. Mamdani also recommended the use of the minimum
t-norm in this case.

μB′
j
(y) = I(μAj (xp), μBj (y)) j = 1, . . . , L. (12.2)

Step 3. Defuzzification process. Decisions are based on the testing of all of the rules
in a fuzzy inference system, so rules must be combined in order to make
a decision. There are two modes of obtaining the output value of a fuzzy
system, namely “aggregation first, defuzzification after” and “defuzzification
first, aggregation after”. The defuzzificationmethod suggested byMamdani
considers the first method using the centre of gravity of the individual fuzzy
sets aggregated with the maximum connective also.

μB(y) =
⋃

j

μB′
j
(y) (12.3)
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y0 =
∫

y y · μB(y)dy
∫

y μB(y)
(12.4)

12.3 Evolutionary Fuzzy Systems: Taxonomy and Analysis

EFSs are a family of approaches that are built on top of FRBSs, whose components
are improved by means of an evolutionary learning/optimization process as depicted
in Fig. 12.4. This process is designed for acting or tuning the elements of a fuzzy
system in order to improve its behavior in a particular context. Traditionally, this
was carried out by means of Genetic Algorithms, leading to the classical term of
Genetic Fuzzy Systems [5, 31–33]. In this chapter, we consider a generalization of
the former by the use of EAs [7].

The central aspect on the use of EAs for automatic learning of FRBSs is that the
design process can be analyzed as a search problem in the space of models, such as
the space of rule sets, membership functions, and so on. This is carried out by means
of the coding of the model in a chromosome. Therefore, the first step in designing an
EFS is to decide which parts of the fuzzy system are subjected to optimization by the
EA coding scheme. Hence, EFS approaches can be mainly divided into two types
of processes: tuning and learning. Additionally, we must make a decision whether
to just improve the accuracy/precision of the FRBS or to achieve a tradeoff between
accuracy and interpretability (and/or other possible objectives) bymeans of aMOEA.
Finally, we must stress that new fuzzy set representations have been designed, which
implies a new aspect to be evolved in order to take the highest advantage of this
approach.

This high potential of EFSs implies the development of many different types of
approaches. In accordance with the above, and considering the FRBSs’ components
involved in the evolutionary learning process, a taxonomy for EFS was proposed by
Herrera in [33] (please refer to its thematic Website at http://sci2s.ugr.es/gfs/). More
recently, in [6] we extended the former by distinguishing among the learning of the

Fig. 12.4 Integration of an
EFS on top of an FRBS

http://sci2s.ugr.es/gfs/
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Fig. 12.5 Evolutionary fuzzy systems taxonomy

FRBSs’ elements, the EA components and tuning, and the management of the new
fuzzy sets representation. This novel EFS taxonomy is depicted in Fig. 12.5.

In order to describe this taxonomy tree of EFSs, this section is arranged as fol-
lows. First, we present those models according to the FRBS components involved in
the evolutionary learning process (Sect. 12.3.1). Afterwards, we focus on the multi-
objective optimization (Sect. 12.3.2). Finally, we provide some brief remarks regard-
ing the parametrized construction for new fuzzy representations (Sect. 12.3.3).

12.3.1 Evolutionary Learning and Tuning of FRBSs’
Components

When addressing a given Data Mining problem, the use of any fuzzy sets approach
is usually considered when an interpretable system is sought, when the uncertainty
involved in the data must be properly managed, or even when a dynamic model is
under consideration. Then, we must make the decision on whether a simple FRBS
is enough for the given requirements, or if a more sophisticated solution is needed,
thus exchanging computational time for accuracy.

As introduced previously, this can be achieved either by designing approaches
to learn the KB components, including an adaptive inference engine, or by starting
from a given FRBS, developing approaches to tune the aforementioned components.
Therefore, wemay distinguish among the evolutionaryKB learning, the evolutionary
learning of KB components and inference engine parameters, and the evolutionary
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tuning. These approaches are described below,which can be performed via a standard
mono-objective approach or a MOEA.

12.3.1.1 Evolutionary KB Learning

The following four KB learning possibilities can be considered:

1. Evolutionary rule selection. In order to get rid of irrelevant, redundant, erroneous
and/or conflictive rules in the RB, which perturb the FRBS performance, an
optimized subset of fuzzy rules can be obtained [34].

2. Simultaneous evolutionary learning of KB components.Working in thisway, there
is possibility of generating better definitions of these components [35].However, a
larger search space is associated with this case, which makes the learning process
more difficult and slow.

3. Evolutionary rule learning. Most of the approaches proposed to automatically
learn the KB from numerical information have focused on the RB learning, using
a predefined DB [36].

4. Evolutionary DB learning. A DB generation process allows the shape or the
membership functions to be learnt, as well as other DB components such as
the scaling functions, the granularity of the fuzzy partitions, and so on. Two
possibilities can be used: “a priori evolutionary DB learning” and “embedded
evolutionary DB learning [37].”

12.3.1.2 Evolutionary Learning of KB Components and Inference
Engine Parameters

This area belongs to a hybrid model between adaptive inference engine and KB
components learning. These type of approaches try to find high cooperation between
the inference engine via parameters adaptation and the learning of KB components,
including both in a simultaneous learning process [38].

12.3.1.3 Evolutionary Tuning

With the aim of making the FRBS perform better, some approaches try to improve
the preliminary DB definition or the inference engine parameters once the RB has
been derived. The following three tuning possibilities can be considered (see the
sub-tree under “evolutionary tuning”).

1. Evolutionary tuning of KB parameters. A tuning process considering the whole
KB obtained is used a posteriori to adjust the membership function parameters,
i.e. the shapes of the linguistic terms [39].

2. Evolutionary adaptive inference systems. This approach uses parameterized
expressions in the inference system, sometimes called adaptive inference sys-
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tems, for getting higher cooperation among the fuzzy rules without losing the
linguistic rule interpretability [40].

3. Evolutionary adaptive defuzzification methods.When the defuzzification function
is applied by means of a weighted average operator, i.e. parameter based average
functions, the use of EAs can allow us to adapt these defuzzification methods
[41].

12.3.2 Approaches for Optimizing Several Objectives

Traditionally, the efforts in developing EFSs were aimed at improving the accu-
racy/precision of the FRBS in a mono-objective way. However, in current applica-
tions the interest of researchers in obtaining more interpretable linguistic models
has significantly grown [42]. The hitch is that accuracy and interpretability represent
contradictory objectives. A compromise solution is to address this problem using
MOEAs [8] leading to a set of fuzzy models with different tradeoffs between both
objectives instead of a biased one. These hybrid approaches are known as MOEFSs
[10] that, in addition to the two aforementioned goals, may include any other kind
of objective, such as the complexity of the system, the cost, the computational time,
additional performance metrics, and so on.

In this case, the division of this type of techniques is first based on the multi-
objective nature of the problem faced and second on the type of FRBS components
optimized. Regarding the previous fact, those of the second level present a clear
correspondence with the types previously described for EFSs in the previous section.

Here, we will only present a brief description for each category under considera-
tion. For more detailed descriptions or an exhaustive list of contributions see [10] or
its associated Webpage (http://sci2s.ugr.es/moefs-review/).

12.3.2.1 Accuracy-Interpretability Trade-Offs

The comprehensibility of fuzzy models began to be integrated into the optimization
process in the mid 1990s [43], thanks to the application of MOEAs to fuzzy systems.
Nowadays, researchers agree on the need to consider two groups of interpretability
measures, complexity-based and semantic-based ones.While the first group is related
to the dimensionality of the system (simpler is better) the second one is related to the
comprehensibility of the system (improving the semantics of the FRBS components).
For a complete survey on interpretability measures for linguistic FRBSs see [42].

The differences between both accuracy and interpretability influence the opti-
mization process, so that researchers usually include particular developments in the
proposed MOEA making it able to handle this particular trade-off. An example can
be seen in [44] where authors specifically force the search to focus on the most
accurate solutions.

http://sci2s.ugr.es/moefs-review/
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12.3.2.2 Performance Versus Performance (Control Problems)

In control system design, there are often multiple objectives to be considered, i.e.
time constraints, robustness and stability requirements, comprehensibility, and the
compactness of the obtained controller. This fact has led to the application ofMOEAs
in the design of Fuzzy Logic Controllers.

The design of these systems is defined as the obtaining of a structure for the
controller and the corresponding numerical parameters. In a general sense, they fit
with the tuning and learning presented for EFSs in the previous section. Inmost cases,
the proposal deals with the postprocessing of Fuzzy Logic Controller parameters,
since it is the simplest approach and requires a reduced search space.

12.3.3 Novel Fuzzy Representations

Classical approaches on FRBSs make use of standard fuzzy sets [20], but in the spe-
cialized literature we found extensions to this approach with aim to better represent
the uncertainty inherent to fuzzy logic. Among them, we stress Type-2 fuzzy sets
[45] and Interval-Valued Fuzzy Sets (IVFSs) [46] as two of the main exponents of
new fuzzy representations.

Type-2 fuzzy sets reduce the amount of uncertainty in a system because this logic
offers better capabilities to handle linguistic uncertainties by modeling vagueness
and unreliability of information. In order to obtain a type-2 membership function,
we start from the type-1 standard definition, and then we blur it to the left and to the
right. In this case, for a specific value, the membership function, takes on different
values, which are not all weighted the same. Therefore, we can assign membership
grades to all of those points.

For IVFS [46], the membership degree of each element to the set is given by a
closed sub-interval of the interval [0,1]. In such a way, this amplitude will represent
the lack of knowledge of the expert for giving an exact numerical value for the
membership. We must point out that IVFSs are a particular case of type-2 fuzzy sets,
having a zero membership out of the ranges of the interval.

In neither case, there is a general design strategy for finding the optimal fuzzy
models. In accordance with the former, EAs have been used to find the appropriate
parameter values and structure of these fuzzy systems.

In the case of type-2 fuzzymodels, EFSs can be classified into two categories [47]:
(1) the first category assumes that an “optimal” type-1 fuzzy model has already been
designed, and afterwards a type-2 fuzzy model is constructed through some sound
augmentation of the existing model [48]; (2) the second class of design methods is
concernedwith the construction of the type-2 fuzzymodel directly fromexperimental
data [49].

Regarding IVFS, current works initialize type-1 fuzzy sets as those defined homo-
geneously over the input space. Then, the upper and lower bounds of the interval
for each fuzzy set are learnt by means of a weak-ignorance function (amplitude
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tuning) [50], which may also involve a lateral adjustment for the better contextual-
ization of the fuzzy variables [51]. Finally, in [52] IVFS are built ad-hoc, using an
interval-valued restricted equivalence functions within a new interval-valued fuzzy
reasoning method. The parameters of these equivalence functions per variable are
learnt by means of an EA, which is also combined with rule selection in order to
decrease the complexity of the system.

12.4 The Use of Evolutionary Fuzzy Systems
for Classification with Imbalanced Datasets

As EFSs have improved their performance from its initial models, they have been
applied to novel challenges like the problem of classification with imbalanced
datasets [12, 13]. This classification scenario has gained recognition in the last years
as its importance comes from its presence in numerous real-world problems and the
necessity of using specific approaches to address them.

In Sect. 12.4.1, we will briefly introduce the problem of classification with imbal-
anced datasets, outlining the approaches that are usually applied in the area and the
evaluation metrics that are specifically used in this case. Then, in Sect. 12.4.2, we
will provide an analysis over the EFS approaches that have been proposed to handle
datasets with imbalanced distributions. Finally, one of the EFS approaches that we
have developed in the topic, GP-COACH-H [19], is further described in Sect. 12.4.3
together with an experimental analysis to prove its usefulness in the imbalanced
scenario.

12.4.1 Introduction to Classification with Imbalanced
Datasets

The classification problemwith imbalanceddatasets ariseswhen the number of exam-
ples belonging to one class is negligible with respect to the number of examples that
represent the other classes [53–55]. In this problem, it is precisely the underrepre-
sented class, also known as the minority or positive class, the one which needs to
be properly identified, as its incorrect identification usually entails high costs [56,
57]. This fact contrasts with the more represented classes, also known as majority or
negative classes, which are typically well identified.

The importance of this problem comes from its presence in a high number of real-
world problems, becoming one of the top challenges in data mining research [58].
We can find imbalanced distributions in areas like risk management [59], bioactivity
of chemical substances [60], fraud detection [61], system failure detection [62] or
medical applications [63, 64], just mentioning some of them.
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Standard classification algorithms are not usually able to provide a good iden-
tification of samples belonging to the minority class as they are guided by global
search measures, like a percentage of well-classified examples. Thus, following the
standardsmodels are created trying to cover asmany samples as possible whilemain-
taining their simplicity. In these cases, the developed models properly identify many
examples of the majority class, as they represent the higher number of examples of
the whole dataset. However, minority class examples are not usually covered because
their representation is small and therefore, it could have no influence in the learning
stage and hence no classification rule is created for them.

In this context, the imbalance ratio (IR) [65], is traditionally used to determine how
difficult a classification problemwith imbalanceddatasets is. Specifically, it is defined
as the quotient between the number of examples belonging to the majority class and
the number of samples belonging to the minority class, IR = #numMaj

#numMin . Although the
imbalanced distribution poses a major challenge to classifiers, there are also some
data intrinsic characteristics that difficult the classification with imbalanced datasets,
further degrading the performance ofmethods thanwhen these issues arise separately
[12]. These data intrinsic characteristics include the small sample size or lack of
density problem [66], the overlapping of the samples belonging to each class [16],
the presence of small disjuncts in the data [67], the existence of borderline [68] or
noisy samples [69] and the dataset shift [70].

Numerous approaches have been proposed to address the problemof classification
with imbalanced datasets. They are commonly divided into approaches at the data-
level, at the algorithm-level, and cost-sensitive learning, all ofwhich canbe embedded
into an ensemble learning scheme:

• Approaches at the data-level [71, 72] modify the original training set to obtain
a more or less balanced dataset that can be addressed using standard classifica-
tion algorithms. These modifications to the dataset can be performed generating
additional examples associated to the minority class (oversampling) or removing
examples from the minority class (undersampling).

• Algorithm-level approaches [73] modify existing standard classification meth-
ods in order to enhance the identification of the minority class examples. These
modifications may include the use of imbalanced measures to guide the search, a
limitation of procedures designed to generalize the models or even new operations
specifically designed to focus on the minority class.

• Cost-sensitive learning solutions combine approaches at the algorithm-level and
the data-level for imbalanced classification considering the variable costs of mis-
classifying an instance as belonging to the other class [74, 75]. In imbalanced
datasets, the misclassification costs associated to a minority class instance are
higher than the costs associated to themisclassification of a majority class instance
C(min, maj) > C(maj, min), as the minority class is the main interest in the learn-
ing process.

• Ensembles have also been adapted to imbalance learning [76] obtaining a high
performance when applied. In general, these new ensemble approaches introduce
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in their way of running some cost-sensitive learning [77] or data preprocessing
features [78, 79].

Finally, when considering the evaluation of the performance of classifiers in this
context, we must proceed carefully. The most common measure of performance, the
overall accuracy in classification, is not appropriate in a dataset with an uneven class
distribution, as a high value in the measure can be obtained correctly classifying the
instances associated to the majority class, even when all the minority class samples
are not properly identified. This situation is completely undesirable as the minority
class is the most interesting from the learning point of view. For this reason, more
appropriate performance metrics are used in the imbalanced classification scenario.

The geometric mean (GM) [80] of the true rates is one measure that is able to
avoid the problems related to the traditional accuracy metrics and is defined as:

GM = √
sensitivity · specificity (12.5)

where sensitivity = TP
TP+FN and specificity = TN

FP+TN . The sensitivity and specificity
values represent the true rate for each class, computed from TP and TN which are the
true rate for the minority and majority instances and the FP and FN which are the
rate for the false minority samples and majority examples respectively. This metric
tries to balance the performance over the two classes, combining both objectives into
one.

12.4.2 EFS Approaches for Imbalanced Classification

EFSs have evolved and addressed new challenges and problems since they were first
proposed. There are several proposals of EFS for imbalanced datasets; some of them
study the impact and improvement of these systems modifying some of the fuzzy
components while others introduce new operations in the methods without chang-
ing the basic fuzzy inference process. As the EFS methods applied to imbalanced
classification are quite varied, we have organized them in four groups considering
how they approach the imbalanced classification problem, namely, with data-level
approaches, algorithm-level approaches, cost-sensitive learning and ensembles.

12.4.2.1 EFS and Data-Level Approaches

Data preprocessing techniques have been used together with EFSs because of their
versatility as they are independent of the classifier used. FRBSs have demonstrated a
good performance [14] in the imbalanced classification scenario, especially for over-
sampling techniques. This has encouraged the development of different fuzzy based
classifiers together with preprocessing approaches. One of the most popular over-
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sampling techniques, the “Synthetic Minority Oversampling TEchnique” (SMOTE)
algorithm [72], has been extensively used in combination with EFSs.

One of the EFSs approximations developed for imbalanced datasets is the one
described in [81]. In it, an adaptive inference system with parametric conjunction
operators is presented. To deal with the imbalance, the SMOTE algorithm is used to
balance the datasets. The idea presented in the paper is based on the suitability of
adaptive t-norms, like the Dubois t-norm where a parameter α modifies how the t-
norm behaves. Using the CHC evolutionary algorithm [82]with theGMperformance
measure as evaluation function, the α parameter can be learned for the whole RB or
for each specific rule improving the overall performance of the system.

An analysis about the evolutionary tuning of the KB for classification with imbal-
anced datasets is performed in [83]. In order to avoid the imbalanced problem, the
SMOTE algorithm is again used to obtain a balanced distribution of the train set.
In this work, a genetic process based on the CHC evolutionary algorithm is used to
learn the lateral displacement of the DB using the 2-tuples linguistic representation
[84]. This lateral translation can be learned over the full DB for the complete RB or
adapting each set of fuzzy labels according to each specific rule in the RB. In this
way, the performance of the Chi et al. method [85] and the FH-GBML classifier [86]
is improved.

The imbalanced problem can emerge in conjunction with other problems like the
availability of low quality data. Therefore, the uncertainty that needs to be managed
does not refer only to the difficult identification of samples for each class but also to
the values associated to the input values of the samples. In [18], several preprocess-
ing techniques are adapted to the low quality data scenario to obtain a more or less
balanced distribution that can be managed more easily. Specifically, low quality data
versions of the ENN [87], NCL [88], CNN [89], SMOTE [72] and SMOTE+ENN
[71] algorithms are designed to classify low quality imbalanced data using a genetic
cooperative-competitive learning algorithm. The performance of these versions is
similar to the one obtained with the preprocessing methods for the standard imbal-
anced problems.

In [90], a genetic procedure for learning the KB in imbalanced datasets, GA-
FS+GL, is proposed. In this case, the SMOTE algorithm is again used to balance
the training set. The idea presented in this work is the use of a GA to perform a
feature selection and a selection of the granularity of the data base. To perform the
feature selection, a binary part of the chromosome is used to determine if an attribute
is used or not. To select the granularity of the DB, the algorithm searches for the
best performing set of labels considering different number of labels between two
and seven using equally distributed triangular membership functions. The approach
is tested over the Chi et al. method [85] obtaining competitive results.

The data intrinsic characteristics can degrade the performance of imbalanced clas-
sifiers in a further extent thanwhen they appear in isolation [12]. In [91], the impact of
dataset shift over imbalanced classifiers is studied. Specifically, two partitioning tech-
niques for the validation of classifiers are compared: the stratified cross-validation
and a novel cross-validation approach named DOB-SCV [92], an approach that tries
to limit the covariate shift that is induced when partitions are created. The FARC-HD
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classifier [93] is selected to compare how the dataset shift changes the behavior of
EFS classifiers. The results obtained show that it is advisable to limit the dataset shift
introduced in these processes even when we are using fuzzy systems that can cope
with uncertainty and imprecision.

12.4.2.2 EFS and Algorithm-Level Approaches

Modifying operations within the algorithm design to further enhance the correct
identification of examples belonging to the minority class is a popular solution to
adapt EFS for imbalanced classification. In some cases, these alterations are enough
to address the imbalanced distributions, however, in others it is necessary to combine
them with preprocessing techniques to further improve the performance of these
methods.

One of the approaches that follows a design with specific operations for the imbal-
ance is the one described in [94], renamed in [95] as FLAGID, Fuzzy Logic And
Genetic algorithms for Imbalanced Datasets. This approach follow several stages,
starting with a first step that is a modified version of the RecBF/DDA algorithm
[96]. This first step, creates the membership functions that are going to be used after-
wards, creating a smaller number of membership functions for the minority class.
The second stage is called ReRecBF and its aim is to simplify the previously created
functions so that they cover important regions being able to at least represent a 10%
of the class. Finally, the third stage learns the RB considering the previously gener-
ated membership functions using a genetic algorithm procedure that uses the GM as
fitness function.

The use of a hierarchical fuzzy rule-based classification system (HFRBCS) for
imbalanced classifiers has been considered in [17], using Chi et al.’s method as
baseline classifier. Additionally, in [19] authors propose GP-COACH-H, which is
also based on a hierarchical system. In bothHFRBCSs, theKB is structured following
different levels of learning, being the lower levels more general and the higher levels
more specific. This type of approaches aim to improve the performance of methods
in difficult data areas like the data intrinsic characteristics that further difficult the
classification with imbalanced datasets. In a first stage, the SMOTE algorithm is used
to balance the data that will be later processed by the hierarchical methods that try to
identify the samples in difficult areas. ForHFRBCS(Chi) [17], the generation process
of the hierarchical rules is based on the Chi et al. method [85]. When the hierarchical
rule base has been obtained, a rule selection process to select a subset of rules for the
final classifier is used. For GP-COACH-H [19], the hierarchical rule base is obtained
modifying the GP-COACH algorithm [97]. In this method, a subsequent step is
applied with a genetic tuning of the knowledge base where a combined selection
of the rules and a lateral tuning based on the 2-tuples representation is developed.
GP-COACH-H will be later described as our selected method for the case of study.

Another algorithm that has been modified for imbalanced classification is the
FARC-HD algorithm [93]. Specifically, this method is applied in the case study of
intrusion detection systems [98, 99], following two different schemes. In the first
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case [100], the alterations to the method follow two aspects: the first one is the
use of the SMOTE algorithm to preprocess the data for the subsequent operations;
whereas the second one is related to the changes introduced in the genetic tuning of
the knowledge base phase that is performed in the FARC-HD method. This genetic
procedure changes its evaluation function to the GM performance measure. On the
other hand, in [101] the FARC-HDEFS baseline algorithm is embedded in a pairwise
learning scheme [102]. This is done for being able to improve the recognition of the
minority class instances by simplifying the borderline areas in each binary classifier.
Finally, Sanz et al. applied an interval-valued fuzzy sets version of FARC-HD in the
context of the modeling and prediction of imbalanced financial datasets [103].

Following diverse evolutionary approaches, we can find another proposal for
imbalanced classification in [104]. The method is divided in two steps, a first step
that applies a feature selection process to reduce the dimensionality of the training
set and a second step to generate the fuzzy rules using evolutionary techniques.
This second step is divided in several steps as well: first, a differential evolution
optimization process is performed to estimate a radii value; then, this radii value
will be used in a subtractive clustering method to generate fuzzy TSK rules; finally, a
genetic programming step is used to improve the fuzzy TSK rules and convert them
to Mamdani classification rules.

12.4.2.3 EFS and Cost-Sensitive Learning

As in the previous cases, EFSs have also been adapted to classification with imbal-
anced datasets following cost-sensitive learning, that is, considering the costs within
the algorithm to favor the classification of the minority class examples. In [105],
the FH-GBML-CS method is proposed, which is a cost-sensitive version of the FH-
GBML algorithm [86]. The costs are introduced in the evaluation function of the
genetic procedure and in the computation of the rule weight, using the what is called
as the cost-sensitive penalized certainty factor, a modified version including costs of
the penalized certainty factor [106]. Moreover, the inference process for the fuzzy
reasoning method considers the compatibility degree of the example and the fuzzy
label together with the cost associated to that example.

In [107], a cost-sensitive MOEFS for imbalanced classification is presented. In
this method, the NSGA-II algorithm is used to create an FRBS using the specificity
performancemeasure as an objective, the sensitivity performancemeasure as another
objective and the complexity as a third objective. This complexity measure is com-
puted adding the number of antecedents in all the rules in the RB. Finally, a ROC
convex hull technique is used together with the misclassification costs to select the
best solution of the pareto of solutions obtained by the multi-objective method.
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12.4.2.4 EFS and Ensemble Learning

The existing learning approaches for imbalanced classification have been typically
used with weak learners like decision trees instead of using other approaches. In this
way, ensembles are rarely combined with EFS in the imbalanced scenario. However,
even when this type of systems are not specifically designed for imbalance, we can
find proposals that are tested over imbalanced datasets.

For example, in [108], a boosting method based on fuzzy rules is proposed. This
method is divided in two stages. In the first one, a fuzzy rule learning method is
applied. This method is based on the AdaBoost algorithm [109], which has been
modified following an iterative rule learning approach. Rules are created with an
evolutionary rule generation method that adapts the rules to the dataset according
to the learned weights in each iteration until the performance does not improve or
even decreases. When this first stage has finished, a genetic tuning step is performed.
There are no specific operations for the imbalanced distributions in this method as it
was not specifically designed for imbalanced data, however, the weights associated
to each sample in the boosting can favor the correct identification of minority class
examples. Furthermore, themethod is tested in the land cover classification of remote
sensing imagery problem, which can feature imbalanced distributions.

Finally, in [110], three EFS systems for imbalanced classification are compared,
which are the GA-FS+GL method described in [90], the GP-COACH-H algorithm
presented in [19] and the MOEFS developed in [107]. The authors use 22 datasets to
perform this comparison being the MOEFS approach the one with the best perfor-
mance supported by aHolm test. However, the results extracted from this comparison
need to be treated with care, as the AUC performance measure [111] is not computed
in the same way for the three methods: for the MOEFS approach, the AUC measure
is computed considering all the classifiers obtained in the multi-objective process
without applying the ROC convex hull technique that selects one of them, while for
the other two methods, the AUC measure is calculated considering the one point
formula.

12.4.3 Case Study: Addressing Highly Imbalanced Datasets
with GP-COACH-H

Having analyzed how EFS adopt the different strategies for imbalanced datasets,
we have selected one of the EFS approaches to demonstrate its effectiveness for
classification with imbalanced datasets. In a first step, we will further describe the
GP-COACH-H algorithm, a fuzzy rule-based classification system for imbalanced
data. Then, we will present the experimental framework associated to the study
performed, the result tables and its associated statistical tests.
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12.4.3.1 GP-COACH-H: A Hierarchical Genetic Programming Fuzzy
Rule-Based Classification System with Rule Selection
and Tuning

The GP-COACH-H algorithm [19] is a fuzzy rule-based classification system that
has been developed to effectively address imbalanced datasets in arduous imbalanced
scenarios, such as highly imbalanced datasets and borderline imbalanced datasets.
To do so, the GP-COACH-H algorithm follows an algorithm-level approach as its
behavior is modified in order to favor the correct identification of samples belonging
to the minority class.

The proposal combines several strategies that are able to obtain a good synergy
between them, namely, data preprocessing, a hierarchical linguistic classifier and
genetic tuning of KB parameters. As previously mentioned, the data preprocessing
modifies the input dataset to ease the learning process of the subsequent classifier.

An HFRBCS [112] extends the standard definition of the KB so it can better
model complex search spaces such as imbalanced datasets entangled with some data
intrinsic characteristics like borderline examples, overlapping between the classes or
even small disjuncts. In these systems, the KB is called hierarchical knowledge base
(HKB), as the changes introduced by the hierarchical model affect both the DB and
the RB.

An HKB is composed by a set of layers, which represent different granularity
levels. Each layer has its own DB and RB which determine the specificity level of
description that can be achieved by the model. The RB of a layer can only use the
fuzzy linguistic labels defined in the associated DB. The layers are organized in a
hierarchical way: a new layer level has a higher number of fuzzy labels than the
previous level and the fuzzy labels built in the new level are created preserving the
membership function modal points, adding a new linguistic term between each two
consecutive terms of the linguistic partition belonging to the previous model. The
idea behind the usage of this system is to use a low hierarchical level to describe
general areas of data,while using a larger hierarchical level to illustratemore complex
areas.

Another strategy used in this method is the genetic tuning of KB parameters. As it
was explained in the previous sections, the objective of this component is to enhance
the previously learned KB using genetic algorithms so that the final model is able to
better characterize the classes of the dataset.

TheGP-COACH-H algorithm follows a three stages approach in order to integrate
the different strategies proposed. A flowchart of the building of this model can be
found in Fig. 12.6. The three stages of the algorithm involve the following operations:

1. Data preprocessing: As a first step, the GP-COACH-H algorithm needs to modify
the original training set so it displays a more or less balanced distribution. In order
to do so, an oversampling scheme is used, following the SMOTE algorithm [72]
to generate synthetic samples associated to the minority class.

2. HKB generation process with an EFS: Considering the dataset obtained in the
previous step, a genetic programming approach is used to generate the HKB. GP-
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Fig. 12.6 Flowchart of the GP-COACH-H algorithm

COACH-H is based on the GP-COACH algorithm [97], and therefore, it follows
the genetic programming procedure adopted in that method. To obtain a HKB,
some of the GP-COACH steps need to be modified to enable the usage of rules of
different hierarchies in the same population. The first alteration, is the addition of
a new step in each generation of the genetic approach: the identification of good
and bad rules in the current population. Bad rules are discarded and are replaced
by new high granularity rules. Another modification to the genetic process is the
use of a new evaluation function that is able to consider different granularity levels
in the rules. New constraints over the crossover operator need to be performed to
ensure that it is only applied to rules of the same hierarchy.

3. Genetic tuning of the HKB parameters: When the building of the HKB has ended,
a genetic tuning process of the HKB parameters is started to further adapt the
classifier to the available data. In this step,we try to performa selectionof rules that
demonstrate a good cooperation [34] while also tuning the existing hierarchical
DBs following a 2-tuples linguistic representation [84]. These optimizations are
done together with an unique genetic procedure using the CHC evolutionary
algorithm to profit from the synergy that these optimizations can achieve. To do
so, each part of the chromosome codifies the rule selection process or the tuning
adjustment where genetic operators are modified to consider this situation.
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12.4.3.2 Experimental Study

To evaluate the performance of the GP-COACH-H algorithm, we have selected 44
highly imbalanced datasets with an IR higher than 9 from the KEEL dataset reposi-
tory1 [113]. Table12.1 summarizes the datasets used in this study, showing for each
one the number of examples (#Ex.), the number of attributes (#Atts.), the class name
associated to each class (minority and majority), the attribute class distribution and
the IR. This table is sorted by increasing order of IR.

To carry out this study, we follow a five-fold cross-validation approach, that is,
performing five random partitions of the data where the aggregation of four of them
constitutes the training set, and the other partition is considered as the test set. The
results presented in thisworkdisplay the average results obtained in thefivepartitions.

For the GP-COACH-H algorithm, we have set the parameters of its different com-
ponents according to what is usual in these domains. For the SMOTE preprocessing
part, we consider only the 1-nearest neighbor (using the euclidean distance) to gen-
erate the synthetic examples to obtain a balanced dataset. The parameters associated
to the fuzzy rule-based classification system are the use of the minimum t-norm as
conjunction operator, the maximum t-norm as disjunction operator, the certainty fac-
tor is used to compute the rule weight, the normalized sum is used as fuzzy reasoning
method and 5 fuzzy labels are used for low granularity rules while 9 fuzzy labels are
used for high granularity rules. Considering the genetic part of the building of the
model, the number of evaluations used are 20000, the initial population has a size
of 200, the α value for the raw fitness is 0.7, the crossover probability is 0.5, the
mutation probability is 0.2, the dropping condition probability is 0.15, the insertion
probability is 0.15 as well, the tournament size is 2, while the weights associated to
the fitness function are w1 = 0.8, w2 = w3 = 0.05, w4 = 0.1. Finally, the parameters
associated to the hierarchical procedure and the last genetic tuning phase are an α of
0.2 to detect good and bad rules, the number of evaluations is 10000, the population
size is 61 and the bits per gene are 30.

To demonstrate the good performance of the GP-COACH-H algorithm for imbal-
anced datasets, we have selected the C4.5 algorithm [114], a well-known decision
tree that has displayed a good behavior for imbalanced datasets [71]. The parameters
associated to this method are the ones recommended by the author, namely, the use
of a pruned tree, a confidence of 0.25 and 2 as the minimum number of item-sets per
leaf. To deal with the imbalance, we have combined C4.5 with the SMOTE+ENN
algorithm [71], where the ENN cleaning method [87] is directly applied after the
SMOTE algorithm to generalize the borders between the classes. For generating
synthetic samples, the 1-nearest neighbor is used to obtain a balanced dataset. For
the ENN part, 3-nearest neighbors are considered. In both cases, the euclidean dis-
tance is applied.

Furthermore, we have used statistical tests to detect whether there are significant
differences among the results achieved by the different testedmethods [115].Wewill
use non-parametric tests as the conditions that guarantee the reliability of parametric

1http://www.keel.es/imbalanced.php.

http://www.keel.es/imbalanced.php
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Table 12.1 Summary of highly imbalanced datasets

Datasets #Ex. #Atts. Class (maj;min) %Class(maj;
min)

IR

ecoli034vs5 200 7 (p,imL,imU; om) (10.00, 90.00) 9.00

yeast2vs4 514 8 (cyt; me2) (9.92, 90.08) 9.08

ecoli067vs35 222 7 (cp,omL,pp; imL,om) (9.91, 90.09) 9.09

ecoli0234vs5 202 7 (cp,imS,imL,imU; om) (9.90, 90.10) 9.10

glass015vs2 172 9 (build-win-non_float-
proc,tableware,

(9.88, 90.12) 9.12

build-win-float-proc;
ve-win-float-proc)

yeast0359vs78 506 8 (mit,me1,me3,erl; vac,pox) (9.88, 90.12) 9.12

yeast02579vs368 1004 8 (mit,cyt,me3,vac,erl;
me1,exc,pox)

(9.86, 90.14) 9.14

yeast0256vs3789 1004 8 (mit,cyt,me3,exc;
me1,vac,pox,erl)

(9.86, 90.14) 9.14

ecoli046vs5 203 6 (cp,imU,omL; om) (9.85, 90.15) 9.15

ecoli01vs235 244 7 (cp,im; imS,imL,om) (9.83, 90.17) 9.17

ecoli0267vs35 224 7 (cp,imS,omL,pp; imL,om) (9.82, 90.18) 9.18

glass04vs5 92 9 (build-win-float-
proc,containers;
tableware)

(9.78, 90.22) 9.22

ecoli0346vs5 205 7 (cp,imL,imU,omL; om) (9.76, 90.24) 9.25

ecoli0347vs56 257 7 (cp,imL,imU,pp; om,omL) (9.73, 90.27) 9.28

yeast05679vs4 528 8 (me2; mit,me3,exc,vac,erl) (9.66, 90.34) 9.35

ecoli067vs5 220 6 (cp,omL,pp; om) (9.09, 90.91) 10.00

vowel0 988 13 (hid; remainder) (9.01, 90.99) 10.10

glass016vs2 192 9 (ve-win-float-proc;
build-win-float-proc,

(8.89, 91.11) 10.29

build-win-non_float-
proc,headlamps)

glass2 214 9 (Ve-win-float-proc;
remainder)

(8.78, 91.22) 10.39

ecoli0147vs2356 336 7 (cp,im,imU,pp;
imS,imL,om,omL)

(8.63, 91.37) 10.59

led7digit02456789vs1 443 7 (0,2,4,5,6,7,8,9; 1) (8.35, 91.65) 10.97

glass06vs5 108 9 (build-win-float-
proc,headlamps;
tableware)

(8.33, 91.67) 11.00

ecoli01vs5 240 6 (cp,im; om) (8.33, 91.67) 11.00

glass0146vs2 205 9 (build-win-float-
proc,containers,headlamps,

(8.29, 91.71) 11.06

build-win-non_float-
proc;ve-win-float-proc)

ecoli0147vs56 332 6 (cp,im,imU,pp; om,omL) (7.53, 92.47) 12.28
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Table 12.1 (continued)

Datasets #Ex. #Atts. Class (maj;min) %Class(maj;
min)

IR

cleveland0vs4 177 13 (0; 4) (7.34, 92.66) 12.62

ecoli0146vs5 280 6 (cp,im,imU,omL; om) (7.14, 92.86) 13.00

ecoli4 336 7 (om; remainder) (6.74, 93.26) 13.84

yeast1vs7 459 8 (nuc; vac) (6.72, 93.28) 13.87

shuttle0vs4 1829 9 (Rad Flow; Bypass) (6.72, 93.28) 13.87

glass4 214 9 (containers; remainder) (6.07, 93.93) 15.47

page-blocks13vs2 472 10 (graphic; horiz.line,picture) (5.93, 94.07) 15.85

abalone9vs18 731 8 (18; 9) (5.65, 94.25) 16.68

glass016vs5 184 9 (tableware;
build-win-float-proc,

(4.89, 95.11) 19.44

build-win-non_float-
proc,headlamps)

shuttle2vs4 129 9 (Fpv Open; Bypass) (4.65, 95.35) 20.5

yeast1458vs7 693 8 (vac; nuc,me2,me3,pox) (4.33, 95.67) 22.10

glass5 214 9 (tableware; remainder) (4.20, 95.80) 22.81

yeast2vs8 482 8 (pox; cyt) (4.15, 95.85) 23.10

yeast4 1484 8 (me2; remainder) (3.43, 96.57) 28.41

yeast1289vs7 947 8 (vac; nuc,cyt,pox,erl) (3.17, 96.83) 30.56

yeast5 1484 8 (me1; remainder) (2.96, 97.04) 32.78

ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49, 97.51) 39.15

yeast6 1484 8 (exc; remainder) (2.49, 97.51) 39.15

abalone19 4174 8 (19; remainder) (0.77, 99.23) 128.87

tests may not be satisfied [116]. As we are performing a pairwise comparison, we
use the Wilcoxon test to search for statistical differences between two methods. The
objective in this comparison is to obtain an adjusted p-value, which represents the
lowest level of significance of a hypothesis that results in a rejection, which means
the detection of significant differences between the methods.

Table12.2 shows the average GM values in training and test obtained by the algo-
rithms included in the comparison for the 44 highly imbalanced datasets, namely, the
GP-COACH-H algorithm and the C4.5 decision tree together with SMOTE+ENN.
The best average values in test per dataset are highlighted in bold.

From these resultswe canobserve that the best performingmethod isGP-COACH-
H, showing the good synergy between the elements integrated into this approach. The
GP-COACH-H algorithm is able to obtain better results than the C4.5 decision tree
combined with SMOTE+ENN, showing that the goodness in its predictive behavior
is obtained through the appropriate integration of the EFS with the hierarchical
approach and not by the use of the data preprocessing techniques.
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Table 12.2 Detailed table of results for GP-COACH-H and SMOTE+ENN+C4.5

Dataset GP-COACH-H SMOTE+ENN+C4.5

GMtr GMtst GMtr GMtst

ecoli034vs5 0.9833 0.8660 0.9762 0.8761

yeast2vs4 0.9647 0.9304 0.9745 0.9029

ecoli067vs35 0.9707 0.7286 0.9771 0.7206

ecoli0234vs5 0.9966 0.8473 0.9827 0.8861

glass015vs2 0.9503 0.6301 0.9066 0.7788

yeast0359vs78 0.8919 0.7189 0.9213 0.6894

yeast02579vs368 0.9298 0.9107 0.9572 0.9125

yeast0256vs3789 0.8348 0.7982 0.9173 0.7707

ecoli046vs5 0.9952 0.8677 0.9834 0.8776

ecoli01vs235 0.9845 0.8471 0.9649 0.8277

ecoli0267vs35 0.9707 0.9028 0.9825 0.8061

glass04vs5 0.9909 0.9429 0.9909 0.9748

ecoli0346vs5 0.9993 0.8847 0.9884 0.8946

ecoli0347vs56 0.9881 0.8767 0.9566 0.8413

yeast05679vs4 0.8961 0.6988 0.9197 0.7678

ecoli067vs5 0.9849 0.8671 0.9740 0.8376

vowel0 0.9947 0.9465 0.9943 0.9417

glass016vs2 0.9415 0.6467 0.9365 0.6063

glass2 0.9663 0.5886 0.9261 0.7377

ecoli0147vs2356 0.9594 0.8263 0.9563 0.8119

led7digit02456789vs1 0.9142 0.9000 0.9217 0.8370

glass06vs5 0.9975 0.9120 0.9911 0.9628

ecoli01vs5 0.9977 0.8946 0.9828 0.8081

glass0146vs2 0.9313 0.7300 0.9010 0.6157

ecoli0147vs56 0.9852 0.8372 0.9608 0.8250

cleveland0vs4 0.9719 0.8646 0.9819 0.7307

ecoli0146vs5 0.9952 0.9194 0.9850 0.8880

ecoli4 0.9936 0.9357 0.9826 0.8947

yeast1vs7 0.8988 0.6900 0.9093 0.7222

shuttle0vs4 1.0000 1.0000 0.9999 0.9997

glass4 0.9906 0.7303 0.9665 0.7639

page-blocks13vs4 0.9994 0.9482 0.9975 0.9909

abalone9-18 0.8595 0.7500 0.9273 0.6884

glass016vs5 0.9921 0.8550 0.9863 0.7738

shuttle2vs4 1.0000 0.9918 1.0000 1.0000

yeast1458vs7 0.8952 0.6304 0.8717 0.3345

glass5 0.9957 0.7877 0.9698 0.5851

yeast2vs8 0.9937 0.7381 0.8923 0.8033

(continued)
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Table 12.2 (continued)

Dataset GP-COACH-H SMOTE+ENN+C4.5

GMtr GMtst GMtr GMtst

yeast4 0.9001 0.8175 0.8984 0.6897

yeast1289vs7 0.8843 0.6939 0.9408 0.5522

yeast5 0.9724 0.9428 0.9819 0.9390

ecoli0137vs26 0.9843 0.7067 0.9650 0.7062

yeast6 0.9319 0.8170 0.9301 0.8029

abalone19 0.8558 0.5532 0.8838 0.1550

Mean 0.9576 0.8175 0.9549 0.7848

Table 12.3 Wilcoxon test to compareGP-COACH-Hagainst SMOTE+ENN+C4.5 in highly imbal-
anced datasets

Comparison R+ R− p-Value

GP-COACH-H versus
SMOTE+ENN+C4.5

667.0 323.0 0.0446

R+ corresponds to the sum of the ranks for GP-COACH-H and R− to C4.5

To further support this evidence, we use the Wilcoxon test [116] to develop the
statistical study that aims to find statistical differences. Table12.3 shows the rank-
ings associated to each method and the adjusted p-value that has been calculated.
The p-value obtained by the Wilcoxon test, 0.0446, is low enough to reject the null
hypothesis, which means that statistical differences are found with a degree of con-
fidence near to the 95%.

To sum up, we have presented an EFS based approach, GP-COACH-H, to deal
with highly imbalanced datasets. The approach is based on a genetic programming
approach to build the KBwhich combines several strategies, including the use of data
preprocessing, HKB and genetic tuning of the KB to enhance the performance. The
experimental results have demonstrated that GP-COACH-H outperforms the C4.5
decision tree combined with data preprocessing over 44 highly imbalanced datasets,
becoming a competitive method in the imbalanced classification scenario.

12.5 Concluding Remarks

In this chapter, we have reviewed the topic of EFSs focusing on the application of
this type of systems for classification with imbalanced datasets.

With this aim, we have introduced some preliminaries about linguistic fuzzy rule
based systems in order to set the context of this work. Then, we have presented a
complete taxonomy for the current types of associated methodologies. Specifically,
we have distinguished between three approaches, namely the learning of the FRBS’
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elements, the different schemes regarding the evolutionary components, and finally
the optimization of novel fuzzy representations.

Regarding imbalanced classification, we have paid special interest in providing
the design principles for those algorithms that have been used in this work area.
Among them, we have divided into those solutions applied in conjunction with data
level techniques, algorithm-level approaches, cost-sensitive learning, and the ones
embedded into ensemble learning.

Finally, we have analyzed and evaluated the good properties and features of EFSs
in this context. In order to do so, we have presented a case study with a recent EFS
approach, the GP-COACH-H algorithm. Experimental results stressed the goodness
of these types of approaches for addressing the problem of classification with imbal-
anced data.
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