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a b s t r a c t 

The scenario of classification with imbalanced datasets has gained a notorious significance 

in the last years. This is due to the fact that a large number of problems where classes are 

highly skewed may be found, affecting the global performance of the system. A great num- 

ber of approaches have been developed to address this problem. These techniques have 

been traditionally proposed under three different perspectives: data treatment, adaptation 

of algorithms, and cost-sensitive learning. 

Ensemble-based models for classifiers are an extension over the former solutions. They 

consider a pool of classifiers, and they can in turn integrate any of these proposals. The 

quality and performance of this type of methodology over baseline solutions have been 

shown in several studies of the specialized literature. 

The goal of this work is to improve the capabilities of tree-based ensemble-based solu- 

tions that were specifically designed for imbalanced classification, focusing on the best be- 

having bagging- and boosting-based ensembles in this scenario. In order to do so, this pa- 

per proposes several new metrics for ordering-based pruning, which are properly adapted 

to address the skewed-class distribution. From our experimental study we show two main 

results: on the one hand, the use of the new metrics allows pruning to become a very suc- 

cessful approach in this scenario; on the other hand, the behavior of Under-Bagging model 

excels, achieving the highest gain with the usage of pruning, since the random undersam- 

pled sets that best complement each other can be selected. Accordingly, this scheme is 

capable of outperforming previous ensemble models selected from the state-of-the-art. 
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1. Introduction 

When working with classification tasks, it may be observed that datasets frequently present a very different distribu-

tion of examples within their classes. This issue is known as the problem of imbalanced classes [30,66] , and it has been

addressed throughout the last ten years [13] . Even so, the development of algorithms for learning classifiers in this sce-

nario is still a hot topic of research [46,60] . This is mainly due to the high number of real applications that are affected by

this condition. Enumerating some examples we may refer to bankruptcy prediction [37] , medical data analysis [9,38] and

bioinformatics [7,29] , among others. 

The presence of classes with few data can generate sub-optimal classification models, since there is a bias towards the

majority class. This is due to the fact that, when the standard accuracy metric is considered, predicting the class with a

higher number of examples is preferred during the learning process; therefore, the discrimination functions computed by

the algorithm will be positively weighted towards the majority class [46] . Hence, there is an undeniable need for developing

more precise approaches in order to reach the maximum precision in every class, independently of its representation or

distribution. Furthermore, recent studies have shown that additional data intrinsic characteristics have a strong influence on

the correct identification of the minority class examples [46,64] . 

Traditionally, solutions for this problem have been divided into three large groups [46,48] , i.e. preprocessing [4] (to bal-

ance the example distribution per class), ad-hoc adaptation of standard algorithms [78] , and the usage of cost-sensitive

learning [19] . Any of the former approaches can be integrated into an ensemble-type classifier, thus empowering the

achieved performance, as it has been shown in the specialized literature [22,23,46,65] . 

In summary, an ensemble is a collection of classifiers aimed at increasing the generalization capability of a single clas-

sifier, since classifiers in the ensemble are supposed to complement each other [59,62,75] . These classifiers are then jointly

applied in order to obtain a single solution in agreement. Reader might guess that the more elements the ensemble has, the

more reliable the solution will be, but there is a limit from which the accuracy does not improve or even worse, it could

be degraded [83] . There are two main reasons for this behavior: (1) the difficulty in the decision process regarding possible

contradictions or even redundancy among the components of the ensemble; and (2) the overfitting problem when adjusting

the weights in a boosting-based ensemble. 

In accordance with these issues, several proposals have been developed to carry out a selection of classifiers within

the ensemble [5,82] , which are named as pruning methods. The goal is to obtain a subset of the ensemble that solves the

classification problem in an optimal way, i.e., maintaining or improving the accuracy of the system. In this paper we focus

on ordering-based pruning, whose working procedure is based on a greedy approach and whose effectiveness in standard

classification has been already proved [31,51] . This scheme starts from a trained ensemble composed of a large number

of classifiers. Then, classifiers are iteratively selected one by one from the pool according to the maximization of a given

metric and added to the final ensemble. This process is usually carried out until a pre-established number of classifiers are

selected. 

The heuristic metrics used for the ensemble pruning methodology were originally defined for standard classification

tasks. In the scenario of imbalanced datasets, the effect of each classifier in the recognition of both classes must be analyzed

in detail in order to obtain valid results. Therefore, ordering-based pruning metrics must be adapted this specific scenario,

taking the data representation into account. Our objective is to focus on the class imbalance of the problem during the

whole learning process. First, in the ensemble learning stage, via the use of those learning methods inherently adapted to

this context [23] . Second, a posteriori, that is, in the classifier pruning step by selecting the most appropriate classifiers with

our novel proposed metrics. As we will show in the experimental study, this positive synergy will allow us to boost the final

performance of the system. 

Specifically, the contributions of this paper can be summarized as follows: 

• To use the ensemble pruning methodology in the context of imbalanced classification for improving the behavior of

ensemble-based solutions in this framework. 
• To develop novel ordering-based pruning metrics taking the properties of the class imbalance problem into account. In

particular, we focus on the adaptation of five of the most popular schemes for ordering-based pruning [51] . 
• To carry out a thorough experimental study in order to analyze the usefulness of this methodology in the imbalanced

scenario. More specifically, we carry out an exhaustive comparison of all the adaptation of the five metrics so as to verify

their results with the state-of-the-art ensembles on the topic, which were those previously stressed in [23] . 
• To study the true benefits of the application of these new metrics both with respect to the baseline methodologies and

the state-of-the-art models. It will be shown that incorporating ensemble-pruning allows one to go a step further into

the performance of ensemble-based solution. 

For a fair evaluation of the ordering-based pruning in imbalanced classification, we have selected the best bagging- and

boosting-based ensemble models that were highlighted in our previous study on the topic [23] . Finally, the validation of the

novel imbalanced pruning methodology will be carried out using a wide benchmark of 66 different problems commonly

used in this area of research [46] , and supported by means of the statistical analysis of the results [24] . 

The rest of this paper is organized as follows. Section 2.1 introduces classification with ensembles for the problem of im-

balanced data, as well as the ordering-based pruning approach with the metrics considered to perform this process. Then,

Section 3 contains the core part of the manuscript, in which we present our adaptations to imbalanced classification for
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the pruning methodology. Next, the details about the experimental framework regarding datasets, algorithms, and statistical

tests are provided in Section 4 . The analysis and discussion of the experimental results is carried out in Section 5 . Next,

Section 6 provides the most significant findings achieved throughout the experimental analysis. Finally, Section 7 summa-

rizes and concludes this work. 

2. Ensemble learning and ordering-based pruning 

In this section, we will first introduce the features of ensemble-based classifiers, and we will enumerate those approaches

that have been developed in the field of imbalanced classification ( Subsection 2.1 ). Next, we will describe the working

procedure of ordering-based pruning in detail, and we will present some of the most commonly used metrics that can be

used to guide the ordered aggregation ( Subsection 2.2 ). 

2.1. Ensemble methods 

Ensemble-based classifiers, also known as multiple classifier systems [59] , are composed by a set of so-called weak learn-

ers . The former name refers to the case that a classifier provides a better output than just random guessing, but not close

enough to the true classification. This fact leaves room for improvement with respect to each independent member of the

ensemble. Additionally, diversity among classifiers, is crucial (but not enough) for the success of these types of methods

[34,41,68] . Finally, when a new query instance is submitted to the system, the predictions of all classifiers are aggregated

in order to obtain a single output. In this way, the global combination aims to outperform the accuracy of the individual

classifiers, i.e., to obtain a better generalization [76] . 

Ensemble-based methods have been successfully adapted to classification with imbalanced datasets [23] . This can be

done by including preprocessing or cost-sensitive learning into the ensemble learning algorithm. In accordance with their

good capabilities for addressing the class imbalance problem, these type of methods have attracted a great interest among

researchers in the recent years [39,42,73] . 

There are two main types of techniques when building an ensemble, i.e., Bagging [8] and Boosting [21] : 

• Bagging: it is the acronym for bootstrap aggregating . It trains a set of classifiers, each one with a different subset (known

as “bag”) of the original training data. The drawing of instances for each bag is made at random (with replacement),

so that the original training set size is maintained. In this method, diversity is achieved by means of the resampling

procedure. When classifying a new sample, all individual classifiers are fired and a majority or weighted vote is used to

infer the class. 

We must point out that most of the ensemble techniques adapted for imbalanced classification have followed this scheme

[23] . This is due to the simplicity for the integration of data preprocessing techniques into Bagging, which is made when

each bootstrap replica is computed. 
• Boosting: in this method, the whole training set is used to learn each classifier. However, in each round, i.e., when a

new classifier is trained, the algorithm put its focus on the most difficult instances, that is, those that were misclassified

in previous iterations. This can be achieved by weighting the instances in the dataset. Weights are equally set for all

instances at the beginning. Then, misclassified instances get their weights increased, whereas correct hits result in a

lower weight. Additionally, each individual classifier also gets a score depending on its overall accuracy over the training

set. Higher confidence is given to more accurate classifiers. Finally, when a new instance is submitted, each classifier

gives a weighted vote (according to its score ), and the class label is selected by majority. 

When dealing with imbalanced data, these types of ensembles alter and bias the weight distribution used to train the

next classifier towards the minority class in every iteration [23] . 

The description of the ensemble methods used in our current study is carried out in Section 4 , where the setting of the

experimental framework is presented. 

2.2. Pruning in ordered ensembles 

When building an ensemble model we must first consider the number of classifiers it is going to be composed of. We

must be aware that a correct choice of this parameter value have a significant influence on the behavior of the final model.

A low number of base classifiers may cause that the ensemble may not reach a high and stable classification accuracy. On

the contrary, the more base classifiers are included, the higher the probability of redundant classifiers is, resulting on less

diversity [43] , and especially in the case of boosting, the higher the probability of over-fitting. Therefore, having too many

classifiers more resources are wasted, both in terms of memory requirement to store the classifiers in the ensemble and

processing time. 

Ordering-based pruning methods 1 were initially defined for bagging-based ensembles, although they can also be applied

in boosting-based ones. In this case, the order of aggregation is unspecified, i.e., classifiers were built in random order so
1 Even though they are known as “pruning” methods, since all classifiers must be learn before-hand and they are reduced afterwards, they can also be 

regarded as “aggregation” procedures, since classifiers are added one at a time to the final ensemble. 
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that the learning process could be inherently parallelized. The basis of these approaches is that an enhancement of the

behavior of the final ensemble will be achieved if those classifiers that are expected to perform better are first added

[28,31,49,51,52,82] . In this way, the final size of the ensemble is also reduced without affecting accuracy of the whole model.

In order to compute this estimated value of the goodness of the different classifiers to be added, several metrics can be

considered, whose modification is proposed to work in an imbalanced scenario in this work. 

These types of ensemble pruning are popular due to their effectiveness with respect to their low computational cost. As

in every pruning technique, the process is carried out once all classifiers of the ensemble have been trained. Hence, prun-

ing becomes a combinatorial optimization problem, where the best subset of classifiers must be found. However, optimal

ensemble pruning is known to be an NP-complete combinatorial problem [67] . Therefore, most of the pruning techniques

make use of an heuristic function to seek for the reduced set of classifiers. In the case of ordering-based pruning, a metric

that measures the goodness of adding each classifier to the ensemble is defined and the classifier with the highest value

is added to the final sub-ensemble. The same process is performed until the size of the sub-ensemble reaches the speci-

fied parameter value. Previous studies on this parameter value suggest that it should be established between 20 and 40%

of all the classifiers [51,52] . We acknowledge that the use of a threshold number for the final set of classifiers may lead

to sub-optimal models. However, we consider the same configuration which was already tested in a standard framework,

supported by the robust results achieved in the former referenced studies. 

In what follows, the pruning metrics considered in this work are described: 

• Reduce-Error pruning (RE) [50] : this method works by first adding to the final sub-ensemble the classifier achieving the

lowest classification error. Afterwards, in each iteration classifiers are ordered by the error they produce when added to

the sub-ensemble. The one that achieves the largest error reduction (or performance improvement) is added. 
• Kappa pruning (Kappa) [18,50] : in this method, the most diverse ensemble is sought. In order to do so, κ statistic, com-

monly used as a diversity measure in classifier ensembles [40] , is used to measure pairwise diversity between classifiers.

κ measures the level of agreement between the outputs of two classifiers, giving a value of 1 if they completely agree, 0

if they are statistically independent and negative values account for negative correlation. In the original Kappa pruning

model, the pair of classifiers with the greatest diversity was added to the ensemble. However, this model was affected

by the fact that it did not take into account the diversity of the unselected classifiers with respect to the ensemble,

decreasing the performance of the whole ensemble [82] . 

On this account, an improvement was proposed in [51] , which is also considered in this work. Initially, the pair of

classifiers with the greatest diversity is selected, and then the classifier achieving the largest diversity with respect to

the sub-ensemble is selected, that is, κ is computed with respect to the sub-ensemble instead of among all unselected

classifiers. 
• Complementarity Measure (Comp) [57] : this method starts from the most accurate single classifier (as in RE ), and then

iteratively adds the classifier that better complements the sub-ensemble. Complementarity is measured as the number

of correctly classified examples by the classifier from those that are misclassified by the sub-ensemble. This measure

reflects how much the classifier could change the decision of the ensemble. 
• Margin Distance Minimization (MDM) [57] : this is a more complex scheme than previous ones, based on certain distances

among the output vectors of the ensembles. These output vectors have the length equal to the training set size, and

their value at the i th position is either 1 or −1 depending on whether the i th example is classified or misclassified by

the classifier. The signature vector of a sub-ensemble is computed as the sum of the vectors of the selected classifiers.

To summarize, the aim is to add those classifiers with the objective of obtaining a signature vector of the sub-ensemble

where all the components are positive, i.e., all examples are correctly predicted. For a wider description please refer to

[51,57] . We have followed the implementation presented in [51] , where a small improvement was presented with respect

to the original model [57] . 
• Boosting-Based pruning (BB) [21,52] : this method selects the classifier that minimizes the cost with respect to the boosting

scheme. This means that boosting algorithm is applied to compute the weights (costs) for each example in each itera-

tion, but instead of training a classifier with these weights, the one that obtains the lowest cost from those in the pool is

added to the sub-ensemble and weights are updated accordingly. Hence, it makes no difference whether classifiers were

already learned using a boosting scheme or not. Different from the original boosting method, when no classifier has a

weighted training error below 50%, weights are reinitialized (equal weights for all the examples) and the method con-

tinues (whereas in boosting it is stopped). Once classifiers are selected the scores assigned to each classifier by boosting

are forgotten and not taken into account in the aggregation phase. 

Detailed explanations of the corresponding metrics can be found in the corresponding source papers or in the previous

analysis in [51] . Notice that these metrics are computed over the training sets, since there is usually not enough data so as

to divide it into two sets: one for training the classifiers and the other to prune the ensemble. In these cases, the usage of

an independent set for pruning do not compensate the decrease in accuracy in the classifiers of the ensemble. 

3. A proposal for ordering-based pruning scheme for ensembles in imbalanced domains 

Ordering-based pruning methods have shown to be effective in standard classification. However, the properties related

to the scenario of imbalanced classification suggest the necessity of an adaptation of the standard metrics towards this
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framework. In this research, we propose a novel definition of five heuristic metrics to boost the recognition of both the

minority and majority classes of the problem. Additionally, for the sake of clarity, and also to allow researchers to easily

reproduce this new approach, we try to keep their formulation as simple as possible. 

In order to do so, we will first describe our adaptations of these metrics for carrying out the selection process in imbal-

anced classification ensembles ( Subsection 3.1 ). Then, we will depict a graphical example in order to explain the goodness

of this approach ( Subsection 3.2 ). 

3.1. New pruning metrics adapted for imbalanced domains 

In this section, we present our novel ordering-based pruning schemes for classification with imbalanced datasets. The

aim is to develop ad-hoc pruning solutions to enhance the behavior of ensemble techniques in this framework. In order

to do so, for each one of the metrics introduced in the previous section, we propose a new contextualized adaptation for

imbalanced classification (except for the cases that, from our point of view, it is not required). Proceeding this way, they

will be able to manage the skewed class problem. 

As we will show in the experimental study, the extension of some approaches is straightforward by changing the evalu-

ation metric, whereas others are more complex and their behavior should be studied. Hence, these last adaptations will be

also compared against the original models in the experimental analysis. 

• Reduce-Error pruning with Geometric Mean (RE-GM) : Since classification error is computed as the number of misclassified

examples, it does not equally take into account both classes of the problem. Hence, it is biased towards the majority

class, being unable to properly work with imbalanced class distributions. For this reason, we have considered the GM

performance measure to establish the order of the classifiers in such a way that the one with largest value of this metric

is considered when to be added to the ensemble. 
• Kappa pruning (Kappa) : Given that this method does not make use of any performance measure affected by the class

imbalance problem, no adaptation is needed for the framework of imbalanced classes. Specifically, kappa scores inde-

pendently the successes for each class and aggregates them. This way of scoring is less sensitive to randomness caused

by a different number of examples in each class. 
• Complementarity Measure (Comp) : In this case, there is also no need for modification. The reason behind this behavior is

that most of the ensembles overfits in favor of the minority class (given that weights are positively weighted towards

these “difficult” examples). Regarding this fact, “Comp” metric tries to enhance the classification of the majority class

examples without being detrimental to the minority ones, which are expected to be already well classified. 
• Margin Distance Minimization for imbalanced problems (MDM-Imb) : As described in the previous section, this method

selects the classifier to be added depending on the closest Euclidean distance between an objective point (where all

components are positive) and the signature vector of the sub-ensemble after adding the corresponding classifier. As a

consequence, every example has the same weight in the computation of the distance, which can bias the selection to

those classifiers favoring the majority class. Therefore, we compute the distance for the majority and minority class

examples independently. Then, distances are normalized by the number of examples used to compute them and added

afterwards. 
• Boosting-Based pruning for imbalanced problems (BB-Imb) : It is well-known that boosting by itself is not capable of man-

aging class imbalance problem [23] . For this reason, we have also adapted this approach in a similar manner as in the

case of MDM . In boosting, every example has initially the same weight and these are updated according to whether

they are correctly classified or not. Hence, before finding the classifier that minimizes the total cost, we normalize the

weights of the examples of each class by half of their sum, so that both classes has the same importance when selecting

the classifier (even though each example of each class would have a different weight). This is only done before selecting

the classifier, and then weights are updated according to the original (non-normalized ones). 

3.2. Example of the behavior of ordering-based pruning in imbalanced datasets 

Standard ensemble learning algorithms, such as AdaBoost [21] , focus on difficult examples disregard their class. When

facing an imbalanced class problem, minority class examples are more likely to be positively weighted throughout the train-

ing process. In this sense, there is a limit for adding new classifiers to the ensemble, as all examples will be classified as the

minority class. This issue justifies the need for using an specific approach to address the imbalance such as RUS-Boost [63] ,

which removes instances from the majority class by randomly undersampling the dataset in each iteration. This behavior is

shown in Fig. 1 (a) and (b), from which we can observe that, in the case of AdaBoost.M2, new classifiers do not contribute

to improve the recognition ability of the ensemble from 20 classifiers onwards. In contrast, we realize that RUS-Boost shows

a wider diversity among classifiers. 

In order to complement this analysis, we show how the performance evolves depending on the number of classifiers in-

cluded within the ensemble. Specifically, we show the differences between the use of the standard accuracy metric ( Fig. 2 (a)

and (b) and the Area Under the ROC curve (AUC) [35] ( Fig. 3 (a) and (b) for AdaBoost.M2, RUS-Boost, and RUS-Boost with

boosting-Based pruning ( BB-Imb ). We must point out that in the case of BB-Imb a maximum of 21 classifiers are selected

from the pool. 
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Fig. 1. Number of misclassified examples when new classifiers are added to the ensemble of each class (ecoli1 dataset). 
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Fig. 2. Variation of accuracy with respect to the number of classifiers used in the ensemble (ecoli1 dataset). 

 

 

 

 

 

 

 

Considering the differences between the results in accuracy and AUC, the original AdaBoost approach has problems to

recognize the minority class, and it presents a clear overfitting in both cases. With RUS-Boost, this behavior is corrected, but

the performance is unstable with respect to the number of classifiers. Finally, the advantages are clear when the pruning

mechanism is introduced, as it obtains the highest results for the AUC metric. 

4. Experimental framework 

In this section we first provide details of the real-world binary-class imbalanced problems chosen for the experiments

( Subsection 4.1 ). Then, we will describe the ensemble learning algorithms selected for this study and their configuration pa-

rameters ( Subsections 4.2 and 4.3 , respectively). Next, we present the statistical tests applied to compare the results obtained

with the different classifiers ( Subsection 4.4 ). Finally, we introduce the information shown in the Web-page associated with

the paper ( Subsection 4.5 ). 
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Fig. 3. Variation of AUC with respect to the number of classifiers used in the ensemble (ecoli1 dataset). 

Table 1 

Summary of imbalanced datasets used. 

Name #Ex. #Atts. IR Name #Ex. #Atts. IR 

glass1 214 9 1 .82 glass04vs5 92 9 9 .22 

ecoli0vs1 220 7 1 .86 ecoli0346vs5 205 7 9 .25 

wisconsin 683 9 1 .86 ecoli0347vs56 257 7 9 .28 

pima 768 8 1 .90 yeast05679vs4 528 8 9 .35 

iris0 150 4 2 .00 ecoli067vs5 220 6 10 .00 

glass0 214 9 2 .06 vowel0 988 13 10 .10 

yeast1 1484 8 2 .46 glass016vs2 192 9 10 .29 

vehicle2 846 18 2 .52 glass2 214 9 10 .39 

vehicle1 846 18 2 .52 ecoli0147vs2356 336 7 10 .59 

vehicle3 846 18 2 .52 led7digit02456789vs1 443 7 10 .97 

haberman 306 3 2 .68 ecoli01vs5 240 6 11 .00 

glass0123vs456 214 9 3 .19 glass06vs5 108 9 11 .00 

vehicle0 846 18 3 .23 glass0146vs2 205 9 11 .06 

ecoli1 336 7 3 .36 ecoli0147vs56 332 6 12 .28 

newthyroid2 215 5 4 .92 cleveland0vs4 1771 13 12 .62 

newthyroid1 215 5 5 .14 ecoli0146vs5 280 6 13 .00 

ecoli2 336 7 5 .46 ecoli4 336 7 13 .84 

segment0 2308 19 6 .01 shuttle0vs4 1829 9 13 .87 

glass6 214 9 6 .38 yeast1vs7 459 8 13 .87 

yeast3 1484 8 8 .11 glass4 214 9 15 .47 

ecoli3 336 7 8 .19 pageblocks13vs4 472 10 15 .85 

pageblocks0 5472 10 8 .77 abalone918 731 8 16 .68 

ecoli034vs5 200 7 9 .00 glass016vs5 184 9 19 .44 

yeast2vs4 514 8 9 .08 shuttle2vs4 129 9 20 .50 

ecoli067vs35 222 7 9 .09 yeast1458vs7 693 8 22 .10 

ecoli0234vs5 202 7 9 .10 glass5 214 9 22 .81 

glass015vs2 506 8 9 .12 yeast2vs8 482 8 23 .10 

yeast0359vs78 172 9 9 .12 yeast4 1484 8 28 .41 

yeast0256vs3789 1004 8 9 .14 yeast1289vs7 947 8 30 .56 

yeast02579vs368 1004 8 9 .14 yeast5 1484 8 32 .78 

ecoli046vs5 203 6 9 .15 yeast6 1484 8 39 .15 

ecoli01vs235 244 7 9 .17 ecoli0137vs26 281 7 39 .15 

ecoli0267vs35 244 7 9 .18 abalone19 4174 8 128 .87 

 

 

 

4.1. Benchmark data 

Table 1 shows the 66 benchmark problems selected for our study, in which the name, number of examples, number of

attributes, and IR (ratio between the majority and minority class instances) are shown. Datasets are ordered with respect to

their degree of imbalance. Multi-class problems were modified to obtain two-class imbalanced problems, defining the joint

of one or more classes as positive and the joint of one or more classes as negative, as defined in the name of the dataset. 
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For the experimental analysis, we will take into account both the AUC [35] and Geometric Mean (GM) of the true rates

[2] measures. Both metrics aim at maximizing the joint performance of the classes, but their different intrinsic factors allow

a complementary analysis from the experimental results. The former allows to determine the trade-off between the benefits

( TP rate ) and costs ( FP rate ), whereas the latter attempts to maximize the accuracy of each one of the two classes at the same

time (sensitivity and specificity). The estimates for these metrics will be obtained by means of a Distribution Optimally

Balanced Stratified Cross-Validation (DOB-SCV) [56] , as suggested in the specialized literature for working in imbalanced

classification [47] . DOB-SCV avoids dataset shift [55] , which hinders the results obtained in the experimental analysis. This

procedure is carried out using 5 folds, aiming to include enough positive class instances in the different folds. In this way,

we avoid additional problems in the data distribution, especially for highly imbalanced datasets. In accordance with the

stochastic nature of the learning methods, these 5 folds are generated with 5 different seeds, and each one of the 5-fold

cross-validation is run 5 times. Therefore, experimental results for each method and dataset are computed with the average

of 125 runs. 

4.2. Description of the ensemble approaches 

In this section we briefly survey the selected ensemble methods for our current study. The first three algorithms are

Bagging-based, the next three are Boosting-based ensembles, whereas the last one is a hybrid approach. 

First of all, we briefly recall the operating procedure of the most widely used data-level methods prior to introduce the

operation procedure of each ensemble model. These are the random undersampling method and the Synthetic Minority

Oversampling Technique (SMOTE) [12] : 

• Random Undersampling . It balances the class distribution by randomly eliminating majority class examples. Its major

drawback is that potentially useful data can be discarded. 
• SMOTE . It is an oversampling method that creates minority class examples by interpolating several minority class in-

stances that lie together (the k Nearest Neighbors). 

The ensemble-based models considered are presented hereafter. 

• SMOTE-Bagging [72] : In this case, SMOTE oversampling procedure [12] is applied before training each classifier. All in-

stances will probably take part in at least one bag, but each bootstrapped replica will contain many more instances than

the original dataset (twice the number of majority class examples). The number of majority class instances to be in-

cluded is fixed throughout all the process, but the resampling rate for minority class instances is set in each iteration

(ranging from 10% in the first iteration to 100% in the last, always being multiple of 10). Then, the rest of the instances

from the minority class are generated by SMOTE algorithm. Majority class instances are resampled with replacement. 
• Under-Bagging [3] : On the contrary to SMOTE-Bagging , Under-Bagging procedure uses undersampling instead of oversam-

pling, and more specifically, it does it at random. Also, in contrast to SMOTE-Bagging all bags are built following the same

procedure (in all bags all the minority class instances are considered). 
• Roughly-Bagging [6,32] : It is based on undersampling, but the main difference is that it aims at equalizing the sampling

probability of each class, instead of fixing the sample size as a constant. The size of the majority examples is determined

probabilistically according to a negative binomial distribution, whereas the number of minority examples is always the

same. As a consequence, the class distribution of the sampled subsets may become slightly imbalanced, favoring diversity.

In both classes, resampling with or without replacement can be applied. The implementation considered in this work

includes all minority class examples in the bag, and does the resampling with replacement only over the majority class.
• SMOTE-Boost [14] : this method introduces synthetic instances using SMOTE [12] before computing the new weights of

the examples in the Boosting procedure. Thus, the weights of these new examples will be proportional to the total

number of instances in the new dataset. Then, the examples from the original training set are normalized according to

the new data distribution. 
• RUS-Boost [63] : it works similarly to SMOTE-Boost, but removing instances from the majority class by random undersam-

pling the dataset in each iteration. In this case, it is not necessary to assign new weights to the instances. It is enough by

simply normalizing the weights of the remaining instances in the new dataset with respect to their total sum of weights.
• EUS-Boost [22] : this technique follows the same scheme as RUS-Boost but with two main differences: (1) it uses the

Evolutionary UnderSampling (EUS) approach [26] as preprocessing method; (2) it promotes the diversity of the ensemble

using the Q-statistic diversity measure [77] in the evolutionary process. 
• EasyEnsemble [44] : is a hybrid approach that combines both Bagging and Boosting. Specifically, it uses Bagging as main

ensemble learning method, but in spite of training a classifier for each new bag, each bag is trained using AdaBoost [21] .

In order to account for class imbalanced, each bag is balanced by means of random undersampling. 

A complete taxonomy for ensemble methods in learning with imbalanced classes can be found in a recent review [23] ,

where the reader may refer for a wider description of these techniques. 

4.3. Selected parameters 

Classification. In order to do so, we will make use of the best behaving ensemble algorithms highlighted in our previ-

ous study at [23] , i.e., SMOTE-Bagging [72] , Under-Bagging [3] , SMOTE-Boost [14] , RUS-Boost [63] , and Easy-Ensemble [44] .
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Additionally, we have included a new ensemble learning model, EUS-Boost [22] which has been shown to be very robust for

highly imbalanced datasets. We must recall that the description of these models were given in Section 2.1 . Reader may also

refer to [23] in order to get a thorough description of the former ensemble methods. In all ensemble, we will employ the

C4.5 decision tree [61] as baseline classifier, since almost all the previous ensemble methodologies were proposed in combi-

nation with C4.5. Additionally, it has been widely used to deal with imbalanced data-sets [10,45,58] . Finally the significance

of C4.5 can be stressed with respect to its presence as one of the top-ten data-mining algorithms [76] . 

Next, we detail the parameter values for the different learning algorithms selected in this study. The selection of the

former has been made according to typical configurations from the specialized literature: 

1. C4.5 : the confidence level will be set at 0.25, with 2 being the minimum number of item-sets per leaf, and the applica-

tion of pruning will be used to obtain the final tree. 

2. Ensemble classifier structure : In order to apply the pruning procedure, we will learn 100 classifiers for each ensemble,

choosing a subset of only 21 classifiers following the previous study on ordering-based ensemble pruning in standard

classification [51] . 

The baseline ensemble models for comparison will only use 10 classifiers for Boosting approaches and 40 for Bagging, in

accordance with the optimal parameters found in our previous studies [23] . We must point out that it makes no sense

to make the comparison with 100 classifiers as it has been stressed that this option does not generally achieve better

results, in accordance with the issues raised throughout this manuscript. 

For SMOTE-Bagging and SMOTE-Boost , SMOTE configuration will be the standard with a 50% class distribution, 5 neighbors

for generating the synthetic samples, and Heterogeneous Value Difference Metric for computing the distance among the

examples. In the case of Roughly-Bagging , the negative binomial distribution is constructed with p = 0 . 5 and n equal to

the number of minority examples. For EUS-Boost , EUS configuration is the recommended one with GM as evaluation

measure, majority selection only, Euclidean distance, promoting the balancing of the dataset (with balancing factor equal

to 0.2). Finally, in the case of EasyEnsemble , we will consider 4 bags and 10 iterations for the AdaBoost algorithm. 

3. CHC optimization process: The EUS-Boost ensemble algorithm was developed from the CHC algorithm (CHC stands for

Cross Generational elitist selection, Heterogeneous recombination and Cataclysmic mutation). The number of individuals 

has been set to 50 chromosomes, and a total of 10, 0 0 0 evaluations will be carried out throughout the genetic process. 

We must also point out that all the algorithms from the state-of-the-art selected in this study are available within the

KEEL software tool [1] . 

4.4. Statistical tests for performance comparison 

In this paper we use the hypothesis testing techniques to provide statistical support for the analysis of the results [24] .

Specifically, we will use non-parametric tests, due to the fact that the initial conditions that guarantee the reliability of the

parametric tests may not be satisfied, causing the statistical analysis to lose credibility with these types of tests [17,25] . Any

interested reader can find additional information on the Website http://sci2s.ugr.es/sicidm/ . 

First of all, we consider the method of aligned ranks of the algorithms in order to show at a first glance how good a

method is with respect to its partners. In order to compute this ranking, the first step is to obtain the average performance

of the algorithms in each dataset. Next, we compute the subtractions between the accuracy of each algorithm minus the

average value for each dataset, which is computed using the output results for all algorithms considered in the comparison.

Then, we rank all these differences in a descending way and, finally, we average the rankings obtained by each algorithm.

In this manner, the algorithm that achieves the lowest average ranking is the best one. 

The Friedman Aligned test [24] will be used to check whether there are significant differences among the results, and

the Holm post-hoc test [33] in order to find which algorithms reject the hypothesis of equality with respect to a selected

control method in a 1 · n comparison. We will compute the adjusted p -value (APV) associated with each comparison, which

represents the lowest level of significance of a hypothesis that results in a rejection. This value differs from the standard

p -value in the sense that it determines univocally whether the null hypothesis of equality is rejected at a significance level

α. For more details on the APV we refer the reader to [24] . 

Regarding pairwise comparisons, we will make use of Wilcoxon signed-rank test [74] to find out whether significant

differences exist between a pair of algorithms. This procedure computes the differences between the performance scores of

the two classifiers on each one of the available datasets ( N ds ). The differences are ranked according to their absolute values,

from smallest to largest, and average ranks are assigned in case of ties. We call R + the sum of ranks for the datasets on

which the second algorithm outperformed the first, and R − the sum of ranks for the opposite. Let T be the smallest of the

sums, T = min (R + , R −) . If T is less than or equal to the value of the distribution of Wilcoxon for N ds degrees of freedom

(Table B.12 in [79] ), the null hypothesis of equality of means is rejected. 

4.5. Web page associated with the paper 

In order to provide additional material to the paper content, we have developed a Web page at ( http://sci2s.ugr.es/

prune-imbalanced/ ), where we have included the following information: 

• A more complete description of the ensemble techniques for addressing imbalanced data-sets. 

http://sci2s.ugr.es/sicidm/
http://sci2s.ugr.es/prune-imbalanced/
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Table 2 

Average test results for the standard and imbalanced pruning metrics (using AUC). 

Ensemble BB BB-Imb MDM MDM-Imb 

SMOTE-Bagging .8602 ± .0632 .8635 ± .0610 .8596 ± .0629 .8625 ± .0622 

Under-Bagging .8755 ± .0564 .8734 ± .0544 .8653 ± .0563 .8699 ± .0558 

Roughly-Bagging .8747 ± .0555 .8737 ± .0546 .8659 ± .0568 .8709 ± .0557 

SMOTE-Boost .8486 ± .0673 .8514 ± .0658 .8447 ± .0653 .8507 ± .0660 

RUS-Boost .8652 ± .0585 .8679 ± .0540 .8575 ± .0604 .8650 ± .0564 

EUS-Boost .8629 ± .0647 .8697 ± .0544 .8559 ± .0668 .8602 ± .0639 

EasyEnsemble .8456 ± .0616 .8678 ± .0549 .8392 ± .0540 .8675 ± .0558 

Table 3 

Average test results for the standard and imbalanced pruning metrics (using GM). 

Ensemble BB BB-Imb MDM MDM-Imb 

SMOTE-Bagging .8401 ± .0859 .8454 ± .0812 .8391 ± .0858 .8446 ± .0830 

Under-Bagging .8689 ± .0674 .8674 ± .0636 .8554 ± .0686 .8636 ± .0655 

Roughly-Bagging .8673 ± .0666 .8673 ± .0647 .8550 ± .0709 .8643 ± .0660 

SMOTE-Boost .8215 ± .0964 .8249 ± .0943 .8130 ± .0955 .8239 ± .0945 

RUS-Boost .8550 ± .0730 .8628 ± .0599 .8390 ± .0807 .8595 ± .0632 

EUS-Boost .8471 ± .0895 .8642 ± .0612 .8346 ± .0956 .8476 ± .0835 

Easy-Ensemble .8088 ± .0963 .8618 ± .0626 .7750 ± .0882 .8612 ± .0639 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The data-sets partitions employed in the paper. 
• Several Excel files containing full training and test results for all the experiments carried out in this study. In this way,

any interested researcher can use them to include their own results and extend the present study. 

5. Experimental study 

In this section, we will carry out our experimental analysis into three incremental steps: 

1. First, we will study the goodness of the new metrics developed specifically for dealing with imbalanced classification

with respect to the original ones. As we have mentioned ( Subsection 5.1 ), we will study whether the new metrics based

on BB and MDM make a difference with respect to the baseline ones. Notice that this comparison is not needed for the

rest of the metrics because their extension was straightforward. 

2. Then, we will perform a complete comparison among all different pruning metrics and the baseline (unpruned) ensem-

bles. This will lead us to the best approach for each particular ensemble method ( Subsection 5.2 ). The ultimate goal

is to confirm whether the pruning methodology is consolidated as a better option than not carrying out pruning for

addressing the classification with imbalanced data using ensembles. 

3. Finally, once we have highlighted the best synergies between ensemble techniques in imbalanced classification and prun-

ing schemes, we will carry out a full experimental analysis among all methodologies. This analysis will lead us to discover

whether there is a combination that stands out among all ensemble models after being pruned ( Subsection 5.3 ). 

We must point out that all the findings extracted throughout this experimental analysis are based in the output of sta-

tistical tests, i.e., average ranking and p -values. However, we have also included the average performance results to provide

a reference of the global quality of the different methodologies selected for this study. In this way, any interested researcher

can be aware of the performance shown in this work in contrast with their own methods. 

5.1. Pruning metrics for imbalanced classification 

Our first analysis is focused on determining whether the new proposed metrics, specifically designed for dealing with

class imbalance, are well-suited for this problem with respect to the original ones, i.e., BB and MDM . The average experi-

mental results in testing phase for these metrics are shown in Table 2 for AUC and Table 3 for GM. 

For both performance measures, we may observe a similar behavior. In the case of BB and BB-Imb metrics, we find that in

all cases the metric adapted for imbalanced classification achieves a higher average performance, with the only exceptions of

Under-Bagging and Roughly-Bagging, in which the relative differences are below 1%. Regarding MDM and MDM-Imb , looking

at the results the need for the imbalanced approach stands out. Finally, the robustness of the imbalanced metrics must be

stressed in accordance with the low standard deviation shown with respect to the standard case. 

In order to statistically determine the best suited metric for each ensemble model, we carry out a Wilcoxon pairwise test

for both AUC and GM in Tables 4 and 5 . We have included a symbol for stressing whether significant differences are found

at 95% confidence degree ( ∗) or at 90% (+). Finally, we also show the number of problems in which the baseline scheme

wins/ties/loses in performance with respect to our new proposed imbalanced metric. In this way, we stress an additional

factor of improvement for the best performing approach. 
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Table 4 

Wilcoxon test to compare the standard [ R + ] and imbalanced pruning metrics [ R −] regarding 

the AUC metric. Symbol ∗ implies significant differences at 95%, whereas symbol + sets 

the confidence degree at 90%. Wins/Ties/Loses values are computed with respect to the 

standard algorithm. 

Ensemble Comparison R + R − p -value W/T/L 

SMOTE-Bagging BB vs. BB-Imb 540 .0 1671 .0 0 .0 0 028 ∗ 20/3/43 

MDM vs. MDMimb 436 .0 1775 .0 0 .0 0 0 02 16/4/46 

Under-Bagging BB vs. BB-Imb 1277 .0 934 .0 0 .27939 36/3/27 

MDM vs. MDMimb 831 .5 1379 .5 0 .07246+ 25/6/35 

Roughly-Bagging BB vs. BB-Imb 1014 .0 1197 .0 0 .53957 32/4/30 

MDM vs. MDMimb 1349 .5 861 .5 0 .10376 27/5/34 

SMOTE-Boost BB vs. BB-Imb 1176 .0 1035 .0 0 .74 4 41 10/24/32 

MDM vs. MDMimb 495 .5 1715 .5 0 .0 0 0 03 ∗ 9/25/32 

RUS-Boost BB vs. BB-Imb 975 .0 1236 .0 0 .43512 26/3/37 

MDM vs. MDMimb 1176 .0 1035 .0 0 .74 4 41 37/4/25 

EUS-Boost BB vs. BB-Imb 1024 .0 1187 .0 0 .62692 28/3/35 

MDM vs. MDMimb 1133 .0 1078 .0 0 .91346 34/4/28 

Easy-Ensemble BB vs. BB-Imb 669 .5 1541 .5 0 .00439 ∗ 27/2/37 

MDM vs. MDMimb 868 .0 1343 .0 0 .10161 30/4/32 

Table 5 

Wilcoxon test to compare the standard [ R + ] and imbalanced pruning metrics [ R −] regard- 

ing the GM metric. Symbol ∗ implies significant differences at 95%, whereas symbol + sets 

the confidence degree at 90%. Wins/Ties/Loses values are computed with respect to the 

standard algorithm. 

Ensemble Comparison R + R − p -value W/T/L 

SMOTE-Bagging BB vs. BB-Imb 423 .0 1788 .0 0 .0 0 010 ∗ 16/3/47 

MDM vs. MDMimb 361 .0 1850 .0 0 .0 0 0 0 0 13/4/49 

Under-Bagging BB vs. BB-Imb 1210 .0 1001 .0 0 .51988 35/3/28 

MDM vs. MDMimb 779 .5 1431 .5 0 .02933 25/6/35 

Roughly-Bagging BB vs. BB-Imb 1129 .0 1082 .0 0 .86913 31/4/31 

MDM vs. MDMimb 1373 .5 837 .5 0 .06648 28/5/33 

SMOTE-Boost BB vs. BB-Imb 601 .0 1610 .0 0 .0 0 094 ∗ 11/24/31 

MDM vs. MDMimb 555 .5 1655 .5 0 .0 0 0 05 ∗ 11/25/30 

RUS-Boost BB vs. BB-Imb 829 .0 1382 .0 0 .08954+ 22/3/41 

MDM vs. MDMimb 1096 .0 1115 .0 0 .83615 36/4/26 

EUS-Boost BB vs. BB-Imb 851 .0 1360 .0 0 .11222 24/3/39 

MDM vs. MDMimb 1028 .0 1183 .0 0 .56773 32/4/30 

Easy-Ensemble BB vs. BB-Imb 605 .5 1605 .5 0 .00115 ∗ 25/2/39 

MDM vs. MDMimb 785 .0 1426 .0 0 .03055 ∗ 28/4/34 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of these tests agree with our previous remarks. In the case of BB-Imb , differences are clearer with GM, in

which the standard BB metric is outperformed in all cases but in Under-Bagging and Roughly-Based Bagging (for EUS-Boost

p -value is 0.11222, near to the 90% of confidence degree). Even though with AUC the differences are not statistically as

meaningful, taking into account both measures, it can be concluded that BB-Imb is better suited for this framework. Re-

garding MDM-Imb we can also stress the goodness of this approach in accordance with the ranks and the p -values for all

types of ensemble algorithms. However, boosting-based approaches with undersampling, i.e., RUS-Boost and EUS-Boost do 

not show significant differences (although ranks are in favor of the new model). Therefore, it can be concluded that due to

the way these models are trained, they become less affected to class imbalance in pruning phase (but anyway ranks are in

favor of the imbalanced approach, and hence it does not hinder the pruning mechanism). 

In accordance with this analysis, we have selected the adapted imbalanced metrics BB-Imb and MDM-Imb for subsequent

analyses. 

5.2. Analysis of the pruning metrics of ensembles in imbalanced classification 

This section is devoted to study the behavior of the selected pruning metrics for the learning of ensembles in the scenario

of imbalanced classification. We aim to highlight which approach or approaches allow one to enhance the performance of

the baseline ensemble methodologies designed for this problem. Our main objective is to analyze whether the ordering-

based pruning approach is also able to excel in this framework. 

For this experimental analysis, we will compare 6 different approaches including the baseline scheme (without pruning),

the 2 metrics already studied in the previous section ( BB-Imb and MDM-Imb ), and the 3 remaining metrics Comp , Kappa ,

and RE (using GM). 
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Table 6 

Average test results ( AUC ), ranks (Friedman aligned) and APVs (Holm test) for all ensemble pruning 

metrics . Control method is pointed out with asterisks. Symbol ∗ implies significant differences at 

95%, whereas symbol + sets the confidence degree at 90%. Wins/Ties/Loses values are computed with 

respect to the control algorithm. 

Ensemble Method AUC Test Ranking APV (Holm test) W/T/L 

SMOTE-Bagging Baseline .8645 ± .0587 175 .90 (2) 0.27803 27/1/38 

BB-Imb .8635 ± .0610 208 .36 (3) 0.01330 ∗ 28/1/37 

MDM-Imb .8625 ± .0622 228 .40 (6) 0.0 010 0 ∗ 26/1/39 

Comp .8632 ± .0598 211 .20 (4) 0.01318 ∗ 26/1/39 

Kappa .8681 ± .0578 154 .29 (1) ∗∗∗∗∗∗∗∗ -/-/- 

RE-GM .8633 ± .0602 212 .84 (5) 0.01318 ∗ 28/1/37 

Under-Bagging Baseline .8647 ± .0516 249 .59 (5) 0.0 0 0 0 0 ∗ 13/4/49 

BB-Imb .8734 ± .0544 160 .28 (3) 0.57376 27/4/35 

MDM-Imb .8699 ± .0558 204 .35 (4) 0.00315 ∗ 19/4/43 

Comp .8748 ± .0539 144 .90 (2) 0.76941 32/3/31 

Kappa .8609 ± .0460 292 .81 (6) 0.0 0 0 0 0 ∗ 11/3/52 

RE-GM .8752 ± .0545 139 .06 (1) ∗∗∗∗∗∗∗∗ -/-/- 

Roughly-Bagging Baseline .8644 ± .0510 253 .81 (5) 0.0 0 0 0 0 ∗ 16/3/47 

BB-Imb .8737 ± .0546 150 .88 (3) 1.0 0 0 0 0 38/3/25 

MDM-Imb .8709 ± .0557 183 .45 (4) 0.20313 26/3/37 

Comp .8745 ± .0538 147 .05 (1) ∗∗∗∗∗∗∗∗ -/-/- 

Kappa .8578 ± .0428 307 .72 (6) 0.0 0 0 0 0 ∗ 12/3/51 

RE-GM .8744 ± .0543 148 .08 (2) 1.0 0 0 0 0 34/3/29 

SMOTE-Boost Baseline .8523 ± .0655 171 .88 (2) 1.0 0 0 0 35/2/29 

BB-Imb .8514 ± .0658 221 .32 (5) 0.03701 ∗ 27/3/36 

MDM-Imb .8507 ± .0660 226 .67 (6) 0.02045 ∗ 22/3/41 

Comp .8514 ± .0643 181 .19 (3) 1.0 0 0 0 0 10/42/14 

Kappa .8447 ± .0672 220 .48 (4) 0.03701 ∗ 31/3/32 

RE-GM .8525 ± .0642 169 .46 (1) ∗∗∗∗∗∗∗∗ -/-/- 

RUS-Boost Baseline .8654 ± .0605 170 .75 (4) 1.0 0 0 0 20/3/43 

BB-Imb .8679 ± .0540 160 .97 (3) 1.0 0 0 0 0 31/3/32 

MDM-Imb .8650 ± .0564 183 .43 (5) 0.69528 26/3/37 

Comp .8682 ± .0563 156 .33 (1) ∗∗∗∗∗∗∗∗ -/-/- 

Kappa .7987 ± .0657 358 .06 (6) 0.0 0 0 0 0 ∗ 0/2/64 

RE-GM .8677 ± .0562 161 .45 (2) 1.0 0 0 0 0 31/3/32 

EUS-Boost Baseline .8678 ± .0586 176 .43 (4) 0.55659 28/4/34 

BB-Imb .8697 ± .0544 150 .05 (1) ∗∗∗∗∗∗∗∗ -/-/- 

MDM-Imb .8602 ± .0639 199 .09 (5) 0.05539+ 16/3/47 

Comp .8651 ± .0629 159 .59 (2) 0.63215 35/3/28 

Kappa .8133 ± .0688 335 .65 (6) 0.0 0 0 0 0 ∗ 1/2/63 

RE-GM .8647 ± .0638 170 .17 (3) 0.62513 33/3/30 

Easy-Ensemble Baseline .8645 ± .0533 173 .19 (3) 0.68909 20/2/44 

BB-Imb .8678 ± .0549 154 .36 (1) ∗∗∗∗∗∗∗∗ -/-/- 

MDM-Imb .8675 ± .0558 167 .96 (2) 0.68909 33/4/29 

Comp .8549 ± .0576 198 .31 (4) 0.08214+ 27/4/35 

Kappa .8398 ± .0546 291 .69 (6) 0.0 0 0 0 0 ∗ 14/4/48 

RE-GM .8539 ± .0589 205 .45 (5) 0.04136 ∗ 31/4/31 

 

 

 

 

 

 

 

 

 

 

 

 

In order to do so, Tables 6 and 7 show the average test results with AUC and GM performance measures, respectively.

These tables also include the statistical comparison, showing the average ranks computed by the Friedman aligned test

(whose computation was previously described in Section 4.4 ), and the APVs obtained by means of a Holm test. We explicitly

stress whether there are statistical differences with a degree of confidence higher than 95% (symbol ∗) or 90% (symbol + ).

In this case, we also show the number of wins/ties/loses for each approach in comparison with the control method, i.e.,

that with the highest rank. This will serve as a complementary measure to the p -value for pointing out the degree of

improvement achieved by the best heuristic metric. 

From this study, we may stress the following conclusions: 

1. The goodness of the pruning scheme for achieving high quality and competitive solutions in the scenario of imbalanced

datasets. In all cases, the application of the pruning schemes result on a higher performance and ranking than that

of the baseline model, as the pruning scheme wins in almost two-thirds of the benchmark problems. This is especially

representative in the case of Under-Bagging, in which we observe significant differences between the best pruning model

( RE-GM ) and the standard ensemble learning algorithm. 

2. The good synergy shown by BB-Imb rule with almost every ensemble, according to its average ranking for all types of

ensemble models. This behavior is clearer for the Boosting and Bagging-based approaches with undersampling, that is,

Under-Bagging, Roughly-Bagging, RUS-Boost, EUS-Boost and Easy-Ensemble. 
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Table 7 

Average test results ( GM ), ranks (Friedman aligned) and APVs (Holm test) for all ensemble pruning 

metrics . Control method is pointed out with asterisks. Symbol ∗ implies significant differences at 

95%, whereas symbol + sets the confidence degree at 90%. Wins/Ties/Loses values are computed 

with respect to the control algorithm. 

Ensemble Method GM Test Ranking APV (Holm test) 

SMOTE-Bagging Baseline .8477 ± .0778 168.18 (2) 0.11389 26/1/39 

BB-Imb .8454 ± .0812 214.17 (3) 0.0 0 020 ∗ 25/1/40 

MDM-Imb .8446 ± .0830 234.23 (6) 0.0 0 0 01 ∗ 24/1/41 

Comp .8447 ± .0804 216.67 (4) 0.0 0 017 ∗ 24/1/41 

Kappa .8547 ± .0741 136.68 (1) ∗∗∗∗∗∗∗∗ -/-/- 

RE-GM .8445 ± .0816 221.03 (5) 0.0 0 0 09 ∗ 25/1/40 

Under-Bagging Baseline .8585 ± .0574 246.63 (5) 0.0 0 0 01 ∗ 15/4/47 

BB-Imb .8674 ± .0636 156.70 (3) 1.0 0 0 0 0 30/4/32 

MDM-Imb .8636 ± .0655 200.15 (4) 0.03478 ∗ 21/4/41 

Comp .8691 ± .0618 149.96 (2) 1.0 0 0 0 0 30/3/33 

Kappa .8555 ± .0472 287.67 (6) 0.0 0 0 0 0 ∗ 9/3/54 

RE-GM .8683 ± .0646 149.86 (1) ∗∗∗∗∗∗∗∗ -/-/- 

Roughly-Bagging Baseline .8581 ± .0564 247.28 (5) 0.0 0 0 0 0 ∗ 18/5/45 

BB-Imb .8673 ± .0647 149.76 (1) ∗∗∗∗∗∗∗∗ -/-/- 

MDM-Imb .8643 ± .0660 180 (4) 0.38718 23/5/38 

Comp .8681 ± .0626 153.4 (2) 1.0 0 0 0 0 26/3/37 

Kappa .8513 ± .0431 300.78 (6) 0.0 0 0 0 0 ∗ 11/3/52 

RE-GM .8672 ± .0650 159.78 (3) 1.0 0 0 0 0 32/4/30 

SMOTE-Boost Baseline .8269 ± .0942 165.42 (1) ∗∗∗∗∗∗∗∗ -/-/- 

BB-Imb .8249 ± .0943 223.81 (5) 0.01229 ∗ 25/2/39 

MDM-Imb .8239 ± .0945 229.01 (6) 0.00707 ∗ 22/2/42 

Comp .8246 ± .0919 181.26 (3) 0.85318 29/2/35 

Kappa .8146 ± .1007 224.40 (4) 0.01229 ∗ 31/2/33 

RE-GM .8268 ± .0909 167.06 (2) 0.93424 29/2/35 

RUS-Boost Baseline .8557 ± .0774 175.59 (5) 0.70641 22/2/40 

BB-Imb .8628 ± .0599 148.67 (1) ∗∗∗∗∗∗∗∗ -/-/- 

MDM-Imb .8595 ± .0632 173.09 (4) 0.70641 23/4/39 

Comp .8594 ± .0685 166.53 (2) 0.70641 29/3/34 

Kappa .7789 ± .0811 355.18 (6) 0.0 0 0 0 0 ∗ 0/2/64 

RE-GM .8581 ± .0693 171.94 (3) 0.70641 28/3/35 

EUS-Boost Baseline .8600 ± .0727 176.70 (3) 0.12924 22/4/40 

BB-Imb .8642 ± .0612 139.88 (1) ∗∗∗∗∗∗∗∗ -/-/- 

MDM-Imb .8476 ± .0835 193.22 (5) 0.02970 ∗ 13/3/50 

Comp .8509 ± .0855 172.28 (2) 0.12924 32/3/31 

Kappa .7939 ± .0868 326.09 (6) 0.0 0 0 0 0 ∗ 2/2/62 

RE-GM .8499 ± .0873 182.80 (4) 0.09373+ 28/3/35 

Easy-Ensemble Baseline .8596 ± .0591 163.75 (2) 0.85009 22/2/42 

BB-Imb .8618 ± .0626 156.42 (1) ∗∗∗∗∗∗∗∗ -/-/- 

MDM-Imb .8612 ± .0639 172.31 (3) 0.85009 32/4/30 

Comp .8272 ± .0850 205.98 (5) 0.03860 ∗ 27/4/35 

Kappa .8300 ± .0660 272.48 (6) 0.0 0 0 0 0 ∗ 13/4/49 

RE-GM .8263 ± .0870 220.03 (4) 0.00564 ∗ 28/4/34 

 

 

 

 

 

 

 

 

 

 

3. In addition to BB-Imb , the remaining performance-based metrics Comp and RE-GM , present a robust behavior in all cases.

It is not straightforward to highlight one scheme over the other, as they achieve a similar average ranking among all

ensemble algorithms. 

4. Finally, Kappa ordering model achieves the best result for SMOTE-Bagging. However, in the remaining cases, it is always

outperformed by the corresponding control method in the statistical comparison, i.e., BB-Imb , Comp and RE-GM . Hence,

it should be highlighted that metrics based on somehow measuring performance of the sub-ensemble work better in

ensembles for class imbalance problem, but in the case of SMOTE-Bagging they may lead to greater overfitting (to which

also leads SMOTE). In this case, promoting diversity using Kappa helps in improving performance. 

The former analysis is independent of the metric of performance selected, thus stressing the robustness of these findings.

For the subsequent analysis where we will compare the best ensemble methods among them, we will select Kappa scheme

for SMOTE-Bagging, RE-GM for Under-Bagging and SMOTE-Boost, and BB-Imb for Roughly-Bagging, RUS-Boost, EUS-Boost and 

Easy-Ensemble, according to the results obtained in this section. 

We acknowledge that in some cases there were different top schemes but, for the sake of simplifying the experimental

analysis, we have selected just the one with the highest GM value as a representative element for the final intra-comparison.
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5.3. Intra-family comparison for ensemble ordering-based pruning in imbalanced classification 

Finally, we aim to investigate the behavior of the best pruning schemes for each ensemble algorithm in contrast with

the remaining ones. This analysis will lead us to discover whether there is a combination that stands out among all ap-

proaches. In accordance with the former, Tables 8 and 9 show the average performance in AUC and GM for all algorithms

of comparison in the 66 selected problems. 

As we did in the previous experimental analysis, we carry out a statistical study in order to determine whether significant

differences are found among the selected methods. Therefore, we summarize these results in Tables 10 and 11 using AUC and

GM metrics, respectively. These tables show the average performance results, together with the average ranking (computed

with the Friedman aligned tests) and the APVs obtained by the Holm test. Again, we explicitly stress whether there are

statistical differences with a significance level higher than 95% (symbol ∗) or 90% (symbol + ), and the number of wins,l ties,

and loses versus the control algorithm. 

Among all algorithms for comparison, Under-Bagging with RE-GM and Roughly-Based Bagging with BB-Imb pruning ap-

proaches are highlighted as the best methods overall. Both achieve the highest average results and ranking and, particularly

for Under-Bagging, it statistically outperforms all remaining methodologies. As in previous analysis, the conclusions extracted

from the statistical comparison are independent of the performance metric employed. 

It should be mentioned that in the previous review [23] . Under-Bagging was highlighted as one of the best approaches

together with SMOTE-Bagging and RUS-Boost. It is interesting to observe that the introduction of ensemble pruning tech-

niques into this framework has allowed Under-Bagging to make a difference with respect to previous approaches, even with

respect to more recent ones as EUS-Boost. In the case of Under-Bagging, every classifier is trained in the same way after ran-

domly undersampling the original data-set. Hence, pruning allows one to select from those classifiers the ones which better

complement each other, increasing the final performance due to the elimination of classifiers that could reduce diversity

and performance as consequence. Furthermore, notice that the number of classifiers used is reduced from 40 to 21. SMOTE-

Bagging is also benefited by a simplification of the ensemble, but its final precision was not as high as other approaches

(mainly in GM), perhaps being affected by the overfitting introduced by SMOTE. Otherwise, boosting-based approaches use

more classifiers than in the original models (21 vs. 10), although they are also improved. In this case we must point out

that the selection problem is different from Under-Bagging, where all classifiers were independently learned. In the former

case, they are correlated due to the boosting learning procedure, making the possible improvement to be limited, as shown

by the experimental results. 

6. Lessons learned and future work 

In this paper we have stressed the good properties of ordering-based pruning approaches for ensemble learning. How-

ever, some of the metrics that guide the former process are not suited for classification with imbalanced datasets. In this

way, we have proposed several new schemes to provide adapted solutions for this context, being able to achieve high quality

results. 

We have carried out our experimental analysis in three different stages so as to contrast our initial hypothesis: (1)

checking the validity of the adapted pruning metrics versus the standard ones; (2) stressing the best synergy between the

proposed pruning metrics and the different selected ensemble approaches for imbalanced classification; and (3) emphasizing

the best method overall, in order to provide additional support to the goodness of this new proposed methodology. 

Therefore, from the development of this thorough study, we may emphasize 4 important lessons learned that may help

other researchers to understand the intrinsic features of this framework: 

1. Pruning mechanism is positively biased when using the new adapted heuristics metrics for imbalanced classification.

This superior performance was clearly established by the results achieved from the statistical tests. 

2. In all cases, the use of the imbalanced pruning metrics allows the enhancement of the baseline ensemble approaches.

Furthermore, in the case of Under-Bagging the ordering-based pruning allows one to even find statistical differences

among the results. Finally, we must stress also the good behavior of Roughly-Based Bagging which performs similarly to

Under-Bagging, since both share common characteristics regarding their working procedure. 

3. Three heuristic metrics have excelled over the rest: (1) BB-Imb , (2) Comp , and (3) RE-GM . They have shown a clear

synergy with every ensemble learning approach. 

4. Finally, we must stress that the main quality of the “a-posteriori” pruning is that it allows carrying out a supervised

selection from “randomness”, only considering those classifiers that present a better cooperation. This fact is clearly

observed in the Under-Bagging technique, which achieves the highest benefit from this methodology. In this approach, all

classifiers of the ensemble are the most independent among them, as they are built in a random way without taking into

account the previous classifiers, such as in boosting. Therefore, experimental results show that this scheme outperforms

all results from the state-of-the-art in ensemble learning for imbalanced classification. 

This study opens the way for interesting future work on the topic under different perspectives. A first approach is the

analysis of additional ways for enhancing the diversity in the ensemble construction, and thus to obtain a global system

with higher quality. On this account, several authors have already proposed some alternatives that must be studied in depth

[36,69] . 
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Table 8 

Test Results and standard deviation for the selected ordering-based pruning schemes using the AUC metric. From the leftmost to the rightmost column 

the name of the dataset, IR and ensemble classifiers are shown, i.e. SMOTE-Bagging (SMT-Bag), Under-Bagging (U-Bag), Roughly-Based Bagging (RB-Bag), 

SMOTE-Boost (SMT-B), RUS-Boost (RUS-B), EUS-Boost (EUS-B), and Easy-Ensemble (Easy). 

Dataset IR SMT-Bag_Kappa U-Bag_RE-GM RB-Bag_BB-Imb SMT-B_RE-GM RUS-B_BB-Imb EUS-B_BB-Imb Easy_BB-Imb 

glass1 1 .82 .7848 ± .0471 .7961 ± .0498 .7873 ± .0468 .8031 ± .0602 .8157 ± .0499 .8046 ± .0522 .8108 ± .0524 

ecoli0vs1 1 .86 .9783 ± .020 3 .9774 ± .0200 .9753 ± .0199 .9761 ± .0212 .9743 ± .0218 .9749 ± .0198 .9742 ± .0212 

wisconsin 1 .86 .9722 ± .0116 .9702 ± .0115 .9702 ± .0123 .9668 ± .0128 .9713 ± .0114 .9699 ± .0121 .9714 ± .0103 

pima 1 .90 .7515 ± .0270 .7523 ± .0263 .7532 ± .0284 .7329 ± .0258 .7321 ± .0275 .7378 ± .0292 .7507 ± .0270 

iris0 2 .00 .9880 ± .0214 .9900 ± .0200 .9900 ± .0200 .9900 ± .0200 .9900 ± .0200 .9900 ± .0200 .9900 ± .0200 

glass0 2 .06 .8377 ± .0455 .8467 ± .0423 .8461 ± .0401 .8461 ± .0610 .8608 ± .0417 .8502 ± .0413 .8490 ± .0415 

yeast1 2 .46 .7206 ± .0212 .7311 ± .0227 .7307 ± .0212 .7186 ± .0239 .7143 ± .0235 .7155 ± .0228 .7301 ± .0219 

vehicle2 2 .52 .9707 ± .0133 .9735 ± .0111 .9750 ± .0126 .9830 ± .0116 .9813 ± .0095 .9813 ± .0105 .9797 ± .0103 

vehicle1 2 .52 .7638 ± .0305 .7976 ± .0297 .7953 ± .0265 .7648 ± .0350 .7987 ± .0294 .8055 ± .0254 .80 0 0 ± .0274 

vehicle3 2 .52 .7598 ± .0326 .7989 ± .0220 .8001 ± .0252 .7515 ± .0262 .7945 ± .0290 .8055 ± .0243 .8041 ± .0220 

haberman 2 .68 .6622 ± .0386 .6586 ± .0379 .6552 ± .0372 .6487 ± .0438 .6346 ± .0537 .6353 ± .0522 .6429 ± .0525 

glass0123vs456 3 .19 .9477 ± .0298 .9376 ± .0332 .9420 ± .0310 .9168 ± .0543 .9467 ± .0366 .9463 ± .0387 .9443 ± .0340 

vehicle0 3 .23 .9605 ± .0136 .9551 ± .0151 .9588 ± .0128 .9686 ± .0161 .9661 ± .0118 .9659 ± .0130 .9622 ± .0120 

ecoli1 3 .36 .9012 ± .0255 .9044 ± .0287 .9094 ± .0286 .8710 ± .0393 .9071 ± .0323 .8995 ± .0342 .9103 ± .0321 

newthyroid2 4 .92 .9668 ± .0315 .9633 ± .0379 .9676 ± .0338 .9833 ± .0233 .9812 ± .0253 .9712 ± .0336 .9682 ± .0333 

newthyroid1 5 .14 .9655 ± .0395 .9500 ± .0577 .9505 ± .0542 .9817 ± .0293 .9685 ± .0423 .9617 ± .0504 .9584 ± .0546 

ecoli2 5 .46 .9107 ± .0484 .9065 ± .0495 .8983 ± .0500 .9142 ± .0473 .8942 ± .0468 .9014 ± .0431 .8994 ± .0467 

segment0 6 .01 .9904 ± .0086 .9899 ± .0080 .9890 ± .0083 .9938 ± .0079 .9962 ± .0048 .9959 ± .0050 .9945 ± .0064 

glass6 6 .38 .9275 ± .0485 .9264 ± .0482 .9247 ± .0473 .9233 ± .0619 .9252 ± .0483 .9255 ± .0449 .9231 ± .0485 

yeast3 8 .11 .9318 ± .0237 .9343 ± .022 6 .9300 ± .0243 .8863 ± .0319 .9298 ± .0219 .9297 ± .0214 .9322 ± .0230 

ecoli3 8 .19 .8638 ± .0702 .8723 ± .0675 .8675 ± .0690 .8419 ± .0927 .8687 ± .0638 .8715 ± .0645 .8810 ± .0534 

pageblocks0 8 .77 .9574 ± .0115 .9633 ± .0093 .9629 ± .0087 .9512 ± .0108 .9640 ± .0093 .9633 ± .0091 .9639 ± .0096 

ecoli034vs5 9 .00 .9257 ± .0778 .9102 ± .0762 .9166 ± .0815 .8986 ± .0919 .9020 ± .0835 .9033 ± .0899 .8993 ± .0819 

yeast2vs4 9 .08 .9314 ± .0341 .9408 ± .0371 .9486 ± .0318 .8805 ± .0641 .9458 ± .0348 .9452 ± .0339 .9455 ± .0300 

ecoli067vs35 9 .09 .8588 ± .0795 .8649 ± .0745 .8570 ± .0701 .8615 ± .0838 .8612 ± .0746 .8622 ± .0802 .8601 ± .0779 

ecoli0234vs5 9 .10 .9035 ± .0960 .8948 ± .0864 .9037 ± .0830 .8928 ± .0931 .8836 ± .0931 .8910 ± .0951 .8902 ± .0943 

glass015vs2 9 .12 .7130 ± .1596 .7201 ± .1351 .7534 ± .1390 .7221 ± .1106 .7309 ± .1198 .7629 ± .1257 .6945 ± .1336 

yeast0359vs78 9 .12 .7241 ± .0644 .7345 ± .0621 .7388 ± .0545 .6603 ± .0595 .7373 ± .0484 .7382 ± .0542 .7266 ± .0523 

yeast02579vs368 9 .14 .8036 ± .0356 .8171 ± .0292 .8084 ± .0235 .7879 ± .0390 .8041 ± .0382 .7931 ± .0370 .8106 ± .0294 

yeast0256vs3789 9 .14 .9155 ± .0232 .9129 ± .0157 .9108 ± .0162 .8963 ± .0296 .9040 ± .0219 .9055 ± .0218 .9127 ± .0151 

ecoli046vs5 9 .15 .9185 ± .0740 .9103 ± .0681 .9172 ± .0718 .8950 ± .0740 .8956 ± .0805 .8954 ± .0908 .8878 ± .0735 

ecoli01vs235 9 .17 .8960 ± .0768 .9058 ± .0668 .9076 ± .0662 .8720 ± .0804 .8777 ± .0678 .8864 ± .0678 .8825 ± .0700 

ecoli0267vs35 9 .18 .8521 ± .0868 .8638 ± .0881 .8572 ± .0898 .8650 ± .0877 .8731 ± .0923 .8652 ± .0961 .8690 ± .0917 

glass04vs5 9 .22 .9865 ± .0172 .9940 ± .0121 .9940 ± .0121 .9848 ± .0338 .9940 ± .0121 .9940 ± .0121 .9940 ± .0121 

ecoli0346vs5 9 .25 .9146 ± .0889 .8934 ± .0860 .9039 ± .0955 .8874 ± .1136 .8713 ± .0888 .8818 ± .0833 .8781 ± .0938 

ecoli0347vs56 9 .28 .8696 ± .0862 .8973 ± .0737 .8933 ± .0772 .8990 ± .0739 .8739 ± .0754 .8799 ± .0791 .8871 ± .0780 

yeast05679vs4 9 .35 .8282 ± .0510 .8248 ± .0523 .8221 ± .0480 .7894 ± .0658 .8294 ± .0503 .8276 ± .0476 .8177 ± .0470 

ecoli067vs5 10 .00 .8903 ± .0509 .8921 ± .0721 .8907 ± .0602 .8981 ± .0705 .8682 ± .0692 .8660 ± .0670 .8910 ± .0709 

vowel0 10 .10 .9851 ± .0121 .9687 ± .0215 .9682 ± .0208 .9901 ± .0154 .9823 ± .0145 .9854 ± .0128 .9795 ± .0170 

glass016vs2 10 .29 .7139 ± .1684 .7348 ± .1447 .7173 ± .1553 .7435 ± .1318 .7202 ± .1435 .7346 ± .1300 .7046 ± .1496 

glass2 10 .39 .7595 ± .1117 .7582 ± .1145 .7692 ± .1231 .7176 ± .1197 .7729 ± .1039 .7684 ± .1080 .7330 ± .1167 

ecoli0147vs2356 10 .59 .8563 ± .0758 .8704 ± .0773 .8591 ± .0754 .8783 ± .0797 .8291 ± .0746 .8466 ± .0723 .8550 ± .0795 

led7digit02456789vs1 10 .97 .8565 ± .0877 .8336 ± .0736 .8319 ± .0742 .7985 ± .1409 .8342 ± .0732 .8271 ± .0650 .8381 ± .0795 

ecoli01vs5 11 .00 .9179 ± .0728 .9144 ± .0846 .9252 ± .0849 .8976 ± .0819 .9063 ± .0908 .9048 ± .0896 .8992 ± .0924 

glass06vs5 11 .00 .9825 ± .0188 .9922 ± .0136 .9950 ± .0100 .9890 ± .0169 .9321 ± .0629 .9486 ± .0403 .9319 ± .0447 

glass0146vs2 11 .06 .7046 ± .1519 .7558 ± .1386 .7260 ± .1601 .7329 ± .1245 .7334 ± .1419 .7366 ± .1350 .7144 ± .1427 

ecoli0147vs56 12 .28 .8847 ± .0868 .8950 ± .0697 .8977 ± .0658 .9121 ± .0663 .8780 ± .0668 .8837 ± .0737 .8918 ± .0665 

cleveland0vs4 12 .62 .8364 ± .1298 .8673 ± .1061 .8446 ± .1261 .7744 ± .1384 .8282 ± .1325 .8340 ± .1276 .8349 ± .1385 

ecoli0146vs5 13 .00 .9022 ± .0738 .9089 ± .0712 .9248 ± .0705 .8976 ± .0779 .8912 ± .0702 .8842 ± .0738 .9027 ± .0726 

ecoli4 13 .84 .9337 ± .0660 .9308 ± .0705 .9325 ± .0730 .9133 ± .1018 .9349 ± .0583 .9387 ± .0550 .9345 ± .0612 

shuttle0vs4 13 .87 .9998 ± .0 0 07 1.0 0 0 ± .0 0 0 0 1.0 0 0 ± .0 0 0 0 .9999 ± .0 0 04 1.0 0 0 ± .0 0 0 0 1.0 0 0 ± .0 0 0 0 1.0 0 0 ± .0 0 0 0 

yeast1vs7 13 .87 .7482 ± .0921 .7741 ± .0759 .7816 ± .0711 .7305 ± .0765 .7438 ± .0724 .7490 ± .0633 .7644 ± .0750 

glass4 15 .47 .9283 ± .0728 .9115 ± .1092 .8901 ± .0995 .8404 ± .1472 .8835 ± .0850 .8867 ± .0743 .8866 ± .0746 

pageblocks13vs4 15 .85 .9919 ± .0074 .9941 ± .0047 .9945 ± .0115 .9928 ± .0186 .9846 ± .0182 .9882 ± .0113 .9694 ± .0196 

abalone9vs18 16 .68 .7192 ± .0839 .7440 ± .0734 .7418 ± .0673 .6946 ± .0761 .7405 ± .0637 .7337 ± .0577 .7452 ± .0631 

glass016vs5 19 .44 .9779 ± .0341 .9765 ± .0202 .9730 ± .0237 .9142 ± .1258 .9417 ± .0250 .9677 ± .0245 .9441 ± .0114 

shuttle2vs4 20 .50 .9990 ± .0051 1.0 0 0 ± .0 0 0 0 1.0 0 0 ± .0 0 0 0 1.0 0 0 ± .0 0 0 0 1.0 0 0 ± .0 0 0 0 1.0 0 0 ± .0 0 0 0 .9998 ± .0019 

yeast1458vs7 22 .10 .6434 ± .0975 .6464 ± .0821 .6407 ± .0909 .5653 ± .0714 .6208 ± .0970 .6158 ± .0973 .6172 ± .1010 

glass5 22 .81 .9697 ± .0575 .9667 ± .0221 .9665 ± .0236 .9321 ± .1097 .9526 ± .0199 .9648 ± .0238 .9494 ± .0141 

yeast2vs8 23 .10 .8001 ± .0856 .7726 ± .0609 .7540 ± .0737 .7706 ± .0938 .7643 ± .0782 .7759 ± .0808 .7492 ± .0674 

yeast4 28 .41 .8334 ± .0558 .8518 ± .0490 .8506 ± .0461 .7405 ± .0705 .8465 ± .0446 .8487 ± .0432 .8409 ± .0412 

yeast1289vs7 30 .56 .7059 ± .0860 .7295 ± .0742 .7365 ± .0743 .6574 ± .0798 .7149 ± .0757 .7203 ± .0748 .7184 ± .0839 

yeast5 32 .78 .9630 ± .0322 .9639 ± .0323 .9654 ± .0311 .9001 ± .0575 .9678 ± .0270 .9678 ± .0276 .9633 ± .0238 

yeast6 39 .15 .8420 ± .0525 .8715 ± .0422 .8589 ± .0451 .7823 ± .0740 .8487 ± .0341 .8469 ± .0375 .8682 ± .0398 

ecoli0137vs26 39 .15 .8401 ± .1674 .8492 ± .1620 .7920 ± .1455 .8575 ± .1739 .8377 ± .1026 .8226 ± .1523 .8347 ± .1557 

abalone19 128 .87 .5570 ± .0669 .7082 ± .0967 .7244 ± .0849 .5387 ± .0400 .7208 ± .0757 .7206 ± .0877 .7202 ± .0812 

Average – .8681 ± .0578 .8752 ± .0545 .8737 ± .0546 .8525 ± .0642 .8679 ± .0540 .8697 ± .0544 .8678 ± .0549 
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Table 9 

Test Results and standard deviation for the selected ordering-based pruning schemes using the GM metric. From the leftmost to the rightmost column 

the name of the dataset, IR and ensemble classifiers are shown, i.e. SMOTE-Bagging (SMT-Bag), Under-Bagging (U-Bag), Roughly-Based Bagging (RB-Bag), 

SMOTE-Boost (SMT-B), RUS-Boost (RUS-B), EUS-Boost (EUS-B), and Easy-Ensemble (Easy). 

Dataset IR SMT-Bag_Kappa U-Bag_RE-GM RB-Bag_BB-Imb SMT-B_RE-GM RUS-B_BB-Imb EUS-B_BB-Imb Easy_BB-Imb 

glass1 1 .82 .7814 ± .0484 .7939 ± .0500 .7845 ± .0471 .7920 ± .0697 .8123 ± .0504 .8011 ± .0525 .8080 ± .0525 

ecoli0vs1 1 .86 .7700 ± .3090 .7897 ± .2926 .9750 ± .0201 .7867 ± .3174 .8177 ± .1503 .7705 ± .2704 .7703 ± .2945 

wisconsin 1 .86 .9721 ± .0116 .9700 ± .0116 .9701 ± .0124 .9666 ± .0128 .9712 ± .0115 .9698 ± .0121 .9713 ± .0103 

pima 1 .90 .7498 ± .0275 .7513 ± .0265 .7519 ± .0285 .7295 ± .0280 .7304 ± .0275 .7353 ± .0294 .7489 ± .0270 

iris0 2 .00 .9877 ± .0219 .9897 ± .0205 .9897 ± .0205 .9897 ± .0205 .9897 ± .0205 .9897 ± .0205 .9897 ± .0205 

glass0 2 .06 .9469 ± .0303 .9366 ± .0338 .8439 ± .0395 .9142 ± .0582 .9458 ± .0378 .9454 ± .0397 .9434 ± .0352 

yeast1 2 .46 .6591 ± .1426 .7076 ± .0941 .7299 ± .0211 .5433 ± .1823 .7088 ± .0748 .7142 ± .0750 .7057 ± .0970 

vehicle2 2 .52 .9706 ± .0134 .9734 ± .0111 .9749 ± .0127 .9830 ± .0116 .9813 ± .0095 .9812 ± .0105 .9796 ± .0103 

vehicle1 2 .52 .7612 ± .0323 .7941 ± .0287 .7923 ± .0253 .7611 ± .0386 .7961 ± .0288 .8013 ± .0248 .7955 ± .0268 

vehicle3 2 .52 .7574 ± .0349 .7953 ± .0214 .7966 ± .0241 .7471 ± .0287 .7923 ± .0283 .8008 ± .0236 .7987 ± .0218 

haberman 2 .68 .6585 ± .0404 .6528 ± .0404 .6517 ± .0376 .6391 ± .0513 .6288 ± .0558 .6270 ± .0543 .6371 ± .0523 

glass0123vs456 3 .19 .6536 ± .2321 .7363 ± .1770 .9410 ± .0316 .6760 ± .2010 .7076 ± .1781 .7114 ± .1694 .6921 ± .1760 

vehicle0 3 .23 .9601 ± .0136 .9547 ± .0151 .9584 ± .0128 .9685 ± .0162 .9658 ± .0118 .9656 ± .0130 .9618 ± .0120 

ecoli1 3 .36 .9002 ± .0250 .9035 ± .0286 .9086 ± .0283 .8680 ± .0419 .9055 ± .0323 .8984 ± .0338 .9093 ± .0318 

newthyroid2 4 .92 .9661 ± .0323 .9618 ± .0404 .9664 ± .0361 .9830 ± .0240 .9807 ± .0264 .9702 ± .0358 .9671 ± .0353 

newthyroid1 5 .14 .9650 ± .0400 .9471 ± .0628 .9480 ± .0583 .9815 ± .0295 .9670 ± .0456 .9600 ± .0538 .9563 ± .0591 

ecoli2 5 .46 .9095 ± .0497 .9044 ± .0518 .8956 ± .0532 .9116 ± .0499 .8923 ± .0491 .8995 ± .0450 .8972 ± .0490 

segment0 6 .01 .9904 ± .0087 .9898 ± .0080 .9889 ± .0083 .9937 ± .0080 .9961 ± .0048 .9959 ± .0051 .9944 ± .0064 

glass6 6 .38 .9256 ± .0502 .9245 ± .0499 .9228 ± .0490 .9191 ± .0683 .9235 ± .0498 .9239 ± .0459 .9212 ± .0501 

yeast3 8 .11 .9314 ± .0238 .9340 ± .0228 .9296 ± .0245 .8824 ± .0347 .9296 ± .0219 .9294 ± .0214 .9318 ± .0231 

ecoli3 8 .19 .8592 ± .0757 .8682 ± .0717 .8629 ± .0737 .8283 ± .1084 .8647 ± .0672 .8672 ± .0691 .8779 ± .0553 

pageblocks0 8 .77 .9919 ± .0075 .9941 ± .0047 .9628 ± .0087 .9926 ± .0193 .9843 ± .0188 .9880 ± .0116 .9687 ± .0204 

ecoli034vs5 9 .00 .8618 ± .0973 .8923 ± .0810 .9114 ± .0905 .8937 ± .0810 .8687 ± .0822 .8747 ± .0869 .8823 ± .0854 

yeast2vs4 9 .08 .7761 ± .1108 .7439 ± .0747 .9476 ± .0328 .7284 ± .1298 .7574 ± .0825 .7669 ± .0879 .7317 ± .0777 

ecoli067vs35 9 .09 .8857 ± .0537 .8847 ± .0859 .8484 ± .0804 .8906 ± .0816 .8622 ± .0782 .8603 ± .0756 .8852 ± .0809 

ecoli0234vs5 9 .10 .84 4 4 ± .0941 .8545 ± .0975 .8966 ± .0938 .8548 ± .0976 .8666 ± .0996 .8580 ± .1038 .8611 ± .1003 

glass015vs2 9 .12 .6452 ± .2936 .7024 ± .2172 .7294 ± .1923 .6771 ± .2449 .6930 ± .1850 .7082 ± .1682 .6769 ± .1895 

yeast0359vs78 9 .12 .7133 ± .0758 .7217 ± .0737 .7350 ± .0578 .5942 ± .0968 .7332 ± .0474 .7342 ± .0563 .7217 ± .0563 

yeast02579vs368 9 .14 .7947 ± .0413 .8126 ± .0318 .8039 ± .0259 .7658 ± .0488 .8013 ± .0405 .7891 ± .0392 .8042 ± .0334 

yeast0256vs3789 9 .14 .9143 ± .0243 .9116 ± .0162 .9099 ± .0168 .8923 ± .0322 .9034 ± .0225 .9049 ± .0225 .9119 ± .0156 

ecoli046vs5 9 .15 .8517 ± .0881 .8565 ± .0845 .9126 ± .0795 .8503 ± .0965 .8549 ± .0825 .8564 ± .0868 .8522 ± .0873 

ecoli01vs235 9 .17 .8959 ± .0819 .9046 ± .0769 .9039 ± .0711 .8895 ± .0898 .8870 ± .0742 .8792 ± .0789 .8987 ± .0774 

ecoli0267vs35 9 .18 .9074 ± .1035 .8856 ± .0998 .8485 ± .0984 .8728 ± .1398 .8631 ± .0987 .8747 ± .0921 .8684 ± .1089 

glass04vs5 9 .22 .9822 ± .0193 .9921 ± .0139 .9939 ± .0123 .9888 ± .0173 .9290 ± .0654 .9463 ± .0428 .9284 ± .0483 

ecoli0346vs5 9 .25 .9210 ± .0860 .9047 ± .0850 .8959 ± .1104 .8890 ± .1056 .8957 ± .0928 .8966 ± .1004 .8942 ± .0890 

ecoli0347vs56 9 .28 .9130 ± .0827 .9059 ± .0745 .8878 ± .0868 .8871 ± .0837 .8903 ± .0894 .8867 ± .1088 .8824 ± .0818 

yeast05679vs4 9 .35 .8255 ± .0529 .8210 ± .0557 .8200 ± .0484 .7708 ± .0840 .8269 ± .0501 .8258 ± .0475 .8159 ± .0480 

ecoli067vs5 10 .00 .9780 ± .0205 .9772 ± .0202 .8854 ± .0675 .9758 ± .0215 .9739 ± .0221 .9746 ± .0201 .9739 ± .0213 

vowel0 10 .10 .9850 ± .0122 .9684 ± .0217 .9680 ± .0210 .9899 ± .0157 .9822 ± .0147 .9853 ± .0129 .9794 ± .0171 

glass016vs2 10 .29 .9769 ± .0389 .9759 ± .0209 .6820 ± .2269 .8918 ± .1871 .9395 ± .0272 .9668 ± .0254 .9424 ± .0121 

glass2 10 .39 .7422 ± .1404 .7468 ± .1270 .7585 ± .1319 .6569 ± .1955 .7592 ± .1044 .7556 ± .1085 .7165 ± .1322 

ecoli0147vs2356 10 .59 .9136 ± .0788 .9102 ± .0912 .8528 ± .0872 .8903 ± .0909 .9019 ± .0972 .9001 ± .0965 .8936 ± .1020 

led7digit02456789vs1 10 .97 .8450 ± .0995 .8209 ± .0844 .8194 ± .0850 .7600 ± .2204 .8255 ± .0800 .8191 ± .0705 .8261 ± .0903 

ecoli01vs5 11 .00 .8490 ± .0851 .8632 ± .0871 .9212 ± .0919 .8686 ± .0910 .8223 ± .0814 .8408 ± .0801 .8476 ± .0939 

glass06vs5 11 .00 .8349 ± .0447 .8437 ± .0416 .9949 ± .0101 .8437 ± .0630 .8565 ± .0420 .8476 ± .0409 .8458 ± .0407 

glass0146vs2 11 .06 .6646 ± .2468 .6889 ± .1986 .6870 ± .2392 .6717 ± .1925 .7001 ± .1717 .7344 ± .1787 .6676 ± .1757 

ecoli0147vs56 12 .28 .8942 ± .1101 .8876 ± .0967 .8941 ± .0700 .8825 ± .1070 .8751 ± .1043 .8825 ± .1071 .8817 ± .1059 

cleveland0vs4 12 .62 .8029 ± .1980 .8583 ± .1183 .8168 ± .2001 .7155 ± .2213 .8094 ± .1773 .8189 ± .1623 .8195 ± .1752 

ecoli0146vs5 13 .00 .8919 ± .0813 .9025 ± .0704 .9212 ± .0764 .8611 ± .0925 .8722 ± .0735 .8816 ± .0724 .8774 ± .0758 

ecoli4 13 .84 .9302 ± .0714 .9271 ± .0768 .9286 ± .0797 .9020 ± .1276 .9323 ± .0623 .9366 ± .0577 .9320 ± .0650 

shuttle0vs4 13 .87 .9998 ± .0 0 07 1.0 0 0 ± .0 0 0 0 1.0 0 0 ± .0 0 0 0 .9999 ± .0 0 04 1.0 0 0 ± .0 0 0 0 1.0 0 0 ± .0 0 0 0 1.0 0 0 ± .0 0 0 0 

yeast1vs7 13 .87 .5839 ± .1457 .6225 ± .0994 .7762 ± .0742 .3232 ± .2327 .6103 ± .0968 .6059 ± .0987 .6056 ± .1060 

glass4 15 .47 .9241 ± .0809 .8915 ± .1822 .8771 ± .1306 .7925 ± .2582 .8735 ± .1134 .8800 ± .0799 .8811 ± .0778 

pageblocks13vs4 15 .85 .9573 ± .0117 .9633 ± .0093 .9944 ± .0119 .9510 ± .0110 .9640 ± .0093 .9632 ± .0091 .9638 ± .0096 

abalone9vs18 16 .68 .6931 ± .1096 .7320 ± .0859 .7357 ± .0765 .6390 ± .1095 .7366 ± .0668 .7302 ± .0588 .7410 ± .0680 

glass016vs5 19 .44 .9863 ± .0175 .9939 ± .0123 .9723 ± .0246 .9839 ± .0388 .9939 ± .0123 .9939 ± .0123 .9939 ± .0123 

shuttle2vs4 20 .50 .9990 ± .0052 1.0 0 0 ± .0 0 0 0 1.0 0 0 ± .0 0 0 0 1.0 0 0 ± .0 0 0 0 1.0 0 0 ± .0 0 0 0 1.0 0 0 ± .0 0 0 0 .9998 ± .0019 

yeast1458vs7 22 .10 .9303 ± .0347 .9396 ± .0387 .6295 ± .0997 .8737 ± .0731 .9448 ± .0357 .9441 ± .0350 .9443 ± .0313 

glass5 22 .81 .9673 ± .0664 .9659 ± .0230 .9656 ± .0245 .9221 ± .1270 .9512 ± .0209 .9638 ± .0249 .9479 ± .0148 

yeast2vs8 23 .10 .7151 ± .0227 .7306 ± .0226 .7389 ± .0838 .7160 ± .0250 .7124 ± .0245 .7125 ± .0251 .7290 ± .0218 

yeast4 28 .41 .8278 ± .0619 .8502 ± .0498 .8485 ± .0448 .6982 ± .1003 .8440 ± .0431 .8465 ± .0418 .8375 ± .0395 

yeast1289vs7 30 .56 .7332 ± .1105 .7647 ± .0870 .7270 ± .0808 .6883 ± .1114 .7365 ± .0715 .7429 ± .0619 .7584 ± .0781 

yeast5 32 .78 .9623 ± .0331 .9632 ± .0335 .9648 ± .0321 .8936 ± .0654 .9673 ± .0279 .9672 ± .0285 .9628 ± .0241 

yeast6 39 .15 .8313 ± .0617 .8688 ± .0462 .8570 ± .0472 .7496 ± .0995 .8476 ± .0353 .8456 ± .0386 .8671 ± .0411 

ecoli0137vs26 39 .15 .8765 ± .0957 .8907 ± .0748 .7209 ± .2861 .9069 ± .0728 .8747 ± .0706 .8796 ± .0796 .8888 ± .0698 

abalone19 128 .87 .3139 ± .2260 .6956 ± .1137 .7154 ± .0976 .2177 ± .1972 .7116 ± .0759 .7107 ± .0984 .7120 ± .0810 

Average – .8547 ± .0741 .8683 ± .0646 .8673 ± .0647 .8268 ± .0909 .8628 ± .0599 .8642 ± .0612 .8618 ± .0626 
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Table 10 

Average results (AUC), Ranks (Friedman Aligned test) and APVs (Holm test) for the state-of-the- 

art in ensemble learning for imbalanced classification . Control method is pointed out with as- 

terisks. Symbol ∗ implies significant differences at 95%, whereas symbol + sets the confidence 

degree at 90%. Wins/Ties/Loses values are computed with respect to the control algorithm. 

Ensemble Model AUC Test Ranking APV W/T/L 

(Friedman Aligned) (Holm test) 

SMOTE-Bagging-Kappa .8681 ± .0578 231.02 (3) 0.01015 ∗ 25/0/41 

Under-Bagging-RE-GM .8752 ± .0545 165.89 (1) ∗∗∗∗∗∗∗∗ -/-/- 

Roughly-Bagging-BB-Imb .8737 ± .0546 183.4 (2) 0.45108 28/4/34 

SMOTE-Boost-RE-GM .8525 ± .0642 311.16 (7) 0.0 0 0 0 0 ∗ 16/2/48 

RUS-Boost-BB-Imb .8679 ± .0540 246.84 (6) 0.00248 ∗ 23/4/39 

EUS-Boost-BB-Imb .8697 ± .0544 236.78 (4) 0.00686 ∗ 21/4/41 

Easy-Ensemble-BB-Imb .8678 ± .0549 245.42 (5) 0.00249 ∗ 21/3/42 

Table 11 

Average results (GM), Ranks (Friedman Aligned test) and APVs (Holm test) for the state-of-the-art 

in ensemble learning for imbalanced classification . Control method is pointed out with aster- 

isks. Symbol ∗ implies significant differences at 95%, whereas symbol + sets the confidence degree 

at 90%. Wins/Ties/Loses values are computed with respect to the control algorithm. 

Ensemble Model GM Test Ranking APV W/T/L 

(Friedman Aligned) (Holm test) 

SMOTE-Bagging-Kappa .8547 ± .0741 246.97(6) 0.00862 ∗ 25/0/41 

Under-Bagging-RE-GM .8683 ± .0646 174.13 (1) ∗∗∗∗∗∗∗∗ -/-/- 

Roughly-Bagging-BB-Imb .8673 ± .0647 185.43 (2) 0.62673 30/3/33 

SMOTE-Boost-RE-GM .8268 ± .0909 337.57 (7) 0.0 0 0 0 0 ∗ 13/2/51 

RUS-Boost-BB-Imb .8628 ± .0599 224.25 (4) 0.09312+ 27/4/35 

EUS-Boost-BB-Imb .8642 ± .0612 218.27(3) 0.11512 23/4/39 

Easy-Ensemble-BB-Imb .8618 ± .0626 233.89 (5) 0.04054 ∗ 23/3/40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another straightforward step is to analyze the synergy of ensembles of classifiers with novel approaches on instance

generation for the rebalancing of the training set [81] . Additionally, there are new imbalanced classification problems that

must be addressed, such as those based on Multi-instance [70] and Multi-label learning [11] . 

Furthermore, ensembles of classifiers have been traditionally used for online learning from Data Streams [53,54] . The

problem of imbalanced data is also present in this framework, and novel approaches have been developed to address the

former issue with ensemble learning [27,71] . Since our proposed approach is based on improving the efficiency of the sys-

tem, we consider that it must be a good point of reference for further work on this topic. 

Finally, we cannot forget about Big Data applications [15,20] , being maybe the hottest topic in the research community.

As in the standard case study, ensembles of classifiers are a very valuable tool for addressing the imbalanced classification

problem in a Big Data scenario [16,80] . Focusing on developing novel algorithms based on the MapReduce scheme must be

regarded as a profitable research line. 

7. Concluding remarks 

Ensembles of classifiers have shown very good properties for addressing the problem of imbalanced classification. They

work in line with baseline solutions for this task such as preprocessing or cost-sensitive learning. However, we must face

the problem of setting the optimal number of classifiers that better suits the problem. A low number may be insufficient

to reach a quality solution, and a high number may involve conflicts in the final decision process or over-fitting, leading to

erroneous outputs. 

The answer to the former problem consists of carrying out a pruning (actually a selection) from a pool with a high

number of classifiers. More specifically, classifiers can be added or not to the final set according to the optimization of

a given quality measure, being the final aim the improvement of the global behavior of the system. In this sense, this

technique receive the name of ordering-based pruning. 

In this work, we have proposed several novel ordering-based ensemble pruning metrics to work in the context of imbal-

anced classification. To check the validity of our approach, we have developed an exhaustive experimental analysis over a

large number of benchmark datasets considering the best ensemble methods in this framework. From this study, we have

emphasized the goodness of the new proposed pruning heuristics, as they have allowed us to improve the performance of

all baseline ensemble classifiers. 

As future research we plan to apply a genetic search optimization procedure allowing for a more exhaustive search of

the best cooperative classifiers within the ensemble. Also, to avoid the threshold parameter for the pruning approach, we

should analyze the computation of the former regarding different factors. Another topic for future study is to study the be-

havior of the novel pruning metrics under different case studies, i.e., regarding data intrinsic characteristics. We also seek to
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confirm that this good behavior achieved by the application of the ordering pruning approach is maintained independently

of the baseline classifier selected. Finally, we have stressed the significance of this work by providing a wide number of

prospects for different related topics, including novel approaches for pruning and enhancing diversity, testing recent prepro-

cessing approaches in synergy with this methodology, the application of our proposal for data streams and online learning

in imbalanced domains, and to address Big Data problems. 
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