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Classification problems with multiple classes suppose a challenge in Data Mining tasks. 
There is a difficulty inherent to the learning process when trying to find the most adequate 
discrimination functions among the different concepts within the dataset. Using Fuzzy 
Rule Based Classification Systems in general, and Evolutionary Fuzzy Systems in particular, 
provide the advantage of describing smoother borderline areas, thanks to the linguistic 
label-based representation.
In multi-classification, the pairwise learning approach (One-vs-One) has gained a notorious 
attention. However, there is certain dependence between the goodness of the confidence 
degrees or scores of binary classifiers, and the final performance shown by the global 
model. Regarding this fact, the problem of non-competent classifiers is of special relevance. 
It occurs when a binary classifier outputs a positive score for a couple of classes unrelated 
with the input example, which may degrade the final accuracy. Precisely, the previously 
exposed properties of fuzzy classifiers make them more prone to the former condition.
In this paper, we propose an extension of the distance-based combination strategy to 
overcome this non-competence problem. It is based on the truncation of the confidence 
degrees of the classes prior to the distance-based tuning. This allows taking advantage 
of the good classification abilities of Evolutionary Fuzzy Systems, while diminishing the 
adverse effect of the aforementioned non-competence. Experimental results, using FARC-
HD with overlap functions as the fuzzy learning algorithm, show that this new adaptation 
of the Distance-based Relative Competence Weighting model outperforms both the OVO 
and standard distance-based approaches, and it is competitive with robust classifiers such 
as Support Vector Machines.
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1. Introduction

Among all Data Mining tasks, classification can be regarded as one of the most studied problems [1]. It consists in
learning a mapping function from the attributes of a set of examples whose class is a priori known. The final goal is to 
automatically determine the class for every new pattern arriving to the system. In a standard framework, the classifier is 
devoted to learn a dichotomization function. However, when a multi-class problem is considered, the complexity inherent 
to the higher number of decision boundaries, and the overlapping among these classes, makes this task harder than the 
binary case [2].

In accordance with the former, a successful way to address this problem is using a divide and conquer methodology. 
The main idea is to apply a decomposition strategy [3], i.e. to simplify the initial multi-class problems by generating several 
binary sub-problems. There are several strategies that consider a divide-and-conquer scheme, and most of them can be 
included within Error Correcting Output Codes framework [4,5]. One of the most common approaches is the One-vs-One 
(OVO) or pairwise learning scheme [6,7]. This approach divides the original problem in as many pairs of classes as possible, 
ignoring the examples that do not belong to the related classes. Then, these are learnt in an independent way by the 
so-called base learners or base classifiers of the ensemble [8]. In fact, even when the base classifiers are able to cope with 
multi-class problems, it has been shown that the use of binarization techniques allows for the achievement of a more robust 
system, and thus the improvement of the performance with respect to the standard case [9,10].

The simplification of the learning task implies that more attention must be focused on the combination stage, where the 
classifiers learned to solve each binary problem should be aggregated to output the final decision over the class label [11,
12]. Specifically, every new example to be classified is queried by all the classifiers. Each classifier outputs a pair of “scores” 
(confidence degrees) for the two classes that were considered for the training stage. All these score values are collected to 
build a decision matrix which will be used to determine the output class.1

When the confidence degrees generated by the baseline classifiers are good enough, then any aggregation method will 
be adequate to determine the correct class. In particular, the simplest and most widely used method in pairwise learning 
the “Weighted Voting” (WV) [13], which considers the maximum vote among the summation of the scores for the binary 
classifiers associated with the same class.

If we analyze this procedure in depth, we find an inherent problem: all base classifiers will be fired for a given instance, 
even when they have not been trained to recognize the real class of this particular instance. Therefore, these classifiers 
could submit an erroneous score that might alter the decision process degrading the accuracy of the final system. This 
case is better known as the “non-competent classifiers problem” [13], which can mislead the correct labeling of the query 
example.

It is straightforward to acknowledge that the competence of a classifier in the OVO approach cannot be established 
a priori. Therefore, the techniques that have been proposed in the specialized literature to cope with this problem are 
based on dynamic post-processing methodology. They are aimed at adapting the score matrix values prior to the decision 
step. In [14], authors compute the closest classes to the query instance in order to remove those classifiers that were not 
related with this query example. A similar approach was developed in [15], known as Distance-based Relative Competence 
Weighting (DRCW), where confidence degrees of the classifiers were weighted according to the distance computed from the 
example to the nearest neighbors of each class, instead of directly removing the classifiers.

Among different classification algorithms, Fuzzy Rule Based Classification Systems (FRBCSs) [16] have shown a good be-
havior when modeling complex problems due to the proper management of the uncertainty achieved by fuzzy sets, as well 
as their interpretability based on the linguistic variables [17]. Furthermore, FRBCSs can be further enhanced towards more 
accurate systems by including the learning and adaptation capabilities of evolutionary optimization, leading to Evolution-
ary Fuzzy Systems (EFSs) [18]. Their success among other Soft Computing techniques, is related to their smoothness when 
defining the borderline areas in complex problems [19,20].

The previous fuzzy properties stressed for this type of classifiers make them more prone to the non-competence problem. 
Therefore, our hypothesis is that the confidence degrees computed by the EFS classification algorithms within the OVO 
approach may have a higher benefit in cooperation with the distance weighting scheme. In accordance with the former, in 
this research our objective is three-fold:

1. First, we want to analyze experimentally whether the combination of DRCW and EFSs is able to obtain a significant 
improvement in the performance of the classifier.

2. Then, we will propose a modification of the DRCW-OVO model by truncating the confidence degrees in the score matrix 
to 0.0 and 1.0, as in “Simple Voting”. The objective is to combine the good behavior shown by both schemes. This new 
aggregation will be noted as DRCW-TC.

3. Finally, we will contrast the performance of this new approach over different paradigms of classifiers, including Decision 
Trees, Support Vector Machines (SVMs), and of course EFSs. We suggest that our model will achieve a better synergy 
with fuzzy based classifiers, allowing it to improve the results of the crisp approaches.

1 Throughout this document, we will refer interchangeably to “confidence degrees” or “scores” or as those values assigned to the pair of classes addressed 
by each single classifier. In the case of fuzzy classifiers, these values are computed as the pattern classification soundness degree for each class.
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In order to do so, we carry out a thorough experimental study with 23 classification datasets selected from the KEEL 
repository [21]. The validation of the results will be carried out using the classical accuracy rate. Finally, this experimental 
study will be consolidated by means of the use of statistical tests, as suggested in the specialized literature [22–24].

The outline of this paper is as follows. First, Section 2, presents the preliminaries of this work by introducing the main 
features FRBCSs, EFSs and the OVO learning approach. Then, Section 3 describes the DRCW-OVO methodology that address 
the non-competent classifier problem, and our novel DRCW-TC proposal specifically designed for EFSs. Section 4 introduces 
the experimental framework. In Section 5 the experimental analysis is carried out, where the main findings of this contri-
bution are stressed. Finally, Section 6 summarizes this study and concludes the paper.

2. Preliminaries

This section briefly introduces the main features of FRBCS (Subsection 2.1). Then, we will present some basic concepts on 
EFS in order to describe the FARC-HD algorithm (Subsection 2.2). Afterwards, we recall decomposition strategies, and more 
specifically, OVO scheme (Subsection 2.3). Finally, we present the most significant combinations used in pairwise learning 
(Subsection 2.4).

2.1. A short overview on FRBCS

Any classification problem consists of m training patterns xp = (xp1, . . . , xpn, C p), p = 1, 2, . . . , m from M classes where 
xpi is the ith attribute value (i = 1, 2, . . . , n) of the p-th training pattern, and C p the output class.

In this work we use an FRBCSs with a linguistic Rule Base of size L, where fuzzy rules follow the structure below 
[25,26]:

Rule R j : If x1 is A j1 and . . . and xn is A jn

then Class = C j with RW j; j ∈ {1, . . . , L} (1)

where R j is the label of the jth rule, x = (x1, . . . , xn) is an n-dimensional pattern vector, A ji is an antecedent fuzzy set, C j
is a class label (C j ∈ {1, . . . , M}), and RW j is the rule weight [27]. In this work, linguistic labels for the antecedent fuzzy 
sets are represented as triangular membership functions.

When a new pattern xp is selected for classification, then the steps of the fuzzy reasoning method are as follows:

1. Matching degree, that is, the strength of activation of the if-part for all rules in the Rule Base with the pattern xp . In 
order to carry out this computation, a conjunction operator γ shall be applied. This operator is used to combine the 
membership degrees for every variable of the example, which were obtained by means of the μ function. Traditionally, 
a T-norm is selected for this purpose, although any aggregation operator can be employed [28]:

μR j (xp) = γ (μA j1(xp1), . . . ,μA jn (xpn)),

j ∈ {1, . . . , L} (2)

2. Association degree. To compute the association degree of the pattern xp with the M classes according to each rule in 
the Rule Base. To this end, a combination operator h is applied in order to combine the matching degree with the rule 
weight (RW). In our case, this association degree only refers to the consequent class of the rule.

bk
j = h(μR j (xp),RWk

j), j ∈ {1, . . . , L}; k = j (3)

3. Pattern classification soundness degree for all classes. We use an aggregation function f , which combines the positive 
degrees of association calculated in the previous step.

Yk = f (bk
j, j = 1, . . . , L and bk

j > 0),

k ∈ {1, . . . , M} (4)

4. Classification. We apply a decision function F over the soundness degree of the system for the pattern classification 
for all classes. This function will determine the class label l corresponding to the maximum value.

F (Y1, . . . , Y M) = arg max(Yk), [k ∈ {1, . . . , M}] (5)

Where L denotes the number of rules in the Rule Base and M the number of classes of the problem.

2.2. Evolutionary fuzzy systems and FARC-HD algorithm

EFSs are a family of approaches that are built on top of FRBSs, whose components are improved by means of an evolu-
tionary learning/optimization process as depicted in Fig. 1. This process is designed for acting or tuning the elements of a 
fuzzy system in order to improve its behavior in a particular context. Traditionally, this was carried out by means of Genetic 
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Fig. 1. Integration of an EFS on top of an FRBS.

Fig. 2. Learning stages for the FARC-HD algorithm.

Algorithms, leading to the classical term of Genetic Fuzzy Systems [29–32]. More recently, a generalization of the former 
was consider by means the use of Evolutionary Algorithms in the learning stage [18].

In any Data Mining problem, and especially in classification tasks, the use of any fuzzy sets approach is usually considered 
when an interpretable system is sought, when the uncertainty involved in the data must be properly managed, or even 
when a dynamic model is under consideration. Depending on the complexity of the problem it might be solved by a simple 
FRBCS; however, more sophisticated solutions can be required when we aim at improving the achieved accuracy of the 
output system.

In these cases, EFSs are a proper approach by learning or tuning the Knowledge Base components of the FRBCS. In 
this paper we have make use of a robust linguistic FRBCS, i.e. the Fuzzy Association Rule-based Classification for High-
Dimensional problems (FARC-HD) approach [33]. This algorithm is based on association discovery, a commonly used tech-
nique in data mining for extract interesting knowledge from large datasets [34] by means of finding relationships between 
the different items in a database [35]. The integration between association discovery and classification leads to precise and 
interpretable models.

FARC-HD is aimed at obtaining an accurate and compact FRBCS with a low computational cost. In short, this method is 
based on the following three stages (as depicted in Fig. 2):

Stage 1 Fuzzy association rule extraction for classification: A search tree is employed to list all possible frequent fuzzy item sets 
and to generate fuzzy association rules for classification, limiting the depth of the branches in order to find a small 
number of short (i.e., simple) fuzzy rules.

Stage 2 Candidate rule pre-screening: After the rule generation, the size of the rule set can be too large to be interpretable 
by the end user. Therefore, a pre-selection of the most interesting rules is carried out by means of a “subgroup 
discovery” mechanism based on an improved weighted relative accuracy measure (wWRAcc’) [36].

Stage 3 Genetic rule selection and lateral tuning: Finally, in order to obtain a compact and accurate set of rules within the 
context of each problem, an evolutionary process will be carried out in a combination for the selection of the 
rules with a tuning of membership function, as its positive synergy has been shown in previous work on the topic 
[37,38].
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Fig. 3. Example of the OVO binarization technique for a 3-class problem.

In this research, we consider an extension of the FARC-HD algorithm. Particularly, in the first two stages of the inference 
process, the use of a conjunction and combination operators (functions γ and h in Eqs. (2), (3)) are replaced with an 
overlap function [39], aiming at enhancing the confidence values provided by the fuzzy reasoning method. Standard overlap 
functions were originally defined in just two two-dimensions, since they were employed in image processing tasks [40]. 
Then, in [28] authors extend them to n dimensions, providing some valid examples such as the minimum, product, harmonic 
mean, or sinusoid functions. The application of these functions allows at obtaining more adequate outputs from the base 
classifiers for the subsequent aggregation in OVO schemes. Thus, and according to the performance shown in [28], we will 
make use of the Harmonic Mean (HM). The returned value corresponds the harmonic mean of input values if all of them 
are different than zero and 0 otherwise (Eq. (6)).

On (x1, x2, . . . , xn) =
{ n

1
x1

+...+ 1
xn

i f xi �= 0, for all i = 1, . . . ,n

0 otherwise.
(6)

2.3. Decomposition strategies: the One-vs-One scheme

The use of decomposition strategies in multi-classification has shown to be of great interest in the research community 
[41,9]. This scheme is used to address the classification by simplifying the original problem into binary-class subsets, fol-
lowing a divide and conquer paradigm. It is straightforward to acknowledge that the boundaries between two classes are 
easier to learnt than in the general case, when they are more likely to be highly overlapped. Therefore, the critical step is 
moved towards the decision process, in which the confidence degrees of all binary-classifiers must be aggregated in order 
to output a single class.

Among different types of methodologies to carry out the decomposition process, the OVO approach [7] is one of the 
most extended schemes. Its popularity is mainly due to its simplicity and accuracy, which has made it the default model to 
handle multi-class problems with SVMs [42] (whose multi-class extension is not established yet [43,44]) in several widely 
used software tools [45–47]. We must stress that decomposition strategies are not only useful for binary classifiers, but 
also for improving the performance of classifiers that inherently support multiple classes [48,43,9,49], including of course 
FRBCSs [50,51,28].

In OVO, also known as pairwise classification, the original m-class problem is divided into m · (m − 1)/2 two-class 
problems, one for each possible pair of classes. Each sub-problem is faced by a classifier, which only takes into account 
instances from both classes it is responsible for. An example of this binarization technique is depicted in Fig. 3.

The way pairwise learning is carried out, causes the so-called non-competence problem [52–54,15] in testing phase. The 
reason is that in this phase every classifier output is considered to decide the final class, although some classifiers would 
not have been trained with instances of the class to be predicted. In order to do so, it is usual to construct a score-matrix 
R containing these outputs, which are used to decide the final class via different combination models:



A. Fernández et al. / International Journal of Approximate Reasoning 73 (2016) 108–122 113
R =

⎛⎜⎜⎜⎝
− r12 · · · r1m

r21 − · · · r2m
...

...

rm1 rm2 · · · −

⎞⎟⎟⎟⎠ (7)

where ri j ∈ [0, 1] represents the confidence of the classifier discriminating classes i and j in favor of the former; whereas 
the confidence for the latter is computed by r ji = 1 − ri j (if the classifier does not provide it). In the case of FRBCS, these 
values correspond to the computation of the soundness degree for each class, i.e. values Yk as pointed out by Eq. (4). We 
must point out that all scores are then normalized to the range [0, 1].

2.4. Combination strategies for OVO scheme

Several strategies for combining OVO classifiers have been proposed in the literature that intend to achieve the highest 
accuracy addressing different features of this inference step. In [53], a thorough review and experimental comparison was 
developed considering the most-recent and well-known techniques. From this study, it was possible to select the better 
suited combination strategies for different paradigms of classifiers:

• Simple Voting strategy (VOTE) (also called binary voting and Max–Wins rule [55]). Each binary classifier gives a vote for 
the predicted class. The votes received by each class are counted and the class with the largest number of votes is 
predicted:

Class = arg max
i=1,...,m

∑
1≤ j �=i≤m

sij (8)

where si j is 1 if ri j > r ji and 0 otherwise.
• Weighted Voting strategy (WV) [52] uses the confidence of each base classifier in each class to vote for it. The class with 

the largest total confidence is the final output class:

Class = arg max
i=1,...,m

∑
1≤ j �=i≤m

rij (9)

• Wu et al. Probability Estimates by Pairwise Coupling approach (PE) [56] aims at estimating the posterior probabilities of 
all the classes starting from the pairwise class probabilities. Therefore, being ri j = Prob(Classi | Classi or Class j), the 
method finds the best approximation of the class posterior probabilities p = (p1, . . . , pm) according to the pairwise 
outputs. Finally, the class having the largest posterior probability is predicted:

Class = arg max
i=1,...,m

p̂i (10)

The posterior probabilities (p) are computed solving the following optimization problem:

min
p

m∑
i=1

∑
1≤ j �=i≤m

(r ji pi − ri j p j)
2

subject to
m∑

i=1

pi = 1, pi ≥ 0, for all i ∈ {1, . . . ,m}. (11)

3. Addressing the non-competence problem in OVO strategy: a truncated weighting approach

In this section we will first describe the approach developed for addressing the non-competence classifier problem in an 
OVO environment (Subsection 3.1). Next, we will present our new proposal to take the most advantage from the confidence 
degrees given by EFS classifiers, which we have named as DRCW-TC (Subsection 3.2).

3.1. DRCW-WV: distance-based relative competence weighting for One-vs-One

In an OVO learning scheme, a classifier is said to be “non-competent” to classify an instance whenever the actual class 
of this query example does not corresponds with none of the pair of classes learned by the binary classifier [13]. Although 
this problem implies “noise” in the decision score-matrix, it does not necessarily imply a decrease in the performance if 
all competent classifiers achieve a high confidence degree. However, when competent classifiers fail, the final decision is 
influenced by the non-competent ones, which could lead to a misclassification of the instance.

In order to alleviate the negative effect of the non-competent classifiers, the DRCW-WV approach was recently developed 
[15]. This methodology consists of carrying out a dynamic adaptation of the score-matrix, altering the confidence degrees by 
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assigning a higher weight to those classifiers whose predicted classes are closer to that of the query instance, assuming that 
they are more competent than those which are farther. This distance is computed by using the standard k-nearest neighbors
approach. In this way, once the score-matrix has been obtained, the operating procedure of DRCW-WV is as follows.

1. Compute the k nearest neighbors of each class for the given instance and store the average distances of the k neighbors 
of each class in a vector d = (d1, . . . , dm).

2. A new score-matrix R w is created where the output ri j of a classifier distinguishing classes i, j are weighted as follows,

rw
ij = ri j · wij, (12)

where wij is the relative competence of the classifier on the corresponding output computed as

wij = d2
j

d2
i + d2

j

(13)

being di the distance of the instance to the nearest neighbor of class i.
3. Use weighted voting strategy on the modified score-matrix R w to obtain the final class.

Finally, the decision of the output class is carried out by means of the Weighted Voting method since its robustness 
has been both theoretically [13] and experimentally [9] proved. Considering this combination, steps 2) and 3) are merged 
obtaining the output class as follows,

Class = arg max
i=1,...,m

∑
1≤ j �=i≤m

rij · wij (14)

We must point out that the distance with respect to the k nearest neighbors of each class are used, that is, k ·m neighbors 
are used and hence, taking k = 1 is not the same as using 1NN classifier, because a neighbor for each class is obtained. In 
order to understand the behavior of DRCW-WV, an illustrative example for its working procedure can be found in [15].

3.2. DRCW-TC: a novel approach for EFS based on truncating scores

When EFSs are embedded into a pairwise learning scheme, the scores obtained by means of the confidence degree 
are not well-suited for the WV aggregation [28]. Instead, they show a better behavior with both “Simple Voting”, which 
truncates to 1.0 and 0.0 the maximum and minimum values for each position (i, j) and ( j, i) of the score-matrix. This fact 
is predictably given by the fuzzy inference mechanism of this kind of rules. In particular, we must stress two points:

1. Both output classes of the binary classifiers are likely to have a positive activation degree, especially in areas of high 
overlapping.

2. Non-competent classifiers will erroneously obtain a high confidence due to the high coverage and generalization of 
rules with fuzzy labels.

Regarding the former issues, our hypothesis is that the behavior of EFS within an OVO learning approach can be improved 
following a simple but effective two-step methodology:

1. Truncating the confidence degrees to values {0.0, 1.0} in the score matrix. In this sense, values ri j will be updated as 
follows:

ri j =
{

1 if ri j > r ji
0 otherwise

(15)

The objective is to limit the influence of the non-competent classifiers at least in one of the two related classes.
2. Then, using the DRCW technique to carry out the combination from the “truncated” score matrix. In this way, the 

goodness shown by the Binary Voting model and the dynamic decision process are unified. The ultimate goal is to 
reduce as much as possible the non-competence problem.

In order to clarify the whole process, next we present a simple example for the use of DRCW-TC:
Suppose that an instance x, whose real class is known to be c1 has to be classified. After submitting it to all base 

classifiers, the following score-matrix R is obtained:

R(x) =

⎛⎜⎜⎜⎜⎜⎝
c1 c2 c3 c4 c5

c1 − 0.55 0.45 0.80 0.90
c2 0.45 − 0.55 1.00 0.80
c3 0.55 0.45 − 0.45 0.40
c4 0.20 0.00 0.55 − 0.10
c 0.10 0.20 0.60 0.90 −

⎞⎟⎟⎟⎟⎟⎠ (16)
5
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Either applying a “Simple Voting” or a “WV” strategy, class c2 will be chosen instead of real class c1 due to the high con-
fidence degrees associated to the former class (see Eq. (17)). Therefore, the source of failure is related to the non-competent 
classifiers.

R(x) =

⎛⎜⎜⎜⎜⎜⎝
c1 c2 c3 c4 c5 SV WV

c1 − 0.55 0.45 0.80 0.90 3 2.70
c2 0.45 − 0.55 1.00 0.80 3 2.80
c3 0.55 0.45 − 0.45 0.40 1 1.85
c4 0.20 0.00 0.55 − 0.10 1 0.85
c5 0.10 0.20 0.60 0.90 − 2 1.80

⎞⎟⎟⎟⎟⎟⎠ (17)

In order to fix this issue, we try to apply the standard DRCW-WV method. For this task, the distances to the k nearest 
neighbors of each class (d) are computed, such as d = (0.9, 0.9, 0.7, 1.2, 1.6). Based on these distances, the weight-matrix 
W is computed to represent all wij for i, j = 1 . . . , m:

W (x) =

⎛⎜⎜⎜⎜⎜⎝
c1 c2 c3 c4 c5

c1 − 0.50 0.38 0.64 0.76
c2 0.50 − 0.38 0.64 0.76
c3 0.62 0.62 − 0.75 0.84
c4 0.36 0.36 0.25 − 0.64
c5 0.24 0.24 0.16 0.36 −

⎞⎟⎟⎟⎟⎟⎠ (18)

When this weight-matrix W is applied to the initial score-matrix R, we obtain a modified score-matrix Rw (Eq. (19)). 
Then, the output class is computed using the WV method, but the initial confidences associated to class c2 were low in 
contrast to that of c1, and the classification cannot been corrected yet.

R w(x) =

⎛⎜⎜⎜⎜⎜⎝
c1 c2 c3 c4 c5 WV

c1 − 0.28 0.17 0.51 0.68 1.64
c2 0.22 − 0.21 0.64 0.61 1.68
c3 0.34 0.28 − 0.34 0.34 1.29
c4 0.07 0.00 0.14 − 0.06 0.28
c5 0.02 0.05 0.10 0.32 − 0.49

⎞⎟⎟⎟⎟⎟⎠ (19)

To address this problem, we can apply our novel DRCW-TC procedure. In this way, the initial score matrix R is first 
truncated to Rtc as shown in (Eq. (20)):

Rtc(x) =

⎛⎜⎜⎜⎜⎜⎝
c1 c2 c3 c4 c5

c1 − 1.00 0.00 1.00 1.00
c2 0.00 − 1.00 1.00 1.00
c3 1.00 0.00 − 0.00 0.00
c4 0.00 0.00 1.00 − 0.00
c5 0.00 0.00 1.00 1.00 −

⎞⎟⎟⎟⎟⎟⎠ (20)

The last step is to combine this new score matrix Rtc with the weight matrix W . Now, we can observe how the confidence 
degrees for class c2 have been positively boosted by both the truncation and the distance tuning. This results into a correct 
classification for the query instance (see Eq. (21)).

Rtc−w(x) =

⎛⎜⎜⎜⎜⎜⎝
c1 c2 c3 c4 c5 WV

c1 − 0.50 0.00 0.64 0.76 1.90
c2 0.00 − 0.38 0.64 0.76 1.78
c3 0.62 0.00 − 0.00 0.00 0.62
c4 0.00 0.00 0.25 − 0.00 0.25
c5 0.00 0.00 0.16 0.36 − 0.52

⎞⎟⎟⎟⎟⎟⎠ (21)

4. Experimental framework

In this section we first provide details of the real-world multi-class problems chosen for the experiments, and the 
validation procedure (Subsection 4.1). Then, we will present the configuration parameters for the classification algorithms 
used in the study (Subsection 4.2). Finally, we present the statistical tests applied to compare the results obtained with the 
different classifiers (Subsection 4.3).
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Table 1
Summary description of data-sets.

Data-set id #Ex. #Atts. #Num. #Nom. #Cl.

Balance bal 625 4 4 0 3
Contraceptive con 1473 9 9 0 3
Hayes-roth hay 132 4 4 0 3
Iris iri 150 4 4 0 3
New-thyroid new 215 5 5 0 3
Tae tae 151 5 5 0 3
Thyroid thy 7200 21 21 0 3
Wine win 178 13 13 0 3
Vehicle veh 846 18 18 0 4
Cleveland cle 297 13 13 0 5
Page-blocks pag 5472 10 10 0 5
Shuttle shu 58 000 9 9 0 5
Autos aut 159 25 15 10 6
Glass gla 214 9 9 0 7
Satimage sat 6435 36 36 0 7
Segment seg 2310 19 19 0 7
Ecoli eco 336 7 7 0 8
Penbased pen 10 992 16 16 0 10
Yeast yea 1484 8 8 0 10
Texture tex 5500 40 40 0 11
Vowel vow 990 13 13 0 11
Wine-quality-red wqr 1599 11 11 0 11
Wine-quality-white wqw 4898 11 11 0 11

4.1. Benchmark data

We have carried out a selection of 23 different benchmark problems from KEEL repository [21], so that the same data 
partitions can be used by other researchers. The characteristics of these datasets are shown in Table 1, which is ordered 
with respect to their number of classes. They comprise a number of situations, from totally balanced data-sets to highly 
imbalanced ones, besides the different number of classes. We must stress that datasets include a low proportion of nominal 
attributes (only “autos” problem), so that this issue will not affect the inference model, thus having the highest advantage 
of the fuzzy partitions.2

Additionally, instead of the standard stratified cross-validation, we will use a recently published partitioning procedure 
called Distribution Optimally Balanced Cross Validation [57]. This allows at correcting the dataset shift [58–60] (when train-
ing and test data do not follow the same distribution), which may hinder the results obtained in the experimental analysis. 
This validation procedure is carried out using 10 folds, aiming at having a representative number of different cases that 
support a robust average performance value. Finally, we will consider the accuracy rate to evaluate the quality of the clas-
sifiers.

4.2. Algorithms selected and configuration parameters

In order to show the usefulness of our DRCW-TC approach to OVO combination in general, and for EFS in particular, we 
have selected several well-known Machine Learning algorithms as base learners. We must point out that all these algorithms 
are available within the KEEL software tool [45].

• FARC-HD-Ov – It has been selected as a robust and representative EFS [33]. As introduced in Section 2.2 the extension 
of the FARC-HD algorithm using overlap functions, noted as FARC-HD-Ov, has been selected. We must recall that this 
approach is better suited for pairwise learning than the original classifier, as suggested in [28].

• C4.5 – This decision tree classifier [61] must be regarded as the state-of-the-art for rule learning algorithms.
• SVM – Support Vector Machines [42] has been shown to be one of the most precise classifiers. In this study we use SMO 

[62] algorithm to train the SVM base classifiers.

The selected parameters for these learning algorithms are detailed in Table 2. There, we also show the aggregation 
schemes that will be used as basis for the OVO approach on each classifier (as was stressed in Section 2.4).

The majority of the combination methods in OVO make use of the confidence degrees of the outputs of each base 
classifier. These confidence degrees are obtained for each classifier as follows:

• FARC-HD-Ov – Soundness degree for each class, as computed by Eq. (4).
• SVM – Probability estimates obtained by the SVM logistic model [63].

2 In this case we will use as fuzzy singletons for different values of the nominal attributes.
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Table 2
Parameter specification for the base learners employed in the experimentation.

Algorithm Parameters

FARC-HD-Ov # Labels = 5, Aggregation operator = Harmonic mean
Inference = Additive combination. Min. support = 0.05,
Min. confidence = 0.8, Max. tree depth = 3, k for pre-screening = 2
OVO Aggregation = VOTE

C4.5 Prune = True, Confidence level = 0.25
Minimum number of item-sets per leaf = 2
OVO Aggregation = WV

SVM C = 100.0, Tolerance Parameter = 0.001, Epsilon = 1.0E−12
Kernel Type = RBFN, RBFNKernel γ = 0.01
Fit Logistic Models = True
Attribute normalization = Standard ∈ [0,1]
OVO Aggregation = PE

• C4.5 – Accuracy of the leaf making the prediction, i.e., correctly classified train examples divided by the total number 
of covered train instances in that leaf.

In some of the combination strategies ties might occur. As usual, in those cases the majority class is predicted. If the tie 
continues, the class is selected randomly.

Finally, as distance metric for the DRCW procedure we make use of the Heterogeneous Value Difference Metric (HVDM) 
[64], as it can be applied for both continuous and nominal variables.

4.3. Statistical tests for performance comparison

In this paper we use the hypothesis testing techniques to provide statistical support for the analysis of the results [24]. 
Specifically, we will use non-parametric tests, due to the fact that the initial conditions that guarantee the reliability of the 
parametric tests may not be satisfied, causing the statistical analysis to lose credibility with these types of tests [65,22]. Any 
interested reader can find additional information on the Website http :/ /sci2s .ugr.es /sicidm/.

First of all, we consider the method of aligned ranks of the algorithms in order to show at a first glance how good a 
method is with respect to its partners. In order to compute this ranking, the first step is to obtain the average performance 
of the algorithms in each dataset. Next, we compute the subtractions between the accuracy of each algorithm minus the 
average value for each dataset, which is computed regarding the output results for all algorithms considered in the com-
parison. Then, we rank all these differences in a descending way and, finally, we average the rankings obtained by each 
algorithm. In this manner, the algorithm which achieves the lowest average ranking is the best one.

The Friedman Aligned test [24] will be used to check whether there are significant differences among the results, and 
the Holm post-hoc test [66] in order to find which algorithms reject the hypothesis of equality with respect to a selected 
control method in a 1 · n comparison. We will compute the adjusted p-value (APV) associated with each comparison, which 
represents the lowest level of significance of a hypothesis that results in a rejection. This value differs from the standard 
p-value in the sense that it determines univocally whether the null hypothesis of equality is rejected at a significance 
level α.

Regarding pairwise comparisons, we will make use of Wilcoxon signed-rank test [67] to find out whether significant 
differences exist between a pair of algorithms. This procedure computes the differences between the performance scores of 
the two classifiers on each one of the available datasets (Nds). The differences are ranked according to their absolute values, 
from smallest to largest, and average ranks are assigned in case of ties. We call R+ the sum of ranks for the datasets on 
which the second algorithm outperformed the first, and R− the sum of ranks for the opposite. Let T be the smallest of the 
sums, T = min(R+, R−). If T is less than or equal to the value of the distribution of Wilcoxon for Nds degrees of freedom 
(Table B.12 in [68]), the null hypothesis of equality of means is rejected.

5. Experimental study

This section contains the experimental analysis which shows the robustness of our new DRCW-TC approach. In order to 
do so, we divide our study into two different parts:

1. First, we carry out a intra-family comparison between DRCW-TC and the baseline methodologies, including the standard 
classifier for multiple-class (EFS and C4.5), the pairwise learning approach, and DRCW-WV [15] (Subsection 5.1).

2. Next, we perform a inter-family comparison to contrast the results among the different classifiers. Our aim is to excel 
the better synergy of DRCW-TC in combination with the EFS model with respect to the classifiers selected from the 
state-of-the-art (Subsection 5.2).

http://sci2s.ugr.es/sicidm/
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5.1. Analysis of DRCW-TC for pairwise learning

As previously pointed out, in this part of the study our objective is to show the superior performance achieved by our 
proposed DRCW-TC in EFSs in particular, as well as a robust behavior when applied in synergy with different classifiers. 
Regarding this fact, we must point out that, despite this methodology was initially designed for EFS, we aim at determining 
whether it is also suitable for different paradigms of classifiers. Specifically, we will contrast whether the improvement 
with respect to baseline models are greater in the case of DRCW-WV or DRCW-TC. In this way, Table 3 shows the complete 
experimental results for the three different classifiers, namely FARC-HD-Ov, C4.5 and SVM.

Observing these results in detail, we stress that in all three cases DRCW-TC achieves the highest average result overall. 
Just focusing on the level of absolute performance, the achieved values may seem close between DRCW-WV and DRCW-TC. 
For this reason, we complement the analysis by carrying out statistical tests, which are shown in Table 4. Additionally, we 
carry out a Wilcoxon test (Table 5) for contrasting directly DRCW-WV and DRCW-TC for addressing the non-competence.

Focusing on the global comparison among all models, the quality of the proposed DRCW-TC stands out, as it achieves the 
highest ranking in all case studies. Specifically, we observe that significant differences are obtained with respect to both the 
baseline algorithm and the OVO approach. Finally, regarding the output given by the Wilcoxon test, both for FARC-HD-Ov 
and C4.5 there is a better behavior, both in the ranking and the number of “wins”. For SVM both approaches have a 
similar ranking. This analysis stress the significance of the truncated approach for EFS rather than for crisp approaches. 
We have shown that DRCW-TC has a good behavior in synergy with rule-based classifiers. In this type of algorithms, the 
non-competence problem is supposed to appear with a higher frequency in contrast to that of SVMs, due to the higher 
generalization of the generated rules. Additionally, we have shown that the most notorious improvement is associated to 
the case study of the EFS.

5.2. On the positive synergy of DRCW-TC and EFSs

In the first part of our analysis, we have emphasized the good properties of DRCW-TC for enhancing the classification 
abilities of different paradigms of classifiers, since in all cases a significant improvement in the performance values is shown. 
In this section, we aim to excel the positive synergy between our proposal and EFSs in particular. We must point out that, 
since the truncation of the confidence degrees in the score-matrix is well-suited for this type of classifiers [28], then it must 
obtain the highest benefit from the application of this methodology. In this sense, we suggest that the use of DRCW-TC will 
allow EFSs to be the best performing approach overall.

In order to study our previous hypothesis, we show in Table 6 the average results of the selected models. Specifically, 
we include the results for the baseline classifier, the OVO approach and DRCW-TC for the three selected classifiers, i.e. 
FARC-HD-Ov, C4.5 and the SVM.

From these performance results, we can conclude the high level of robustness achieved by the combination between 
FARC-HD-Ov and DRCW-TC. First, because it obtains the highest average value overall. Additionally, and referring to Table 3
from the previous section, this approach shows a better behavior with respect to the models of comparison as the number of 
classes in the dataset increases. Finally, contrasting the results versus the original DRCW-WV methodology, we may observe 
that it allows an enhancement in both the training and test partitions. Specifically, in the main case study with the EFS, the 
number of datasets in which our DRCW-TC obtains a superior performance is more than two thirds of the total.

In order to complement the analysis, the average ranks (computed by means of the Friedman aligned method) and a 
Holm post-hoc test are shown in Table 7.

In accordance with the quality of the experimental results, together with the support given by the statistical test, we can 
determine the goodness of the DRCW-TC model in conjunction with FARC-HD-Ov, as it has excelled as the classifier with the 
best ranking, showing significant differences versus the baseline OVO methods (C4.5 and SVM). Regarding the comparison 
with the state-of-the-art classifiers using DRCW-TC, we observe that the EFS achieves a competitive performance, beating 
both schemes with respect to both average value of accuracy and ranking. Finally, to carry out a detailed study, Table 8
shows a statistical analysis among these three algorithms.

As a result of the former analysis, we have been able to determine a superiority for the DRCW-TC model in synergy with 
the EFS method FARC-HD-Ov. When the new DRCW-TC aggregation scheme is used as an extension to the OVO learning, 
the fuzzy classifier reaches a leap of quality that allows it to be competitive over traditionally more robust classifiers, such 
as SVMs.

6. Concluding remarks

In this work we have proposed a novel approach to address the non-competence problem in a pairwise learning envi-
ronment. This methodology is based on DRCW, which weights the confidence degrees in the score matrix depending on 
the distance of the input example to each of the classes of the problem. Our new aggregation scheme, named as DRCW-TC, 
modifies this process by truncating the scores to 1.0 and 0.0 prior to the weighting step. Our hypothesis in this case is that 
this approach was especially suggested for EFS due to the properties related to the confidence degrees computed by this 
paradigm of classifiers.
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SVM

C OVO DRCW-WV DRCW-TC

Tst Tr Tst Tr Tst Tr Tst

76.80 91.68 91.70 88.20 87.06 92.20 92.18
54.10 53.23 51.72 51.76 51.25 53.21 51.86
82.33 54.66 53.13 57.58 56.19 54.73 53.13
94.67 97.63 96.67 97.11 94.67 97.63 96.67
95.80 97.16 96.71 97.11 96.73 97.16 96.71
51.87 54.81 53.19 50.10 50.63 51.65 49.75
99.50 97.07 96.96 96.90 96.82 97.00 96.97
95.61 99.75 97.74 99.75 97.74 99.75 97.74
72.56 79.41 76.57 76.49 75.03 79.62 77.28
50.86 68.01 56.45 64.72 56.58 65.99 56.11
97.22 94.75 94.68 96.53 96.53 95.99 96.05
99.97 97.31 97.30 99.78 99.79 99.78 99.78
87.22 96.79 79.30 92.32 83.21 91.69 83.98
74.78 66.92 62.23 76.11 73.89 73.52 71.44
89.02 86.07 85.89 90.59 90.52 87.75 87.77
98.35 93.82 93.77 96.61 96.54 95.60 95.58
80.72 82.80 79.37 82.77 82.04 83.63 82.58
99.10 99.21 98.96 99.55 99.50 99.50 99.45
59.12 60.83 59.90 58.76 59.74 59.92 60.22
98.02 99.55 99.27 99.64 99.49 99.65 99.51
97.47 82.05 77.98 99.03 98.69 98.53 97.88
46.97 61.84 60.09 61.97 60.90 63.39 62.15
58.10 54.48 53.69 56.87 56.42 57.06 56.71

80.88 81.30 78.84 82.18 80.87 82.39 80.93
Table 3
Complete experimental results in training and test with the standard accuracy metric. From the leftmost to the rightmost column we show the results
SVM. Results are grouped into three parts, i.e. the standard classification algorithm (Baseline), the pairwise learning approach (OVO), and our proposed m
stressed in boldface. The highest average per classifier is underlined.

Dataset #Cl FARC-HD-Ov C4.5

Baseline OVO DRCW-WV DRCW-TC Baseline OVO DRCW-WV DRCW-T

Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr

bal 3 92.12 88.81 92.07 86.57 89.17 86.88 92.05 87.68 89.80 78.09 46.22 45.61 80.41 75.53 82.03
con 3 62.53 53.15 66.36 54.37 56.02 52.48 64.33 53.69 73.44 53.08 69.78 53.70 64.23 53.70 67.37
hay 3 91.60 77.97 90.56 76.20 85.83 79.27 90.49 78.52 89.10 82.33 89.10 82.33 88.68 82.33 89.03
iri 3 99.41 96.00 99.41 95.33 96.00 95.33 99.41 95.33 98.07 94.67 98.07 94.67 98.00 94.67 98.07
new 3 99.54 96.26 99.95 96.69 97.16 97.66 99.95 97.16 98.45 94.39 98.86 95.35 98.76 95.35 98.86
tae 3 77.78 56.82 82.42 62.72 60.72 56.95 74.17 57.85 83.59 55.30 70.64 53.51 61.43 51.42 62.17
thy 3 93.13 93.06 93.18 93.10 93.35 93.33 93.56 93.53 99.88 99.56 99.93 99.58 99.80 99.49 99.82
win 3 99.75 92.15 99.94 93.84 99.06 96.20 99.94 96.07 98.88 93.29 99.25 94.50 99.44 95.61 99.25
veh 4 82.60 71.03 88.11 71.16 78.92 74.44 88.06 72.69 90.87 71.83 82.25 71.39 80.95 71.70 82.92
cle 5 87.17 59.62 93.94 57.14 77.21 55.27 88.03 54.64 83.81 52.55 82.75 53.17 77.70 51.17 78.44
pag 5 96.13 95.43 96.66 96.04 95.46 95.43 97.16 96.60 98.55 96.95 98.42 97.06 98.09 97.31 98.16
shu 5 99.58 99.58 99.69 99.68 99.21 99.21 99.88 99.87 99.99 99.97 100.00 99.98 99.98 99.97 99.98
aut 6 98.61 81.32 100.00 79.50 89.37 82.73 93.57 82.80 92.86 81.15 88.54 78.72 90.78 87.85 90.71
gla 7 84.16 70.68 88.37 71.99 78.02 73.35 85.98 70.95 93.46 66.42 91.33 72.78 88.58 74.80 88.58
sat 7 64.29 63.81 88.88 86.83 88.51 88.49 89.78 87.99 97.62 86.75 97.87 86.90 97.97 89.17 97.98
seg 7 94.43 92.73 97.88 95.67 97.03 96.45 98.21 96.84 99.25 97.10 99.13 97.40 99.17 98.18 99.24
eco 8 92.33 82.16 95.64 82.94 85.68 82.27 91.70 84.06 91.26 79.69 74.44 71.67 82.98 81.33 83.48
pen 10 97.29 96.42 99.53 97.86 99.19 99.08 99.66 99.18 99.28 96.46 99.40 97.00 99.69 99.13 99.68
yea 10 64.14 59.22 70.10 59.36 59.34 59.35 65.38 60.15 80.88 55.80 70.58 58.34 64.85 57.85 66.35
tex 11 90.66 89.71 98.43 95.36 98.41 98.24 99.12 98.11 99.03 93.09 99.39 94.67 99.65 98.09 99.65
vow 11 73.83 66.36 99.70 91.72 98.89 98.28 99.71 99.09 96.89 80.10 97.46 82.63 99.51 97.78 99.44
wqr 11 65.60 61.15 69.68 61.47 62.11 60.40 69.05 62.97 88.80 62.11 61.09 47.69 53.58 45.15 55.13
wqw 11 55.38 53.38 58.52 55.03 56.54 56.13 59.91 57.13 90.02 58.85 72.88 56.50 69.59 57.93 70.97

avg – 85.31 78.12 89.96 80.89 84.40 81.62 88.66 81.87 92.77 79.54 86.41 77.61 86.69 80.67 87.27
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Table 4
Average ranks (Friedman aligned) and APVs (Holm test) for all classifiers. Control method is pointed out with asterisks. Symbol * implies significant 
differences at 95%, whereas symbol + sets the confidence degree at 90%.

Method FARC-HD-Ov C4.5 SVM

Rank (position) APV (Holm) Rank (position) APV (Holm) Rank (position) APV (Holm)

Baseline 65.6087 (4) .000056* 55.2609 (4) .002966* — —
OVO 48.1957 (3) .076782+ 59.7174 (3) .012754* 46.8478 (3) .001526*
DRCW-WV 40.3043 (2) .285314 37.2391 (2) .660677 31.2174 (2) .469131
DRCW-TC 31.8913 (1) ****** 33.7826 (1) ******* 26.9348 (1) ********

Table 5
Wilcoxon test to compare DRCW-TC [R+] and the standard DRCW-WV [R−]. Symbol * implies significant differences at 95%, whereas symbol + sets the 
confidence degree at 90%. Wins/Ties/Losses values are computed with respect to the novel DRCW-TC approach.

Classifier DRCW-TC (R+) DRCW-WV (R−) p-value W/T/L

FARC-HD-Ov 185.0 91.0 .148539 15/0/8
C4.5 167.0 109.0 .36959 14/0/9
SVM 127.0 126.0 .974101 12/1/12

Table 6
Average experimental results in training and test with the accuracy metric. From the leftmost to the rightmost column we show the results for the standard 
classification algorithm (Baseline), the pairwise learning approach (OVO), the standard weighting procedure for OVO (DRCW-WV), and our proposed method 
(DRCW-TC). The highest average value per classifier is stressed in boldface.

Algorithm Baseline OVO DRCW-WV DRCW-TC

Tr Tst Tr Tst Tr Tst Tr Tst

FARC-HD-Ov 85.31 78.12 88.65 80.37 84.40 81.62 88.66 81.87
C4.5 92.77 79.54 86.41 77.61 86.69 80.67 87.27 80.88
SVM — — 81.3 78.84 82.18 80.87 82.39 80.93

Table 7
Average ranks (Friedman aligned) and APVs (Holm test) for the analysis of all methodologies. 
Control method is pointed out with asterisks. Symbol * implies significant differences at 95%, 
whereas symbol + sets the confidence degree at 90%.

Method Rank (position) APV (Holm)

FARC-HD-Ov 107.6522 (6) .056023+
FARC-HD-Ov-OVO 89.1304 (4) .486336
FARC-HD-OV-DRCW-TC 67.1739 (1) *******
C4.5 108.000 (7) .056023+
C4.5-OVO 112.000 (8) .030207*
C4.5-DRCW-TC 81.5652 (3) .719003
SVM-OVO 103.8261 (5) .078446+
SVM-DRCW-TC 70.6522 (2) .824730

Table 8
Average ranks (Friedman aligned) and APVs (Holm test) for DRCW-TC. Control method is 
pointed out with asterisks.

Method Rank (position) APV (Holm)

FARC-HD-Ov-DRCW-TC 32.3043 (1) ********
C4.5-DRCW-TC 38.2609 (3) .628027
SVM-DRCW-TC 34.4348 (2) .718765

From this study, we have observed that the DRCW-TC model have shown a significant robustness over different classi-
fication algorithms, namely C4.5 and SVM, outperforming the initial results of the simple OVO scheme. In all case studies 
with different baseline classifiers, the comparison between the standard DRCW-WV model and our new DRCW-TC was in 
favor of the latter scheme, implying a higher support for the current proposal. Another important issue in the application 
of the new DRCW-TC, is that for those datasets with a higher number of classes, the performance of FARC-HD (with overlap 
functions) grows over the one achieved by applying the standard DRCW-WV model.

Finally, after the analysis carried out, we can determine the good synergy existing between EFS and the DRCW-TC pro-
cedure. Indeed, the combination between both models have allowed to reach higher quality levels in classification tasks, in 
contrast with more precise state-of-the-art classifiers such as C4.5 and SVM. In summary, our proposal allows a significant 
leap in the results over the base FARC-HD model and its OVO extension.
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