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Abstract: Orthology detection still requires more effective scaling algorithms. Combinations of 

alignment, synteny, evolutionary distances and protein interactions have been used in different 

unsupervised algorithms to improve effectiveness while many available databases are concerned 

with the scaling problem. In this paper, a set of gene pair features based on similarity measures, 

such as alignment scores, sequence length, gene membership to conserved regions and 

physicochemical profiles are combined in a supervised Pairwise Ortholog Detection (POD) 

approach to improve effectiveness considering low ortholog ratios in relation to all possible 

pairwise comparisons between two genomes. In this POD scenario, big data supervised 

classifiers managing imbalance between ortholog and non-ortholog pair classes allow for an 

effective scaling solution built from two genomes and extended to other genome pairs. The 

supervised approach for POD was compared with Reciprocal Best Hits (RBH), Reciprocal 

Smallest Distance (RSD) and a Comprehensive, Automated Project for the Identification of 

Orthologs from Complete Genome Data (OMA) algorithms by using (i) Saccharomyces 

cerevisiae - Kluyveromcyes lactis, (ii) Saccharomyces cerevisiae - Candida glabrata and (iii) 

Saccharomyces cerevisiae - Schizosaccharomyces pombe yeast genome pairs as benchmark 

datasets. Four datasets derived from each genome pair comparison with different alignment 

settings were used. Because of the large amount of instances (gene pairs) and the data imbalance, 

the building and testing of the supervised model was only possible by using big data supervised 
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classifiers managing imbalance. Evaluation metrics taking low ortholog ratios into account were 

applied. From the effectiveness perspective, MapReduce Random Oversampling combined with 

Spark Support Vector Machines outperformed RBH, RSD and OMA, probably, because of the 

consideration of gene pair features beyond alignment similarities combined with the advances in 

big data supervised classification. 

 

Keywords: ortholog detection; big data supervised classification; similarity measures  

1. Introduction 

Ortholog detection (OD) algorithms should 

distinguish orthologous genes from other types 

of homologs such as paralogs evolving from a 

common ancestor through a duplication event. A 

great deal of unsupervised graph-based 

approaches has been developed to identify 

orthologs resulting in corresponding repositories 

for pre-computed orthology relationships.  

When OD is based only on sequence 

similarity, it has been limited by evolutionary 

processes such as recent paralogy events, 

horizontal gene transfers, gene fusions and 

fissions, domain recombinations or different 

genetic events [1-2]. In fact, the identification of 

homologs is a difficult task in the presence of 

short sequences, those that evolved in a 

convergent way, and the ones that share less than 

30% of amino acid identities (twilight zone). 

Algorithm failures have been particularly shown 

in benchmark datasets from Saccharomycete 

yeast species that underwent whole genome 

duplications (WGD) presenting rampant 

paralogies and differential gene losses [3]. To 

tackle these shortcomings, some OD solutions 

merge sequence similarity with synteny genome 

rearrangements, protein interactions, domain 

architectures and evolutionary distances.  

On the other hand, the integration of different 

gene or protein information and the massive 

increase in complete proteomes highly increase 

the dimensionality of the OD problem and the 

total number of proteins to be classified. In a 

thorough paper from the Quest for Orthologs 

consortium [4], the authors emphasize the idea 

that this increase in proteome data brings out the 

need to work out not only efficient but effective 

OD algorithms. As they mention, the increase in 

computational demands in sequence analyses is 

not easily met by an increase in computational 

capacities but rather calls for new approaches or 

algorithmic implementations [4]. They 

summarized some methodological shortcuts 

implemented by the existing orthology databases 

to deal with the scaling problem. 

In this paper, we propose a new supervised 

approach for pairwise OD (POD) that combines 

several gene pairwise features (alignment-based 

and synteny measures with others derived from 

the pairwise comparison of the physicochemical 

properties of amino acids) to address big data 

problems [4]. Our big data supervised POD 

approach allows scaling to related species and 

data imbalance management (low ortholog ratio 

found in two or more genomes) for an effective 

OD. The methodology consists of three steps: (1) 

the calculation of gene pair features to be 

combined, (2) the building of the classification 

model using machine learning algorithms to deal 

with big data from a pairwise dataset, and (3) the 

classification of related gene pairs.  

Since traditional supervised classifiers cannot 

scale large datasets, the supervised classification 

for the POD problem should be addressed as a 

big data classification problem according to [5-7]  

and big data solutions should be applied for 

binary classification in imbalanced data such as 

the ones presented in [8].  
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Finally, we evaluate the application of several 

big data supervised techniques that manage 

imbalanced datasets [8-9] such as cost-sensitive 

Random Forest (RF-BDCS), Random 

Oversampling with Random Forest (ROS+RF-

BD) and the Apache Spark Support Vector 

Machines (SVM-BD) [9] combined with 

MapReduce ROS (ROS+SVM-BD). The 

effectiveness of the supervised approach is 

compared to RBH, RSD and OMA algorithms, 

taking data imbalance into account. All the 

algorithms were evaluated on benchmark 

datasets derived from the following yeast 

genome pairs: S. cerevisiae and K. lactis, S. 

cerevisiae and C. glabrata [3] and S. cerevisiae 

and S. pombe [10]. The S. cerevisiae and C. 

glabrata pair is particularly complex for OD 

since both species had undergone WGD. We 

found that our supervised approach outperformed 

traditional methods, mainly when we applied 

ROS combined with SVM-BD. 

2. Results and Discussion 

For the evaluation of POD algorithms, we 

compare the supervised solutions and the 

unsupervised ones following the evaluation 

scheme in Figure 1. The process separates the 

pairs into train and test sets and calculates 

pairwise similarity measures (average of local 

and global alignment similarity measures, length 

of sequences, gene membership to conserved 

regions (synteny), and physicochemical profiles 

within 3, 5 and 7 window sizes) for the pairs of 

both sets. The sequences of the test sets should 

be used to run the unsupervised reference 

algorithms. The train set should be used for 

building the supervised models to be tested only 

with the test set. 

The performance quality evaluation involves 

the calculation of the Geometric Mean (G-Mean) 

[11], seeking to maximize the accuracy of the 

two classes (orthologs and non-orthologs) by 

achieving a good balance between sensitivity and 

specificity that consider misclassification costs; 

and the Under the ROC Curve (AUC) [12] to 

show the classifier performance over a range of 

data distributions [13]. 

In Experiment 1, we evaluated the algorithms 

inside a genome by partitioning at random 75% 

of the complete set of pairs for training and 25% 

for testing, while in Experiment 2 we built the 

model from a genome pair and tested it in two 

different pairs. Specifically, in Experiment 1 we 

divided the S. cerevisiae - K. lactis set into 

16.986.996 pairs for training and 5.662.332 pairs 

for testing. The four datasets (BLOSUM50, 

BLOSUM62_1, BLOSUM 62_2 and PAM250) 

of each genome pair were built from 

combinations of alignment parameter settings. 

On the other hand, in Experiment 2, we built the 

classification model from 22.649.328 pairs of S. 

cerevisiae and K. lactis genomes and tested it in 

29.887.416 pairs of S. cerevisiae and C. 

glabrata, and 8.095.907 pairs of S. cerevisiae 

and S. pombe genomes.  

Comparison of big data supervised classifiers 

The G-Mean values of the supervised 

algorithms change only slightly with the 

selection of different alignment parameters 

(Table 1). These results may be either caused by 

the aggregation of global and local alignment 

scores in a single similarity measure or by the 

appropriate combination of scoring matrices and 

gap penalties in relation to the sequence diversity 

between the two yeast genomes [14].  

The average results of AUC and G-Mean 

obtained in experiments 1 and 2 for the 

supervised algorithms with different parameter 

values are shown in Table 1. The average  

𝑇𝑃𝑅𝑎𝑡𝑒 and  𝑇𝑁𝑅𝑎𝑡𝑒 are also depicted in Figure 2. 

SVM-BD has been left out from the table due to 

its very poor performance in G-Mean caused by 

its imbalance between 𝑇𝑃𝑅𝑎𝑡𝑒  and 𝑇𝑁𝑅𝑎𝑡𝑒 . Both 

Table 2 and Figure 2 prove that big data 
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supervised classifiers managing imbalance outdo 

their corresponding big data supervised versions.  

The ROS pre-processing method for big data 

makes SVM-BD useful for POD and improves 

the performance of RF-BD even more with a 

higher value for the resampling size parameter of 

130% [15]. In contrast, both experiments show 

that the variation in this parameter value from 

100% to 130% does not significantly influence 

on the performance of the SVM-BD classifier 

with different regulation values. 

Specifically, RF-BDCS shows the best 

performance in S. cerevisiae - C. glabrata and S . 

cerevisiae - K. lactis when the classification 

quality is measured by G-Mean and AUC 

metrics, because it enhances the learning of the 

minority class. The criterion used to select the 

best tree split is based on the weighting of the 

instances according to their misclassification 

costs, and such costs are also considered to 

calculate the class associated with a leaf [8]. This 

cost treatment does not explicitly change the 

sample distribution and avoids the possible 

overtraining, that it is present in the ROS 

solutions due to replicated cases. The election of 

the cost values (𝐶(+| −) = 𝐼𝑅  and 𝐶(−| +) =

1) may also define the success of the algorithm. 

In the case of SVM-BD, the fixed 

regularization parameter defines the trade-off 

between the goal of minimizing the training error 

(i.e., the loss) and minimizing the model 

complexity to avoid overfitting. The higher is its 

value, the simpler the model. Nonetheless, 

setting an intermediate value, or one close to cero 

may produce a better performance in 

classification [16]. This is the case of the ROS 

(RS: 100%) + SVM-BD (regParam: 0.5) 

classifier that exhibits the best AUC and G-Mean 

values in S. cerevisiae - S. pombe, and the best 

balance between 𝑇𝑃𝑅𝑎𝑡𝑒 and  𝑇𝑁𝑅𝑎𝑡𝑒 in the three 

datasets (Figure 2). 

In order to balance time with classification 

quality, time consumption is another aspect to 

have in mind when comparing big data solutions. 

Table 3 contains run time in seconds for all big 

data solutions in each dataset and the faster 

algorithms are highlighted in bold face. These 

results allow us to prove that the time required is 

directly related to the operations needed for each 

method, as well as to the size of the datasets used 

to build the model. The fastest algorithm 

considering the average run time is SVM-BD 

followed by SVM-BD combined with ROS. 

Thus, the fastest algorithms coincide with the 

ones with better performance. In general, the 

ROS (RS: 100%) + SVM-BD (regParam: 0.5) 

classifier can be considered the best supervised 

solution considering both performance and time. 

Comparison of supervised vs. unsupervised 

classifiers  

The average results of AUC and G-Mean 

obtained for the best supervised algorithms and 

the unsupervised algorithms with different 

parameter values are shown in Table 4 for 

experiments 1 and 2. The supervised classifiers 

outperform the unsupervised ones. Among the 

unsupervised algorithms, RSD reaches the 

highest G-Measure value by setting E-value = 

1e-05 and  = 0.8 (recommended values in [17]) 

in S. cerevisiae - C. glabrata where similar 

results can also be seen for AUC and 𝑇𝑃𝑅𝑎𝑡𝑒 

values. On the contrary, OMA was the best 

among the unsupervised algorithms in S. 

Cerevisiae - S. pombe datasets (Table 4).  

In general, the performance of all classifiers 

declined in S. Cerevisiae - S. pombe datasets due 

to the fact that S. pombe is a distant relative of S. 

cerevisiae [18]. The  supervised classifiers 

performance is affected for the same reason and 

also, by the difference in data distribution 

between the train and test sets [19]. On the 

contrary, ROS (RS: 100%) + SVM-BD 

(regParam: 0.5) remained stable in S. Cerevisiae 
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- C. glabrata and S. Cerevisiae - S. pombe 

datasets when considering the balance between 

𝑇𝑃𝑅𝑎𝑡𝑒  and 𝑇𝑁𝑅𝑎𝑡𝑒 . Superior results in S. 

cerevisiae - C. glabrata are outstanding, since 

both genomes underwent a WGD and a 

subsequent differential loss of gene duplicates, so 

that algorithms are prone to produce false 

positives. Thus, this dataset contains “traps” for 

OD algorithms [3].  

The reduced quality shown by RBH, RSD and 

OMA, mainly in the case of RBH, could be 

caused by their initial assumption that the 

sequences of orthologous genes/proteins are 

more similar to each other than they are to any 

other genes from the compared organisms. This 

assumption may produce classification errors [1], 

in spite of the fact that BLAST parameters can be 

tuned as has been recommended in [20]. 

Conversely, RSD not only compares the 

sequence similarity, but it relies on maximum 

likelihood estimation of evolutionary distances to 

detect orthologs between two genomes, and as a 

result, it finds many putative orthologs missed by 

RBH because it is less likely than RBH to be 

misled by existing close paralogs.  

The OMA algorithm also displays advantages 

over RBH. It uses evolutionary distances instead 

of alignment scores. This algorithm allows the 

inclusion of one-to-many and many-to-many 

orthologs. It also considers the uncertainty in 

distance estimations and detects potential 

differential gene losses. 

From the point of view of the intrinsic 

information managed by the algorithms, the 

success of big data supervised classifiers 

managing imbalance over RSD and OMA may 

be explained by feature combinations calculated 

for the datasets together with the learning from 

curated classifications. With the aggregation of 

global and local alignment scores we are 

combining protein structural and functional 

relationships between sequence pairs, 

respectively. Besides, we incorporate other gene 

pair features: (i) the periodicity of the 

physicochemical properties of amino acids that 

allows us to detect similarity among protein pairs 

in their spectral dimension [21]; (ii) the 

conserved neighbourhood information, which 

considers that genes belonging to the same 

conserved segment in genomes of different 

species will probably be orthologs; and (iii) the 

length of sequences  

Table 1. Geometric mean results of the best supervised classifiers in each dataset. 
Dataset ROS (RS: 

100%) + 

RF-BD        

(Scer-Klac) 

ROS (RS: 

130%) + 

RF-BD        

(Scer-Klac) 

RF-

BDCS  

(Scer-

Klac) 

ROS (RS: 

100%) + 

RF-BD         

(Scer-Cgla) 

ROS (RS: 

130%) + 

RF-BD          

(Scer-Cgla) 

RF-

BDCS 

(Scer-

Cgla) 

ROS (RS: 100%) + 

SVM-BD 

(regParam: 1.0)         

(Scer-Spombe) 

ROS (RS: 100%) + 

SVM-BD 

(regParam: 0.5)         

(Scer-Spombe) 

Blosum50 0.9818 0.9818 0.9896 0.9889 0.9885 0.9934 0.8393 0.8673 

Blosum621 0.9801 0.9818 0.9855 0.9891 0.9903 0.9932 0.8707 0.8959 

Blosum622 0.9793 0.9793 0.9905 0.9910 0.9910 0.9929 0.8536 0.8694 

Pam250 0.9818 0.9818 0.9899 0.9912 0.9905 0.9941 0.8495 0.8839 

Table 2. AUC and G-Mean results of supervised classifiers in experiments 1 and 2. 
  S.cerevisiae-S.Klactis S.cerevisiae-C.glabrata S.cerevisiae-S.pombe 

Algorithm AUC G-Mean AUC G-Mean AUC G-Mean 

RF-BD 0.6979 0.6291 0.7455 0.7005 0.5172 0.1851 

ROS (RS: 100%)+RF-BD  0.9809 0.9807 0.9901 0.9900 0.6096 0.4527 

ROS (RS: 130%)+RF-BD  0.9813 0.9812 0.9901 0.9901 0.6121 0.4581 

RF-BDCS  0.9889 0.9889 0.9934 0.9934 0.7294 0.6745 

ROS (RS: 100%) + SVM-BD (regParam: 1.0) 0.9477 0.9477 0.9542 0.9542 0.8632 0.8533 

ROS (RS: 100%) + SVM-BD (regParam: 0.5) 0.8845 0.8791 0.9540 0.9539 0.8845 0.8791 

ROS (RS: 100%) + SVM-BD (regParam: 0.0) 0.6135 0.4961 0.9432 0.9431 0.6135 0.4961 

ROS (RS: 130%) + SVM-BD (regParam: 1.0) 0.8164 0.7956 0.9523 0.9522 0.8164 0.7956 

ROS (RS: 130%) + SVM-BD (regParam: 0.5) 0.8629 0.8528 0.9539 0.9539 0.8629 0.8528 

ROS (RS: 130%) + SVM-BD (regParam: 0.0) 0.6248 0.5147 0.9429 0.9428 0.6248 0.5147 
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Table 3. Run time results in seconds of the big data solutions in experiments 1 and 2. 
Algorithm S.cerevisiae-S.Klactis S.cerevisiae-C.glabrata S.cerevisiae-S.pombe 

RF-BD 1201.59 2174.90 2060.99 

ROS (RS: 100%)+RF-BD  2983.75 4562.38 4440.03 

ROS (RS: 130%)+RF-BD  3345.04 4805.50 4681.51 

RF-BDCS  1302.41 2362.04 2025.15 

SVM-BD 461.87 482.85 480.45 

ROS (RS: 100%) + SVM-BD (regParam: 1.0) 867.38 1011.59 1012.46 

ROS (RS: 100%) + SVM-BD (regParam: 0.5) 874.62 1008.77 1013.32 

ROS (RS: 100%) + SVM-BD (regParam: 0.0) 859.17 1008.24 999.31 

ROS (RS: 130%) + SVM-BD (regParam: 1.0) 927.14 1079.19 1079.58 

ROS (RS: 130%) + SVM-BD (regParam: 0.5) 929.17 1084.19 1076.33 

ROS (RS: 130%) + SVM-BD (regParam: 0.0) 924.42 1076.37 1077.21 

Table 4. AUC and G-Mean of the unsupervised and the best supervised classifiers.  
  S. cerevisiae-.K. lactis S. cerevisiae-C .glabrata S. cerevisiae-S. pombe 

Algorithm AUC G-Mean AUC G-Mean AUC G-Mean 

RBH 0.1497 0.0062 0.8196 0.7995 0.4697 0.4525 

RSD 0.2 1e-20 0.5862 0.4862 0.9238 0.9206 0.4874 0.4438 

RSD 0.5 1e-10 0.5926 0.4643 0.9340 0.9316 0.4980 0.4063 

RSD 0.8 1e-05 0.5886 0.4518 0.9382 0.9362 0.5009 0.3899 

OMA 0.5765 0.4904 0.9287 0.9259 0.5151 0.4644 

RF-BDCS  0.9889 0.9889 0.9934 0.9934 0.7294 0.6745 

ROS (RS: 100%) + SVM-BD (regParam: 1.0) 0.9477 0.9477 0.9542 0.9542 0.8632 0.8533 

ROS (RS: 100%) + SVM-BD (regParam: 0.5) 0.8845 0.8791 0.9540 0.9539 0.8845 0.8791 

 

 

Figure 1. Workflow of the evaluation of supervised vs. unsupervised POD algorithms. 
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Figure 2. Average true positive and true negative rate values of supervised classifiers 

obtained in experiments 1 and 2. 

3. Materials and Methods 

Datasets 

The characteristics of the datasets are 

summarized in Table 5 where the label #Atts 

represents the number of attributes or gene pair 

features, and #Class (maj; min), the number of 

pairs in both classes. S. cerevisiae - S. pombe 

dataset contains ortholog pairs representing 

95.18% of the union of the Inparanoid7.0 and 

GeneDB classifications described in [10]. On the 

other hand, S. cerevisiae - K. lactis and S. 

cerevisiae - C. glabrata datasets contain all 

ortholog pairs in the gold groups reported in [3]. 

When we built the set of instances with all 

possible pairs, we excluded some genes since we 

didn’t find their genome physical location data in 

the YGOB database [22], required for the 

conserved membership feature calculation. 

Big data supervised classification managing 

data imbalance 

We use the open-source project Hadoop [23] 

with its highly scalable and fault-tolerant Hadoop 

Distributed File System (HDFS). We also utilize 

the scalable Mahout data mining and machine 

learning library [24] with machine learning 

algorithms adapted according to the MapReduce 

scheme as the MapReduce implementation of the 

(Random Forest (RF) algorithm [25]. Finally, we 

use the Apache Spark framework [9] interacting 

with HDFS, when the implementation of SVM-

BD in the scalable MLLib machine learning 

library [16] is combined with the MapReduce 

ROS implementation [8]. 

Table 5. Characteristics of the datasets. 
Genome pair #Atts #Class (maj; min) Imbalance ratio (IR)  Excluded genes 

S. cerevisiae - K. lactis 1  6  (22.646.914; 2414)  9381.489  89 de 5861 genes de S. cerevisiae 

37 de 5215 genes de C. glabrata  

1403 de 5327 genes de K. lactis  
S. cerevisiae - C. glabrata 1 6  (29.884.575; 2841)  10519.034  

S. cerevisiae - S. pombe 2 6  (8.090.950; 4.957)  1632.227   
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4. Conclusions 

 

 

The development of effective supervised algorithms for POD in a big data scenario was made 

possible by: (i) the availability of curated databases (authentic orthologs), (ii) the combination of 

traditional alignment measures with other gene pair features (sequence length, gene membership to 

conserved regions and physicochemical profiles) to complement homology detection, and (iii) the 

treatment of the low ratio of orthologs to the total possible gene pairs between two genomes. By 

applying evaluation metrics such as G-mean, AUC and the balance between 𝑇𝑃𝑅𝑎𝑡𝑒 and 𝑇𝑁𝑅𝑎𝑡𝑒, our 

results show that gene pairwise feature combinations provide excellent POD in a big data supervised 

scenario that consider data imbalance. The SVM-BD classifier combined with the ROS (RS: 100%) 

pre-processing with regulation parameter 0.5 outdid  the rest of the big data supervised solutions and 

the popular unsupervised (RBH, RSD and OMA) algorithms even when the supervised model was 

extended to datasets containing “traps” for OD algorithms. The classification performance of the 

supervised algorithms measured by G-Mean and AUC metrics did not significantly change in the four 

test sets obtained with different alignment parameter settings. When the balance between time and 

classification quality is considered, ROS (RS: 100%) + SVM-BD (regParam: 0.5) also proves to be the 

algorithm of choice. In future research, the introduction of new gene pair features might improve the 

effectiveness and efficiency of the supervised algorithms for POD. 
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