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Deformable models direct supervised guidance:
a novel paradigm for automatic image segmentation

Nicola Bova, Viktor Gál, Óscar Ibáñez, and Óscar Cordón∗

Abstract

Deformable models are a well-established and vigorously researched approach to tackle a large

variety of image segmentation problems. However, they generally use a set of weighting parameters

that need to be manually tuned, a task that is both hard and time consuming. More importantly,

these techniques assume that the global minimum of the energy functional corresponds to the

optimum segmentation result. However, it is difficult to model this condition a priori with a

robust mathematical formulation, in particular when high precision of the segmentation results is

required.

This contribution aims to establish an alternative approach for traditional optimization-based

deformable model adjustment. This involves a general purpose, machine learning-based image

segmentation framework that translates the available information into a different type of decision

process. An automatically derived model is used to directly drive the deformable model evolution.

In particular, we exploit ground truth information represented in a training image set by forcing

the deformable model to evolve in a way that, in its final state, will make it perfectly cover the

target object. This is done with the generation of a proper dataset of vector-label pairs, which

we called the Image Vector-Label Dataset, the key element responsible of the integration of the

different components in the framework: the deformable model, the term set, the driver, and the

localizer. As opposed to classical optimization approaches, this framework gives the opportunity to

automatically generate complex, nonlinear, and data-driven relationships among different sources

of information, without any human intervention.

To prove the feasibility of our novel approach, we provide an effective reference implementa-

tion of our framework, tailored to the medical imaging field. We test it against a large set of

state-of-the-art segmentation algorithms over two well-known image datasets with different image
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modalities and target structures. Although the proposed framework is not intended for a spe-

cific segmentation problem, its implementation is competitive or even outperforms most of the

state-of-the-art algorithms specifically designed for the segmentation tasks at hand.

Keywords: image segmentation, deformable models, level set, machine learning, optimization,

direct guidance

1. Introduction

Image segmentation is one of the most important image processing tasks and is a crucial step in

many real world problems such as computer-assisted medical image analysis. Deformable models

(DMs) [53, 57, 40] are promising and actively researched model-based approaches to tackle a huge

variety of image segmentation problems. The widely recognized potency of DMs stems from their

ability to segment, match, and track images by exploiting (bottom-up) constraints derived from

the image data together with (top-down) a priori knowledge about the location, size, and shape

of these structures.

From the classic snake model [43] to hybrid approaches using gradient vector flows [62] or

watersheds [90], DMs have always involved an optimization process. Different families of opti-

mization methods have been developed along the years. However, the requirements of many real

image segmentation tasks are difficult to model with a robust mathematical formulation.

In particular, the energy minimization methods are often too generic to lead to a fine segmen-

tation of thin structures, and when they give satisfactory results, they generally use weighting

parameters that need to be manually tuned. Often these numerical parameters are obscure and

their refinement time consuming. As pointed out by [68]: “the weighting coefficients are difficult

to find especially when contours to be identified vary from one image to another”.

There are many image segmentation problems where the numerical optimization process finds

problems due to the non-homogeneous intensities within the same class of objects and the high

complexity of their shape. This is, for example, the case of many medical images which involve

high complexity of anatomical structures as well as large tissue variability [53, 34].

Some of these problems can be solved by incorporating prior knowledge to the model [89]. In

fact, well-known approaches [61, 81] generally use energy minimization techniques to define the

additional terms of the force from prior information. However, in fields such us medical imaging,

the structures of interest are often very small compared to the image resolution and may have

complex shapes with a significant variability. This makes it difficult to define energy constraints

that remain both general and adapted to specific structures and pathologies [40].

Another important drawback of DMs is that the formulated minimization problem is difficult

to solve due to the presence of numerous local minima and a large number of variables. On the one
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hand, this difficulty may lead to sensitivity to the initialization, complicating the unsupervised

use of DMs. As images are assumed to be noisy, the external energy term is most probably

multi-modal. Hence, algorithms aimed at local optimization have problems optimizing deformable

surface meshes. On the other hand, the global minimum of the energy function does not correspond

to the best segmentation results in most of the cases. This makes the optimization task following

a global approach harder, since in contrast to local approaches, it is really difficult to stop the

model evolution at satisfactory local minima. In fact, the assumption of these techniques is that

the global minimum of the energy function corresponds to the optimum segmentation result.

However, modeling the segmentation problem with a mathematical formulation able to express

such a function is a very difficult task, if not impossible, when a high precision of the segmentation

results is mandatory.

In this contribution, we propose an alternative approach involving a different type of decision

process based on translating the available information into a Machine Learning (MLR) [6] model

that is directly used to drive the DM evolution. This approach gives the opportunity to auto-

matically generate complex, non-linear, and data-driven relationships among different sources of

information (e.g. both global and local image cues, shape-related prior knowledge, etc.). Thus, in

our novel approach, the learning process is guided by the ground truth information represented

in a training image set. This way, the problem is tackled from a different perspective; instead

of designing a general-purpose energy function a priori (and setting the values of the associated

parameters) that performs well with the problem at hand being optimized, our alternative solution

procedure is to derive the model directly from the desired results themselves using a MLR method.

The key contribution of this paper is thus the introduction of a general MLR-based image

segmentation framework. Given a dataset of training images, the framework will allow us to

automatically design a model able to segment targets of the same type as the ones found in the

training dataset, with minimal human intervention. For that aim, the framework is made up of

four main components which can be customized to design different specific image segmentation

methods: the deformable model, the driver, the term set, and the localizer. The driver is a general

purpose machine learning tool whose output directly guides the selected DM evolution, on the basis

on the available information contained in the term set. A serious limitation of existing DMs is that

the final result is sensitive to the location of the initialization. To deal with this, we introduced

the localizer. It aims at finding a rough location of the target object in the image area, providing

a proper initialization for the DM. Finally, an additional transversal component, the integration

mechanism, defines the way the framework components are connected to each other. This is a

key component that clearly differentiates this proposal from the few similar ones. We generate

a dataset of vector-label pairs, called the Image Vector-Label Dataset, exploiting ground truth

information by forcing the DM to evolve in a way that, in its final state, will make it completely
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cover the target object.

To prove the feasibility of the proposed framework, we provide an effective implementation

tailored to the medical imaging field. This implementation is based on the flexible and fast Shi

Level Set (LS) [72], the accurate and easy to train Random Forest classifier [14], the effective

object localizer introduced in [32], and a large set of extended image features described in Sec. 4.

The structure of this article is as follows. Sec. 2 reviews the relevant proposals dealing with

the application of MLR techniques to the adjustment of DMs for image segmentation. Sec. 3

introduces our general purpose, MLR-based image segmentation framework while Sec. 4 describes

an implementation of our framework tailored to the medical imaging field. Finally, Sec. 5 is

devoted to the evaluation of our proposal performance in comparison with other extended image

segmentation methods while Sec. 6 summarizes some conclusions on the work carried out.

2. Survey of machine learning applications to deformable model-based image segmen-

tation

In specialized literature, the typical image segmentation and recognition process employing

DMs is organized as a pipeline comprising the following steps: initialization, evolution, and recog-

nition (optional).

The application of MLR to image segmentation and, in particular, to DMs has seen widespread

adoption in the last decade. After an extensive review of the literature, we defined a taxonomy

recognizing four different categories and classifying the MLR-based strategies accordingly. The first

category defines those works that use MLR to initialize DMs or to impose some constraints to their

evolution (e.g. avoid further evolution if the DM is already far from the provided initialization),

as in [48, 79, 75, 49, 33, 47]. Apart from this characteristic, DMs evolve using standard energy

minimization approaches in these works. We named this category initialization.

A different approach is to employ MLR in the generation of an external energy term to be

used in the standard DM optimization procedure [64, 50, 87, 22, 56, 70]. A popular choice consists

of performing texture analysis. In this case, texture statistics are calculated in a small window

centered at each pixel. A classifier is trained to distinguish between object and background on

the basis of these statistics. Finally, a DM external energy term is generated to take into account

the output of the classifier. We named this category energy term generation. Within this same

category we can also include Active Appearance Models [23, 24]. They are statistical models

combining the shape and the texture information of a certain class of images. Its training requires

the matching of a shape model over the training images. Automatic techniques usually employ an

iterative optimization method that adjusts the model to the specific corresponding image features.

A very popular approach is to employ MLR in the recognition step only. In these works

the segmentation is performed by the DM as usual. Then, the segmentation result is classified as
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belonging to two or more categories. This process is performed by a classifier trained with features

derived from the image itself and/or the shape and position of the final state of the DM evolution

[91, 51, 82, 76, 65]. We named this category recognition as the role of MLR in these approaches

fulfills this higher-level image processing task. It is rather a post-processing task instead of a

segmentation process itself.

The last category comprises those works that employ MLR to directly guide the DM evolution.

In this case, the output of the classifier (or regressor) is the direction (and/or speed) toward which

the DM should evolve (locally or globally). Usually, classifier inputs are composed of image features

along with geometric features of the DM. We named this category guidance. This is the category

most related to our proposal but just a handful of works [10, 59, 63, 77, 1] following this approach

were found in literature, with [59] being the most representative.

Finally, see [2] for some additional discussions and references about the use of supervised

information in image segmentation problems.

3. A general framework for deformable models supervised guidance

In this section, we present a novel and automatic image segmentation framework belonging to

the guidance category of our taxonomy. As said, in these methods the available information is

translated into a MLR model that is directly used to drive the DM evolution. We aim to provide

a generic method but, if needed, tailorable to different image modalities and target segmentation

objects with minimal changes to the algorithm parameters’ values.

Our system operates in two phases: learning and prediction. In the former phase, the DM

contour is iteratively guided by the ground truth toward an ideal segmentation result. At each

iteration and for each point of the DM contour, we calculate image and DM-related feature values

along with an adjustment decision dictated by the ground truth information. For instance, in the

case of using a LS as DM, each unit of the LS expands if located over the target object and shrinks

if positioned over the background. The feature values and the optimal adjustment decision (class

or regression value) are stored in a dataset which is employed to train a MLR model. During

the prediction phase, at each iteration and for each point of the DM contour, we calculate the

same features employed in the learning phase. However, in this case the DM contour is adjusted

according to the output of the MLR model trained during the learning phase.

The input of our system is a dataset of images. Each image in the dataset of images has

an associated ground truth binary image which partitions the original image I in two regions:

foreground, delineating the segmentation target, and background, such that Ground truth =

foreground ∪ thebackground and the foreground ∩ background = ∅. The output is a MLR model

or, rather, a set of models, able to segment a dataset of images similar to the ones in the original
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dataset of images, thus having generalization capabilities. Being a general purpose framework, it

can be applied to any kind of image, modality, and target structure.

In fact, the framework consists of several components and the connections among them. In

this case, the sophistication comes from the choice of the components and the way they are

interconnected. The opportunity of examining different designs allows the exploration of strategic

possibilities that may prove effective in a particular application or image modality. The framework

components are:

• Localizer : any method that is capable of detecting a region of interest within an image.

Possible choices are, for instance, model-based detection systems or image registration algo-

rithms.

• Deformable Model : any DM model (e.g. LS) whose final position within the image domain

represents the segmentation result.

• Term set : a set of image descriptors (like Haralick features, the Histogram of Oriented Gra-

dients, or Linear Binary Patterns) and DM-related features (like local curvature). Basically

any kind of relevant feature can be part of the term set.

• Driver : a MLR-based classification or regression method whose output directly guides the

DM evolution.

The framework components are not connected in a pipeline-like manner, but rather they are

tightly interconnected in a way also dependent on the implementation. We call the way the

framework components are connected to each other integration mechanism. Fig. 1 shows the

framework general scheme.

A key aspect of the framework is the role of the driver. While in the vast majority of the

works in literature DM evolution is tackled as an energy minimization problem, in our proposal

the driver directly guides the evolution of the model using a model derived from a MLR method.

The driver is intended as a general purpose MLR tool able to drive the DM toward its final

position, the target object. It makes decisions based on the values assumed by the features in the

term set. These features comprise image related cues, the local and global status of the DM, or

other information from different sources as the output of the localizer. The prediction calculated

by the driver will affect the evolution of the DM in a way dependent on the specific framework

instantiation. In particular, it is strongly dependent on the nature of the specific DM employed.

As the driver is a general-purpose, supervised MLR tool, a training phase is needed. It has to

be carried out by means of a specific procedure to infer a function from a labeled set of training

examples. In supervised learning, each example is a pair consisting of an input vector and a

desired output value, called the label. A supervised learning algorithm analyzes the training data
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Figure 1: The framework overall scheme.

and produces an inferred function, which can be used for predicting new examples. However, in

our case, the input of the framework is a dataset of images and associated ground truths, not a

standard plain set of vector-label pairs, as expected by many MLR algorithms. Therefore, it is

necessary to construct a proper dataset of vector-label pairs, which we name Image Vector-Label

Dataset (IVLD). Each example in the IVLD will be made up of a vector of values assumed (from

the terms in the term set) for a given location of the DM in the image, and a label (continuous or

discrete) indicating the behavior the DM should show in that specific case.

In general, the values assumed by the terms at a given image point depend on both the image

itself and the status of the DM at that point. This implies that the use of an evolving DM is

mandatory to generate the IVLD. It is not possible to generate the IVLD a priori directly from the

image itself. Moreover, the meaning and the type of label are strictly dependent on the structure

of the employed DM. For instance, geometric and parametric DMs will need different classes of

labels to reflect the different ways they evolve. While the former evolve (that is, move) only along

the line perpendicular to the contour at a given point, the latter can move in any direction.

To generate the IVLD, we exploit ground truth information by forcing the DM to evolve in

a way that, in its final state, will make it completely cover the foreground, as defined earlier. In

other words, each label in an IVLD example will be the one that is expected to guide the DM

toward a segmentation identical to the ground truth. For instance, if the employed DM is a LS,

the label would be positive (that is, the DM would expand) for each point p of the LS over the

foreground, while it would be negative (that is, the DM would shrink) if p is over the background.

A more complex label set is expected in the parametric DM case, as each control point can, in

principle, be moved in any direction. Depending on the DM initialization, different evolution

trajectories can be produced. By creating the IVLD starting from different initializations, we can

generate examples from different areas of the images, increasing diversity in the IVLD.

Once the IVLD has been generated, the driver can learn a classifier or model from it using

any supervised MLR technique. The output of the learning is, in an optimal scenario, a MLR

model with the ability to correctly determine labels for unseen instances. During the prediction
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phase, that is, when unseen images are segmented, the driver constructs a feature vector for each

point of the DM by calculating the values of the features of the term set (as it was done for the

creation of IVLD). Then the driver applies the model learned in the previous stage to this vector

and calculates the label responsible for the DM movement in that specific point. The process stops

as soon as the termination criterium is satisfied, which depends on the specific DM employed.

Different choices are possible for each component of our framework. This fact provides flexibil-

ity, as it can be implemented in a variety of ways and degrees of sophistication. As the components

are interconnected, the decision might affect the integration of the components to some extent. It

is worthwhile to note that the deformable model, the term set, and the driver are mandatory com-

ponents and the framework cannot operate without any of them. Conversely, while the localizer

is not strictly necessary to perform segmentation, it effectively reduces the search space, allowing

the driver to mainly focus on relevant areas. We analyze and discuss concrete component choices

in the remainder of this section.

In the framework, the role of the localizer is to roughly detect a region of interest within the

image. Moreover, it can provide the capability of discerning similar objects on the basis of their

location in the image space (e.g. recognizing one of the two lungs), especially in case of multi-label

segmentation problems (see Sec. 6). In any case, the information dispensed by the localizer can

be exploited in different forms, depending on its nature. For instance, if the localizer were a part-

based method, the provided information would be the coordinates (and possibly the size) of the

model parts in the image space. On the other hand, an image registration-based localizer would

provide a somewhat more comprehensive kind of information in terms of shape definition and the

accuracy of the localization. However, compared to a part-based model, a registration localizer

could be more sensitive to noise and high variance in shapes, in addition to needing much higher

computation times. Moreover, the choice of the localizer would influence the initialization of the

DM and the features of the term set. In fact, in the case of a registration-based localizer, the DM

could be straightforwardly initialized with the result of the registration step, and a feature of the

term set could be the minimum distance between the registration result and the evolving DM.

Conversely, in the case of a N part-based localizer, the DM could be initialized by dividing into

N chunks over the localizer parts. In this case, a feature of the term set could be the distance

between a point in the DM and the closest localizer part center.

The choice of the DM is very relevant in the framework. DMs are generally classified as belong-

ing to either the parametric or geometric families. Parametric DMs represent curves and surfaces

explicitly in their parametric forms during deformation. This representation allows direct interac-

tion with the model and can lead to a compact representation for fast real-time implementation.

Adaptations of the model topology such as splitting or merging parts during the deformation, can,

however, be difficult using parametric models. The vast majority of parametric DMs represent the
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model as a mono-dimensional curve parametrized by means of a number of control points lying

on that curve. These models are referred by a multiplicity of terms, the most common ones being

Active Contour, Deformable Contours, and Snakes [78, 43]. Differently, the more advanced Topo-

logical Active Net model [15, 7] and its extension, the Extended Topological Active Net model [13]

are discrete implementations of an elastic two-dimensional mesh with interrelated nodes. They

integrate features of region-based and boundary-based segmentation techniques. This way, their

model detects the inner topology of the objects while, at the same time, fitting their contours. In

any case, evolution of parametric DMs is generally performed though either energy minimization

or dynamic force formulations. However, were parametric DMs to be employed in our framework,

each of their control points would evolve under the driver guidance. Since the control points of

parametric DMs move in any direction, a feasible control strategy to perform contour adjustment

would be to consider the pixel of each node and its 8-neighborhood. Each of these 9 pixels would

be mapped to a class label. This would transform the problem into a nine-class classification prob-

lem. In this case, parametric DMs internal energy constraints would be considered as additional

features of the term set.

Geometric DMs, on the other hand, are based on the theory of curve evolution [67, 44, 45]

and the LS method [60, 69]. They represent curves and surfaces implicitly as a level set of a

higher-dimensional scalar function. Their parameterizations are computed only after complete

deformation, thereby allowing topological adaptivity to be very easily accommodated. Therefore,

geometric DMs are suitable to segmentation problems with high variability in shape. However,

the downside is their high computational complexity, as generally the speed function responsible

for their evolution has to be calculated for each point of the image plane. Algorithms have been

developed to overcome these issues by only performing updates on regions near the surface, rather

than integrating over the entire space. The most well-known ones among them are the narrow-band

[3] and sparse-field [86] approaches. Both methods, however, need to maintain a neighborhood

around the surface so that the derivatives that control the process can be computed with sufficient

accuracy. Geometric LS’s curve evolution is lead by a speed function perpendicular to the LS

curve. For positive velocities the LS will grow, and in the other case it will shrink. Therefore,

the driver should be a regressor able to provide a continuous output, instead of a classifier able to

output a discrete label.

Both parametric and geometric DMs have advantages and disadvantages over each other. On

the one hand, parametric DMs have far fewer control points with respect to the geometric ones, and

therefore evolve and converge faster. If guided by the driver, they would need a nine-class classifier

to define the direction in which the model should evolve. On the other hand, geometric DMs are

slower but more accurate. Besides, while it is easier to define the direction of the contour evolution,

they would require a more sophisticated regressor to calculate the speed function. Finally, after
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carefully evaluating the different alternatives, we considered the Shi LS approximation (see Sec.

4.2) to be the most attractive DM for direct supervised guidance. It combines fast speed, good

accuracy, and ease of control as only the sign of the speed function is relevant to the LS evolution.

This latter property implies that Shi LS guidance can be seen as a binary classification problem,

and as such is a much faster and easier task to perform with respect to the two other guidance

strategies introduced so far.

The driver is a general purpose MLR tool, and therefore a plethora of different learning algo-

rithms are available. However, the nature of the employed DM can constrain the available drivers.

A common LS, for instance, is guided by a certain speed function with a real-valued result. To

calculate this velocity, a regressor would be more appropriate than a classifier. However, for

parametric DMs the desired output could be the destination pixel of a DM control point. This

problem can be handled by a classification algorithm. In addition to what has been explained so

far, there is no clear advantage in using a specific MLR method, with a wide range of possibilities.

However, given the possible large size of the IVLD, fast algorithms are preferred, in both training

and prediction phases.

Finally, the features in the term set are strongly dependent on the characteristics of the dataset

of images. In fact, in most learning problems one set of features is more discriminative than the

others. For example, if the goal is segmenting structures in satellite images, the color would be

very relevant, as some structures (e.g. forests, mountains) are best described by it. Conversely, in

medical imaging, where color is mostly absent, other features such as edges and textures are best

suited to discriminating different tissues and organs.

In general, the choice of the most appropriate components is dependent on the image seg-

mentation problem at hand. Being able to easily replace the framework components to tailor the

system to specific datasets is one of the key strengths of the proposed framework.

While the presented method shares some similarities with that introduced in [59], there are

some important differences making our proposal very novel in the area. First of all, we defined

a framework by explicitly giving definite roles to the specified components. In our method the

components are easily changeable and customizable. Additionally, we introduced the role of the

localizer, a component that endows our method with a higher degree of automatism by avoiding

the need to manually initialize the DM. More importantly, the learning phase has a different, more

global initialization and our method employs an evolving DM to generate the IVLD. Therefore,

as opposed to [59] where the IVLD is generated directly from the image itself, we are able to use

terms whose values depend on the status of the DM as well. This ability guarantees the possibility

to use learning on the geometrical features of the DM along with image-dependent terms. Finally,

we greatly expanded this latter set by introducing a large number of standard image descriptors

not considered in [59].
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Figure 2: The framework implementation overall scheme.

4. A specific implementation of the framework for medical image segmentation

As stated earlier, there is a plethora of design possibilities when implementing an image seg-

mentation system within the proposed framework. To illustrate this capability, we tailored the

system to segment diverse structures within different medical image modalities. Therefore we

integrated the components focusing on edge and texture image descriptors along with shape. We

chose a part-based localizer able to capture the variability of the forms and quickly recognize

different parts of the target structures [32]. We opted for the Shi LS [72], a flexible, fast DM,

able to handle complex topologies and that is simple to control. In fact, its evolution algorithm

only considers the sign of the speed function value, thus allowing us to treat that calculation as

a binary classification problem with a class representing the positive sign and the other standing

the negative. Hence, we chose an extended, quick, accurate and easy to train classifier, Random

Forest [14]. The decision to choose fast components was motivated by the large size of one of the

datasets to be considered.

In the following sections, we provide insight for the design of every component in the framework

to customize it to our medical image segmentation problems. The framework implementation

general scheme is shown in Fig. 2.

4.1. Localizer

Most of the object detection methods are tailored to a specific application. However, for our

proposed framework it is more desirable to have a more general, universal localizer that could be

used for locating any pattern type in an image, after customizing it to the specific problem.
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In particular, we have employed the method introduced in [32]. In recent years in the field of

computer vision, object detection methods based on discriminatingly trained part-based models

have gained a lot of attention because of their high accuracy and low computation times [30]. In Gál

et al.’s system, an object or pattern in an image is modeled with K number deformable parts. This

method is influenced by the pictorial structure framework [31], where the appearance of objects

is decomposed into local part templates, together with geometric constraints on pairs of parts.

Unlike to the traditional models for object recognition, where the parts are only parameterized by

their location, in this approach the parts are parameterized by pixel location and orientation.

For modeling the pairs of parts that are constrained to have consistent relations, one can define

a K-node relational graph G = (V,E), where the vertices (V ) represent the parts and the edges

(E) the relations between the parts, as shown in Figure 3.

Figure 3: Right-lung localization with three parts.

In order to determine the optimal configuration of parts, i.e. how the parts are distributed

within the image and where exactly they are located, Gál et al. defined a specific score function

considering absolute and relative locations and orientations of parts and a vector of features

obtained from the Histogram of Oriented Gradients (HOG) [27]. Using this scoring function and

assuming a supervised learning paradigm, the authors defined a structured prediction objective

function that was optimized using structured Support Vector Machines (SVM) [26].

The employed localizer makes use of a separate learning process that considers a reduced

version of the training set used by the main segmentation algorithm. For this reduced dataset,

however, it is necessary to specify the locations and the configuration of the localizer parts for

training purposes.

4.2. Deformable Model

The output of the driver, that is, the meaning and number of prediction labels, depends on the

employed DM. We decided to use a simple and fast LS implementation: the Shi approximation. In
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[71] and later in [72], the authors proposed a complete and practical algorithm for the approxima-

tion of LS-based curve evolution suitable for real-time implementation. The evolution is divided

into two cycles: one cycle for the data-dependent term, and a second cycle for the smoothness

regularization, derived from a Gaussian filtering process. In both cycles the evolution is developed

through a simple element switching mechanism between two linked lists of grid points adjacent to

the evolving curve C, Lin, and Lout, that implicitly represents the curve using an integer valued

LS function φ̂. This function is defined as follows:

φ̂(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

+3, if x is an exterior point

+1, if x ∈ Lout

−1, if x ∈ Lin

−3, if x is an interior point.

Only two values of the speed function are significant with respect to the curve evolution:

positive and negative. In the former case, the LS will grow (in the direction normal to the contour,

as usual), while in the latter it will shrink. Since the absolute value of the speed is irrelevant, we

can effectively treat the calculation of the speed function as a binary classification problem, with

the obvious advantage of reducing complexity. The Shi LS, while retaining the same attractive

qualities of standard LSs in terms of accuracy and flexibility, is much faster, is easy to control, and

leads to very significant computation speed gains when compared to the exact partial differential

equations-based approaches.

Asaid from the calculation of the speed function, which in our framework is performed by the

driver, every other aspect of the LS evolution is kept as in its original proposal [72], including the

smoothing cycle.

4.3. Terms

Among the visual or image descriptors taken into account by general purpose image segmen-

tation algorithms, the most commonly employed ones are color [84], texture [38, 37, 28, 29, 58],

edges [36, 16, 27], and shape [84].

We distinguish among statistics calculated over the entire image and over local portions of it,

centered on the LS contour. As opposed to the edges, which are local in this case, the texture

information [88] can be considered at different levels. Indeed, the border of the DM allows us to

calculate the texture features also distinguishing between the inside and outside the contour [92]

at local level. The other terms are relative to the shape of the contour, both at the global and

local level. This is due to the localizer and the LS local appearance, respectively. In the following

sections we will define which image descriptors are included in our reference implementation.
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4.3.1. Haralick

To characterize texture, Haralick [38, 37] considers texture tonal primitive properties as well

as the spatial interrelationships between them.

The Haralick feature values assume different results depending on the areas the calculation is

performed on. Thus, we implemented three different procedures to calculate the Haralick statistics

which are defined as follows.

Plain Haralick. This is the most straightforward option. Similar to other recent approaches [83],

in this case we define a closed ball of radius r, centered at a given point p of the LS contour. We

calculate the Haralick statistics on the area inside the ball, that is, the light blue area of Fig. 4(a).

To take into account image features at different scales, we define two balls of different sizes, rsmall

and rbig. The values of these two constants are parameters of our algorithm, although as Table 2

shows, we have found a fixed value for both in very different segmentation problems.

Inside ( <0)

Outside ( >0)

p

(a) Plain Haralick

Inside ( <0)

Outside ( >0)

p

(b) Split Haralick

Figure 4: The plain and split Haralick terms.

Split Haralick. This term is similar to Plain Haralick. However, in this case, we calculate the

Haralick statistics in two separate areas inside the ball: inside and outside of the LS, that is, the

orange and light blue areas of Fig. 4(b), respectively.

Global Haralick. This term is similar to Split Haralick. However, instead of focusing on the region

delimited by the ball, the features are calculated on the whole internal and external areas of the

LS.

4.3.2. Gabor

A Gabor filter [28, 29] is a filter used for edge detection. In our implementation we consider

the image response to the application of eight different filters, one for each direction. The size of

the complex wave employed for the calculation is fixed at 21 pixels, for a total of eight different

features.
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4.3.3. Local Binary Patterns

Local Binary Patterns [58] are a feature used for texture classification in computer vision. It is

a string of bits obtained by binarizing a local neighborhood of pixels with respect to the brightness

of the central pixel. With a neighborhoods size of 3×3 pixels, the Local Binary Patterns at location

(x,y) is a string of eight binary values. To obtain more reliable statistics, we reduced this string

to a total of 58 quantized patterns. In all cases, the employed cell size was eight pixels. In our

implementation the values of the features used in the term set are the same for the 64 pixels within

each cell.

4.3.4. Histogram of the Oriented Gradients

HOG [27] are feature descriptors used in computer vision for the purpose of object detection.

The method counts occurrences of gradient orientation in localized portions of an image. In our

implementation we used the variant introduced in [30]. Also in this case, the employed cell size

was always eight pixels. In our implementation the values of the features in the term set are the

same for all the pixels in the same cell.

4.3.5. Node Priors

This term is intended as a way to inject some prior knowledge relative to the structures to

be segmented. Given a point p of the LS contour, the node priors term is defined as the relative

shift, in the x and y directions, between p and each of the central points of the localizer nodes.

Mathematically, it is formulated as:

np = {xp − xn1
, yp − yn1

, xp − xn2
, yp − yn2

, · · · , xp − xnm
, yp − ynm

},

where xp and yp are the x and y coordinates in the image plane of the point p, respectively, while

xk, yk are the coordinates of the center point of localizer node k, and m is the total number of

parts of the localizer model.

4.4. Driver

As explained in Sec. 3, the driver is a model derived from a general purpose MLR method able

to perform supervised learning. Given the nature of the DM we decided to use, the driver chosen

is a binary classifier.

Among many possible choices, Random Forest [14] is a very attractive one. It is an ensemble

learning [46] decision tree that combines bagging (a voting method where base-learners are made

different by training them over slightly different training sets) and the random selection of features

to construct a collection of decision trees with controlled variation. Random Forest is employed

to construct a prediction rule in a supervised learning problem (classification or regression) and

to assess and rank variables with respect to their ability to predict the response. The latter is
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done by considering the so-called variable importance measures that are automatically computed

for each predictor within the Random Forest algorithm [12].

Apart from being the most extended classifier ensemble found in literature [46], Random Forest

is quite fast and easily parallelizable, a strong advantage when dealing with large datasets. Decision

trees are not affected by the modulus of the feature values, a property that other classifiers (like

SVM) do not share. Since Random Forest is a kind of decision tree, it is not necessary to perform

any sort of scaling on the used features. This fact helps to simplify the implementation of our

system.

4.5. Integration mechanism

As already mentioned, generating the IVLD is a key point in the proposed framework. Accord-

ing to the particular implementation of the framework explained so far, the IVLD is composed of

226 features. In particular, 114 are for Haralick features (15 for plain small Haralick, 14 for plain

big Haralick, 28 for split small Haralick, 28 for split big Haralick, and 28 for global Haralick), 9

for the Gabor filter, 58 for Local Binary Patterns, 31 for HOG, 12 for node prior, one for the pixel

intensity value, and finally, one more for the sign of the speed function S.

To generate the dataset we have to make some decisions about how to derive it from the dataset

of images. First of all, the LS must be initialized in the image plane. We decided to perform three

different initializations as follows:

• from small ellipses;

• from big ellipses;

• from the localizer described in Sec. 4.1.

In the first two cases, the LS is initialized as a uniform grid of ellipses in the image plane. The

position of each ellipse is shifted by a small random amount in the x and y directions. In the small

ellipses case, the grid has a 10× 10 size and all the ellipses have the same size: xe = 0.05×X and

ye = 0.05× Y , where xe and ye are the ellipse’s x and y axes, respectively, and X and Y are the

image dimensions. In the big ellipses case, the grid has a 5× 5 size and the size of the ellipses is

uniformly sampled in [5,min(X,Y )/8]. Of course, the LS can gracefully merge some of the ellipses

in case of overlap. Finally, in the third case, the LS is initialized as circles centered in the output

points provided by the localizer (see Sec. 4.1). The size of the circles is a fraction of the localizer

window square. Fig. 5 shows an example of the three LS initializations.

Once the LS has been initialized, it has to evolve toward its final state, corresponding to the

target object position in the image plane. Since the ground truth images are available, the LS
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(a) Initialization with small ellipses (b) Initialization with large ellipses (c) Initialization with localizer

Figure 5: LS initialization by means of: (a) small ellipses, (b) big ellipses, (c) localizer. The localizer output points

are highlighted in green.

evolves taking into account this information. In particular, the LS speed function for a point p is

S(p) =

⎧⎪⎨
⎪⎩
+1, if p ∈ foreground

−1, if p ∈ background.

This speed function implies that the LS contour will grow (in the direction perpendicular to the

contour) in the areas that are included in the target object, while it will shrink in the areas that

are included in the background. Fig. 6 shows an example of this procedure.

Figure 6: The LS speed function for the generation of the IVLD. The LS will grow in the green areas covering the

lungs (light grey area in the black and white version of the manuscript), while it will shrink in the yellow one (every

pixel in the image not contained in the lung region).

The IVLD generation procedure operates as follows. For each point in the LS contour, at

each iteration, the term set values and the corresponding speed, grow (+1) or shrink (-1), are
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calculated. So, each example e(p) in the IVLD is described as:

e(p) = {t1(p), t2(p), · · · , tm(p), l(p)}. (1)

l(p) =

⎧⎪⎨
⎪⎩
+1, if p ∈ foreground

−1, if p ∈ background,

(2)

where p is a point of the LS contour, tk(p) is the k − th term in the term set, and m is the term

set size.

Since the IVLD can grow indiscriminately, even in the case of small data set of images, we

insert a given example e(p) in the IVLD only if the following two conditions hold:

• p has not been inserted previously;

• random

(
0, k(b(p) + 1)

)
< fsaveTerm,

where k is a constant, fsaveTerm is a proper threshold, and b(p) is a bias function, dependent on

p. The b(p) function aims at increasing the probability of the point p to be included in the IVLD

if p is close to the object contour. It is defined as b(p) = d(p, C), where C is the set of the points

belonging to the target object contour and d(·) is the Euclidean distance function. Moreover, the

values of b(p) are normalized in the interval [0, 255] to ensure that its values are not dependent on

the image size. Finally, to take into account which points were already inserted in the IVLD, we

employ the array A(p). This array can have three values:

A(p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

gray, if p /∈ IVLD

white, if p ∈ IVLD and l(p) = +1

black, if p ∈ IVLD and l(p) = −1.

Fig. 7 shows the data structures needed to perform the construction of the IVLD.

In order to maximize the number of possible examples in the IVLD, we can perform the

evolution procedure several times, starting from different initializations. We perform up to esmall,

elarge, and elocalizer, evolution procedures starting from, respectively, small ellipses, large ellipses,

and localizer output.

As the foreground and background segments in images often differ in size, in most cases the

instances of one class significantly outnumber the other. As a consequence of the kind of MLR

task tackled, this becomes an imbalanced classification problem [21, 85]. Hence, the last step in

the IVLD creation is the balancing of the number of instances for each class. This is a common

practice in MLR and it has been proven that class balancing improves the accuracy of the classifiers

[20, 9, 74]. To do so, we apply a simple undersampling procedure [39, 74] by randomly removing

Nmaj−Nmin instances of the majority class from the IVLD, where Nmaj and Nmin are the number

of instances of the majority and minority classes, respectively.
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(a) The target object contour (b) b(p) (c) A(p)

Figure 7: The data structures to perform the construction of the IVLD: (a) the target object contour, (b) b(p), i.e.

the normalized distance to the contour, (c) A(p), i.e. the points already introduced in the IVLD.

A key aspect of the implementation of our system is the use of a classifier ensemble. In fact,

instead of employing just one classifier to learn from the IVLD, we use Nparts different classifiers,

where Nparts is the number of parts in the localizer model (see Sec. 4.1). Since each part is

located in roughly the same area in each image, the rationale for using multiple drivers is to

reduce the learning space of each driver, and therefore increasing the overall accuracy of the

system. To associate each example e(p) with the appropriate driver, we calculate the distance

from p to each localizer part center. Then e(p) will be inserted into the IVLD associated with the

closest driver. Algorithms 1 and 2 show the overall IVLD creation procedure. As shown in 1, the

whole ground truth-guided LS evolution procedure is repeated multiple times for the small and

big ellipse initialization. Since these initializations employ a random component, they are different

each time. Performing these procedures multiple times allows us to increase the diversity in the

IVLD, leading to better generalization in the optimal case.
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Data: The dataset of images

dataset

Result: The IVLD dataset

foreach I ∈ dataset of

images do
for i = 0; i < nse; + + i

do

initSmallEllipses(I);

evolveIVLD();

end

for i = 0; i < nbe; + + i

do

initBigEllipses(I);

evolveIVLD();

end

initLocalizer(I);

evolveIVLD();

for i = 0; i < Nparts; + + i

do

balanceIVLD(i);

end

end

Algorithm 1: Overall IVLD

creation procedure.

Data: The dataset of images

Result: The IVLD dataset

repeat

foreach point p in level set contour do

r = rand();

if r mod [k(b(p) + 1)] < fsaveTerm AND p /∈
IVLD then

e = calculateTermValues(p);

d = getAssociatedDriver(p);

add e to IVLD(d);

end

end

moveLeveSetContour();

until level set converges ;

Algorithm 2: evolveIVLD(): IVLD for a single im-

age, given a single initialization.

Once the Nparts IVLDs have been defined, each Random Forest classifier is trained with the

associated IVLD. The output is Nparts different classification models. These models are used in

the prediction phase to guide the LS when segmenting unseen images.

In the prediction (segmentation) phase, the LS is initialized using the output points of the

localizer, as described earlier. For each point of the LS contour, the values of the terms in Sec. 4

are calculated. These values form the vector to be predicted by the associated driver, giving as

output the action to be performed. The usual Shi LS stopping conditions hold.

4.6. Computational Complexity

Precisely estimating the computational complexity of an algorithm endowed with so many

different components is not an easy task. In Table 1 we provide the time complexity for each

method used in our reference implementation of the framework described so far, where:
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• N,M are the width and height of the input image, respectively;

• K is the number of parts of the part-based localizer;

• NA is the number of points belonging to the geometric difference between the target object

and LS initialization;

• P is the maximum number of operations for the calculation of the speed function, i.e. the

computational complexity of extracting the terms and performing a prediction with the

driver;

• ntree is the number of trees in the Random Forest classifier;

• n and f are the number of training instances and features, respectively.

Component Training Prediction

Term Set

HoG O(NM)

Local Binary Patterns O(NM)

Gabor filter O(NM log(NM))

Split/Global Haralick O(NM)

Localizer

Structural SVM O(n) O(NMK)

Driver

Random Forest O(ntree(fn log(n))) O(ntreen log(n))

Deformable Model

Shi level-set O(NAP ) = O(NA(O(Term Set) +O(Driverpredict))

Table 1: Computational complexity for the different components of the reference framework.

The time complexity of training our framework implementation is dominated by the training of

the driver, i.e. the Random Forest classifier, O(ntree(fn log(n))). Once the model has been trained,

the computational complexity of the segmentation of an image is basically a linear function of the

input, i.e. the image size. This is actually in line with the reported running times in Sec. 5.

Efficient algorithm implementations and data structures are of course considered in our imple-

mentation, thus the resulting execution times are lower than the theoretical upper bound.

5. Experiments

To test the performance of our proposal, we applied the developed algorithm to two popular

medical image datasets (which include the ground truth): the Segmentation in Chest Radiographs
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(SCR) and the Allen Brain Atlas (ABA) datasets. These are two commonly-used datasets which

are endowed with very different target objects and image modalities. They were chosen to show

how our proposal can deal with a diverse set of problems using the same set of parameters.

In both cases the evaluation metric employed is the standard Jaccard index [41]. It is defined

as:

J =
TP

TP + FP + FN
,

where TP is the true positive area (correctly classified as object), FP is the false positive area (clas-

sified as object, but is in fact background), FN is the false negative area (classified as background,

but is in fact object), and TN is the true negative area (correctly classified as background).

The parameters employed by our algorithm on the two datasets are shown in Table 2. Note

that although our algorithm has nine parameters, all of them have the same value for these two

different segmentation problems, i.e. they can be considered as constant values. These parameters

have been manually tuned through prior experimentation.

Parameter SCR ABA

fsaveTerm 5

esmall 5

elarge 5

elocalizer 1

terms NPdistance, Haralick, splitHaralick, globalHaralick, HOG, Local Binary Patterns, Gabor

rbig 15

rsmall 5

examples per class 200000

Classifier ensemble size 400

Table 2: The parameters used by our system on the SCR and ABA datasets.

All the experiments have been performed on an Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz

with 16GB RAM, running Ubuntu. On the first dataset it took 11 minutes for training (using 10

images) and test (22 images), while for the second it took six hours for training (124 images the

first time, and 123 the second) and test (123 images the first time, and 124 the second). In both

cases the running time for the segmentation of one image lies in the range of 30-45 seconds.

Since we compare against different sets of competitors, we deal with the experimental design

and analysis of the results separately in the following two sections.

5.1. SCR Database: Lungs Segmentation in Chest Radiographs

The Segmentation in Chest Radiographs (SCR) database [35] has been established to facilitate

comparative studies on segmentation of the lung fields, the heart and the clavicles in standard
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posterior-anterior chest radiographs. All chest radiographs are taken from the Japanese Society

of Radiological Technology (JSRT) database [73], which is a publicly available database of 247

posterior anterior (front view) chest radiographs. In each image the lung fields, heart and clavicles

have been manually segmented to provide a standard reference. In this contribution, we only

consider the lungs.

5.1.1. Experimental Design

As in [35], the 247 cases in the SCR database were split in two folds. One fold contained all 124

odd-numbered images in the SCR database, and the other fold contained the 123 even-numbered

ones. Images in one fold were segmented with the images in the other fold as the training set, and

vice versa.

We defined two separate localizer models, one for each lung. Each model has a root part

in the central area of the lung and two child nodes above and below it. The localizer training

was performed using 60 labeled examples in both folds as it was more than sufficient to train an

accurate-enough localizer for the proposed framework. For each training set image, we manually

delineated the locations of the previously-mentioned three parts of both the left and right lungs.

We compare our proposal against the segmentation results of the 12 algorithms detailed in

[35]. These are: Human observer, Mean shape, Active Shape Model (ASM) with default and

tuned parameters, Active Appearance Models (AAM), AAM with whiskers, ASM whiskers opti-

mized with BFGS, Pixel classification default and post-processed, hybrid voting scheme, hybrid

ASM/PC method, and hybrid AAM/PC method. In that work, a comprehensive explanation of

the competitors is provided, as well as the numerous parameters involved.

5.1.2. Results and Discussion

A summary of the numeric results obtained by our proposal, along with the other 12 algorithms,

is shown in Table 3 where the methods are in decreasing order of the mean values obtained. The

numbers were directly obtained from Van Ginneken et al. [35]. A selection of the resulting

segmentations is shown in Fig. 8, while Fig. 9 shows the distributions of the results in boxplot

form.

In general, the left lung is more difficult to segment than the right lung because of the presence

of the stomach below the diaphragm, which may contain air, as well as the heart border, which

can be difficult to discern [35].

The results obtained by our system are encouraging in comparison with the 12 competitors.

Ours outperformed every non-hybrid proposal, ranking second according to the accuracy measure

and being one of the three methods outperforming the human observer. Only the Hybrid voting

method provided slightly better results. Most of the images were successfully segmented by our
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proposal, with just a few lower-quality cases. In these cases, the results were affected by over-

segmentation, that is, the DM leaked the object borders and ended up overlapping part of the

background. This is probably mostly due to the “liquid” nature of the LS DM. Given the general

scope of our proposal, we restricted ourselves to use almost the same parameters for both SCR

and Allen Brain Atlas problems (see next subsection), avoiding the implementation of specific

components. In particular, we are not employing a “hard” shape prior, strongly enforcing resem-

blance between the DM current shape and the prior, which could even improve the accuracy for

the specific case of the SCR dataset.

Lungs μ ± σ Min Q1 Median Q3 Max

Hybrid voting 0.949 ± 0.020 0.818 0.945 0.953 0.961 0.978

Our proposal 0.947 ± 0.023 0.803 0.943 0.952 0.961 0.974

PC post-processed 0.945 ± 0.022 0.823 0.939 0.951 0.958 0.972

Human observer 0.946 ± 0.018 0.822 0.939 0.949 0.958 0.972

PC 0.938 ± 0.027 0.823 0.931 0.946 0.955 0.968

Hybrid ASM/PC 0.934 ± 0.037 0.706 0.931 0.945 0.952 0.968

Hybrid AAM/PC 0.933 ± 0.026 0.762 0.926 0.939 0.95 0.966

ASM tuned 0.927 ± 0.032 0.745 0.917 0.936 0.946 0.964

AAM whiskers BFGS 0.922 ± 0.029 0.718 0.914 0.931 0.94 0.961

ASM default 0.903 ± 0.057 0.601 0.887 0.924 0.937 0.96

AAM whiskers 0.913 ± 0.032 0.754 0.902 0.921 0.935 0.958

AAM default 0.847 ± 0.095 0.017 0.812 0.874 0.906 0.956

Mean shape 0.713 ± 0.075 0.46 0.664 0.713 0.768 0.891

Table 3: Jaccard index results achieved by the 13 segmentation algorithms on the SCR dataset.

5.2. Allen Brain Atlas

The Allen Brain Atlas (ABA) [5] contains a genome-scale collection of histological images

(cellular resolution gene-expression profiles) obtained by in-situ hybridization of serial sections of

mouse brains. There is great interest in automated methods to accurately, robustly, and repro-

ducibly localize the hippocampus in brain images after discoveries established its role as an early

biomarker for Alzheimer’s disease and epilepsy [8].

The hippocampus was the anatomical structure to segment and the ground truth was created

manually by an expert in molecular biology. Every image was manually segmented 5 times, and

for each group of 5 manual segmentations, the consensus image was calculated as the average of

the manual segmentations and used as ground truth. The typical resolution of ABA images is

about 15,000 × 7,000 pixels and the region of interests is about 2,500 × 2,000 pixels. However, in

our case, we employed a rescaled version of the images that is about 600× 400 pixels.
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(a) JPCLN153 (b) JPCNN030 (c) JPCNN033 (d) JPCNN043

(e) JPCNN047 (f) JPCNN064 (g) JPCNN080 (h) JPCNN091

Figure 8: Some results of our proposal on the SCR lungs dataset. Green is TP (grey in the lung area in the

black-and-white version of the manuscript), red is FP, yellow is FN, and transparent is TN. Notice that, because of

the good performance of our approach the FP and FN regions are really difficult to recognize in a black and white

printing version

5.2.1. Experimental Design

We compare the results of our proposal with the ones obtained in [55]. In that research, the

authors included both deterministic and non-deterministic methods in the comparison, as well as

classic and very recent proposals. The authors considered a 22-images subset of the ABA dataset,

composed of 10 training images and 12 test images. They evaluated the algorithms on the whole

22-images dataset. To compare our results with theirs, we also provide results over the whole

dataset and we compare the algorithms over only the test partition1. The parameters employed

by our algorithm on this dataset are shown in Table 2. Notice that they are exactly the same

ones considered for the previous SCR database but for the fsaveTerm case, thus showing again the

generality of our method.

For the localizer we defined a model of 11 parts. The first six parts cover the left structure of

the hippocampus while the other five parts cover the right. The training set of the localizer was

composed of the same 10 training images mentioned above. For each image the authors provided

a manual labeling of the 11 parts that covered the two structures of the hippocampus.

1We asked the authors of [55] for the results on each image and we recalculated the statistics separately for the

two subsets.
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Figure 9: Results obtained on the SCR dataset in boxplot form.

We compare our proposal against the segmentation results of the eight algorithms detailed

in [55]. These are: HybridLS [55], ASMs (and Iterative Otsu Thresholding Method) refined using

Random Forest (ASM + RF) [54], Soft Thresholding (ST) [4], Atlas-based deformable segmentation

(DS) [80], Geodesic Active Contours [17], and Chan&Vese Level Set Model (CV) [18]. In [55],

a comprehensive explanation of the competitors is provided, as well as the parameters values

considered.

5.2.2. Results and Discussion

A summary of the numeric results obtained by our proposal, along with the other eight algo-

rithms (whose performance was directly obtained from Mesejo et al. [55]), is shown in Tables 4

and 5, for the whole dataset case and for the test set only, respectively. The resulting segmen-

tations are shown in Fig. 10 (training set) and Fig. 11 (test set). In addition, Fig. 12(a) shows

the distributions of the results in boxplot form for the whole dataset, while Fig. 12(b) depicts the

same information but for the test set only.

The results obtained by our proposal are encouraging, as its accuracy is among the best of the

methods in the comparison. In particular, it ranked first on the whole dataset and fourth on the

test partition (with performance very close to the best three algorithms). Concerning the latter

comparison, it is fair to highlight some of the characteristics of the best performing algorithms on

the test set. On the one hand, the ASM+RF was developed specifically for the ABA dataset, and

therefore has a very ad-hoc nature. On the other hand, both DS and HybridLS are based on a well-

performing shape prior, a very relevant information source in this dataset. This is emphasized by

the fact that both DSCV and DSGAC, two algorithms relying on registration-based initialization,

ranked better than their standard counterparts. In addition, HybridLS is characterized by long

execution times [55] and high complexity, as the method relies on an elaborate registration-based
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ABA μ ± σ Min Q1 Median Q3 Max

Our Proposal 0.845 ± 0.140 0.398 0.819 0.884 0.940 0.960

Hybrid 0.806 ± 0.109 0.321 0.796 0.849 0.869 0.884

ASM+RF 0.797 ± 0.061 0.461 0.770 0.812 0.836 0.876

DS 0.787 ± 0.108 0.342 0.760 0.829 0.852 0.877

DSGAC 0.674 ± 0.172 0.147 0.589 0.709 0.808 0.873

ST 0.597 ± 0.192 0.185 0.501 0.632 0.729 0.825

DSCV 0.538 ± 0.203 0.058 0.332 0.618 0.695 0.804

CV 0.460 ± 0.242 0.088 0.213 0.567 0.648 0.827

GAC 0.528 ± 0.192 0.146 0.395 0.564 0.660 0.833

Table 4: Jaccard index results achieved by the 9 segmentation algorithms on the whole ABA dataset.

ABA μ ± σ Min Q1 Median Q3 Max

Hybrid 0.800 ± 0.106 0.478 0.774 0.850 0.866 0.881

ASM+RF 0.790 ± 0.056 0.599 0.754 0.793 0.836 0.876

DS 0.774 ± 0.118 0.427 0.744 0.828 0.847 0.873

Our Proposal 0.764 ± 0.146 0.398 0.728 0.823 0.839 0.899

DSGAC 0.659 ± 0.130 0.351 0.590 0.676 0.748 0.856

ST 0.583 ± 0.225 0.185 0.440 0.647 0.751 0.825

DSCV 0.548 ± 0.193 0.058 0.531 0.628 0.671 0.712

CV 0.516 ± 0.187 0.154 0.404 0.606 0.644 0.677

GAC 0.521 ± 0.176 0.195 0.426 0.538 0.641 0.807

Table 5: Jaccard index results achieved by the 9 segmentation algorithms on ABA test set only.

initialization and a separate genetic algorithm-based optimization phase to perform parameter

learning.

In fact, most of the images were successfully segmented by our proposal. Some of them,

however, present under- or oversegmentations. While the former are probably due to the faint

borders in some areas of the target structures or very similar textures across different structures,

the latter are presumably caused by the somewhat arbitrary (at least to a non-expert eye) borders

in the lower part of the upper structure of the hippocampus. In particular, Figs. 11(e,g) show the

worst results. While in the former case the DM leaks and expands until the gray area surrounds

the target structure, in the latter the upper part of the target object is missing. The reason behind

these behaviors is plausibly attributable to the absence of similar texture in the reduced training

set considered.
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(a) Atrx 133 32 ROI (b) Cutl2 30 ROI (c) Gfap 95 2307 ROI

(d) reference10 ROI (e) reference12 ROI (f) reference14 ROI

(g) reference15 ROI (h) reference16 ROI (i) reference17 ROI

(j) Zim1 117 ROI

Figure 10: Results of our proposal on the ABA dataset (training set). Green is TP, red is FP, yellow is FN, and

transparent is TN. Notice that because of the good performance of our approach, the FP and FN regions are really

difficult to recognize in a black-and-white printing version.
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(a) 1300018I05Rik 86 ROI (b) A030009H04Rik 117 ROI (c) Atp1b2 2725 ROI

(d) Azin1 96 ROI (e) Camk2a 102 ROI (f) Camk2b 102 ROI

(g) Gad1 104 ROI (h) Mbp 130 ROI (i) Nmt1 140 34 ROI

(j) Slc17a7 120 ROI (k) Tubb3 114 ROI (l) Wars 109 ROI

Figure 11: Results of our proposal on the ABA dataset (test set). Green is TP, red is FP, yellow is FN, and

transparent is TN.
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Figure 12: Results obtained on the ABA dataset in boxplot form.

6. Conclusion and Future Work

In this paper we introduced an accurate, flexible and automatic image segmentation framework

using MLR and DMs. As opposed to typical DM-based segmentation algorithms based on an en-

ergy optimization paradigm, our proposal uses a different type of decision process which translates

the available information into a MLR model that is directly used to drive the DM evolution. The

framework is made up of four components: the localizer, the DM, the term set, and the driver.

The localizer is a MLR-based image recognition tool able to find a region of interest within the

image space. The DM is a model whose final position delineates the segmentation result. The

term set is a set of image-related and DM-related features, and the driver is a model derived from

a general purpose MLR method that directly guides the DM evolution on the basis of the values

of the features in the term set. An additional component, the integration mechanism, deals with

how the components are connected to each other.

We also provided a reference implementation for the framework aiming at segmenting different

medical image modalities. We chose the part-based object detector introduced in [32] as the

localizer, the Shi LS as the DM, and the Random Forest classifier ensemble as the driver. Finally,

a large set of image descriptors based on edges, texture and shape were inserted in the term set.

Our proposal has been tested on two different medical image datasets of different modalities.

The obtained results were encouraging. We showed how the proposed framework, using a MLR-

based paradigm, is competitive with other state-of-the-art algorithms, showing the advantage of

being general enough to be applied to medical image datasets of different kinds without any human

intervention.

Nevertheless, regardless of its good performance, our method still has room for improvement

as in some cases the obtained segmentations were not fully correct. Different extensions are under

assessment to improve the proposed system.
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Many image segmentation problems involve the use of 3D images and therefore we advise a

3D extension of the current framework implementation. In addition to a significant increase in

computational needs, each of the employed image-related tools or features are easily extensible to

operate on 3D images. Therefore, significant effort must be expended with the considered MLR

methods to take into account the current challenge of big datasets derived from 3D images.

Another compelling extension to the framework would be the ability to deal with multi-label

segmentation problems. To do so, we would train and execute a different instance of the localizer

for each type of object in the dataset. The output of the localizers would serve as initialization

points for as many different DMs as types of objects. The DMs would be trained over different

IVLDs, one for each target object type. To avoid overlap among DMs segmenting the different

objects, we would calculate the distance between the point where the speed function is calculated

and the closest point belonging to a DM segmenting a different class of object. This distance could

either be employed as a term in the term set or, in a stronger fashion, to prohibit the expansion

of a DM towards areas already occupied by another.

Moreover, different kinds of DMs could be investigated.

Additionally, different kinds of drivers could be tested. Among these, Rotation Forest [66] has

some attractive characteristics. In fact, it employs an embedded Principal Component Analysis

[42] to perform automatic feature selection. This is a desirable property when dealing with prob-

lems with a large amount of features, like the ones treated in this paper. A different alternative

could be one of the numerous flavors of the often-used SVM classifier [26, 11, 25, 19]. In this case,

we would opt for a fast implementation to keep the processing time low. Finally, depending on the

nature of the DM employed in the framework, the use of a regressor (instead of a classifier) could

be a more appropriate choice, as mentioned previously. In that case, the use of MLR methods of

a different nature would be required.

Another possible improvement could be the incorporation of new image-based features. For

instance, the results provided by advanced edge detectors, as in [52], could be introduced in the

term set.

Finally, a different localizer could be considered. In addition to testing different part-based

localizers, image registration-based localizers could also be successfully introduced in the current

implementation. In particular, the Scatter Search-based image registration algorithm proposed in

[80] represents an attractive option as it has been employed to perform image segmentation in [55]

with a significant accuracy.
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