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ABSTRACT

Noise is common in any real-world data set and may adversely affect classifiers built under the effect of
such type of disturbance. Some of these classifiers are widely recognized for their good performance
when dealing with imperfect data. However, the noise robustness of the classifiers is an important issue
in noisy environments and it must be carefully studied. Both performance and robustness are two
independent concepts that are usually considered separately, but the conclusions reached with one of
these metrics do not necessarily imply the same conclusions with the other. Therefore, involving both
concepts seems to be crucial in order determine the expected behavior of the classifiers against noise.
Existing measures fail to properly integrate these two concepts, and they are also not well suited to
compare different techniques over the same data. This paper proposes a new measure to establish the
expected behavior of a classifier with noisy data trying to minimize the problems of considering
performance and robustness individually: the Equalized Loss of Accuracy (ELA). The advantages of ELA
against other robustness metrics are studied and all of them are also compared. Both the analysis of the
distinct measures and the empirical results show that ELA is able to overcome the aforementioned
problems that the rest of the robustness metrics may produce, having a better behavior when comparing

different classifiers over the same data set.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

It is widely known that classifier performance is influenced by
the quality of the training data upon which this classifier is built
[25]. Since real-world data sets are rarely clean of corruptions or
noise [27,8], these can therefore affect the decisions taken by the
classifiers built from these data. However, the maximum achiev-
able performance depends not only on the quality of the data, but
also on the appropriateness of the chosen classification algorithm
for the data.

Knowing what kind of classification algorithms are most
suitable when working with noisy data is a challenging proposi-
tion [14,18,19]. Ideally, since the systems must be adapted to the
data they treat, if the data that we train are characterized by their
inaccuracy, then systems that create classifiers capable of handling
some degree of imprecission are needed [25]. One may wonder
how to know which systems are more suitable or are better
adapted to deal with these noisy data. Even though some classi-
fiers have been related to this capability of working with imperfect
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data, this fact is usually based on only checking the accuracy of
those and other classifiers over a concrete collection of data sets,
with independence of the type and noise level present in the data.
This analysis procedure has important disadvantages in noisy
environments. First of all, the study of the performance alone
does not provide enough information on the classifier behavior
affected by the noise [12,11,20]. Moreover, a study with a con-
trolled (probably artificial) noise level for each data set is also
necessary to reach meaningful conclusions when evaluating the
classifier behavior against noise [27]. Finally, it is also desirable to
fairly compare different classifiers over the same data, taking into
account not only the decrement in performance when noise
increases, but the performance when no noise is present as well.

This paper proposes a new single score to perform an analysis
of the classifier behavior with noisy data trying to solve the
aforementioned problems. This will be done from a double point
of view focusing on the classic performance assessment of the
methods but also on their robustness [12,11,20], an important
issue in noisy environments that must be carefully studied. We
understand as performance the accuracy of a classifier predicting
the class of a new example, whereas the noise robustness has been
defined as the classifier accuracy loss rate [12,11], which is
produced by presence of noise in the data, with respect to
the case without noise. Since performance and robustness are
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different concepts, the conclusions that they provide may also be
different, yet this comparative analysis remains disregarded in the
literature.

Even though the robustness of the methods is important in
dealing with noisy data, there are lack of proposals of robustness-
based measures in the literature and the few existing ones also
present several drawbacks. This paper will analyze the existing
robustness measures in the classification framework focusing on
their advantages and disadvantages. We will motivate the neces-
sity of combining the robustness and performance concepts
to obtain a unified conclusion on the expected behavior of the
methods with noisy data. We will propose a new behavior-
against-noise measure to characterize the behavior of a method
with noisy data, the Equalized Loss of Accuracy (ELA) measure,
which tries to minimize the problems of considering performance
and robustness measures individually and can be used to compare
different classifiers with ease.

In order to complete our analysis, we will perform an experi-
mental evaluation of the behavior and representativeness of the
different measures, considering several classifiers with a known
behavior against noise (concretely, the C4.5 decision tree generator
[17] and a Support Vector Machine [7]). The behavior of such
classifiers described by using ELA will be tested using 32 data sets
from the KEEL-dataset repository [2], over which we will intro-
duce a 10% of noise level into the class labels in a controlled way
[27]. All these data sets and other complementary material
associated with this paper, such as the performance and robu-
stness-based metrics results, are available at the web-page http://
sci2s.ugr.es/ela_noise.

The rest of this paper is organized as follows. Section 2 presents
an introduction to noisy data and robustness in classification. Next,
Section 3 describes the new proposed measure ELA. Section 4
shows the details of the experimental framework including the
noise introduction process, the parameter setup for the algorithms
and the comparison methodology. Section 5 includes the analysis
of the experimental results obtained with the different
robustness-based metrics. Finally, in Section 6 we point out some
concluding remarks.

2. Classification with noisy data

This section presents an introduction to noisy data in the field
of classification, found in Section 2.1. Then, the concept of robust-
ness in classification is explained in Section 2.2.

2.1. Introduction to noisy data

The quality of any data set is determined by a large number of
components as described in [23]. Two of these are the source of
the data and the input of the data, which are inherently subject to
error. Thus, real-world data is rarely perfect; it is often affected by
corruptions that hinder the models built as well as the interpreta-
tions and decisions made from them. In the particular frame-
work of classification, the most notable effect of noise is that it
negatively affects the system performance in terms of classifica-
tion accuracy, time in building, size and interpretability of the
model obtained [26,27]. In the literature there are two types of
noise distinguished [24]:

1. Class noise [4,1]: Also known as labeling errors, they occur
when an instance belongs to the incorrect class due to, for
example, data entry errors or inadequacy of the information
used to label each instance.

2. Attribute noise [27,22]: This is used to refer to corruptions in the
attribute values of instances in a data set. Examples of attribute

noise include: erroneous attribute values, missing or unknown
attribute values, and incomplete attributes or “do not care”
values.

In this paper we consider the most common type of class noise,
which is also the most disruptive; this is known as misclassifica-
tions and refers to those examples incorrectly labeled with a
wrong class label [27].

It is important to note that the concept of noise used in this
paper is different from that of outlier [10]. Thus, an outlier e, is an
example of a concrete class Ly which appears to be inconsistent
with respect to other examples of the same class L,, since it is
situated within a different class Lg. Even though this definition
may seem similar to that of noise, the outlier example e, has not
errors in its class label or its attributes (therefore, it is different
from a noisy example) and its correct classification, although
surprising, is the class La.

Since errors in real-world data sets are common, actions must
be taken to mitigate their consequences [24]. Several methods
have been studied in the literature to deal with noisy data [27].
They follow two main postulates: (i) the adaptation of the
algorithms to properly handle the noise [17,6] and; (ii) the
preprocessing of the data sets aiming to remove or correct the
noisy examples [3].

The methods that follow the first postulate are also known as
robust learners and they are characterized by being less influenced
by noisy data. An example of a robust learner is the C4.5 algorithm
[17] considered in the experimental case of study of this paper,
which uses pruning strategies to reduce the chances that the trees
are overfitting to noise in the training data [16]. However, if the
noise level is relatively high, even a robust learner may have a
poor performance.

Noise preprocessing techniques, which follow the second
postulate, have shown a good behavior dealing with noisy data
in standard classification (particularly with class noise [3,13]).
However, these methods may present problems with imbalanced
data [5], since they may recognize the examples belonging to the
minority class as noisy examples and therefore, these examples
may be removed from the data. In spite of that fact, since we relate
noise to the idea of errors, minority class examples are not
necessarily noisy if they are error-free.

2.2. Robustness measures

Noise hinders the knowledge extraction from the data and
spoils the models obtained using these noisy data when they are
compared to the models learned from clean data from the same
problem [27]. In this sense, robustness [9] is the capability of an
algorithm to build models that are insensitive to data corruptions
and suffer less from the impact of noise; that is, the more robust
an algorithm is, the more similar the models built from clean and
noisy data are. Thus, a classification algorithm is said to be more
robust than another if the former builds classifiers which are less
influenced by noise than the latter. Robustness is considered very
important when dealing with noisy data, because it allows one to
expect a priori the amount of variation of the learning method's
performance against noise with respect to the noiseless perfor-
mance in those cases where the characteristics of noise are
unknown. It is important to note that a higher robustness of a
classifier does not imply a good behavior of that classifier with
noisy data, since a good behavior implies a high robustness but
also a high performance without noise.

In the literature, the measures that are used to analyze the
degree of robustness of the classifiers in the presence of noise
compare the performance of the classifiers learned with the
original (without controlled noise) data set with the performance
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of the classifiers learned using a noisy version of that data set.
Therefore, those classifiers learned from noisy data sets that are
more similar (in terms of results) to the noise-free classifiers will
be the most robust ones. To the best of our knowledge, the
robustness-based measures found in the literature are the two
following:

1. The robustness measure proposed in [12] considers the perfor-
mance of Bayesian Decision rule as a reference, which is
considered as the classifier providing the minimal risk when
the training data are not corrupted. Concretely, the next
expression is used
BRM, = u %))

E

where E,, is the risk (that we will understand as the classifica-
tion error rate in our case) of the classifier at a noise level x%
and E is the risk of the Bayesian Decision rule without noise.
This classifier is a theoretical decision rule, that is, it is not
learned from the data, which depends on the data generating
process. Its error rate is by definition the minimum expected
error that can be achieved by any decision rule.

2. The Relative Loss of Accuracy (RLA) is the robustness measure
employed in [20] and was defined as

Aoy, —Ax,
Ao,

where Ay, is the accuracy of the classifier with a noise level 0%,
and Ay, is the accuracy of the classifier with a noise level x%.
RLA evaluates the robustness as the loss of accuracy with
respect to the case without noise Ag,, weighted by this value
Agv,. This measure has two clear advantages: (i) it is simple and
interpretable and (ii) to the same values of loss Agy, —Axv, the
methods having a higher value of accuracy without noise Ay,
will have a lower RLA value.

RLAy, = (2)

In the next section, some shortcomings of these measures are
explained.

3. The Equalized Loss of Accuracy measure

This section discusses the problems of the existing robustness-
based measures as indicators of the behavior of a classifier with
noisy data (Section 3.1) and the necessity of combining the
robustness and the performance of the classifier (Section 3.2).
Finally, we present the ELA measure as our proposal (Section 3.3).

3.1. Problems of the existing robustness measures

Even though the robustness-based measures presented in the
above section let us to evaluate the higher or lower robustness of
the classifiers, they have a series of important disadvantages
which do not make their usage recommendable. In [11] two main
points that a robust algorithm must satisfied are established:

1. It must have a good performance without noise.

2. When the noise level is increased, it must suffer a low loss if
the noise level is low and the performance must not be
drastically deteriorated when the noise level is high.

The measure proposed in [12] (Eq. (1)) considers these two points,
even though it has a clear disadvantage: it is based on a theoretical
model. Thus, the quality of the performance without noise is deter-
mined with respect to that of the optimal Bayesian classifier for the
data. This optimal performance can be rarely computed since it is
typically characterized by probability distributions on the input/output

space, which are intrinsic to the data set and are rarely known. The
estimation of these distributions from the data generally requires the
choice of a known probability distribution that could not properly
represent the characteristics of the data. For this reason this measure is
not feasible for practical cases, where mixed data and computation
time bound the obtention of the Bayesian classifier.

On the other hand, the RLA measure (Eq. (2)) has several points
considered as drawbacks:

® From the two points implied in the definition of a robust
algorithm given above, point 1, that is, the necessity to have a
good initial performance Ap%, has a very low influence in the
RLA equation; being point 2 the main aspect computed by it.

® (lassifiers obtaining a poor generalization from the training
data without noise, that is, those in which Agq, is low, are
usually affected in a lower degree by the presence of noise
(their RLA value is therefore lower) than classifiers with a high
Ag,. In these cases, the lower loss of accuracy is not due to the
better capability of the algorithm to get adapted to noise but for
their inability to successfully model the data and for creating
too general models that are little affected by noise.

® The RLA values do not represent the behavior against noise.
For example, consider a random classifier in a balanced data
set with Agy, =50%. This classifier may maintain an accuracy
Ay, =50% for different noise levels x% implying a robustness
RLAy, = 0. On the other hand, a classifier with a higher starting
accuracy suffering from a very low loss of accuracy when noise
level increases has higher RLA values always RLA,, > 0, and
then it is less robust, even though its behavior with noisy data
is better.

® The RLA measure presents problems if Ay, is higher than the
base accuracy Agy,, obtaining negative numbers of RLA. This fact
is more frequent with classifiers with a low base accuracy Agy,,
whereas it is more rare with a good classifier with a high base
accuracy Agy,. These low negative values are interpreted as an
excellent robustness, but they denote a very bad working of the
classifier without noise.

Apart from the aforementioned problems, the main drawback
of the RLA measure is that it assumes that both methods have the
same robustness (RLAg, =0) in the case without controlled noise
x=0%. However, the information of the robustness without
controlled noise must be also taken into account. If we are
interested in analyzing only a single classifier, the RLA measure
may suffice, but it fails when comparing two different methods
when their performance without noise are different as important
information is being ignored. RLA analyzes the robustness in the
classic sense of variation with respect to the case without noise
and thus the problem of knowing which methods will behave
better with noisy data is considered partially. Therefore, it seems
necessary to somehow combine the robustness in the sense of
performance variation (as RLA makes) with the behavior without
noise as it is performed in [12], but determining the quality of that
initial accuracy without depending of the results of any external
nor theoretical classifier.

3.2. Combining performance and robustness

As we have commented above, focusing only in the robustness,
such as RLA makes it, in order to determine the behavior of several
methods against noise is a partial way to address the problem.
Thus, it is also important to properly consider the performance of
these methods without noise. For example, consider a classifier C;
that is only slightly affected by the noise and another classifier C,
that is affected by the noise in a higher degree. If we ignore the



JA. Sdez et al. /| Neurocomputing 176 (2016) 26-35 29

initial accuracy Ag, of both methods without noise, the following
two cases can be produced:

® [f both methods C; and C, obtain two high and similar
performances without noise, we would probably choose C; as
the more robust method as it probably outperforms the
method C, so far when we deal with new noisy data sets.

® |f the performance of C; is significantly lower than that of G,
without noise, then the method C; could be expected to be
more accurate than the method C; when noise appears thanks
to C's initial good behavior in spite of having a higher
degradation of performance.

If we consider the usage of RLA, the second case would be
incorrectly described. Furthermore, with the RLA measure, bad
classifiers will have less probability to deteriorate their results to
the same scale that a good classifier (they could indeed improve
their results in an extreme case) when noise is introduced. Finally,
in order to better understand the importance of the initial
performance (Ap), consider how the RLA measure is defined for
the limits of the initial performance Aq. For a classifier C; with
initial performance Ap=1, the only possible variation when
introducing noise is that the classifier to be hindered as Ay < Ao.
However, for another classifier C; with an very low initial accuracy
Ao ~ 0 the opposite may occur, being probably Ay > Ag. Therefore,
we will obtain that RLA(C;) < RLA(C;). That would mean that the
worst imaginable classifier behaves better with noise than the
almost perfect classifier.

3.3. The ELA measure

In order to overcome the problems mentioned in the above
sections, we propose a correction of the RLA measure inspired in
the measure proposed in [12]. The new measure is

100— Ay
ELAg, =~ . 3)
0%
Using a pessimistic approach comparing to the perfect classifier
instead of the optimal theoretical Bayesian classifier, it is possible
to derive the expression mentioned as

_ ]OO—AX_]OO—Ax+A0—A0_A0—AX 100—A0
ELAw. = A Ao “TA A
= RLAx, +f(Ao) @

Therefore, ELA combines the robustness computed by RLA and
a factor depending on the initial accuracy Ap (f(Ap) in Eq. (4).
Please, note that this factor f(Ap) is precisely ELAq,, that is,
f(Ap) =ELAy), = (100—Ag)/Ap. Therefore, if we define ELAy, as a
measure of behavior with noise at a given noise level x%, then
ELAy, is based on:

® The robustness of the method, that is, the loss of performance
at a controlled noise level x% (RLAy, ).

® The behavior with noise for the clean data, that is, without
controlled noise (ELAgs, ).

Fig. 1 shows a graphical representation of the RLA and ELA
measures. Both of them are functions of two variables: the
performance without noise (Ag,) and the performance at a noise
level x% (Ax). Therefore, they require a 3-dimensional represen-
tation. For each pair of values of Aq% and Ay, a value of either RLA
or ELA is obtained (in the vertical axis z). In these figures, several
similarities and differences among the two metrics (RLA and ELA)
can be appreciated. First of all, both metrics have similar values
when Agy, is high. However, they diverge along with the decre-
ment of Ay, (even though both RLA and ELA have higher values

when Ay, is lower and lower values when Ay, is higher). This
divergence is produced thanks to the correction obtained by
considering the initial accuracy without noise in the ELA measure
and it is essential to overcome the limitations of RLA.

The ELA measure changes the initial reference Ag, of the RLA
measure by a constant value. As expressed by the BRM measure,
the constant value should be the best attainable accuracy value,
and as proposes BRM the optimal Bayesian Decision Rule should
be used to obtain a theoretical best accuracy value based on the
joint underlying distributions of the data set. However, and as we
have previously stated, this optimal value is rarely known. For this
reason we choose an upper bound to this unknown in practice
optimal Bayesian classifier's accuracy instead. The safer and most
pessimistic value used for Ag is fixed to 100% considering it as the
accuracy of a perfect classifier. In this way, the loss of accuracy
respect to the perfect classifier is weighted by the base accuracy
Agv,. As a result when taking into account the same loss of accuracy
100 - Ay, the classifier with better value of base accuracy Agy, is
considered to have a better behavior against noise.

This measure used to evaluate the behavior of a classifier with
noisy data overcomes some problems of the RLA measure:

1. It takes into account the noiseless performance Ag, when
considering which classifier is more appropriate with noisy
data. This fact makes ELA more suitable to compare the
behavior against noise between 2 different classifiers. We must
take into account that a benchmark data set might contain
implicit and not controlled noise with a noise level x = 0%.

2. A classifier with a low base accuracy Ay, that is not deterio-
rated at higher noise levels Ay, is not better than another better
classifier suffering from a low loss of accuracy when the noise
level is increased.

Table 1 shows four simple examples that extend the aforemen-
tioned ideas about RLA and ELA. These examples describe the
possible problems caused by RLA and how they are solved by the
ELA measure. In these examples, we consider a classifier C; with a
good initial performance without noise and a classifier C; with a
worse performance without noise. Each one of the four toy
examples is composed of three different scenarios describing it
(one scenario per row), where the performances of the two
classifiers C; and C, without noise (Agy,) and with a noise level
X% (Axs) are used to compute the RLA and ELA metrics. For a
graphical representation of the performance of these two classi-
fiers of each one of the toy examples shadowed in this table see
Fig. 2. In the following we describe the studied scenarios along
with the four examples:

Example 1. C; and G, are equally hindered when the noise is
introduced.

In this case, C; is always more robust than C, with both
measures (RLA and ELA). To the same amount of loss of accuracy,
both ELA and RLA give more importance to the method with a
higher performance (C;). However, ELA makes more remarkable
the difference between C; and G, since it takes into account the
performance without noise (Agy,) and the loss of accuracy (Ax).
This information shows that is much probably that C; behaves well
with noisy data considering ELA, whereas with RLA the differences
would be much lower.

Furthermore, it is important to note that, when the perfor-
mance of both classifiers without and with noise do not vary, RLA
gives the same importance to both of them, but ELA clearly
establishes C; as that classifier with the best behavior with noisy
data (and this fact fits more to the desirable answer than that
provided by RLA).
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Fig. 1. Representations of the RLA and ELA metrics. The vertical axis represents the value of each metric. (a) RLAyy,. (b) ELAy,. (¢) RLAyy, VS ELAyy,.

Table 1
Four different illustrative toy examples comparing RLA versus ELA.

Classifier C;

Classifier C,

Example Ao Ax, RLA ELA Ao A RLA ELA
Example 1 100 100 0 0 50 50 0 1

100 96 0.04 0.04 50 46 0.08 1.08
Fig. 2(a) 100 92 0.08 0.08 50 42 0.16 116
Example 2 100 100 0 0 50 50 0 1

100 96 0.04 0.04 50 48 0.04 1.04
Fig. 2(b) 100 92 0.08 0.08 50 46 0.08 1.08
Example 3 80 80 0 0.25 30 30 0 2.33

80 84 —0.05 0.2 30 34 -0.13 22
Fig. 2(c) 80 88 -01 0.15 30 38 —0.27 2.07
Example 4 100 100 0 0 50 50 0 1

100 99.996 0.00004 0.00004 50 50.004 —0.00008 0.99992
Fig. 2(d) 100 99.992 0.00008 0.00008 50 50.008 —0.00016 0.99984

Example 2. C; and C, are hindered when the noise is introduced
but both have the same RLA values.

In this case, even though the classifier G, is equally robust than
C4, G, obviously is not better than C; and ELA is able to reflect this
issue. This situation (to a same RLA value equal to 0) also occurs if
the classifiers do not alter their performance when the noise is
introduced: from Ag., =100 to Ay, =100, then ELA(C;)=0, whereas
from Agy, =50 to Ay, =50, ELA(C;)=1, so C; will behave better with
noisy data than G,.

Example 3. C; and C; are benefited when the noise is introduced.

In this rare case, both methods gain the same amount of
performance when the noise is introduced. RLA shows that
method C,, which has a very poor performance, is more robust
than the method C;. ELA solves this problem and shows that the

classifier C; has a better behavior with noisy data than the
classifier C.

Example 4. C; is slightly affected by the noise whereas C, is
slightly benefited by the noise.

This case clearly shows that RLA does not take into account the
initial accuracy. Again, the classifier C, is more robust with RLA,
whereas it clearly behaves worse with the ELA measure.

4. Experimental framework

In this section, we present the details of the experimentation
developed in this paper. We first show how to build the noisy data
sets in Section 4.1. Then, Section 4.2 indicates the classification
methods used and their parameters. Finally, Section 4.3 establishes
the analysis methodology carried out.
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Fig. 2. Graphical representation of the performance of the two classifiers C; and C; of four different illustrative toy examples shadowed in Table 1. Each graphic shows the
performance of C; and C, without noise (Agy,) and with a noise level x% (A ). Classifier C; is represented with a continuous line (—) and Classifier G, is represented with a

dashed line (— — —). (a) Example 1. (b) Example 2. (c) Example 3. (d) Example 4.

4.1. Data sets

The experimentation has been based on 32 data sets taken
from the KEEL-dataset repository’ [2]. Table 2 summarizes the
properties of the originally selected data sets. For each data set, the
number of examples (#EX), the number of attributes, differentiat-
ing between numeric and nominal attributes (#AT (Numeric/
Nominal)) and the number of classes (#CL) are presented. The
percentage of examples of the class with the lowest number of
examples (%Min) and the class with the highest number of
examples (%Maj) are also shown.

In order to control the noise level in the existing data, we use a
manual mechanism to add noise into each training data set. Thus,
we have considered the introduction of class noise following the
scheme proposed in [27,21]. This scheme, also known as random
class noise scheme, introduces a noise level x% into a data set by
randomly changing the class labels of exactly x% of the examples
by other one out of the other classes.

The accuracy estimation of each classifier is obtained by means
of 5 runs of a stratified 5-fold cross-validation. The data set is
divided into 5 partition sets with equal numbers of instances and
maintaining the proportion between classes in each fold. Each
partition set is used as a test for the classifier learned from the four
remaining partitions. This procedure is repeated 5 times.

4.2. Parameters

Two learning algorithms have been chosen to be used in this
paper: C4.5 [17] and SVM [7]. This choice is based on their good
behavior in a large number of real-world problems; moreover,
they were selected because these methods have a highly differ-
entiated and well known noise-robustness. In the following, their
noise-tolerance is described along with the parameter configura-
tion used for the experimentation:

® (4.5 decision tree generator [17]: C4.5 is considered a robust

learner, which uses pruning strategies to reduce the chances of
classifiers being affected by noisy examples [16]. The parameter

1 http://www.keel.es/datasets.php

setup for C4.5 used in this paper is the following: confidence
level (0.25), minimal instances per leaf (2) and prune after the
tree building.

® Support Vector Machine [7]: Since SVM relies on the support
vectors (that are training examples lying near the separating
hyperplane) to derive the decision model, this can be easily
altered including or excluding a single noisy example [15]. Thus,
SVM should a priori be more noise-sensitive than C4.5. The
parameter setup for SVM used in this paper is the following:
type of Kernel (Puk with 6 =1, @ =1), cost (C=100), tolerance
(0.001) and parameter for the round-off error (e =10712).

4.3. Methodology of analysis

The experimental analysis of the capabilities of the ELA
measure will be based on a complete case of study which involves
the two aforementioned classification algorithms with a different
noise tolerance: the noise-robust algorithm C4.5 and the noise-
sensitive method SVM. These methods will be tested over the 32
base data sets without noise, that is x = 0%, and another 32 noisy
data sets with the noise level x = 10%, which will be created with
the random class noise scheme. All the data sets created can be
found on the web-page associated with this paper.

The classification accuracy of C4.5 and SVM will be computed
on the 64 data sets (without and with noise), along with their
corresponding ELA and RLA results for the noise level 10%. Please
note that it is not our intention to establish the most robust
method between C4.5 and SVM, but to provide an ample and
varied test bed where the two methods' behavior will help us to
show the benefits of ELA measure against RLA. Because of this, our
analysis will be based on studying the similarities and differences
between the evaluations of ELA and RLA on the behavior with
noise of each classification algorithm with each data set.

5. Benefits of ELA against other robustness metrics: a case of
study

In this section we focus on the analysis of the behavior of the
classifiers to study (C4.5 and SVM) when training with noisy data


http://www.keel.es/datasets.php
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Table 2
Base data sets used in the experimentation.

Data set #EX #AT #CL %Min %Maj Data set #EX #AT #CL %Min %Maj
automobile 159 25(15/10) 6 1.89 30.19 magic 19 020 10(10/0) 2 35.16 64.84
balance 625 4(4/0) 3 7.84 46.08 monk 432 6(6/0) 2 47.22 52.78
banana 5300 2(2/0) 2 44.83 5517 new-thyroid 215 5(5/0) 3 13.95 69.77
car 1728 6(0/6) 4 3.76 70.02 phoneme 5404 5(5/0) 2 29.35 70.65
cleveland 297 13(13/0) 5 4.38 53.87 pima 768 8(8/0) 2 34.90 65.10
contraceptive 1473 9(9/0) 3 22.61 42.70 ring 7400 20(20/0) 2 49.51 50.49
dermatology 358 33(1/32) 6 5.59 31.01 segment 2310 19(19/0) 7 14.29 14.29
ecoli 336 7(7/0) 8 0.60 42.56 sonar 208 60(60/0) 2 46.63 53.37
flare 1066 11(0/11) 6 4.03 31.05 spambase 4597 57(57/0) 2 39.42 60.58
german 1000 20(13/7) 2 30.00 70.00 twonorm 7400 20(20/0) 2 49.96 50.04
glass 214 9(9/0) 7 4.21 35.51 vehicle 846 18(18/0) 4 23.52 25.77
hayes-roth 160 4(4/0) 3 22.73 38.64 vowel 990 13(13/0) 11 9.09 9.09
heart 270 13(13/0) 2 44.44 55.56 wdbc 569 30(30/0) 2 37.26 62.74
ionosphere 351 33(33/0) 2 35.90 64.10 wine 178 13(13/0) 3 26.97 39.89
iris 150 4(4/0) 3 33.33 33.33 yeast 1484 8(8/0) 10 0.34 31.20
lymphography 148 18(3/15) 4 1.35 54.73 Z00 101 16(0/16) 7 3.96 40.59

considering the usage of the ELA and RLA measures. As we cannot
know the probability distribution of the benchmark data sets, we
cannot use BRM as a comparison measure. Table 3 shows the
performance results of C4.5 and SVM for all the data sets
considered in this paper (at the noise levels 0% and 10% as
indicated in Section 4.3), and their ELA and RLA results. From this
case of study, several observations can be appreciated, which can
be grouped into two main parts: global results (including the
average and best rows in Table 3) and the individual results for
each data set. These remarks on the results presented in this table
will be focused on the similarities and differences between RLA
and ELA, attending to the problems of RLA and how ELA can
solve them.

Analysis of the global results: This part of the analysis compares
the average results for both C4.5 and SVM across all the data sets, by
using the performance and those average results of the ELA and RLA
metrics, and the number of data sets where each classifier is the best.

Regarding the performance results, SVM has a better perfor-
mance without noise than C4.5, obtaining an average performance
of 82.24 versus a 81.28 of C4.5. Furthermore, SVM is also better in
more data sets than C4.5, concretely in 20 of the 32 data sets. The
situation reverses when noise is considered, and C4.5 obtains a
better average performance (80.37 versus 78.50 of SVM) and the
same number of data sets in which each classifier is the best (16
data sets in total). Note that these results without and with noise
are consistent with the expected behavior of both classifiers.

Since the results of SVM for many of the data sets drop in an
higher degree than those of C4.5, their average RLA value is
therefore higher than that of C4.5 (0.0457 versus 0.0115). Thus,
SVM is clearly less robust considering this metric. The average of
the ELA measure also offers the same final result, showing to C4.5
as the method that globally behaves better with noisy data. These
average results of both ELA and RLA are again in concordance with
the expected behavior of the two implied classifiers, since we
knew that C4.5 could probably have a better behavior with noise
than SVM due to the punning mechanism.

However, as the accuracy of SVM is notably better than that of
C4.5 without noise, the number of data sets in which each method
is the best considering ELA is not so clear in favor of C4.5 like that
of RLA. This fact is due to ELA which considers the initial
performance without noise, but it is not taken into account by
RLA, that only considers the percentage variation of the perfor-
mances with and without noise.

These global results highlights that ELA does not only use the
loss of performance to evaluate the behavior with noisy data as
RLA makes, but also the performance without noise, that must be

considered to obtain a good evaluation metric of the behavior
against noise as we have previously commented in Section 3.

Analysis of the individual results for each data set: Even though
the aforementioned average results give an idea of how ELA and
RLA work, it is interesting to observe their results in each single
data set to better understand the differences and coincidences
between both metrics depending on the behavior of the classifiers.
In order to properly analyze these results, we categorize them into
two different groups - a group devoted to those data sets in which
the evaluation of ELA and RLA agrees and another for those data
sets in which this evaluation is different:

1. ELA and RIA predict the same classifier with the best behavior: In this
case, it is important to note that, even though both metrics
provide the same final result, the difference in these values for
each classifier could be very different depending on the drop in
performance with noise but also on the performance without
noise (when ELA is considered). We can differentiate three
scenarios within this case:

e One of the classifiers is better than the other one with and
without noise and both of them are deteriorated from the effect
of noise. There are some data sets (such as autos and wine) in
which both methods have a remarkable and similar loss of
performance, whereas in other data (such as banana, dermatol-
ogy, heart, phoneme and twonorm) this loss of performance is
very low. In all these data sets, SVM has always a better
performance than C4.5. However, there are also other data sets,
in which C4.5 has the best performance and its loss of accuracy
is also lower than that of SVM, see for example car, iris, pima,
zoo and monk-2. In these data sets the method with the best
performance is chosen by ELA and RLA as that behaving best
with noise.

e One of the classifiers improves and the other deteriorates its
accuracy without noise when noise is considered. All these
data sets are characterized by C4.5 being the method that
behaves best with noisy data. For example, in the cleveland
data set, both classifiers have a low accuracy without noise
(being SVM worse without noise and deteriorating its
accuracy, whereas C4.5 improves in presence of noise). The
same situation occurs with ecoli and hayes-roth, even
though the initial performance is higher than with cleveland.

o One of the classifiers has a better performance without noise, but it
suffers a very high drop in performance with noise and finally it
has a worse performance in the noisy data set. SVM is usually
this classifier with a better performance without noise but it
is more affected in the noisy version of the data set (see, for
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Performance results for C4.5 and SVM at 0% and 10% of class noise level, and their ELA and RLA results at 10% for all the data sets considered. Best results are remarked in
bold. Those data sets where ELA and RLA predict a different classifier with the best behavior against noise (in which the result of RLA is not appropriate) are shadowed

in gray.
Measure Performance ELA RLA
Noise level 0% 10% 10% 10%
Data set C4.5 SVM C4.5 SVM C4.5 SVM C4.5 SVM
autos 7710 69.29 73.56 64.50 0.3429 0.5123 0.0459 0.0691
balance 77.73 89.09 78.27 81.50 0.2796 0.2077 —0.0069 0.0852
banana 88.98 90.28 88.96 90.27 0.1241 0.1078 0.0002 0.0001
car 91.33 64.83 90.20 60.68 0.1073 0.6065 0.0124 0.0640
cleveland 51.58 45.85 52.26 4147 0.9256 1.2766 —-0.0132 0.0955
contraceptive 5214 47.56 50.52 46.80 0.9490 1.1186 0.0311 0.0160
dermatology 93.91 96.92 93.02 96.59 0.0743 0.0352 0.0095 0.0034
ecoli 79.05 78.11 79.29 67.81 0.2620 0.4121 —0.0030 0.1319
flare 73.86 70.34 7415 71.82 0.3500 0.4006 —0.0039 —0.0210
german 71.54 66.44 71.02 66.42 0.4051 0.5054 0.0073 0.0003
glass 66.07 71.40 64.46 65.22 0.5379 0.4871 0.0244 0.0866
hayes-roth 81.67 77.87 82.87 74.55 0.2097 0.3268 —0.0147 0.0426
heart 77.11 78.52 76.22 77.93 0.3084 0.2811 0.0115 0.0075
ionosphere 89.34 91.91 87.52 81.72 0.1397 0.1989 0.0204 0.1109
iris 95.07 94.53 94.13 87.20 0.0617 0.1354 0.0099 0.0775
lymphography 76.88 80.82 7731 80.96 0.2951 0.2356 —0.0056 —0.0017
magic 85.10 87.18 84.69 86.57 0.1799 0.1540 0.0048 0.0070
monk-2 100.00 96.25 100.00 91.62 0.0000 0.0871 0.0000 0.0481
newthyroid 92.84 95.81 91.53 92.65 0.0912 0.0767 0.0141 0.0330
phoneme 85.88 87.18 84.76 86.66 0.1775 0.1530 0.0130 0.0060
pima 73.99 69.74 73.15 67.37 0.3629 0.4679 0.0114 0.0340
ring 90.06 97.09 88.72 91.54 0.1252 0.0871 0.0149 0.0572
segment 96.35 97.28 95.19 90.23 0.0499 0.1004 0.0120 0.0725
sonar 72.50 86.63 73.36 85.94 0.3674 0.1623 —0.0119 0.0080
spambase 92.57 93.57 91.32 91.20 0.0938 0.0940 0.0135 0.0253
twonorm 84.82 97.35 83.86 96.31 0.1903 0.0379 0.0113 0.0107
vehicle 71.04 80.69 68.91 74.75 0.4376 0.3129 0.0300 0.0736
vowel 78.59 99.33 74.91 8711 0.3193 0.1298 0.0468 0.1230
wdbc 93.64 9441 92.79 91.07 0.0770 0.0946 0.0091 0.0354
wine 92.23 97.30 89.75 95.95 0.1111 0.0416 0.0269 0.0139
yeast 55.54 57.44 53.34 54.39 0.8401 0.7940 0.0396 0.0531
Z00 92.29 80.64 91.70 73.08 0.0899 0.3338 0.0064 0.0938
average 81.28 82.24 80.37 78.50 0.2777 0.3117 0.0115 0.0457
best 12 20 16 16 16 16 23 9

example, the ionosphere, segment, spambase and wdbc
data sets).

2. ELA and RILA predict a different classifier with the best behavior.

This case is perhaps more interesting than that of above since
each one of the metrics give more importance to a different
classifier with noisy data. Thus, we can clearly check the
differences between ELA and RLA. We differentiate two scenar-
ios within this case:

e One or both classifiers improve in presence of noise. Note that
all the data sets under these circumstances are character-
ized by ELA giving a higher importance to SVM (the method
with the best performance without noise), whereas RLA
highlights C4.5 (the method that usually has a lower
performance without noise but having a higher improve-
ment when noise is considered). For example, with balance
and sonar, even though C4.5 slightly improves with noisy
data whereas SVM has a higher drop in performance, the
latter is notably better than C4.5 without and with noise in
terms of performance. With other data sets, such as flare
and lymphography, both classifiers improve their results
when noise is considered. In these cases, even though
RLA gives more importance to the method with an higher
improvement in performance, the other method has
remarkable better results without noise, and this fact is also
considered by ELA.

e Both classifiers deteriorate their performance when consider-
ing noise. Some data sets (such as vehicle, ring, newtiroid,

vowel. magic or yeast) are characterized by SVM being more
deteriorated than C4.5 by the noise, but also having a higher
performance without noise. Thus, RLA highlights C4.5 in this
cases, whereas ELA also considered the importance of the
higher performance of SVM estimating that it behaves
better with noisy data. The opposite fact occurs with the
german data set, where C4.5 and SVM interchange their
behaviors. With the glass data set, although SVM is more
affected than C4.5 by the presence of noise, it obtains a
notable higher accuracy without noise. Thus, ELA establishes
SVM as the method with the best behavior with noisy data
since it valorizes more than RLA the initial accuracy
(although the ELA value of SVM is very similar to that of
C4.5), whereas RLA establishes C4.5 as the best method
based on the higher drop in performance of SVM.

Another case is that of the contraceptive data set, where the
two classifiers obtain a very low accuracy without noise
(SVM is indeed worse than C4.5, having a performance
lower than 50%). This particular case shows that RLA favors
those algorithms with lower classification performances
without noise when the loss of performance of the classi-
fiers are comparable (although not equal), whereas ELA
does not harm so much the methods with higher perf-
ormances.

Individual results for each data set again emphasize that RLA is

only based on the percentage drop in performance, giving no
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chance, for example, to those methods that experiment an higher
drop but having a very high performance without noise (being
competitive enough when the noise is considered). In contrast,
ELA takes into account both factors, making its usage overcoming
some of the problems of the RLA measure.

6. Concluding remarks

Performance and robustness are two independent concepts
that imply different conclusions. Considering both concepts
together seems to be crucial in order determine the expected
behavior of the classifiers against noise. Existing measures par-
tially consider these aspects, and their values for different classi-
fiers cannot be compared, making a comparative analysis of
different classifiers with noise almost impossible. Therefore, a
new measure is proposed to know the expected behavior of a
classifier with noisy data, the ELA measure, which tries to over-
come these problems of the existing robustness-based metrics.

In order to check the suitability of our proposal, we have
analyzed the existing robustness measures pointing out their main
drawbacks and how ELA can solve them. We have provided a
variety of practical examples supporting our analysis. In order to
complete this analysis, we have experimentally compared the ELA
and RLA measures over real data, showing that the evaluation of
the ELA and RLA metrics agree in some cases, but in other cases
the behavior of the RLA is not appropriate since it is only based on
the percentage variation of the performance without and with
noise. Thus, ELA has shown being able to overcome the short-
comings that RLA produces and it is particularly useful when
comparing different classifiers over the same data set, a scenario in
which RLA usually does not behave as expected.
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