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1 Introduction

Strategic management requires special economic and marketing planning, offering

the ability to comprehend and anticipate the effects of complex dynamic interactions

between a firm and their business environments and stakeholders. This is therefore

a complex social system that requires understanding emergent patterns and their

systemic implications (Bonabeau 2002; Dickson et al. 2001). A concrete example of

this strategic problem is the brand value management, where decision makers must

consider the outcome of their investments to make a sustainable and differential

advantage relative to their competitors (Aaker 1996).

Building a business dynamic model that lays out the critical resources of the

scenario and the key relationships between them offers a competitive gain for

decision makers. This kind of modelling also provides a way to carry out simulations

and understand the effects of the different policies. Among other methodologies,

system dynamics (SD) (Forrester 1961; Sterman 2000) presents a theoretical

framework with a set of tools and techniques for developing mathematical models

of complex systems for social and economic scenarios.

The SD methodology is particularly useful in systems with many interrelated

variables, where relevant data to build the system is not always available. SD offers
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the opportunity to simulate a problem by investigating its results and behaviour,

making the framework useful for policy testing, what-if scenarios, or policy

optimization.

The set of applications of SD is enormous (O’Regan and Moles 2006; Winz et al.

2009). Besides, it has played an important role for a systemic view of management

issues (Warren 2005) and marketing applications. The application of SD for brand

management assists marketing experts in understanding how different factors affect

the value of a particular brand, how costumers react to a brand in terms of loyalty and

equity, the influence of email marketing campaigns, or the effects of implementing

innovation policies in organizational policies (Mukherjee and Roy 2006; Richardson

and Otto 2008).

However, it is sometimes difficult to identify key variables in dense or large

problems modelled by SD. These key variables are those able to generate significant

changes in the whole system. This descriptive information of the system is vital

for modellers since they can apply strategic actions over those variables (in a

direct or indirect way) and focus their what-if scenarios. The identification of

these key variables is also useful for understanding the dynamics of the model

and for validation purposes, given that key variables might constitute an additional

boundary adequacy and structure verification test for the model (Oliva 2003; Qudrat-

Ullah 2012).

The main focus of the current paper is how to detect which variables of a SD

model constitute the set of key variables. Our proposal is to first compute a quality

metric for every variable of the graph structure of the model. These values indicate

the importance role of each variable with respect to the whole structure of the model.

Then, we rank model’s variables according to this metric, suggesting those that yield

better values.

Hence, our proposed quality metric is founded on network-based properties

of the model structure and is therefore applied on the whole SD graph. The

computation of the metric is based in turn on the scope and closeness of an agent

within a social network, which are well known metrics in social network analysis

(SNA) (Carrington et al. 2010; de Nooy et al. 2005; Oliveira and Gama 2012).

We have modelled and simulated a TV show brand management problem to

validate the application of our key variable detection algorithm. This systemic

abstraction is based on an existing work that analyzes the Indian version of “Who

wants to be a millionaire” (Mukherjee and Roy 2006). We have followed Vester’s

sensitivity model (Vester 1988, 2007) to shape the system dynamics and structure.

This SD methodology is convenient for sustainable processes and enables analysts

to simplify the real world complexity into a simulation and consensus system. After

applying the algorithm and extracting the key variables of the model structure we

run different simulations to compare the global impact of injecting strategic actions

just over top-ranked key variables.

The rest of the paper is structured as follows. In Sect. 2 we study the background

and describe the SD modelling and social networks metrics of our proposal. Then,

Sect. 3 contains the analysis of results and simulation graphs of the key variables
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detection for the TV show case. Finally, we present some concluding remarks in

section Concluding Remarks.

2 Methods

2.1 System Dynamics for Modelling Complex Marketing

Systems

There are different methodologies and tools for system dynamics modelling. For

our work we follows the sensitivity model proposed by Vester (1988, 2007) which

offers a semi-quantitative SD modelling tool based on systems thinking and fuzzy

logic (Zadeh 1975). It has been applied to different fields of research, environmental

and risk management, and tourism (Huang et al. 2009; Meyer-Cech and Berger

2009; Schianetz and Kavanagh 2008). The main advantages of this approach are

the ease of use and the employ of feedback analysis as the core component of the

modelling process.

There are nine steps in sensitivity modelling. These include system description,

set of variables, criteria matrix, impact matrix, systemic role, effect system, partial

scenarios, simulation and cybernetic evaluation. They can be categorized into three

phases (see Fig. 1). The first phase begins with a general system description and the

Fig. 1 The main steps of the sensitivity model methodology (Huang et al. 2009)
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identification of influential factors for system development. In the second phase

there is an analysis of the magnitude of the cause-effect relations between the

variables and to identify their functional roles in the system (model structure).

Simulation and cybernetic evaluation of phase 3 are based on the framework of

the effect system and the positive and negative feedback relationships. The partial

scenario of the focus issue can be simulated to observe the dynamics and inter-

relationships among variables.

One of the major components of this SD methodology is the feedback loops that

embody the information feedback structure of the system. Feedbacks are defined by

the effects among the variables of the system. An effect between two variables can

be direct or inverse. The effects, in conjunction with the variables, form the graph

structure of the system. See Fig. 2 for a structure example of the case study of this

work.

The simulation results arise from this interaction among feedback loops. Feed-

backs are of two types: mitigating (an initial change in one variable of the loop will

finally change the variable in the opposite direction, balancing the initial change)

and reinforcing (where the initial change will be reinforced through the feedback

process).

Fig. 2 System model structure for TV show case study
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For this work, we extend the original SD methodology to tackle economical and

marketing problems as ours. Therefore, the modeller can also define the details of

effects (delay, intensity, and values of change) and variables (initial and optimum

value, limits, blocked status, and randomness). In order to run simulations the model

allows the definition of the temporal horizon and different strategies to be applied

to some action variables to optimize the state variables of interest.

2.2 Use of Social Network Analysis for Key Variable Detection

We define the key variables of a system as those inherently relevant due to their

interconnection with others variables of that system. We consider that a key variable

is not required to be a good lever for defining specific actions, even when it plays an

important role in the development of the system.

Therefore, instead of focusing on specific simulation conditions for key variable

detection, we consider that it is more interesting to emphasize the intrinsic structure

of the network, which in fact represents the system dynamics through its effects.

This shall generate a more stable and general key variable set, suitable for a broader

range of configurations.

2.2.1 Social Network Centrality Metrics

Centrality metrics are typically applied in SNA, making intensive use of statistical

graph-based measures (Carrington et al. 2010; de Nooy et al. 2005; Oliveira and

Gama 2012). SNA distinguish two levels of analysis: individual units (variables,

actors, etc.) and whole network. In this paper, we focus on the former, given the

definition of key variables that we want to address, clearly oriented to explore the

role of each individual. Whole network indicators may be also helpful for obtaining

more condensed knowledge, although we do not cover them in detail for this work

due to length constraints.

Therefore individual SNA metrics can be adapted for our purposes, given that

they share a common objective of identifying key actors in a network. Globally,

these metrics are considered as a measure of centrality or prestige, in which the

most common (Bonacich 1987; Freeman 1979) are:

• Degree or valency: analyzes the immediate neighbourhood of each node and is

computed as the number of edges of the node. For directed graphs it is divided

into in-degree (input prestige or support) and out-degree (output prestige or

influence). Its biggest drawback is that it is a local measurement that does not

reflect the global structure of the network.

• Betweenness: measures the relevance in terms of the number of shortest paths

that go though the node, although it can be also computed for edges. Nodes (or

edges) with high betweenness are supposed to interact heavily in information
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flow and diffusion between communities (i.e., to play a strong brokerage in the

information diffusion process).

• Closeness: evaluates how fast a given individual can reach the whole network,

defined as the average length of all shortest paths with origin on the node. Its

main problem is that it is not defined for those cases where there exist pairs of

nodes that are not connected by any path.

• Eigenvector centrality: a re-elaboration of degree, which takes into account the

quality of first order connections. It is computed after assigning a relative score

to each node, measuring their connectivity with other well-connected nodes.

2.2.2 The Proposed Quality Metric

The reviewed metrics lack to take into account the number of reachable nodes,

which can be defined as its scope. The scope measures how many variables can

be reached directly or by transitivity. For instance, the standard closeness, defined

in the previous section, could be highly skewed. This is because variables with low

scope may show optimal values of closeness, while being poorly connected. In other

words, it is considered a local measure.

Therefore, we have adapted the original definition of closeness in order to take

into account the scope and the delay of each effect (weight of the edge in our model).

This proposal allows measuring both concepts jointly, considering on the one hand

the elasticity and penalizing on the other hand the absence of a path between nodes.

The new metric is termed elastic distance (ED) and is computed as the average

of the shortest weighted distances from the source variable to all other variables.

The distances to non-reachable ones are fixed with a sufficiently large value in

order to embody information about the scope of the variable under study, defined

as supreme-distance constant M :

ED.i/ D
1

n

nX

j D1

d.i; j /; 8i ¤ j; (1)

where d.i; j / D M when there is not any path between nodes i and j .

3 Experimentation Results for a TV Show Case Study

In this section we apply our proposed metric to a SD model adapted from the

original model of the Indian “Who wants to be a millionaire” TV show (Mukherjee

and Roy 2006). The graph of the model is presented in Fig. 2. Node colours depend

on current value of corresponding variables, while node diameter is defined in terms

of number of feedbacks in which the variable participates. The name, metric value
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Table 1 Metric values obtained for variables defined in TV show case study

ID Name Metric Description

12 Interest level 5:93 Perceived interest by show viewers. Equivalent to
brand equity defined by Aaker (1996)

2 Innovation 6:20 Action variable that allows influencing the system by
simulating novelties like special editions

7 Brand loyalty 6:33 State variable that measures actual viewers loyalty.
One of the measures of brand value defined by Aaker
(1996)

14 Actual viewers 6:47 Measures the success of the show in terms of total
number of viewers. Critical state variable

13 Host popularity 6:80 Current popularity of the person driving the show.
Reinforcing feedback cycle with interest level

1 Repetitiveness 6:87 Measures the degree of repetitiveness of the show. It
is directly influenced by episodes rate and innovation

9 Probability of joining 7:27 Probability of viewers joining in. It depends on inter-
est level and potential viewers

5 Episodes rate 7:40 Number of episodes per time unit. Too many episodes
affect negatively to repetitiveness and brand loyalty

6 Potential viewers 8:07 Available viewers that do not follow the show cur-
rently. Inversely related with actual viewers

10 Minimal promotion level 8:73 Minimum spending for promoting the show. This
variable tends to increase over time

11 Promotion effectiveness 8:87 Effectiveness of investment in promoting the show. It
acts directly over interest level

15 Channel popularity 9:47 Similar to host popularity, though less influenced by
show’s interest level

16 Competition 9:53 Amount of competing shows. Influenced by actual
viewers and influences brand loyalty

8 Promotion expenditure 10:73 Amount of money spent on promotional campaigns.
Influenced by advertisement revenue

3 Advertisement rate 13:60 Advertisement benefit per time unit. It is heavily
influenced by actual viewers

4 Advertisement revenue 13:67 Advertisement incomes per time unit. Closely related
with advertisement rate

and description of each variable is detailed in Table 1 (variable list is sorted in terms

of elastic distance).

3.1 Results of Key Variable Detection Algorithm

The two highest ranked variables are interest level (5.93) and innovation (6.20),

while variables with the lowest rank are advertisement rate (13.60) and advertise-

ment revenue (13.67). Given that our proposed metric is a weighted distance, this

ranking reflects the speed and scope of propagation of changes for each variable.
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Interest level is ranked first because it has many outgoing paths, spreading

changes over the rest of system variables very quickly. The case of innovation is

quite similar, because it allows a rapid access to core system variables, including

interest level.

Advertisement rate and advertisement revenue obtain bad ranks because they are

placed at the beginning of a long path, which implies a slower propagation over the

whole network.

3.2 Simulation Results Using the Set of Key Variables

In order to validate our proposed algorithm for key variable detection, we present

two simulation scenarios in Fig. 3. The idea is to test if there exists a significant

difference between acting over top ranked versus bottom ranked variables.

The system is initially configured to be in a relatively steady state, avoiding

strong trends that could clutter the interpretation of simulation results, with respect

to a simulation baseline. The simulation engine evolves all variables of the system

with a range that goes from 0 to 100, representing abstract values without specific

representation units.

We simulate two alternative strategies with two actions each. The first strategy

(Fig. 3, left graph) acts over the two lowest ranked variables, modifying their values

to optimum. We refer to this scenario as strategy L. The second one (Fig. 3, right

graph) applies the same change to optimum values over the two highest ranked

variables, referred as strategy H. Finally we also simulate the system without any

action, in order to measure the % of change of each variable with respect to baseline

simulation. All simulations are performed over a 1 year period.

Fig. 3 Evolution of the system when directly acting over the lowest ranked variables (strategy L,
left) and over the top key variables (strategy H, right)
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We analyze the obtained simulation results excluding actioned variables from

both strategies and measuring absolute changes with respect to baseline simulation.

We also define two basic metrics, total absolute distance (TAD):

TAD D

nX

iD1

jvi � v0

i j; (2)

and mean absolute distance (MAD):

MAD D
1

n

nX

iD1

jvi � v0

i jI (3)

where vi and v0

i represent the final value of variable i for simulated baseline and

strategy respectively.

Strategy L only affects 25 % of variables (3/12), obtaining a TAD of 15.6 and a

MAD of 1.3. On the other hand, strategy H produces changes in 67 % of variables

(8/12), with a TAD of 71.5 and a MAD of 6.

The highest change produced by strategy L is achieved over promotion expen-

diture, with a variation of 14.8 (out of 15.6 TAD). This is because it is the closest

variable on the main path that starts on actioned variables. In this simple case it may

seem obvious that the strategy is worthless, but at least the experiment succeeds in

validating that the algorithm is effectively detecting the less critical variables.

Strategy H achieves an outstanding improvement with respect to both the base-

line and strategy L. The strongest changes are produced over probability of watching

(19.8), host popularity (18.9), repetitiveness (16.7), and episodes rate (9.6). All of

these variables are in turn on the middle upper part of the ranking of key variables,

producing a snow ball effect that shall be more significant for longer simulations.

Concluding Remarks

A key variable detection algorithm to be applied over the structure of a SD

model was presented in this work. A quality metric is calculated for each

variable of the model to quantify its importance for changing the evolution

of the system. This metric is an extension of closeness, a widespread SNA

measure, that we use for ranking the set of variables of the model structure.

The results of the proposed detection algorithm can be an effective

validation test for the designed model. The set of key variables point out which

variables are prevailing in terms of the model structure. Hence, if the set does

not fit with the intended idea of the system, probably the design of the model

may require a revision.

We tackled a brand management problem for a TV show, modelling it by

SD and applying the key variable detection algorithm. Results showed how

(continued)
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variables interest level and innovation were the most important of the model

yielding a metric value of 5.93 and 6.20, respectively. Strategic actions were

applied to these variables to present the impact in the simulation results with

respect to a baseline simulation. Our experiments showed that acting over

these two key variables have a remarkable effect over system variables, with

an average improvement of 6 points (MAD metric) over system variables in 1

year. The same experiment but applied over the two lowest ranked variables

only produced an average deviation of 1.3 points (MAD metric).

Some future works arise from this contribution: (1) propose and evaluate

other quality metrics such as Local Clustering Coefficient (Watts and Strogatz

1998) or algorithms like Pagerank (Brin and Page 1998; Easley and Kleinberg

2010); (2) include additional measurements for providing complementary

information about the model structure; and (3) develop an optimization engine

for defining appropriate strategic actions in order to maximize profitability in

what-if scenarios.
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