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a b s t r a c t

One-vs-One strategy is a common and established technique in Machine Learning to deal with multi-
class classification problems. It consists of dividing the original multi-class problem into easier-to-solve
binary subproblems considering each possible pair of classes. Since several classifiers are learned, their
combination becomes crucial in order to predict the class of new instances. Due to the division
procedure a series of difficulties emerge at this stage, such as the non-competence problem. Each
classifier is learned using only the instances of its corresponding pair of classes, and hence, it is not
competent to classify instances belonging to the rest of the classes; nevertheless, at classification time all
the outputs of the classifiers are taken into account because the competence cannot be known a priori
(the classification problem would be solved). On this account, we develop a distance-based combination
strategy, which weights the competence of the outputs of the base classifiers depending on the closeness
of the query instance to each one of the classes. Our aim is to reduce the effect of the non-competent
classifiers, enhancing the results obtained by the state-of-the-art combinations for One-vs-One strategy.
We carry out a thorough experimental study, supported by the proper statistical analysis, showing that
the results obtained by the proposed method outperform, both in terms of accuracy and kappa
measures, the previous combinations for One-vs-One strategy.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Decomposition strategies [37] are commonly applied to deal
with classification problems with multiple classes [41,31]. They
allow the usage of binary classifiers in multi-class problems, but
they also ease the learning process following the divide-and-
conquer strategy. As a consequence of facilitating the learning
task, part of the difficulties are shifted to the combination stage,
where the classifiers learned to solve each binary problem should
be aggregated to output the final decision over the class label
[35,53]. Most of these strategies can be included within Error
Correcting Output Codes (ECOC) [13,4] framework. Among them,
One-vs-One (OVO) [32] scheme is one of the most popular
techniques, used in very well-known software tools such as WEKA
[25], LIBSVM [8] or KEEL [3] to model multi-class problems for
Support Vector Machines (SVMs) [50]. Its usage to deal with real-
world applications is also frequent, being a simple yet effective

way of overcoming multi-class problems. These multi-class pro-
blems are divided into binary subproblems (as many as possible
pairs of classes), which are independently learned by different
base classifiers whose outputs are then combined to classify an
instance.

This final combination phase is a key factor in ensembles of
classifiers [35,15]. Several combination mechanisms for OVO
strategy can be found in the specialized literature [21]. The voting
strategy is the most intuitive one. In this strategy each classifier
gives a vote for its predicted class and that reaching the largest
number of votes is predicted by the system.

In OVO, in contrast with classic ensemble methods, there are
some difficulties inherent to the way in which the decomposition
is carried out. Among them, the unclassifiable region when the
voting strategy is used, that is, when there is a draw of votes
among classes, has attracted a lot of attention from researchers
[45,16,36]. Nevertheless, none of these approaches has been able
to make the difference with respect to other simpler approaches
such as the Weighted Voting (WV) [30] or those methods based on
probability estimates [54]. A thorough empirical study on the
combinations for OVO strategy can be found in [21], where the
problem of non-competent classifiers in OVO strategy was pointed
out as a future research line.
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In spite of the low attention this problem has received in the
literature, we aim to show that its correct management can lead to
a significant enhancement of the results obtained. The term non-
competence when referring to OVO classifiers comes from the fact
that in testing time all the opinions of the classifiers are taken into
account, even though there are classifiers that have not been
trained with instances of the real class of the instance to be
classified, and hence, their outputs should not be relevant to the
classification. The real challenge emerges when these outputs
affects the final decision of the system, hindering the labeling of
the instance and leading to an incorrect classification.

It is important to stress that the competence of a classifier in
OVO strategy cannot be established before classification. In such a
case, the output class of the instance to be classified would be
known, meaning that the classification problem would be solved
before hand. Taking this issue into account, we aim to manage the
non-competence using the information available prior to the
classification, considering the closeness to the instances of each
class in the training set. Our assumption is that the outputs
considering nearer classes should be more competent, since the
classifier has probably been trained with instances of that class.

In this paper, we present a Distance-based Relative Compe-
tence Weighting combination method for OVO (DRCW-OVO),
which relies on how far are the nearest neighbors of each class
in the problem to weight the outputs of each classifier in the final
aggregation stage. This way, the larger the distance is, the lower
weight the output has, and vice versa. We should emphasize that
whereas neighbors-based dynamic weighting approaches have
been already considered for classifier ensembles [35], they have
not been adapted to OVO framework due to the way in which the
ensemble is formed. Notice that in OVO, the area of competence is
established a priori, and it does not take into account the input
space, but the output space.

In order to test the validity of our proposal, we develop a
thorough empirical study maintaining the same experimental
framework used in [21] aiming to carry out a fair comparison. A
set of nineteen real-world problems from the KEEL data-set
repository1 [3,2] are considered. We measure the performance of
the classifiers based on both accuracy and Cohen's kappa metric
[10]. The significance of the results is studied by the usage of the
appropriate statistical tests as suggested in the literature [12,24].
The proposed strategy is tested using several well-known classi-
fiers from different Machine Learning paradigms as base learners,
namely, SVMs [50], decision trees [46], instance-based learning
[1], fuzzy rule based systems [9] and decision lists [11]. Our
approach is compared with the state-of-the-art combinations for
the different base classifiers [21] and with a novel Dynamic
Classifier Selection (DCS) approach [22], which also aims at solving
the non-competent classifiers problem.

The rest of this paper is organized as follows. Section 2 recalls
several concepts related to this work. Next, Section 3 presents our
proposal to combine binary classifiers in OVO strategy, the DRCW-
OVOmethod. The set-up of the experimental framework is presented
in Section 4. The comparison of our proposal with the state-of-the-
art methods is carried out in Section 5, where we also study the
influence of the neighborhood size in DRCW-OVO and analyze how
the weights are assigned. Finally, Section 6 concludes the paper.

2. Related works

In this section we first recall the basics of binarization, and
more specifically, we describe OVO strategy and some of their

combinations. Then, we recall some works related to our dynamic
weighting approach.

2.1. One-vs-One decomposition scheme

Decomposition strategies have been widely used in the litera-
ture to address multi-class problems (see [37] for an extensive
review). Most of them can be included within ECOC [13,4] frame-
work, among which OVO is one of the most extended schemes,
being established by default in several widely used software tools
[3,25,8] to handle multi-class problems using SVMs. The fact that
an accepted extension of SVMs to multiple classes has not been
established yet has produced an increasing application of binar-
ization techniques, which outperform other multi-class SVM
approaches [29].

Apart from the works focused on SVMs [29,47], other authors
have also shown the suitability and usefulness of binarization
techniques with different base classifiers [19,21,49]. Moreover,
empirical results in those papers have shown that the usage of
OVO can enhance the results of the direct application of the
baseline classifiers with inherent multi-class support. Several
papers have also shown that OVO strategy is simple but powerful,
being competitive with other more complex approaches, such as
those based on ECOC [55,56,6] or those constructing a hierarchy
among the classifiers [42,39], whose main objective is to reduce
the number of classifiers considered in problems comprising a
large number of classes.

In OVO, also known as Pairwise classification, the original m-
class problem is divided into mðm�1Þ=2 two-class problems (one
for each possible pair of classes). Then, each sub-problem is faced
by a binary classifier, which ignores the instances having a
different class label from the labels corresponding to the pair of
classes it must distinguish. In fact, this ignorance is the source of
the problem that we are trying to undertake in this paper, the so-
called non-competence. That is, each classifier outputs a class label
(out of its two classes learned) and a confidence on its prediction
despite it is not able to distinguish among all classes. We must
stress again that this is a key factor in our proposal, since we must
be aware that this confidence might not be relevant for the
decision process if the instance does not belong to the pair of
classes learned by the classifier. After learning the classifiers, a
new instance is classified into one of the m classes depending on
all the outputs of the set of classifiers. In order to do so, it is usual
to construct a score-matrix R containing these outputs, which are
used to decide the final class:

R¼

� r12 ⋯ r1m
r21 � ⋯ r2m
⋮ ⋮
rm1 rm2 ⋯ �

0BBB@
1CCCA ð1Þ

where rijA ½0;1� is the confidence of the classifier discriminating
classes i and j in favor of the former; whereas the confidence for
the latter is computed by rji ¼ 1�rij (if it is not provided by the
classifier). Also, notice that the output class (i or j) of a classifier is
obtained by the largest confidence (between rij and rji). Once the
score-matrix is constructed, any combination can be used to infer
the class, e.g., those presented in the following subsection or the
previously mentioned voting strategy.

2.2. Combination strategies for OVO scheme

Several strategies for the decision process in OVO procedure
have been proposed in the literature that intend to achieve the
highest accuracy addressing different features of this inference
step. In [21], we developed a thorough review and experimental1 http://www.keel.es/dataset.php

M. Galar et al. / Pattern Recognition 48 (2015) 28–42 29

http://www.keel.es/dataset.php


comparison considering the most-recent and well-known techni-
ques. From this study, we were able to select the better suited
combination strategies for different paradigms of classifiers.

In this study, it was also concluded that more complex
approaches need not be better than simpler ones. For example,
methods taking into account information of the classes to con-
struct hierarchical models such as the Binary Tree of Classifiers
(BTC) [16] and Nesting OVO [36], or approaches based on Directed
Acyclic Graphs (DDAG) [45] performed similar to simpler
approaches, even worse in many of the problems considered. For
this reason, in this work we focus on the best combination models
that were found in [21], which leaves these models out of the
experimental comparison as they were found not to perform as
well as those described hereafter.

Therefore, we consider the basis established in our former
analysis, using the same experimental set-up and selecting the
best combination strategies for the sake of simplicity and read-
ability of the current manuscript. We consider this to be the fairest
way to show the suitability of our proposal in all the base
classifiers.

� Weighted Voting strategy (WV) [30] uses the confidence of
each base classifier in each class to vote for it. The class with
the largest total confidence is the final output class:

Class¼ arg max
i ¼ 1;…;m

∑
1r ja irm

rij ð2Þ

� Classification by Pairwise Coupling (PC) [26] aims to estimate
the posterior probabilities of all the classes starting from the
pairwise class probabilities. Therefore, being rij ¼ ProbðClassi j
Classi or ClassjÞ, the method finds the best approximation of the
class posterior probabilities bp ¼ ðbp1;…; bpmÞ according to the
pairwise outputs. Finally, the class having the largest posterior
probability is predicted:

Class¼ arg max
i ¼ 1;…;m

bpi ð3Þ

The posterior probabilities ðbpÞ are computed by minimizing the
Kullback–Leibler (KL) distance between rij and μij, where
μij ¼ pi=ðpiþpjÞ and rji ¼ 1�rij.� Non-Dominance Criterion (ND) [17] considers the score-matrix
as a fuzzy preference relation, which must be normalized. This
method predicts the class with the largest degree of non-
dominance, that is, the class which is less dominated by all the
remaining classes:

Class¼ arg max
i ¼ 1;…;m

1� max
1r ja irm

r0ji

� �
ð4Þ

where r0ji corresponds to the normalized and strict score-
matrix.

� Wu, Lin and Weng Probability Estimates by Pairwise Coupling
approach (PE) [54] is similar to PC, since it also estimates the
posterior probabilities (p) of each class from the pairwise prob-
abilities. However, in this case, the formulation of the optimization
problem is different, despite the same decision rule is used to
classify an instance. PE optimizes the following equation:

min
p

∑
m

i ¼ 1
∑

1r ja irm
ðrjipi�rijpjÞ2

subject to ∑
m

i ¼ 1
pi ¼ 1; piZ0; for all iAf1;…;mg: ð5Þ

A more extensive and detailed description of these methods
with the original description of the source papers is available
in [20].

In addition to these methods, we will consider a novel
approach, in which we also aimed at getting rid of the non-
competent classifiers by means of a Dynamic Classifier Selection
(DCS) strategy [22]. In that work, the non-competent classifiers
were dynamically removed in the classification phase, depending
on whether both of the classes considered by the binary classifiers
were present in the neighborhood of the instance to be classified.
Hence, only the classifiers whose classes were on the neighbor-
hood of the instance were used for its classification. On this
account, the size of the neighborhood used was large (3 �m, that
is, three times the number of classes in the problem) compared
with the usually considered one for nearest neighbors classifier
[23]. The empirical results proved the validity of this new method,
statistically outperforming the previously mentioned combina-
tions in the same experimental framework as that used in [21],
which is also considered in the present paper.

Remark 1. All these methods use exactly the same score-matrix
values (Eq. (1)) to compute the final class, but they can obtain
different results. We must emphasize the importance of this fact,
since it allows us to fix the score-matrices of each base classifier,
applying the combinations to the same outputs; hence, all the
results shown in the experimental analysis will be due to
the combinations themselves and not due to differences on the
predictions of the base classifiers.

2.3. Dynamic classifier weighting methods

Dynamic Classifier Weighting (DCW) methods [18] are closely
related to Dynamic Classifier Selection (DCS) [52] and Dynamic
Ensemble Selection (DES) techniques [33], which are active
research topics in classifier fusion. In these combination
approaches, a set of classifiers from the ensemble (in DCS only
one) are dynamically selected depending on their competence to
classify the given instance. In this framework, the competence of a
classifier refers to its ability to correctly classify the instance. As a
consequence, the estimation of the competence is a key compo-
nent in the design of these techniques. In the literature, several
ways for its estimation have been developed, for example, by the
usage of the local accuracy of each classifier [52,7] or by establish-
ing the region of the input space in which the classifiers are
experts [5,34]. The major difference between DCS and DES
techniques with respect to DCW methods is that in the latter the
votes of the classifiers are weighted depending on their compe-
tence instead of carrying out the removal of the classifiers that are
not competent to classify the instance.

Although these terms are common in ensemble literature, in
the case of decomposition techniques, and more specifically in
OVO, they cannot be directly applied [21,48]. Classical ensembles
are formed of base classifiers which are competent in the whole
output space (classes in the problem) and hence, any of their
combinations lead to an ensemble able to classify a new instance
into any of the classes. In the case of OVO, each classifier is
specialized in 2 out of the m classes, that is, each base classifier is
focused on a part of the output space instead of the input space (as
it occurs with ensembles). For these reasons, the application of
DCS, DES or DCW techniques [35,18,52,33] in OVO is not straight-
forward. We should stress that in addition to the consideration of
the non-competent classifiers, the novelty of our approach resides
on the development of a DCW technique for decomposition-based
strategies. Notice that in this case, neither local accuracies can be
estimated (each classifier only distinguishes a pair of classes) nor
the input space can be divided (all classifiers are competent in the
whole input space, but not in the output space).

M. Galar et al. / Pattern Recognition 48 (2015) 28–4230



3. DRCW-OVO: Distance-based relative competence weighting
for One-vs-One

In this section, we present our proposal to manage the non-
competent classifiers in OVO strategy. First, we introduce some
preliminary concepts and we present the hypothesis that has
motivated our approach. Afterwards, we present its operation
procedure and a simple illustrative example. Then, we discuss
the computational complexity of the proposed method.

3.1. Preliminary concepts and hypothesis

As we have already mentioned, a classifier is non-competent to
classify an instance whenever the real class of the instance to be
classified is not one of the pair of classes which were learned by
the classifier. Thereby, it is clear that in order to settle the
competence of the classifiers the real class of the instance should
be known, which is equivalent to solve the classification problem.
Hence, the competence of the classifiers can only be estimated so
that their decisions are properly handled, but it cannot be fixed
without classifying the instance.

In general, non-competent classifiers in OVO need not hinder
the classification, as long as the decisions of the competent
classifiers are correct. For example, suppose the case of the voting
strategy; if all the base classifiers considering the correct class of
the instance for their training correctly classify the instance, then
the output of the systemwill also be correct. Otherwise, if just only
one of the competent classifiers fail, the final decision would also
depend on the votes of the non-competent ones, which could lead
to a misclassification of the instance.

Therefore, our hypothesis is that the number of examples
whose classification could be corrected alleviating the negative
effect of the non-competent classifiers during the final inference is
significant. We develop our approach under the premise that non-
competent classifiers might harm the decision process, even
though this problem has not received much attention in the
specialized literature.

Since the competence of each classifier cannot be known a
priori, we aim to weight the outputs of the classifiers depending
on their competence in each class. In order to define this
competence, we consider the usage of the distance between the
instance and each one of the classes. For this purpose, we use the
distance to the k nearest neighbors of the corresponding class (we
will show in the experimental study that the method is robust
with respect to different values of k). Then, we consider higher
weights for the outputs of the classes that are closer to the
instance to be classified, since we suppose that the outputs of
the classifiers corresponding to classes which are closer to the
instance will probably be more competent than those correspond-
ing to classes which are farther.

Remark 2. As we have previously mentioned, this weighting
procedure is needed since neither DCS, DES nor DCW techniques
suit our problem as they do with classic ensembles. In OVO, we
cannot establish different regions for the classifiers in the input
space or estimate their local accuracies among the whole set of
classes.

3.2. DRCW-OVO combination

Since we are proposing a combination method, we assume that
the base classifiers have been trained. Hence, the score-matrix of
the instance to be classified is given by R (Eq. (1)).

Once the score-matrix has been obtained, the operating pro-
cedure of DRWC-OVO is as follows:

1. Compute the k nearest neighbors of each class for the given
instance and store the average distances of the k neighbors of
each class in a vector d¼ ðd1;…; dmÞ.

2. A new score-matrix Rw is created where the output rij of a
classifier distinguishing classes i; j are weighted as follows:

rwij ¼ rij �wij; ð6Þ
where wij is the relative competence of the classifier on the
corresponding output computed as

wij ¼
d2j

d2i þd2j
; ð7Þ

being di the distance of the instance to the nearest neighbor of
class i.

3. Use weighted voting strategy on the modified score-matrix Rw

to obtain the final class.

Notice that the modification of the outputs makes that the
corresponding score-matrix Rw is no longer normalized, and hence
all the previous combinations cannot be directly used. In our case
we use WV method since its robustness has been both theoreti-
cally [30] and experimentally [21] proved. Considering this com-
bination, steps 2) and 3) can be merged obtaining the output class
as follows:

Class¼ arg max
i ¼ 1;…;m

∑
1r ja irm

rij �wij ð8Þ

We acknowledge that there are previous approaches to
distance-weighted nearest neighbor [14], but the followed objec-
tives are completely different as well as the way in which the
weights are computed and applied, i.e., we use the distance to
weight the outputs of the classifiers instead of using them in k NN
to vote for each class. Notice also that the distance with respect to
the k nearest neighbors of each class are used, that is, k �m
neighbors are used and hence, taking k¼1 is not the same as
using 1NN classifier, because a neighbor for each class is obtained.
We will show in the experimental study that this fact makes the
algorithm robust to the selection of the value of k.

In this work, the nearest neighbors are computed using the
Heterogeneous Value Difference Metric (HVDM) [51], which can
properly handle nominal values on the contrary to the well-known
Euclidean distance. HVDM between two input instances x, y is
computed as follows:

dHVDMðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
t

a ¼ 1
d2aðxa; yaÞ

s
ð9Þ

where t is the number of attributes. The function daðx; yÞ computes
the distance between two values x and y for attribute a and is
defined as

daðx; yÞ ¼

1 if x or y is unknown;
otherwise…

normalized_vdmaðx; yÞ if a is nominal
normalized_diff aðx; yÞ if a is linear:

8>>>><>>>>: ð10Þ

Hence, daðx; yÞ uses different functions to compute the distance
between the values of the attributes depending on the type of a
(whether it is nominal or numerical). The functions considered in
this paper are the following ones.

normalized_vdmaðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

i ¼ 1

�����Na;x;i

Na;x
�Na;y;i

Na;y

�����
2

vuut ð11Þ

M. Galar et al. / Pattern Recognition 48 (2015) 28–42 31



where Na;x is the number of instances in the training set with value
x for attribute a, Na;x;i is the number of instances in the training set
with value x for attribute a and whose output class is i.

normalized_diff aðx; yÞ ¼
jx�yj
4 � σa

ð12Þ

being σa the standard deviation of the values of the attribute a in
the training set. For the sake of brevity, we refer the reader to [51]
for more details on this distance and the reason why these
functions are considered.

3.3. Understanding DRCW-OVO

In this section, our aim is to explain the behavior of DRCW-
OVO, which is complemented with the last section of the experi-
mental study where we show how the weights are assigned to the
classifiers. We should emphasize that our method weights the
relative competence of the outputs of the classifiers, and conse-
quently in the case of a non-competent classifier both outputs
should be weighted as similarly as possible (that is, assigning a
0.5 to both of them); otherwise, in the case of a competent one,
the weight for the output of the real class should be weighted
more than the other. In this way, the outputs of the competent
classifiers for the correct class are empowered, whereas non-
competent ones are not. Hence, we assume that the closeness of
each instance to the corresponding class can be used as a measure
of competence. As a result, if both classes in a classifier are equally
far from the instance, the competence will be the same, whereas in
the case that the instance is closer to one of the classes, its output
will get a higher weight.

Hereafter, we present an illustrative example of the application
of DRCW-OVO so that its working procedure can be better under-
stood. We acknowledge that this is only an example where the
method would work as expected, correcting the misclassification
of the instance due to the non-competent classifiers. Certainly,
the real behavior and appropriateness of the method will be
analyzed in the experimental study, which will show us whether
our hypothesis is correct or not for a significant number of classi-
fications.

Suppose that an instance x, whose real class is known to be c1 is
going to be classified. After submitting it to all the base classifiers,
the following score-matrix R has been obtained:

RðxÞ ¼

c1 c2 c3 c4 c5
c1 � 0:55 0:45 0:80 0:90
c2 0:45 � 0:55 1:00 0:80
c3 0:55 0:45 � 0:45 0:40
c4 0:20 0:00 0:55 � 0:10
c5 0:10 0:20 0:60 0:90 �

0BBBBBBBBB@

1CCCCCCCCCA
ð13Þ

Applying the voting strategy (V) there would be a draw of votes
between classes c1 and c2, whereas using the WV strategy class c2
would be predicted due to the high confidences given by the
classifiers considering c2 and c4, c5, respectively (Eq. (14)). But it is
important to point out that, actually, these votes come from non-
competent classifiers, which are the source of the failure in the
case of WV.

ð14Þ

Otherwise, we consider the same score-matrix but DRCW-OVO
is applied. First, the distances to the k nearest neighbors of each
class (d) are computed (notice that for the illustrative purpose of
the example the value of k is not important). Suppose that in this
case, d¼ ð0:8;0:9;0:6;1:2;1:6Þ. Based on these distances, we can
compute a weight-matrix W to represent all the wij for i; j¼ 1…m:

WðxÞ ¼

c1 c2 c3 c4 c5
c1 � 0:56 0:36 0:69 0:80
c2 0:44 � 0:31 0:64 0:76
c3 0:64 0:69 � 0:80 0:88
c4 0:31 0:36 0:20 � 0:64
c5 0:20 0:24 0:12 0:36 �

0BBBBBBBBB@

1CCCCCCCCCA
ð15Þ

Applying this weight-matrix W to the score-matrix R, we
obtain the modified score-matrix Rw, in which the WV is applied
to obtain the predicted class using DRCW-OVO (Eq. (16)). As it can
be observed, after applying the proposed methodology the classi-
fication has been corrected and now c1, which is the real class of
the instance, is predicted.

ð16Þ

3.4. On the computational complexity of DRCW-OVO

Our proposal requires to find the k nearest neighbors of each
instance. Hence, it might be computationally more expensive than
standard combination techniques, but this would also highly
depend on the way of its implementation, since this process can
be easily parallelized (both the computation of the distances and
the testing phase with the classifiers forming the ensemble).

The search for the nearest neighbors has a complexity of
Oðn � tÞ, where n is the number of examples in the training set
and t is the number of attributes. In case of dealing with large
data-sets, an instance selection procedure [23] could be carried
out in order to reduce the reference set and therefore, to reduce
the testing time.

For the sake of comparison we should also provide the
computational complexities of the other methods. In the case of
the WV and ND, the complexity is constant Oð1Þ, since the values
are directly aggregated from the score-matrix. PC and PE use an
iterative method whose complexity is of OðmÞ. These methods
need less time to decide for the class since they do not consider
more information than the score-matrix. However, the most
accurate strategy from the state-of-the-art, the DCS model has
also a complexity of Oðn � tÞ as the proposed one.

4. Experimental framework

In this section, we introduce the set-up of the experimental
framework used to develop the empirical comparison in Section 5.
We must emphasize that the whole experimental set-up is the
same as that in [21], where the state-of-the-art on combinations
for the OVO strategy were compared. From our point of view, this
fact allows us to perform a fair comparison and to maintain the
conclusions drawn from that study (e.g., reducing the length of the
comparative study considering the best performers combinations).

First, we describe the base classifiers considered and their
configuration in Subsection 4.1. Then, in Subsection 4.2, we recall
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which were the best combinations for each base classifier [21] that
will be the baseline for the comparisons as explained in Section 2.2
together with the configuration for the DCS approach [22]. After-
wards, we provide details of the data-sets in Subsection 4.3 and we
present the performance measures and the statistical tests used to
make the comparison in Subsection 4.4.

4.1. Base learners and parameter configuration

Our aim in the empirical study is to compare our DRCW-OVO
with the state-of-the-art combinations. For this purpose, we have
selected several well-known Machine Learning algorithms as base
learners. The algorithms used are the following ones:

� SVM [50] Support Vector Machine maps the original input space
into a high-dimensional feature space using a certain kernel
function to avoid the computation of the inner product
between vectors. Once the instances are in the new feature
space, the optimal separating hyperplane is found, i.e., that
reaching the maximal margin such that the upper bound of the
expected risk is minimized. We use SMO [43] algorithm to train
the SVM base classifiers.

� C4.5 [46] decision tree induces classification rules in the form
of decision trees. The construction of the tree is carried out in a
top-down manner. The normalized information gain (differ-
ence in entropy) is used to select the attribute that better splits
the data in each node.

� kNN [1] k-Nearest Neighbors finds the k instances in the training
set that are the closest to the test pattern. Then, the instance is
labeled based on the number of examples from each class in
this neighborhood. Both the distance and the number of
neighbors are key factors of this algorithm.

� Ripper [11] Repeated Incremental Pruning to Produce Error
Reduction induces a decision list of rules to label new instances.
Each list of rules is grown one by one and immediately pruned.
After completing a decision list for a given class, an optimiza-
tion phase is carried out in the next stage.

� PDFC [9] Positive Definite Fuzzy Classifier extracts fuzzy rules
from a SVM. Since the learning process minimizes an upper
bound on the expected risk instead of the empirical risk, the
classifier usually obtains a good generalization ability.

These learning algorithms were selected for the current (and
the previous [21]) study due to their good behavior in a large
number of real-world problems. Moreover, in case of SVM and
PFDC there is not a multi-category approach established yet. Even
though there exist several extensions [29] to deal with multiple
classes, they have not shown real advantages to decomposition
strategies that are commonly used in the SVM community for

multi-class classification. Most of the combination methods for
OVO classification make their predictions based on the confidence
of the outputs of the base classifiers. We obtain the confidence for
each classifier as follows:

� SVM – Probability estimates from the SVM [44].
� C4.5 – Accuracy of the leaf making the prediction (correctly

classified train examples divided by the total number of
covered train instances).

� kNN – Distance-based confidence estimation.

Confidence¼
∑k

l ¼ 1
el
dl

∑k
l ¼ 1

1
dl

ð17Þ

where dl is the distance between the input pattern and the lth
neighbor and el¼1 if the neighbor l is from the class and
0 otherwise. Note that when k41, the probability estimate
depends on the distance from the neighbors, hence the
estimation is not restricted to a few values.

� Ripper – Accuracy of the rule used in the prediction (computed
as in C4.5 considering rules instead of leafs).

� PDFC – The prediction of the classifier, that is, confidence equal
to 1 is given for the predicted class.

In some of the combination strategies ties might occur. As
usual, in those cases the majority class is predicted. If the tie
continues, the class is selected randomly.

The parameters used to train the base classifiers are shown in
Table 1. These values are common for all problems, and they were
selected according to the recommendation of the corresponding
authors, which is also the default setting of the parameters
included in KEEL2 software [3,2] used to develop our experi-
ments. Two configurations for SVMs are considered, where the
parameter C and the kernel function are changed, so we can
study the behavior of our strategy with different configurations,
which should address for the robustness of the proposal (in the
sense that despite how fine-tuned are the base classifiers, its
behavior is maintained with respect to the others). We treat
nominal attributes in SVM and PDFC as scalars to fit the data into
the systems using a polynomial kernel.

Even though the tuning of the parameters for each method on
each particular problem could lead to better results (mainly in
SVM and PDFC), we preferred to maintain a baseline performance
on each method as the basis for comparison. Since we are not
comparing base classifiers among them, our hypothesis is that the
methods that win on average on all problems would also win if a
better setting was performed. Moreover, when methods are not

Table 1
Parameter specification for the base learners employed in the experimentation.

Algorithm Parameters

SVMPoly C¼1.0, Tolerance Parameter¼0.001, Epsilon¼1.0E�12
Kernel Type¼Polynomial, Polynomial Degree¼1
Fit Logistic Models¼True

SVMPuk C¼100.0, Tolerance Parameter¼0.001, Epsilon¼1.0E�12
Kernel Type¼Puk, PukKernel ω¼1.0, PukKernel σ¼1.0
Fit Logistic Models¼True

C4.5 Prune¼True, Confidence level¼0.25
Minimum number of item-sets per leaf¼2

3NN k¼3, Distance metric¼HVDM
Ripper Size of growing subset¼66%, Repetitions of the optimization stage¼2
PDFC C¼100.0, Tolerance Parameter¼0.001, Epsilon¼1.0E�12

Kernel Type¼Polynomial, Polynomial Degree¼1
PDRF Type¼Gaussian

2 http://www.keel.es
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tuned, winner methods tend to correspond to the most robust
ones, which is also desirable.

4.2. Combinations considered

As we have already mentioned, we consider as representative
combinations the same as those selected in [21] (recall that the
same experimental framework is being used). There is a unique
exception regarding SVMs. In [21], the best performer was Nesting
OVO [36], but without significant differences with the rest of the
methods. Although this strategy constructs several OVO ensembles
recursively, it does not outperform other simpler approaches such
as the probability estimates method by Wu et al. [54], which is
much more extended. For this reason, we consider it to be the
representative, and also in this manner, we are able to perform the
comparison using exactly the same score-matrices in all combina-
tions, so that the differences between the results are only due to
the combinations themselves, which is a desirable characteristic to
carry out their evaluation. We should stress that since the experi-
mental set-up is maintained, those combinations that were found
to be the best for each base classifier in [21] are also the best in the
current one (without taking into account the new proposal);
hence, we can reduce the experimental study to these aggrega-
tions instead of including all of them, which would make harder to
follow the experimentation. The representative combinations for
each classifier are the following:

� SVM – PE (Wu et al. Probability Estimates by Pairwise
Coupling).

� C4.5 – WV (Weighted Voting strategy).
� kNN – ND (Non-Dominance criterion).
� Ripper – WV (Weighted Voting strategy).
� PDFC – PC (Probability Estimates by Pairwise Coupling).

In addition to these aggregations, we have also considered the
approach based on DCS [22], which was able to outperform most
of them in the same experimental framework as the one we are
considering. In order to use this strategy, we have considered the
same parameter value for k as that in the original paper, that is,
k¼ 3 �m is considered as the neighborhood of the instance from
which the probably competent classifiers are selected.

4.3. Data-sets

We have used the same nineteen data-sets from KEEL data-set
repository3 [2] that were considered in [21]. Tables 2 and 3
summarize their properties. In the former table for each data-
set, the number of examples (#Ex.), the number of attributes
(#Atts.), the number of numerical (#Num.) and nominal (#Nom.)
attributes, and the number of classes (#Cl.) are shown. In the latter
one, the number of instances from each class in each data-set is
presented. As it can be observed, they comprise a number of
situations, from totally balanced data-sets to highly imbalanced
ones, besides the different number of classes.

The selection of these data-sets was carried out according to
the premise of having more than 3 classes and a good behavior
with all the base classifiers, that is, considering an average
accuracy higher than the 50%. Our aim is to define a general
classification framework where we can develop our experimental
study trying to verify the validity of our proposal and to study its
robustness, in such a way that the extracted conclusions are valid
for general multi-classification problems. In this manner, we will
be able to make a good analysis based on data-sets with a large

representation of classes and without noise from data-sets with
low classification rate, in such a way that more meaningful results
are obtained from a multi-class classification point-of-view.

The performance estimates were obtained by means of a 5-fold
stratified cross-validation (SCV). From our point view, 5-fold SCV is
more appropriate than a 10-fold SCV in the current framework,
since using smaller partitions there would be more test sets that
will not contain any instance from some of the classes. More
specifically, the data partitions were obtained by the Distribution
Optimally Balanced SCV (DOB-SCV) [40,38], which aims to correct
the data-set shift (when the training data and the test data do not
follow the same distribution) that might be produced when
dividing the data.

4.4. Performance measures and statistical tests

Different measures usually allow to observe different beha-
viors, which increases the strength of the empirical study in such
way that more complete conclusions can be yielded from different
(not opposite, yet complementary) deductions. There are two
measures whose simplicity and successful application for both
binary and multi-class problems have made themwidely used. The
accuracy rate and Cohen's kappa [10] measure. In the case of
multi-class problems, only considering accuracy might not show
the real behavior of the methods from a multi-class classification
perspective. For this reason, we include kappa measure in the
analysis, which evaluates the portion of hits that can be attributed
to the classifier itself (i.e., not to mere chance), relative to all the
classifications that cannot be attributed to chance alone. Kappa
measure is computed as follows:

κ ¼ n∑m
i ¼ 1hii�∑m

i ¼ 1TriTci

n2�∑m
i ¼ 1TriTci

; ð18Þ

where hij is the number of examples in the ith row jth column of
the confusion matrix obtained from the predictions of the classi-
fier and Tri. Tci are the rows' and columns' total counts, respectively
(Tri ¼∑m

j ¼ 1hij, Tci ¼∑m
j ¼ 1hji). Cohen's kappa ranges from �1 (total

disagreement) through 0 (random classification) to 1 (perfect
agreement).

For multi-class problems, kappa is a very useful, yet simple,
meter for measuring a classifier's classification rate while com-
pensating for random successes. The main difference between the
classification rate and Cohen's kappa is the scoring of the correct
classifications. Accuracy rate scores all the successes over all

Table 2
Summary description of data-sets.

Data-set #Ex. #Atts. #Num. #Nom. #Cl.

Car 1728 6 0 6 4
Lymphography 148 18 3 15 4
Vehicle 846 18 18 0 4
Cleveland 297 13 13 0 5
Nursery 1296 8 0 8 5
Page-blocks 548 10 10 0 5
Shuttle 2175 9 9 0 5
Autos 159 25 15 10 6
Dermatology 358 34 1 33 6
Flare 1066 11 0 11 6
Glass 214 9 9 0 7
Satimage 643 36 36 0 7
Segment 2310 19 19 0 7
Zoo 101 16 0 16 7
Ecoli 336 7 7 0 8
Led7digit 500 7 0 7 10
Penbased 1100 16 16 0 10
Yeast 1484 8 8 0 10
Vowel 990 13 13 0 11

3 http://www.keel.es/dataset.php
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classes, whereas Cohen's kappa scores the successes indepen-
dently for each class and aggregates them. The second way of
scoring is less sensitive to randomness caused by a different
number of examples in each class.

In order to properly compare the performance of the classifiers,
statistical analysis needs to be carried out. We consider the usage
of non-parametric tests, according to the recommendations made
in [12] and [24] (for more information see http://sci2s.ugr.es/
sicidm/).

In the experimental study, we will carry out multiple compar-
isons, since we will first study the performance of the method
with different values of k and then we will compare our method
against the best combinations and the dynamic approach. On this
account, we use Friedman aligned-ranks test [27] as a non-
parametric statistical procedure to perform comparison among a
set of algorithms. Then, if this test detects significant differences
among them, we check if the control algorithm (the best one) is
significantly better than the others (that is, 1� n comparison)
using Holm post-hoc test [28]. Moreover, we consider the average
aligned-ranks of each algorithm (used in the Friedman aligned-
ranks test) in order to compare the behavior of each algorithm
with respect to the others. These rankings are obtained computing
the difference between the performance obtained by the algo-
rithm and the mean performance of all algorithms in the corre-
sponding data-set. These differences are ranked from 1 to k � n
(being k the number of data-sets and n the number of methods),
assigning the corresponding rank to the method from which the
difference has been computed. Hence, the lower the rank is, the
better the method is. At last, the average ranking of each algorithm
in all data-sets can be computed to show their global performance.

Finally, we recall that we are comparing different combina-
tions, and hence, we carry out the comparisons in each base
classifiers independently, whereas the cross-comparison between
base classifiers is out of the scope of this paper.

5. Experimental study

In this section, we will study the usefulness of our proposal. To
do so, we first analyze the behavior of our approach with different
values of k so as to check its robustness with respect to this value
and to show its influence in the results obtained. Afterwards, we
compare our DRCW-OVO with the best performer combinations
from the state-of-the-art (including the DCS approach [22]). Our

aim is to investigate whether the relative competence weighting of
the classifiers is translated into an enhancement of the results,
checking if the proposed weighting procedure is appropriate.
Moreover, these comparisons will also show us whether the
management of the non-competent classifiers can lead to enhance
the results obtained, and hence, it would put out the importance
of this problem in OVO strategy if such behavior is observed.
Furthermore, we will conclude this section by analyzing the
weights assigned to the outputs of the classifiers aiming at
explaining why the method is working properly (and following
the notions presented in Section 3.3).

According to these three objectives, we have therefore divided
this Section into three Subsections:

� We study the different values of k in Subsection 5.1.
� We compare the proposed approach against the state-of-the-

art combinations in Subsection 5.2.
� We aim to explain the relative weighting mechanism of DRCW-

OVO in Subsection 5.3.

5.1. Analyzing the influence of the value of k in DRCW-OVO

In this Section we want to investigate how the different values
of k may affect the behavior of the proposed method. Recall that
we measure the competence of each output of a base classifier
depending on how far the instance is from the class of the
corresponding output. In order to do so, we have considered
several values for k¼ 1;3;5 and 10 neighbors. Notice that as we
have mentioned, this value is not exactly the same as the number
of neighbors used in k NN classification, since k �m neighbors are
used in this case to compute the weights (k instances from each
class). In addition, we have also considered another configuration
denoted as k¼ �1, in which all the instances of each class are
taken as neighbors for the computation of the weights, that is, the
distance from the instance to the class is computed as the average
distance to all the examples of that class. This configuration may
avoid noise and can be seen as using the distance to the class
centroid without carrying out a clustering model (which should be
studied as a future research line). However, taking such a general
distance could also produce a loss of discrimination power.

The results obtained for the five configurations considered in
each base classifier are shown in Tables 4 and 5, with accuracy and
kappa performance measures, respectively. The best result within

Table 3
Number of instances per class in each data-set.

Data-set #Ex. #Cl. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Car 1728 4 1210 384 65 69
Lymphography 148 4 2 81 61 4
Vehicle 846 4 199 217 218 212
Cleveland 297 5 160 54 35 35 13
Nursery 1296 5 1 32 405 426 432
Pageblocks 548 5 492 33 8 12 3
Shuttle 2175 5 1706 2 6 338 123
Autos 159 6 3 20 48 46 29 13
Dermatology 358 6 111 60 71 48 48 20
Flare 1066 6 331 239 211 147 95 43
Glass 214 7 70 76 17 0 13 9 29
Satimage 643 7 154 70 136 62 71 0 150
Segment 2310 7 330 330 330 330 330 330 330
Zoo 101 7 41 20 5 13 4 8 10
Ecoli 336 8 143 77 2 2 35 20 5 52
Led7digit 500 10 45 37 51 57 52 52 47 57 53 49
Penbased 1100 10 115 114 114 106 114 106 105 115 105 106
Yeast 1484 10 244 429 463 44 51 163 35 30 20 5
Vowel 990 11 90 90 90 90 90 90 90 90 90 90 90
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Table 4
Average accuracy results in test for the different values of k in DRCW-OVO (with k¼ �1 all the instances of the class are used to compute the distance).

Data-set C45 SVMPoly SVMPuk 3NN PDFC Ripper

1 3 5 10 �1 1 3 5 10 �1 1 3 5 10 �1 1 3 5 10 �1 1 3 5 10 �1 1 3 5 10 �1

Autos 85.90 81.55 80.96 74.40 75.01 83.91 80.15 79.48 74.36 73.07 79.60 73.39 71.45 70.84 71.45 79.40 77.02 75.14 72.44 71.37 81.28 81.33 80.74 77.42 76.24 89.38 85.15 84.58 81.94 81.26
Car 96.41 97.16 96.99 96.88 90.33 96.76 97.22 97.16 97.05 90.62 82.47 82.06 81.65 80.50 64.64 96.41 96.82 96.93 97.11 89.76 98.49 99.31 99.42 99.71 96.99 96.47 96.59 96.35 96.18 91.03
Cleveland 54.22 54.88 55.23 55.24 52.57 58.31 58.66 58.66 59.00 58.96 47.87 48.21 48.88 48.89 47.87 56.95 57.28 56.61 56.93 57.28 54.93 56.27 56.61 57.63 55.95 55.57 55.20 56.90 56.58 54.53
Dermatology 97.49 98.06 98.06 98.06 97.78 96.11 95.83 95.55 95.27 94.99 97.76 97.48 97.48 97.48 97.20 96.35 96.62 96.90 96.90 96.91 92.47 91.90 91.90 91.90 91.63 95.28 95.55 95.27 95.00 95.54
Ecoli 84.34 84.41 85.58 84.70 83.18 81.94 82.53 82.25 81.97 78.96 78.34 80.72 81.64 81.95 80.76 80.73 82.53 84.30 83.73 82.54 83.10 84.37 84.68 84.38 83.79 81.12 81.44 82.34 83.20 80.53
Flare 74.21 74.53 75.27 74.83 75.13 75.39 76.01 75.86 75.96 75.43 71.91 72.14 72.04 72.36 73.82 70.87 72.30 72.43 72.73 75.21 73.28 73.69 73.69 74.09 75.13 75.01 75.90 75.60 75.53 75.00
Glass 77.46 75.71 74.81 74.84 71.52 72.36 72.36 71.04 68.81 65.93 76.56 77.55 76.19 74.76 74.25 74.78 73.42 74.33 73.92 72.42 73.32 70.57 70.12 69.62 67.81 75.76 76.32 75.40 71.75 69.75
Led7digit 64.79 64.84 65.33 67.24 69.32 67.88 66.47 66.47 70.22 69.99 61.45 61.43 62.54 63.64 67.77 67.42 67.63 68.26 70.41 69.30 64.40 65.16 65.42 63.90 66.98 64.56 64.68 64.19 66.97 65.84
Lymphography 75.81 76.44 76.44 75.81 75.88 83.68 83.10 83.10 83.77 84.43 83.16 82.50 82.50 82.50 82.50 81.46 79.52 79.52 78.83 78.90 83.19 83.19 83.19 83.19 83.19 77.73 77.11 77.04 76.33 77.02
Nursery 92.67 91.59 90.90 90.20 90.90 94.37 94.53 94.53 94.06 90.90 92.37 90.90 90.83 89.67 84.26 94.06 93.68 93.68 93.75 93.98 97.61 97.76 97.84 97.92 98.07 93.44 93.06 92.44 91.97 90.59
Pageblocks 95.82 96.37 95.82 95.63 95.44 95.64 95.63 95.27 95.09 94.72 94.93 95.11 95.11 95.45 94.92 94.37 95.27 95.09 95.27 95.64 95.28 95.09 95.09 95.09 95.09 95.82 95.82 96.00 96.00 96.36
Penbased 96.28 96.28 95.64 94.73 89.10 97.83 97.37 97.01 96.74 89.19 97.82 98.00 98.00 97.82 89.74 97.09 97.09 96.91 95.91 89.01 98.10 98.28 98.10 97.92 89.74 96.55 96.46 96.01 95.56 89.10
Satimage 85.56 85.10 85.41 86.04 85.10 88.20 87.74 86.34 85.42 83.70 86.78 86.79 87.56 88.03 87.10 89.43 87.88 88.34 88.66 87.58 87.41 87.26 87.25 87.26 86.02 85.70 86.01 86.01 85.87 83.54
Segment 98.14 98.10 97.97 97.75 96.71 96.36 96.02 95.58 95.02 92.34 97.45 97.36 97.40 97.36 97.14 97.19 96.97 96.84 96.93 96.02 97.53 97.36 97.27 97.23 96.88 97.88 97.92 97.84 97.66 96.80
Shuttle 99.77 99.68 99.72 99.72 99.68 99.59 99.54 99.50 99.31 95.40 99.68 99.68 99.63 99.63 98.62 99.50 99.45 99.40 99.40 99.50 99.17 98.94 98.76 98.49 96.46 99.63 99.54 99.54 99.54 98.89
Vehicle 74.11 73.52 73.88 73.87 73.05 73.88 74.00 74.48 74.59 73.52 81.80 81.80 82.04 81.92 81.92 73.18 72.35 72.23 72.47 72.11 84.41 84.53 84.41 84.41 84.29 71.87 71.76 71.29 70.81 70.34
Vowel 96.36 95.45 94.75 92.63 85.15 97.78 96.36 95.05 90.30 73.74 99.60 99.39 99.29 99.39 99.70 98.89 97.68 97.27 96.97 97.17 99.29 98.89 98.59 98.28 98.28 97.17 95.66 94.44 92.42 82.12
Yeast 59.24 60.58 60.46 61.13 60.19 59.17 60.45 60.92 62.07 59.85 58.56 61.26 62.14 62.54 62.01 56.61 58.16 58.30 59.11 59.85 60.05 60.86 60.92 60.32 60.59 60.05 61.33 61.81 61.60 60.13
Zoo 92.17 92.17 93.22 94.05 94.05 95.72 95.72 96.77 96.77 96.77 91.76 90.80 90.80 89.85 90.80 95.69 94.64 94.64 94.64 95.69 96.77 95.72 97.82 97.82 97.82 95.05 94.00 96.10 96.10 96.10

Average 84.25 84.02 84.02 83.57 82.11 84.99 84.72 84.48 83.99 81.18 83.15 82.98 83.01 82.87 81.39 84.23 84.02 84.06 84.01 83.17 85.27 85.29 85.36 85.08 84.26 84.42 84.18 84.17 83.74 81.81
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Table 5
Average kappa results in test for the different values of k in DRCW-OVO (with k¼ �1 all the instances of the class are used to compute the distance).

Data-set C45 SVMPoly SVMPuk

1 3 5 10 �1 1 3 5 10 �1 1 3 5 10 �1

Autos 0.8141 0.7570 0.7495 0.6606 0.6700 0.7898 0.7398 0.7307 0.6629 0.6496 0.7336 0.6529 0.6266 0.6187 0.6272
Car 0.9224 0.9392 0.9355 0.9332 0.8067 0.9293 0.9399 0.9388 0.9363 0.8124 0.6783 0.6718 0.6656 0.6472 0.4294
Cleveland 0.2609 0.2653 0.2673 0.2672 0.2451 0.3179 0.3215 0.3227 0.3276 0.3348 0.2674 0.2702 0.2752 0.2721 0.2664
Dermatology 0.9685 0.9756 0.9756 0.9756 0.9721 0.9514 0.9480 0.9444 0.9409 0.9374 0.9719 0.9683 0.9683 0.9683 0.9649
Ecoli 0.7830 0.7844 0.7997 0.7864 0.7701 0.7475 0.7561 0.7516 0.7467 0.7081 0.7067 0.7368 0.7492 0.7536 0.7400
Flare 0.6629 0.6663 0.6759 0.6700 0.6745 0.6789 0.6866 0.6844 0.6857 0.6798 0.6373 0.6402 0.6387 0.6431 0.6628
Glass 0.6892 0.6633 0.6495 0.6467 0.6117 0.6183 0.6171 0.5986 0.5621 0.5301 0.6823 0.6942 0.6755 0.6548 0.6510
Led7digit 0.6062 0.6071 0.6124 0.6338 0.6575 0.6411 0.6254 0.6254 0.6674 0.6650 0.5698 0.5694 0.5817 0.5942 0.6405
Lymphography 0.5368 0.5462 0.5462 0.5368 0.5413 0.6824 0.6732 0.6732 0.6869 0.6996 0.6721 0.6581 0.6581 0.6581 0.6581
Nursery 0.8919 0.8758 0.8653 0.8549 0.8668 0.9175 0.9198 0.9198 0.9130 0.8677 0.8894 0.8688 0.8678 0.8515 0.7811
Pageblocks 0.7770 0.8036 0.7718 0.7552 0.7465 0.7517 0.7459 0.7242 0.6988 0.6823 0.7483 0.7483 0.7400 0.7365 0.7211
Penbased 0.9586 0.9586 0.9515 0.9415 0.8789 0.9758 0.9708 0.9668 0.9638 0.8799 0.9758 0.9778 0.9778 0.9758 0.8859
Satimage 0.8216 0.8160 0.8198 0.8274 0.8162 0.8537 0.8481 0.8308 0.8193 0.7985 0.8383 0.8381 0.8474 0.8532 0.8420
Segment 0.9783 0.9778 0.9763 0.9737 0.9616 0.9576 0.9535 0.9485 0.9419 0.9106 0.9702 0.9692 0.9697 0.9692 0.9667
Shuttle 0.9936 0.9910 0.9923 0.9923 0.9910 0.9884 0.9871 0.9859 0.9809 0.8683 0.9911 0.9911 0.9898 0.9898 0.9618
Vehicle 0.6548 0.6468 0.6517 0.6516 0.6410 0.6518 0.6535 0.6597 0.6612 0.6470 0.7572 0.7572 0.7604 0.7588 0.7588
Vowel 0.9600 0.9500 0.9422 0.9189 0.8367 0.9756 0.9600 0.9456 0.8933 0.7111 0.9956 0.9933 0.9922 0.9933 0.9967
Yeast 0.4693 0.4863 0.4848 0.4935 0.4838 0.4674 0.4830 0.4889 0.5038 0.4794 0.4671 0.4990 0.5089 0.5137 0.5119
Zoo 0.8966 0.8966 0.9106 0.9212 0.9212 0.9419 0.9419 0.9561 0.9561 0.9561 0.8869 0.8753 0.8753 0.8622 0.8753

Average 0.7708 0.7688 0.7672 0.7600 0.7417 0.7809 0.7774 0.7735 0.7657 0.7272 0.7600 0.7569 0.7562 0.7534 0.7338

Data-set 3NN PDFC Ripper

1 3 5 10 �1 1 3 5 10 �1 1 3 5 10 �1

Autos 0.7338 0.7020 0.6775 0.6411 0.6317 0.7546 0.7548 0.7475 0.7035 0.6898 0.8612 0.8054 0.7988 0.7642 0.7564
Car 0.9219 0.9312 0.9339 0.9378 0.7942 0.9674 0.9849 0.9874 0.9937 0.9363 0.9238 0.9267 0.9217 0.9179 0.8170
Cleveland 0.3070 0.3028 0.2902 0.2885 0.3097 0.2868 0.3037 0.3088 0.3205 0.3085 0.2986 0.2945 0.3137 0.3047 0.3010
Dermatology 0.9539 0.9573 0.9609 0.9609 0.9611 0.9039 0.8964 0.8964 0.8964 0.8929 0.9407 0.9442 0.9407 0.9373 0.9441
Ecoli 0.7326 0.7571 0.7817 0.7732 0.7586 0.7656 0.7836 0.7878 0.7834 0.7757 0.7418 0.7463 0.7577 0.7691 0.7362
Flare 0.6219 0.6387 0.6403 0.6439 0.6786 0.6538 0.6588 0.6588 0.6643 0.6779 0.6758 0.6866 0.6826 0.6817 0.6764
Glass 0.6519 0.6308 0.6442 0.6331 0.6197 0.6258 0.5871 0.5809 0.5712 0.5519 0.6690 0.6748 0.6610 0.6055 0.5943
Led7digit 0.6363 0.6387 0.6458 0.6699 0.6578 0.6024 0.6110 0.6139 0.5970 0.6314 0.6046 0.6060 0.6003 0.6311 0.6189
Lymphography 0.6442 0.6053 0.6053 0.5911 0.6109 0.6686 0.6686 0.6686 0.6686 0.6686 0.5791 0.5670 0.5672 0.5539 0.5646
Nursery 0.9130 0.9073 0.9073 0.9084 0.9124 0.9649 0.9672 0.9683 0.9695 0.9718 0.9039 0.8984 0.8894 0.8825 0.8629
Pageblocks 0.6857 0.7319 0.7210 0.7158 0.7396 0.7217 0.7116 0.7116 0.7116 0.7119 0.7842 0.7791 0.7868 0.7749 0.8048
Penbased 0.9676 0.9676 0.9656 0.9545 0.8778 0.9789 0.9809 0.9789 0.9768 0.8860 0.9617 0.9607 0.9556 0.9506 0.8789
Satimage 0.8690 0.8498 0.8554 0.8592 0.8463 0.8442 0.8423 0.8422 0.8422 0.8271 0.8239 0.8278 0.8278 0.8258 0.7977
Segment 0.9672 0.9646 0.9631 0.9641 0.9535 0.9712 0.9692 0.9682 0.9677 0.9636 0.9753 0.9758 0.9748 0.9727 0.9626
Shuttle 0.9859 0.9846 0.9833 0.9833 0.9859 0.9769 0.9703 0.9652 0.9578 0.9007 0.9898 0.9872 0.9872 0.9872 0.9690
Vehicle 0.6423 0.6314 0.6297 0.6329 0.6283 0.7921 0.7936 0.7920 0.7920 0.7905 0.6250 0.6235 0.6173 0.6110 0.6049
Vowel 0.9878 0.9744 0.9700 0.9667 0.9689 0.9922 0.9878 0.9844 0.9811 0.9811 0.9689 0.9522 0.9389 0.9167 0.8033
Yeast 0.4356 0.4551 0.4565 0.4656 0.4801 0.4785 0.4879 0.4888 0.4808 0.4855 0.4850 0.5006 0.5069 0.5038 0.4890
Zoo 0.9411 0.9262 0.9262 0.9260 0.9412 0.9563 0.9423 0.9703 0.9703 0.9703 0.9340 0.9200 0.9481 0.9481 0.9481

Average 0.7684 0.7662 0.7662 0.7640 0.7556 0.7845 0.7843 0.7853 0.7815 0.7695 0.7761 0.7725 0.7724 0.7652 0.7437
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comparison with α¼ 0:1 (90% confidence) and a ‘n’ with α¼ 0:05
(95% confidence).

The results of the statistical analysis put out the superiority of
DRCW-OVO against the state-of-the-art combinations for OVO
strategy, also outperforming the DCS method which, similar to
DRCW-OVO, considers information from the neighborhood of the
instance to remove the non-competent classifiers. Statistically
significant differences are found in all base classifiers in favor of
DRCW-OVO both with accuracy and kappa measure.

The relative weighting helps in improving the classification
in OVO strategy taking into account the competence of each
classifier in the classes it must distinguish. More importantly,
the proposed combination is robust, achieving a great
performance in all the base classifiers considered. In addition,
these results show that there was margin for improvement
when considering the problem of non-competent classifiers,

showing the importance of this problem and improving the
previous approach [22] with similar characteristics.

5.3. Explaining the relative weighting mechanism in DRCW-OVO

The aim of this section is to complement Section 3.3, where we
have shown an illustrative example to explain the behavior of the
proposed method. We have also shown that in order to work
properly, the weights assigned to each output should depend on
whether the classifier is competent or not. That is, outputs from a
competent classifier should be weighted differently by assigning a
high value to the correct class (which should be nearer to the
instance than the other one), whereas giving a low value to the
other one. Otherwise, the outputs of the non-competent classifiers
should be weighted similarly, assigning a value as similar as
possible to 0.5 (not empowering these outputs).

Table 6
Friedman aligned-rank tests comparing the different values of k in each base classifier with accuracy. A ‘þ ’ near the p-value means that there are statistical differences with
α¼ 0:1 (90% confidence) and a ‘n ’ with α¼ 0:05 (95% confidence).

k values C45 SVMPoly SVMPuk 3NN PDFC Ripper

1 45.26 (1.00000) 38.87 (1.00000) 45.39 (1.00000) 41.26 47.24 (0.82509) 41.32 (1.00000)
3 40.63 (1.00000) 37.89 47.66 (1.00000) 50.55 (0.89698) 41.79 (0.82509) 40.26 (1.00000)
5 38.76 40.82 (1.00000) 42.18 48.34 (0.89698) 38.74 37.74

10 45.34 (1.00000) 48.47 (0.71071) 43.18 (1.00000) 44.18 (0.89698) 48.50 (0.82509) 47.42 (0.83679)
�1 70.00 (0.00191n) 73.95 (0.00022n) 61.58 (0.12051) 55.66 (0.43013) 63.74 (0.02075n) 73.26 (0.00029n)

Table 7
Friedman aligned-rank tests comparing the different values of k in each base classifier with kappa. A ‘þ ’ near the p-value means that there are statistical differences with
α¼ 0:1 (90% confidence) and a ‘n’ with α¼ 0:05 (95% confidence).

k values C45 SVMPoly SVMPuk 3NN PDFC Ripper

1 42.95 (1.00000) 37.29 42.32 40.63 46.84 (0.92603) 40.21 (1.00000)
3 40.11 (1.00000) 37.47 (1.00000) 46.05 (1.00000) 49.89 (0.93831) 42.39 (0.92603) 40.21 (1.00000)
5 39.79 41.82 (1.00000) 42.55 (1.00000) 48.66 (0.93831) 39.79 37.58

10 48.76 (0.94717) 50.47 (0.42141) 47.39 (1.00000) 49.55 (0.93831) 48.89 (0.92603) 50.74 (0.42379)
�1 68.39 (0.00553n) 72.95 (0.00027n) 61.68 (0.12141) 51.26 (0.93831) 62.08 (0.05080þ) 71.26 (0.00066n)

Table 8
Average accuracy results in test of the representative combinations, DCS method and DRCW-OVO method (with k¼5) for each base classifier.

Data-set C45 SVMPoly SVMPuk 3NN PDFC Ripper

WV DCS DRCW PE DCS DRCW PE DCS DRCW ND DCS DRCW PC DCS DRCW WV DCS DRCW

Autos 76.24 74.96 80.96 73.75 73.81 79.48 69.02 70.27 71.45 78.88 76.96 75.14 78.82 79.40 80.74 85.09 84.42 84.58
Car 94.68 94.50 96.99 93.58 93.58 97.16 64.99 84.84 81.65 93.57 93.40 96.93 99.77 99.88 99.42 92.59 93.52 96.35
Cleveland 52.55 53.55 55.23 58.97 59.31 58.66 47.53 47.87 48.88 58.31 57.96 56.61 53.92 55.93 56.61 52.18 54.54 56.90
Dermatology 95.24 98.32 98.06 94.71 94.99 95.55 97.20 97.20 97.48 92.14 95.49 96.90 84.66 93.85 91.90 93.32 94.43 95.27
Ecoli 81.06 81.94 85.58 79.37 79.63 82.25 77.11 77.11 81.64 81.66 82.52 84.30 84.07 83.78 84.68 78.47 78.74 82.34
Flare 75.34 73.62 75.27 75.43 75.46 75.86 69.28 73.39 72.04 71.21 71.59 72.43 73.64 73.92 73.69 75.24 74.83 75.60
Glass 72.03 71.63 74.81 62.14 63.14 71.04 73.72 74.15 76.19 73.35 74.27 74.33 68.72 70.12 70.12 68.56 68.12 75.40
Led7digit 64.51 65.35 65.33 67.90 68.09 66.47 61.33 61.57 62.54 66.68 67.88 68.26 62.17 62.60 65.42 63.98 63.86 64.19
Lymphography 74.50 76.44 76.44 82.48 82.48 83.10 81.87 81.87 82.50 68.19 79.55 79.52 83.19 83.19 83.19 75.68 75.68 77.04
Nursery 89.66 89.81 90.90 92.13 92.13 94.53 80.33 89.05 90.83 93.29 93.29 93.68 97.92 97.92 97.84 90.66 90.81 92.44
Pageblocks 95.64 95.46 95.82 94.90 94.53 95.27 94.58 94.76 95.11 95.63 95.46 95.09 95.09 94.91 95.09 95.45 95.11 96.00
Penbased 91.10 91.11 95.64 95.92 96.01 97.01 97.55 97.64 98.00 97.00 96.64 96.91 98.19 98.10 98.10 91.38 91.11 96.01
Satimage 82.15 82.92 85.41 84.48 84.16 86.34 84.77 85.70 87.56 87.58 87.73 88.34 86.79 86.95 87.25 82.61 82.14 86.01
Segment 96.28 96.71 97.97 92.68 92.90 95.58 97.23 97.36 97.40 96.58 96.80 96.84 97.32 97.36 97.27 96.58 96.88 97.84
Shuttle 99.59 99.68 99.72 96.55 97.61 99.50 99.59 99.63 99.63 99.50 99.40 99.40 97.43 98.03 98.76 99.40 99.68 99.54
Vehicle 72.33 72.81 73.88 73.53 74.00 74.48 81.92 81.92 82.04 72.11 72.23 72.23 84.53 84.40 84.41 69.27 70.20 71.29
Vowel 83.43 83.64 94.75 71.41 71.82 95.05 99.70 99.70 99.29 97.78 97.37 97.27 98.28 98.08 98.59 80.20 79.39 94.44
Yeast 59.57 59.84 60.46 60.52 59.98 60.92 59.31 59.51 62.14 56.68 56.54 58.30 60.25 59.98 60.92 58.30 58.10 61.81
Zoo 92.17 92.17 93.22 95.72 95.72 96.77 78.06 84.13 90.80 89.90 91.86 94.64 96.77 96.77 97.82 94.05 94.05 96.10

Average 81.48 81.81 84.02 81.38 81.55 84.48 79.74 81.98 83.01 82.63 83.52 84.06 84.29 85.01 85.36 81.21 81.35 84.17
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On this account, we want to analyze the weights assigned by
DRCW-OVO so as to explain that the weighting mechanism is
suitable. With this objective, we have computed three values for
each one of the configurations of k tested in Section 5.1 and for
each data-set, which are shown in Table 12:

1. The average weight assigned to the output of the correct class
in a competent classifier (the one that should be predicted),
denoted as Wc.

2. The average weight assigned to the class that should not be
predicted in a competent classifier, denoted as WnC (hence,
WcþWnC¼1).

3. The average standard deviation of the weights assigned to the
non-competent classifiers in each score-matrix with respect to
0.5 (denoted as D0.5), which would be the ideal weight.
Therefore, the lower the average deviation is, the better the
non-competent classifiers modeled are, since it means that the
weights are close to 0.5, and hence the outputs that should not
be predicted are not empowered.

From Table 12, we can observe that the methods achieving the
best results in Section 5.1 ðk¼ 1;3;5Þ are also the ones obtaining the
highest average weight values for the real class (and consequently
the lowest for the other one). Moreover, we should stress that there
must also be a balance between the deviation (the lower the better)
and the weights Wc. For example, with k¼ �1 we obtain a very low
deviation, but it also produces too similar Wc andWnC values, which
makes the influence of the proposed method low, as we have already
shown. It should be noticed that this is due to the fact that more
similar distances between the instance and the different classes are
found as k increases, loosing the capability of giving different weights
to Wc and WnC. As a result, the influence of the proposed
methodology in OVO with too large k values becomes low.

6. Concluding remarks

In this paper, we have presented a DCW procedure to deal with
the non-competent classifiers problem in OVO strategy, the
DRCW-OVO method. To do so, we have proposed to use the
nearest neighbor of each class from the instance to be classified
in order to dynamically weight the outputs of the classifiers by
these distances. The novelty of this approach resides both in the
management of the non-competent classifiers and in the applica-
tion of DCW to OVO strategy, since DCW techniques have not been
previously used for decomposition-based techniques.

The new combination has shown its validity and usefulness in a
number of real-world problems, being a simple strategy able to
outperform the state-of-the-art methods in exchange for a low
increase of the computational cost. The robustness of the method
with respect to the value of the parameter k (the number of
neighbors from each class used) has been analyzed. We have also
explained the reasonwhy the method is working, which is due to the
greater relative weights assigned to the outputs of the correct class,
whereas those of the competent classifiers are equally weighted,
penalizing those classes. Furthermore, we must stress that all the
differences found in this paper are due to the combinations studied
and not due to differences in the base classifiers, since all the
combinations base their decision on the same score-matrices.

This paper opens up new possibilities to adapt DCW, DCS and DES
techniques to decomposition-based strategies, which could enhance
the results obtained by classical combination methods. On this
account, as a future work, we intend to introduce these strategies
in the more general ECOC framework. Furthermore, it will be
interesting to study different models to weight the competence such
as the usage of clustering models to compute the distance to the
clusters instead of using the k nearest neighbors approach proposed.Ta
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