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The analysis of the performance of different approaches is a staple concern in the design of
Computational Intelligence experiments. Any proper analysis of evolutionary optimization
algorithms should incorporate a full set of benchmark problems and state-of-the-art com-
parison algorithms. For the sake of rigor, such an analysis may be completed with the use of
statistical procedures, supporting the conclusions drawn.

In this paper, we point out that these conclusions are usually limited to the final results,
whereas intermediate results are seldom considered. We propose a new methodology for
comparing evolutionary algorithms’ convergence capabilities, based on the use of Page’s
trend test. The methodology is presented with a case of use, incorporating real results from
selected techniques of a recent special issue. The possible applications of the method are
highlighted, particularly in those cases in which the final results do not enable a clear eval-
uation of the differences among several evolutionary techniques.

� 2014 Published by Elsevier Inc.
1. Introduction

An analysis based on final results is the most popular way in which the performance of Computational Intelligence search
methods is assessed. For example, in the field of evolutionary optimization, algorithms are usually evaluated with respect to
the quality of the best result obtained, over a predefined set of benchmark functions. However, there are other traits of evo-
lutionary algorithms that are worthy of analysis, beyond the quality of the final solution reached: Efficiency, applicability to
different domains, diversity management and convergence [2].

Convergence is usually acknowledged to be a desirable capability for every new search algorithm designed today. In the
case of Evolutionary Algorithms (EAs), this is a staple concern in the sense that good convergence is a must-have for any new
technique to be accepted by the research community [4,7,30]. However, it is common to see convergence analyzed only as
the capability of the technique to reach the final, regardless of how quickly such a result is reached.
anthan),
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In this sense, the development of a methodology to assess the convergence performance of several algorithms – that is,
which algorithm converges faster – is important, particularly in cases in which a benchmark problem is unable to differen-
tiate algorithms using the final results achieved.

The conclusions obtained after analyzing the final results of the algorithms are often backed up by using statistical tech-
niques. Nonparametric tests [8,22] are preferred for this task due to the absence of strong limitations regarding the kind of
data to analyze (in contrast with parametric tests, for which the assumptions of normality, independence and homoscedas-
ticity of the data are necessary for the sake of reliability) [18,15,31,41].

Throughout this paper, we show how Page’s trend statistical test [27] can be applied to the analysis of pairwise conver-
gence. It is a nonparametric test for multiple classification, which allows trends to be detected among the results of the treat-
ments if the null hypothesis of equality is rejected. In our case, if the treatments are chosen as the differences between the
fitness values of two algorithms, computed at several points of the run (cut-points), the test can be used to detect increasing
and decreasing trends in the differences as the search goes on. The study of these trends, representing the evolution of the
algorithms during the search, enables us to develop a new methodology for comparing algorithms’ convergence performance.

The description of our approach is completed with the inclusion of an alternative version for computing the ranks of
the test. This second version allows the test to be applied safely should one of the algorithms reach the optimum of some
of the benchmark functions before the end of the run (which would prevent it from progressing further, thereby preventing
the proper evaluation of its convergence in the last stages of the search).

To demonstrate the usefulness of both the basic and the alternative versions of the test, a full case study is presented. The
study compares the performance of several EAs for continuous optimization, namely advanced versions of the Differential Evo-
lution evolutionary technique [32,11]. It is based on the submissions accepted for the Special Issue on Scalability of Evolution-
ary Algorithms and other Metaheuristics for Large Scale Continuous Optimization Problems [21] in the Soft Computing journal.

As will be shown in the study, the use of Page’s trend test can be very useful when analyzing the performance of the algo-
rithms throughout the search. Its use provides the researchers with a new perspective for assessing how the algorithms
behave, considering intermediate results instead of just the final results in each function. This can reveal very illustrative
information when comparing the methods, particularly in cases where the final results are statistically similar.

A further contribution presented in this work is the development of a Java program to implement our approach. The pro-
gram processes the intermediate results of two or more algorithms. After that, Page’s trend test is carried out for every pair of
algorithms, and the results are output in TeX format. It can be downloaded at the following URL: http://sci2s.ugr.es/sicidm/
pageTest.zip.

The rest of this paper is organized as follows: Section 2 provides some background regarding the use of nonparametric tests
to contrast the results of evolutionary optimization experiments. Section 3 presents our approach, detailing how Page’s trend
test can be applied to compare the convergence performance of two algorithms. Section 4 describes the case study chosen to
illustrate the application of the test. Section 5 presents the results obtained and the related discussions. Section 6 concludes the
paper. Three appendices are also included, respectively providing a guide to obtaining and using the software used to run the
test (A), detailed final results of the case of study (B) and the full results of the application of Page’s trend test (C).

2. Background

The assessment of the performance of algorithms is an important task when performing experiments in Computational
Intelligence. When comparing EAs, it is necessary to consider the extent to which the No Free Lunch theorem [39] limits the
conclusions: Under no specific knowledge, any two algorithms are equivalent when their performance is averaged across all
possible problems.

Therefore, assuming that EAs take advantage of the available knowledge in one way or another, it is advisable to focus
interest on efficiency and/or effectiveness criteria. When theoretical developments are not available to check such criteria,
the analysis of empirical results can help to discern which techniques perform more favorably for a given set of problems.

In the literature, it is possible to find different viewpoints on how to improve the analysis of experiments [23]: The design of
test problems [13] (for example, the design of complex test functions for continuous optimization [14,38]), the use of advanced
experimental design methodologies (for example, methodologies for adjusting the parameters of the algorithms depending on
the settings used and results obtained [1,2] or for performing Exploratory Landscape Analysis [3,26]) or the analysis of the
results [9] (to determine whether the differences between algorithms’ performances are significant or not). Another example
is [35], where a method inspired in chess rating systems is adapted to rank the performance of evolutionary algorithms.

From the statistical analysis perspective, the use of statistical tests enhances the conclusions drawn, by determining
whether there is enough evidence to reject null hypotheses based on the results of the experiments. For this task, it is possible
to find applications of both parametric [29,10] and, more recently, nonparametric [18,24,12] statistical procedures.

Nonparametric tests are used to compare algorithms’ final results, represented as average values for each problem (using
the same criterion: average, median, etc. over the same number of runs for each algorithm and problem). This usually
enables practitioners to rank differences among algorithms and determine which ones are significant, thus leading to a char-
acterization of which algorithms behave better than the rest.

However, a drawback of this methodology is that it only takes into consideration the final results obtained at the end.
When analyzing EAs, this often overshadows interesting conclusions which could be drawn by analyzing the performance
of the algorithms during the whole run.

http://sci2s.ugr.es/sicidm/pageTest.zip
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The rest of this section is devoted to the introduction of nonparametric tests and the classical definition of Page’s trend
test. This provides the necessary background to present our proposal on the use of nonparametric tests to analyze the con-
vergence performance of EAs, as an enhancement to the final-results oriented statistical analysis, in particular when final
results are statistically similar.

2.1. Nonparametric tests

Nonparametric tests [19] are powerful tools for the analysis of results in Computational Intelligence. They can be used to
analyze both nominal and real data, through the use of rank-based measures. At the cost of some inference power (when
compared with their parametric counterparts), they offer safe and reliable procedures to contrast the differences between
different techniques, particularly in multiple-problem analysis (that is, for studies in which the results over multiple prob-
lems are analyzed jointly, instead of performing a single test per each problem).

To apply nonparametric tests to a multiple-problem set-up, a result per algorithm/problem pair must be provided. This is
often obtained as the average of a given performance measure over several runs – carried out on every single problem. A
typical example could be the average error on 50 runs of an algorithm over 25 different benchmark problems.

A null or no-effect hypothesis is to be formulated prior to the application of the test. It often supports the equality or absence
of differences among the results of the algorithms, and enables alternative hypotheses to be raised that support the opposite
[31]. The null hypothesis can be represented by H0, and the alternative hypotheses by H1; . . . ;Hn. The application of the tests
leads to the computation of a statistic, which can be used to reject the null hyphotesis at a given level of significance a.

For a fine grained analysis, it is also possible to compute the smallest level of significance that results in the rejection of
the null hypothesis. This level is the p-value, which is the probability of obtaining a result at least as extreme as the one that
was actually observed, assuming that the null hypothesis is true. The use of p-values is often preferred over using only fixed
a levels since they provide cleaner measures of how significant the result is (the smaller the p-value, the stronger the evi-
dence against the null hypothesis is) [41].

The nonparametric tests can be classified by their capabilities to perform pairwise comparisons and multiple compari-
sons. It is important to note that the p-values obtained through pairwise comparisons are independent, and thus multiple
comparison procedures should be used instead when comparing more than two algorithms [17].

Several nonparametric tests can be used to compare the final results of EAs in continuous optimization problems: The
Sign test and the Wilcoxon Signed-ranks test can help dealing with pairwise comparisons, whereas the Friedman, the Fried-
man Aligned-ranks and the Quade test can be used for performing multiple comparisons. Post-hoc procedures, such as the
Holm test can be introduced after the application of multiple comparisons, to characterize the existence of pairwise differ-
ences within a multiple comparisons set-up [16].

2.2. Page’s trend test

Page’s trend test for ordered alternatives [27] can be classified in the family of tests for association in multiple classifi-
cations, similar to the Friedman test. Before detailing its application to the analysis of convergence performance (which will
be provided in the next section), it is necessary to provide its original definition.

This test defines the null hypothesis as the equality between the k treatments analyzed that can be rejected in favor of an
ordered alternative (the ordered alternative is the main difference of this test with respect to the Friedman test, which only
defines the alternative hypothesis as the existence of differences between treatments).

The ordered alternative must be defined by the practitioner before starting the analysis. An order between the k treat-
ments has to be provided, and it should reflect the expected order for the populations. Hence, the treatments’ measures
should be numbered from 1 to k, where treatment 1 has the smallest sum of ranks, and treatment k has the largest.

Once such an order and the data (consisting of n samples of the k treatments) are provided, the n samples (data rows) can be
ranked from the best to the worst, giving a rank of 1 to the best measure in the sample, a rank of 2 to the second, . . ., and a rank of
k to the worst. If there are ties for a given sample, average ranks can be assigned (for example, a tie between the first and the
second result would produce an average rank of (1 + 2)/2 = 1.5, which would be assigned to both measures). If the data is con-
sistent with the initial ordering defined, then the sum of ranks’ values for each of the treatments will follow in increasing order.

After obtaining the ranks, the Page L statistic can be computed using the following expression
L ¼
Xk

j¼1

jRj ¼ R1 þ 2R2 þ � � � þ kRk ð1Þ
where Rj ¼
Pn

i¼1rj
i, and rj

i is the rank of the j-th of k measures on the i-th of n samples.
The L statistic can be seen as a weighted version of Friedman’s test (as presented in [27]) by which average ranks are given

more weight the closer they are to the final treatments. L critical values can be computed for small values of k and n (see, for
example, Table Q in [19] for values up to k ¼ 8 and n ¼ 12). In the case that larger values are required, a normal approxima-
tion should be considered. The normal approximation for the L statistic is given by the following expression
Z ¼ 12ðL� 0:5Þ � 3Nkðkþ 1Þ2

kðkþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðk� 1Þ

p : ð2Þ



Table 1
Computation of ranks for Page’s trend test (Example 1).

Ranks C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Function 1 1 2 3 10 6.5 6.5 6.5 6.5 6.5 6.5
Function 2 10 4 9 8 7 6 5 3 2 1
Function 3 1 2 3 4 5 6 10 9 8 7
Function 4 9 10 8 7 6 5 4 3 2 1
Function 5 1 2 3 10 6.5 6.5 6.5 6.5 6.5 6.5
Function 6 1 2 3 4 10 9 6.5 6.5 6.5 6.5
Function 7 10 9 8 7 6 5 2.5 2.5 2.5 2.5
Function 8 10 9 8 7 6 5 4 3 2 1
Function 9 1 2 3 4 5 6 10 9 8 7
Function 10 1 2 3 4 10 7 7 7 7 7
Function 11 1 2 3 4 5 6 10 9 8 7
Function 12 1 10 9 8 7 6 5 4 3 2
Function 13 1 2 3 4 5 6 10 9 8 7
Function 14 9 10 8 7 6 5 4 3 2 1
Function 15 1 2 3 4 5 6 8.5 8.5 8.5 8.5
Function 16 10 9 8 7 6 5 4 3 2 1
Function 17 1 2 3 4 5 6 10 9 8 7
Function 18 9 10 2 1 3 4 8 7 6 5
Function 19 1 2 3 4 5 8 8 8 8 8
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whose estimation, including a continuity correction, is approximately standard normal with a rejection region on the right
tail.
3. Using Page’s trend test for convergence analysis

In this section, the use of the Page’s trend test for convergence analysis is described. The test is applied under the assump-
tion that an algorithm with a good convergence performance will advance towards the optimum faster than another algo-
rithm with a worse performance. Thus, differences in the fitness values will increase as the search continues.

The application of Page’s trend test to this task is described in Section 3.1. A modification to the ranks assignment pro-
cedure of the test (and hence, to this proposal) is presented in Section 3.2. This modification, useful in cases where the algo-
rithms reach the optimum of some functions before the end of the experiments, may be of interest for dealing with many
common experimental studies on continuous optimization, whose functions’ optima are very likely to be reached for some
of the functions of the benchmarks.
3.1. Using Page’s trend test

The original definition of Page’s trend test focuses on detecting increasing trends in the rankings computed using the
input data. This means that decreasing trends in the data values will be detected, provided that ranks are computed as
described before.

The input data would represent the differences between each algorithm’s average best objective value reached, at differ-
ent steps of the search (cut-points). The best objective value reached at each cut-point has to be collected for every run of
each algorithm and function. These values should be then averaged along the runs, so that a single, aggregated value is
obtained per each algorithm, function and cut-point. This will allow us to compute the differences between a pair of algo-
rithms, by subtracting the aggregated values.

Therefore, the input data of the test will represent the differences between the two algorithms, A and B, recorded at c
different points of the search, on n problems (functions).

The treatments (columns) will represent each of the c cut-points at which data is gathered (they should be taken at regular
intervals), whereas the samples (rows) will represent the n different functions used to test the algorithms. Fig. 1 shows an
example of the convergence of two algorithms and how c ¼ 10 cut-points are tracked for each one.

The specific number of samples and treatments to consider would depend on the characteristics of each specific situation
and the available data, although a reasonable rule would be to have approximately twice the number of samples as treat-
ments, at least (see [19]). Also, treatments should always be ordered in increasing order, since we are interested in analyzing
the trends as the search progresses. That is, the first treatment should represent the first cut-point, the second treatment
should represent the second cut-point and so on.

Under these conditions, Page’s trend test may be used to detect increasing trends in the ranks that represent the differ-
ences (or decreasing trends, if the order of the algorithms is reversed). Assuming a minimization objective1, the outcome of
the test can be interpreted as follows:
1 The test could be easily adapted to work with maximization objectives, by reversing the sign of the differences.
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� Significant increasing trend: If a consistently increasing trend in the ranks is found, this means that either the fitness of A
is growing faster than the fitness of B or that the fitness of B is decreasing faster than the fitness of A.
Since the fitness is computed as the best value found throughout the search, the former case is impossible. Hence, if an
increasing trend is detected, this means that the fitness of B is decreasing faster, which means that it has a better con-
vergence performance.
� Significant decreasing trend: Following the same reasoning as above, this could only mean that the fitness of A is decreas-

ing faster. Hence, a decreasing trend in the ranks means that A has a better convergence performance.
� No significant trend: If no consistent trend is found, then nothing can be said about the relative convergence performance

of two algorithms.
Example 1. Let A and B be two algorithms to analyze, considering n ¼ 19 different functions and c ¼ 10 cut-points. Table 1
shows an example of the treatments’ ranks (Rj) computed for the A–B differences in fitness values. Note that ranks are
assigned from 1 (greater absolute differences) to 10 (lower absolute differences), and that midranks are assigned when nec-
essary (hence, the sum of all the Rj values will always be 55).

Fig. 2 shows the sum of all the Rj values per cut-point, and the Page’s L statistic computed from them. It shows the
associated p-value obtained. For completness, the relevant data of the opposite comparison (B–A) is also included.

The comparison A–B shows an increasing trend in the ranks (as can be seen in the figure), which is confirmed by a very
low p-value. Moreover, the opposite comparison B–A, shows clearly that the ranks are not increasing (in fact, they are
decreasing), which is rejected by a p-value near to 1.0. These results show that the algorithm A is converging faster than
algorithm B.

3.2. Alternative ranks computation procedure

Although the aforementioned procedure should be correct in most cases, it should be used with caution if any of the algo-
rithms is unable to progress in the search for some of the functions. The most typical case of this occurring would probably
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Fig. 2. Page’s trend test results (Example 1).
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be when the absolute global optimum could be reached within the evaluations limit stipulated (something that it is very
likely to happen with most of the common benchmarks currently used, such as the IEEE Conference on Evolutionary Com-
putation 2005 Special Session on Real-Parameter Optimization [33] one). Hence, if such optimum is reached (if it is known),
the computation procedure should be corrected in order rank the difference properly.

Fig. 3 shows a graph depicting the convergence process of two different algorithms for a given function. As can be seen, algo-
rithm A is converging faster than algorithm B, reaching the optimum using half of the total evaluations allowed. In this situa-
tion, the test would be expected to report a positive response, showing that algorithm A has a better behavior in that problem.

However, this is not the case if the former ranking computation procedure is used. If fitness value differences between the
algorithms are computed, an increasing trend would be identified from cut-points 1 to 5 (positive for algorithm A, since the
differences are increasing as the algorithms proceed). However, a decreasing trend would also be detected, from cut-points 6
to 10. Clearly, this undesirable behavior is caused by the fact that the optimum has been reached too soon by algorithm A,
preventing it from progressing further for the rest of the fitness evaluations.

To tackle this problem, we propose a modification to the procedure used to compute the ranks. The aim of this alternative
version is to continue using the same ranking scheme as in the original approach, but fixing the ranks for those cases in
which the function’s optimum is reached well before the maximum number of fitness evaluations are exhausted.

When analyzing the differences between two algorithms, A and B, as A–B, four different cases can be highlighted (by
considering ranks for 10 cut-points for each case):

1. No algorithm reaches the optimum before the end: No further changes are necessary.
Example: Using 10 cut-points, a possible ordering could be the following:
7;3;5;2;1;4;8;6;9;10
(Ranks are computed in the standard way. That is, the difference at the first cut-point is the seventh largest absolute differ-
ence (rank 7), the difference at the second one is the third largest absolute difference (rank 3), and so forth. The largest
difference is found at the fifth cut-point (rank 1), whereas the smallest is found at the last cut-point (rank 10)).
2. Algorithm A reaches the optimum before the end: Ranks should be modified so an increasing trend is detected from the

point at which algorithm A reaches the optimum to the last cut-points of the comparison. The rest of the ranks could be
assigned as above.
Example: Using 10 cut-points and having algorithm A ending at the 6th cut-point, a possible ordering could be the
following:
3;1;2;4;5;6;7;8;9;10:
(Highest ranks are assigned increasingly starting from the sixth cut-point).
3. Algorithm B reaches the optimum before the end: Ranks should be modified so a decreasing trend is detected from the

point at which algorithm B reaches the optimum. The lowest ranks should be assigned decreasingly to the last cut-points
of the comparison. The rest of the ranks could be assigned as in the first case.
Example: Using 10 cut-points and having algorithm B converging to the global optimum in the 6th cut-point, a possible
ordering could be the following:
6;10;8;9;7;5;4;3;2;1:
(Lowest ranks are assigned decreasingly starting from the sixth cut-point).
4. Both algorithms reach the optimum at the same cut-point: In this case, the computation of the ranks can be performed

as with the original version of the test. Zero differences will be ranked using the median ranks, denoting that no trend is
detected from the point in which both algorithms reached the optimum.
Example: Using 10 cut-points and having algorithms A and B ending in the sixth cut-point, a possible ordering could be
the following:
1;10;9;8;2;5;5;5;5;5:
(Assigning midranks from the sixth cut-point).

As has been shown, the alternative version addresses those cases in which the global optimum is reached prior to
exhausting the maximum function evaluations, preventing the algorithm from continuing with the search. In cases 2 and
3, the scheme adopted will benefit the first algorithm to converge to the optimum, and this benefit will be higher the sooner
the said optimum is reached. Also, note that if case 4 is reached, the chances of not rejecting the equality hypothesis will
greatly increase (as would happen naturally if the basic ranking scheme is considered).

Example 2. Table 2 show the cutpoint at which algorithms A and B (from Example 1) reached the known optimum, of 19
different functions.

As can be seen in the table, algorithm B always reaches the optimum at the same time or before the algorithm A (except in
function F7). Hence, it would be expected that B would be found to have a better convergence behavior.
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Table 2
Ending cut-points for algorithms A and B (Example 2. ‘‘–’’ denotes that the optimum was not reached.

Ending F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19

Algorithm A 5 – – 10 5 7 7 – – 6 – 10 – – 7 – – – 6
Algorithm B 4 – – 5 4 5 – – – 5 – 5 – – 7 3 – – 6
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Table 3 shows the ranks, L statistic and p-values computed using this data, by both versions of Page’s trend test (standard
and alternative). Note that the results of the first two rows are the same as were shown in Example 1. These results are also
depicted graphically in Fig. 4

The alternative computation of the ranks introduces a clear modification in the p-values computed. Such modification
corrects the previous result, in the sense that a favourable trend is identified this time for algorithm B. This is in consonance
with the data shown in Table 2, clearly depicting algorithm B as the one with the best convergence performance.
4. Case of use: On analyzing the performance of several Differential Evolution based approaches

The proposed methodology should make it possible to carry out pairwise comparisons among algorithms involved in an
experimental study. At this point, our objective is to show what could be the outcome of such comparisons and how to inter-
pret them.

Hence, in order to demonstrate the usefulness of the methodology proposed, the following sections will be devoted to
describing a case study focused on the analysis of several Differential Evolution [11] based techniques, and to analyzing
the results obtained. It is complemented by the description of a software developed to apply the test (in A), which can be
obtained at http://sci2s.ugr.es/sicidm/pageTest.zip.

This case is mainly seeded on the Soft Computing journal Special Issue on Scalability of Evolutionary Algorithms and other
Metaheuristics for Large Scale Continuous Optimization Problems [21] from which both the benchmarking functions and

http://sci2s.ugr.es/sicidm/pageTest.zip


Table 3
Original and alternative version for the computation of ranks (Example 2).

Differences Original A–B Original B–A Alternative A–B Alternative B–A

C1 79 130 111 98
C2 93 116 118 91
C3 93 116 112 97
C4 108 101 102 107
C5 115 94 100 109
C6 114 95 105 104
C7 129.5 79.5 122.5 86.5
C8 116.5 92.5 106.5 102.5
C9 104.5 104.5 91.5 117.5
C10 92.5 116.5 76.5 132.5

L 5939 5556 5519 5976
p-Value 0.05554 0.94539 0.97196 0.02858
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some of the participant algorithms have been taken. Note that, even in large case studies like this one, this methodology
requires to consider only a fixed number of cut-points (dependent on the number of functions considered as benchmark).
This requirement is independent to other factors like population sizes or the number of iterations performed, making the
test a suitable choice when analyzing complex experiments.

4.1. Functions

The benchmark proposed in the special issue consists of 19 functions [20]. The first six were taken from the CEC’2008
Special Session and Competition on Large Scale Global Optimization [34]. Functions F7–F11 were included as shifted versions
from other common benchmarks in continuous optimization. Finally, functions F12–F19 were built for this benchmark com-
bining two of the previous ones (at least one of the functions in each combination is non-separable). Table 4 shows the main
characteristics of each function: Name, Range and Optimum value.

These functions were presented [21] as a suitable benchmark for testing the capabilities of EAs and other metaheuristics.
By including unimodal/multimodal, separable/non-separable and shifted functions, this benchmark should pose a challenge
for modern optimization algorithms.

All the 19 functions will be considered for the study. The analysis of results will be carried out considering three different
set-ups: 50 dimensions, 100 dimensions and 200 dimensions. This will provide a clear picture on how the algorithms per-
form as the dimensionality of the problems increase.

4.2. Algorithms considered

Six different algorithms have been chosen for this study, 5 of which where originally accepted for the special issue [21].
All of them are advanced EAs based on differential evolution:
Table 4
The 19 test functions chosen as benchmark.

Function Name Range Optimum

F1 Shifted Sphere Function ½�100;100�D �450

F2 Shifted Schwefel’s Problem 2.21 ½�100;100�D �450

F3 Shifted Rosenbrock’s Function ½�100;100�D 390

F4 Shifted Rastrigin’s Function ½�5;5�D �330

F5 Shifted Griewank’s Function ½�600;600�D �180

F6 Shifted Ackley’s Function ½�32;32�D �140

F7 Shifted Schwefel’s Problem 1.2 ½�65:536;65:536�D 0

F9 Shifted Extended f 10 ½�100;100�D 0

F10 Shifted Bohachevsky ½�15;15�D 0

F11 Shifted Schaffer ½�100;100�D 0

F12 Composite F9 + F1 Function ½�100;100�D 0

F13 Composite F9 + F3 Function ½�100;100�D 0

F14 Composite F9 + F4 Function ½�5;5�D 0

F15 Composite F10 + F7 Function ½�10;10�D 0

F16 Composite F9 + F1 Function V2 ½�100;100�D 0

F17 Composite F9 + F3 Function V2 ½�100;100�D 0

F18 Composite F9 + F4 Function V2 ½�5;5�D 0

F19 Composite F10 + F7 Function V2 ½�10;10�D 0
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� GODE [36]: A Generalized Opposition-based learning Differential Evolution algorithm. This technique is based on oppo-
sition-based learning, which is used to transform candidates from the current search region into new search regions.
These transformations are aimed at enabling the algorithm to have a greater chance of finding better solutions than when
searching without opposition based transformation.
� SaDE-MMTS [43]: A Self-adaptive Differential Evolution algorithm hybridized with a Modified Multi-Trajectory Search

strategy (MMTS). This search strategy enhances the search performed by the original SaDE algorithm [28] by frequently
refining several diversely distributed solutions at different search stages by using MMTS, satisfying both global and local
search requirements.
� SaEPSDE-MMTS [42]: An Ensemble of Parameters and mutation Strategies in Differential Evolution with Self-adaption

[25] improved with the MMTS, with the aim of enhancing the behavior of the original algorithm.
� SOUPDE [37]: Shuffle Or Update Parallel Differential Evolution is a structured population algorithm characterized by sub-

populations employing a Differential evolution logic and two strategies: Shuffling, which consists of merging the sub-
populations and subsequently randomly dividing them again into sub-populations; and update, which consists of ran-
domly updating the values of the scale factors of each population.
� GADE [40]: A Generalized Adaptive Differential Evolution algorithm, which is governed by a generalized parameter adap-

tation scheme. An auto-adaptive probability distribution, updated during the whole evolution process, is used to generate
suitable values for the most important parameters of the underlying Differential Evolution based search procedure.
� jDElscop [6]: A self-adaptive Differential Evolution for large scale continuous optimization problems. This is an upgrade

of the original jDE algorithm [5], incorporating three different evolution strategies, a population size reduction mecha-
nism, and a mechanism for changing the sign of control parameters.

All methods have been used considering the default configuration provided by their authors in their original submissions
to the special issue. Hence, no explicit optimization of parameters was performed.
5. Results and analysis

The experimental study is split into two different sections. The first one (Section 5.1) shows the results obtained after
carrying out 25 independent runs of each algorithm over each function. For each run, 5000 � D evaluations have been
allowed, where D is the number of dimensions of the function (50, 100 or 200).

After performing the analysis based on the ending point of the algorithms, the second section (Section 5.2) performs an
analysis of the convergence behavior of the algorithms, using Page’s trend test (the original and the alternative version). Dif-
ferences between the conclusions drawn from the two studies will be pointed out, highlighting the role of the Page’s trend
test based approach to convergence analysis and the benefits of the alternative version proposed.
5.1. Final results analysis: Friedman and Bergmann tests

Table 5 summarizes the final results obtained by the algorithms in 50, 100 and 200 dimensions’ functions, depicted as the
number of functions for which the average final error is lower than 1.00E�10 (that is, the number of those for which it can be
assumed that the algorithm has reached the optimum). For further reference, full results are included in B).

The final results can be contrasted by using tests for N � N comparisons [12]. In this case, we will use the Friedman test to
contrast the differences, and the Bergmann post hoc procedure for adjusting the results for 1 � 1 pairwise comparisons.
Table 6 shows the results of the Friedman test, whereas Table 7 shows the results of the Bergmann post hoc procedure.

As shown by the tables, there are very few differences in the performance of the algorithms. If only the final results are
analyzed, only small differences can be found in favor of SOUPDE and jDElscop in every case. However, these differences are
not significant.

The p-values computed by the Friedman test shows that there is no significant difference among the algorithms, even at a
a ¼ 0:1 level of significance. The best (lower) ranks are also obtained by SOUPDE and jDElscop, but this does not make the
differences between them and the rest significant. The Bergman procedure supports these conclusions, pointing out that no
significant difference can be detected in any pairwise comparison.

Therefore, the conclusions of the study – if only the final results were to be analyzed - would be that all the algorithms
exhibit a similar behavior. Perhaps it would be possible to point out that the SOUPDE and jDElscop algorithms show some
differences when compared with the rest, but in every case the differences are not significant.
Table 5
Number of functions solved (reached an average error lower than 1.00E�10) per algorithm.

GODE SaDE-MMTS SaEPSDE-MMTS SOUPDE GADE jDElscop

# Functions solved (50-D) 9 11 9 13 8 13
# Functions solved (100-D) 9 9 9 13 8 13
# Functions solved (200-D) 7 6 8 13 7 12



Table 7
Pairwise hypotheses analyzed by the Bergmann post hoc procedure.

50-D Hypotheses p-Value 100-D Hypotheses p-Value 200-D Hypotheses p-Value

jDElscop vs GODE 0.76586 jDElscop vs GODE 0.62369 jDElscop vs GODE 0.36248
Rest 1.00000 jDElscop vs GADE 0.62369 jDElscop vs GADE 0.36248
– – Rest 1.00000 jDElscop vs SaDE-MMTS 0.36248
– – – – Rest 1.00000

Table 6
Friedman test for the results obtained at 50, 100 and 200 dimensions.

Algorithm Rank 50-D Rank 100-D Rank 200-D

GODE 4.0000 3.9211 4.0263
SaDE-MMTS 3.5789 3.5789 3.9474
SaEPSDE-MMTS 3.5526 3.3684 3.3421
SOUPDE 3.2895 3.3158 3.1842
GADE 3.7632 4.0263 3.8421
jDElscop 2.8158 2.7895 2.6579
p-Value 0.47138 0.35589 0.17045
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However, these conclusions might not be satisfactory, particularly if the behavior of algorithms over time is analyzed.
For example, Fig. 5 shows how important differences can be found between SOUPDE and jDElscop , even when both algo-
rithms reach the same final result. It is not difficult to find examples where one algorithm is converging much faster than
another, but, due to the fixed limit on the number of evaluations, this is not detected if only final results are analyzed.

Throughout the rest of the case study, we will show how this difficulty can be overcomed by using the Page’s trend test to
analyze convergence.

5.2. Convergence analysis

The same experimental conditions have been considered for this second study: Algorithms and functions to study, eval-
uations limit and so forth. Considering that our framework consists of 19 different functions to optimize, the number of cut-
points has been fixed at 10, one after each 10% of fitness function evaluations (see Section 3.1).

Tables 8–10 show a summarized version of the results obtained (an extended version, including ranks at every cut-point,
L statistics and p-values for each pairwise comparison is provided in C). Results are provided for both the original and the
alternative version of the test. Each p-value of the tables is computed as the probability of rejection of the hypothesis of
equality of convergence, in favor of the alternative that the method in the row converges faster than the method in the col-
umn. Rejected hypotheses (at a significance level of a ¼ 0:1) are highlighted in bold.

The very first fact to note here is the differences between the original and the alternative version of the test: Although in
the most clear cases the results seldom change, this is not the case for some of the comparisons, for which very different p-
values are obtained (particularly in the results for 100 dimensional functions). As shown in Example 2 (which actually
reflects the comparison between GODE and SaEPSDE-MMTS in 100 dimensions functions), the interpretation of the results
might change dramatically if the alternative version is not considered.
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Fig. 5. Convergence plots of SOUPDE vs jDElscop: Performances can be very different even when both algorithms reach the same result at the end. Some
algorithms could converge better for most of the run (left graph, 200-D, F18), or even finish using 10% less evaluations (right graph, 200-D, F5) and
traditional final results analysis would not be able to detect these differences in performance.



Table 8
Convergence results (p-values) for the experiments on 50 dimensional functions.

GODE SaDE-MMTS SaEPSDE-MMTS SOUPDE GADE jDElscop

Original version
GODE – 0.00000 0.00385 0.84261 0.00000 0.00000
SaDE-MMTS 1.00000 – 1.00000 1.00000 1.00000 0.00000
SaEPSDE-MMTS 0.99625 0.00000 – 0.98330 0.93501 0.00000
SOUPDE 0.15940 0.00000 0.01705 – 0.00014 0.00000
GADE 1.00000 0.00000 0.06606 0.99987 – 0.00000
jDElscop 1.00000 1.00000 1.00000 1.00000 1.00000 –

Alternative version
GODE – 0.00000 0.00997 0.94811 0.00000 0.00000
SaDE-MMTS 1.00000 – 0.99999 0.99999 1.00000 0.00016
SaEPSDE-MMTS 0.99025 0.00001 – 0.90627 0.84758 0.00000
SOUPDE 0.05279 0.00001 0.09514 – 0.00000 0.00000
GADE 1.00000 0.00000 0.15439 1.00000 – 0.00000
jDElscop 1.00000 0.99985 1.00000 1.00000 1.00000 –

Table 9
Convergence results (p-values) for the experiments on 100 dimensional functions.

GODE SaDE-MMTS SaEPSDE-MMTS SOUPDE GADE jDElscop

Original version
GODE – 0.00451 0.05554 0.83548 0.00661 0.00000
SaDE-MMTS 0.99560 – 0.00048 0.98013 0.41414 0.00000
SaEPSDE-MMTS 0.94539 0.99953 – 0.78597 0.76216 0.00000
SOUPDE 0.16659 0.02028 0.21647 – 0.06606 0.00000
GADE 0.99354 0.58911 0.24043 0.93501 – 0.00000
jDElscop 1.00000 1.00000 1.00000 1.00000 1.00000 –

Alternative version
GODE – 0.85907 0.97196 0.90486 0.44361 0.00000
SaDE-MMTS 0.14280 – 0.00004 0.78108 0.56297 0.00000
SaEPSDE-MMTS 0.02858 0.99997 – 0.39154 0.97454 0.00000
SOUPDE 0.09656 0.22139 0.61166 – 0.01150 0.00000
GADE 0.55968 0.44032 0.02596 0.98875 – 0.00000
jDElscop 1.00000 1.00000 1.00000 1.00000 1.00000 –

Table 10
Convergence results (p-values) for the experiments on 200 dimensional functions.

GODE SaDE-MMTS SaEPSDE-MMTS SOUPDE GADE jDElscop

Original version
GODE – 1.00000 0.00288 0.99611 0.00031 0.00000
SaDE-MMTS 0.00000 – 0.00000 0.00000 0.00000 0.00000
SaEPSDE-MMTS 0.99719 1.00000 – 0.99753 0.72318 0.00000
SOUPDE 0.00399 1.00000 0.00253 – 0.00180 0.00000
GADE 0.99970 1.00000 0.27962 0.99825 – 0.00000
jDElscop 1.00000 1.00000 1.00000 1.00000 1.00000 –

Alternative version
GODE – 0.99999 0.05889 0.99995 0.00046 0.00000
SaDE-MMTS 0.00001 – 0.00003 0.57771 0.00004 0.00000
SaEPSDE-MMTS 0.94209 0.99997 – 0.99985 0.82278 0.00000
SOUPDE 0.00006 0.42555 0.00016 – 0.00000 0.00000
GADE 0.99955 0.99996 0.17940 1.00000 – 0.00000
jDElscop 1.00000 1.00000 1.00000 1.00000 1.00000 –
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After studying the analysis performed with the alternative version, we can draw the following conclusions:

� 50 dimensions: SOUPDE shows the best convergence behavior, followed by GODE. SaDE-MMTS and jDElscop presents the
worst convergence performance in this case.
� 100 dimensions: SOUPDE presents the best convergence in this scenario. GADE and SaDE-MMTS presents a better perfor-

mance than SaEPSDE-MMTS, and GODE and jDElscop shows the lowest convergence speed in this case.
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� 200 dimensions: SaDE-MMTS and SOUPDE are the best methods with respect to convergence in this case. GODE is also
significantly better than SaEPSDE-MMTS and GADE, whereas jDElscop presents the worst convergence capabilities.

Although the results differ depending on the number of dimensions considered, it is safe to state that, in general, SOUPDE
shows the best behavior with respect to convergence capabilities, whereas jDElscop presents the worst. A further interesting
observation is in regard of the relationship between SaDE-MMTS and SaEPSDE-MMTS (the latter is better at 50 dimensions,
whereas the former is at 100 dimensions and particularly at 200 dimensions).

The analysis of final results can now be refined with this convergence study. Considering both methodologies, SOUPDE
shows the best performance out of the 6 differential evolution methods analyzed. The most striking difference can be found
in the results of jDElscop, which has shown a marginal advantage with respect to the final results, but the worst convergence
performance. This could indicate that the convergence mechanisms of jDElscop enables it to avoid local optima in a better
way than the other methods, but at the cost of a low convergence speed – thus needing more functions evaluations to fully
reach its best performance.

Other conclusions include the fact that, despite the similar results obtained by SaEPSDE-MMTS and SaDE-MMTS, the for-
mer should be preferred for low dimensional problems whereas SaDE-MMTS should be chosen when the number of dimen-
sions increases. Also, GODE and GADE show a poorer performance than the rest, although the former should still be
considered for low dimensional problems.

In summary, these conclusions reveal the fact that useful information about the performance of evolutionary methods in
continuous optimization can be drawn if the intermediate results are analyzed. By studying convergence in depth, analyzing
how the methods’ results evolve as the fitness function evaluations are consumed, new comparisons can be made depicting
other useful properties of the search methods rather than just the final results at a predefined point.

Page’s trend test has been shown to be a useful method to perform this analysis. Also, the alternative version developed
has helped us to mitigate the problem of performing proper comparisons of algorithms that reach the optimum before the
maximum fitness evaluation count, enabling us to draw meaningful conclusions about the performances of the methods.
6. Conclusions

In this paper we have presented a new way of analyzing the behavior of EAs in optimization problems, with respect to
their convergence performance. We have shown how Page’s trend test can be used to perform such an analysis. Also, we have
described how the ranks can be computed in an alternative way, in the event that the optimum value of the functions could
be reached by the algorithms before the end of the run.

As with other applications of nonparametric tests, the present one does not rely on the assumptions of normality, inde-
pendence and homoscedasticity. Hence, it is safe to assume that it can be used to analyze the convergence performance of
EAs, provided that intermediate results are gathered.

By analyzing such intermediate results, Page’s trend test is able to provide key information about algorithms’ behavior.
Such information can be decisive when establishing differences between algorithms which would otherwise be considered
to be equal, if only the final results were used. Therefore, Page’s trend test may be regarded as a way of enriching experimen-
tal analysis, incorporating statistical convergence analysis within the range of methodologies available.
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Appendix A. Software for statistical convergence analysis

A Java implementation of our approach is available at the SCI2S thematic public website on Statistical Inference in Com-
putational Intelligence and Data Mining, http://sci2s.ugr.es/sicidm/. It can be downloaded at the following link:
http://sci2s.ugr.es/sicidm/pageTest.zip

Its main features are that it:

� Includes both the basic version of Page’s trend test and the alternative version.
� Allows us to perform multiple pairwise tests of several algorithms.
� Accepts comma separated values files (CSV) as input data.
� Obtains results as a full report in and plain text formats.

The source code is also offered under the terms of the GNU General Public License.
The input data should consist of a CSV file per algorithm, containing the average results obtained at several cutpoints (col-

umns) in several functions (rows). For example, the following file:
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2.08E+01,1.99E+01,1.86E+01,1.73E+01

3.58E+03,3.38E+03,2.40E+03,9.31E+00

1.11E+00,1.07E+00,1.04E+00,1.02E+00

2.43E�04,2.33E�04,7.85E�05,8.46E�07
0.00E+00,0.00E+00,0.00E+00,0.00E+00
represents the results of one algorithm over 5 different functions, taken at 4 different cutpoints (ordered from left to right).
All files created should share the same format (number of functions and cutpoints).

Appendix B. Final results of the case of study

The following tables show the final results obtained by each technique in the case of study (for 50, 100 and 200 dimen-
sions). For each pair function/technique, the tables report the average error obtained in 25 independent runs.

Note that if an algorithm reaches an average error lower than 1.00E�10, then it is assumed to have reached the optimum
(and thus it is replaced by 0.00E+00). Optimum values in these table are highlighted in bold, and the last row (# Solved)
shows the number of optima reached by every algorithm over the 19 functions (see Tables B.11, B.12 and B.13).
Table B.11
Final results at 50 dimensional functions.

GODE SaDE-MMTS SaEPSDE-MMTS SOUPDE GADE jDElscop

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 5.02E�02 0.00E+00 9.02E�03 1.83E+00 6.43E+00 8.83E�03
F3 3.12E+01 4.43E+00 1.33E+00 2.38E+01 1.85E+01 1.90E+01
F4 0.00E+00 0.00E+00 4.98E�02 1.19E+00 0.00E+00 0.00E+00
F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.67E�04 0.00E+00
F7 0.00E+00 0.00E+00 8.07E+01 0.00E+00 0.00E+00 0.00E+00
F8 1.91E�01 7.09E�07 2.30E�06 1.21E�01 9.51E�07 2.50E�02
F9 6.37E�06 1.71E�01 2.03E�01 0.00E+00 7.68E�03 0.00E+00
F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F11 7.15E�06 2.03E�01 1.97E�01 0.00E+00 4.99E�03 0.00E+00
F12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F13 2.66E+01 2.54E+01 1.17E+00 2.14E+01 2.08E+01 1.40E+01
F14 4.97E�02 7.23E�03 0.00E+00 0.00E+00 1.07E�08 0.00E+00
F15 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F16 1.66E�10 0.00E+00 0.00E+00 0.00E+00 6.06E�08 0.00E+00
F17 1.43E+00 3.94E+00 3.00E�01 1.46E�01 2.90E+00 1.58E�02
F18 4.97E�02 5.15E�02 8.20E�02 0.00E+00 1.06E�04 4.97E�02
F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

# Solved 9 11 9 13 8 13

Table B.12
Final results at 100 dimensional functions.

GODE SaDE-MMTS SaEPSDE-MMTS SOUPDE GADE jDElscop

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 2.18E+00 0.00E+00 8.66E�01 8.48E+00 3.03E+01 5.99E�01
F3 8.08E+01 3.91E+01 2.55E+01 7.51E+01 6.80E+01 6.51E+01
F4 0.00E+00 0.00E+00 0.00E+00 4.97E�02 0.00E+00 4.97E�02
F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F7 0.00E+00 0.00E+00 1.62E+02 0.00E+00 0.00E+00 0.00E+00
F8 7.59E+01 4.09E�03 1.22E�01 7.40E+01 6.81E�03 5.94E+00
F9 1.53E�05 2.64E+00 1.05E+00 0.00E+00 7.23E�03 0.00E+00
F10 0.00E+00 1.57E�01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F11 1.45E�05 2.13E+00 1.15E+00 0.00E+00 1.16E�02 0.00E+00
F12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.51E�10 0.00E+00
F13 6.30E+01 4.10E+01 2.47E+01 5.82E+01 2.36E+04 5.14E+01
F14 7.00E�02 1.08E�03 8.88E�03 0.00E+00 1.98E�08 0.00E+00
F15 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F16 3.63E�10 0.00E+00 0.00E+00 0.00E+00 3.77E�08 0.00E+00
F17 1.29E+01 3.71E+00 1.95E+00 7.76E+00 2.43E+01 1.75E�01
F18 1.07E�06 1.67E�01 1.47E�01 0.00E+00 7.61E�05 0.00E+00
F19 0.00E+00 1.05E�01 0.00E+00 0.00E+00 0.00E+00 0.00E+00

# Solved 9 9 9 13 8 13



Table B.13
Final results at 200 dimensional functions.

GODE SaDE-MMTS SaEPSDE-MMTS SOUPDE GADE jDElscop

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 1.47E+01 0.00E+00 4.58E+00 2.41E+01 4.88E+01 5.56E+00
F3 1.79E+02 4.86E+01 4.39E+01 1.75E+02 1.71E+02 1.42E+02
F4 9.95E�02 5.47E�01 4.98E�02 0.00E+00 0.00E+00 0.00E+00
F5 0.00E+00 4.95E�04 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F7 0.00E+00 0.00E+00 3.04E+02 0.00E+00 0.00E+00 0.00E+00
F8 2.08E+03 2.72E�01 1.12E+02 2.39E+03 5.14E+00 3.45E+02
F9 3.18E�05 1.27E+01 3.67E+00 0.00E+00 1.59E�02 0.00E+00
F10 0.00E+00 3.33E+00 0.00E+00 0.00E+00 5.25E�02 0.00E+00
F11 3.24E�05 9.95E+00 3.80E+00 1.51E�03 1.17E�02 2.59E�08
F12 1.21E�10 0.00E+00 0.00E+00 0.00E+00 2.11E�09 0.00E+00
F13 1.39E+02 5.49E+01 1.03E+02 1.34E+02 1.28E+02 1.21E+02
F14 5.99E�02 5.71E�01 4.96E�02 0.00E+00 6.29E�08 5.36E�04
F15 0.00E+00 4.41E�01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F16 7.88E�10 0.00E+00 0.00E+00 0.00E+00 1.74E�08 0.00E+00
F17 3.84E+01 1.62E+01 2.33E+01 3.33E+01 3.90E+01 2.07E+01
F18 8.01E�02 1.41E+00 5.58E�01 0.00E+00 8.90E�05 0.00E+00
F19 0.00E+00 2.78E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

# Solved 7 6 8 13 7 12
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Appendix C. Full results of the Page’s trend test

The following tables shows the full results obtained in each application of Page’s trend test for the case study. For each
pairwise comparison, the average ranks at 10 cutpoints, the L statistic and the p-value computed are reported.

The results include all the possible pairwise comparisons at 50, 100 and 200 dimensions. Both versions of the test (the
original and the alternative) are considered (see Tables C.14, C.15, C.16, C.17, C.18 and C.19).
Table C.14
Full results of Page’s trend test on 50 dimensional functions.

Algorithms L statistic p-Value C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

GODE vs SaDE-MMTS 6353.0 0.00000 70.0 80.0 86.0 94.0 98.5 110.5 116.0 124.0 130.5 135.5
GODE vs SaEPSDE-MMTS 6067.5 0.00385 73.0 88.0 86.0 102.0 116.5 117.5 135.0 121.0 108.0 98.0
GODE vs SOUPDE 5627.5 0.84261 80.0 112.0 126.0 119.0 115.0 112.0 99.5 97.5 94.0 90.0
GODE vs GADE 6437.5 0.00000 58.0 75.0 98.0 100.0 88.5 106.5 117.0 125.0 135.0 142.0
GODE vs jDElscop 7032.5 0.00000 21.0 51.0 70.0 84.0 94.0 117.0 137.0 159.0 159.5 152.5
SaDE-MMTS vs GODE 5142.0 1.00000 139.0 129.0 123.0 115.0 110.5 98.5 93.0 85.0 78.5 73.5
SaDE-MMTS vs SaEPSDE-MMTS 5201.0 1.00000 111.0 133.0 132.0 125.0 113.0 93.0 104.5 91.5 78.5 63.5
SaDE-MMTS vs SOUPDE 5111.5 1.00000 140.0 129.0 123.0 120.0 110.5 96.5 95.0 83.0 76.0 72.0
SaDE-MMTS vs GADE 5040.0 1.00000 133.0 132.0 137.0 127.0 110.5 98.5 86.5 78.5 73.0 69.0
SaDE-MMTS vs jDElscop 6419.5 0.00000 28.0 42.0 103.0 138.0 128.0 128.0 125.0 124.0 118.5 110.5
SaEPSDE-MMTS vs GODE 5427.5 0.99625 136.0 121.0 123.0 107.0 92.5 91.5 74.0 88.0 101.0 111.0
SaEPSDE-MMTS vs SaDE-MMTS 6294.0 0.00000 98.0 76.0 77.0 84.0 96.0 116.0 104.5 117.5 130.5 145.5
SaEPSDE-MMTS vs SOUPDE 5493.0 0.98330 127.0 121.0 118.0 106.0 95.5 95.5 80.5 90.5 102.0 109.0
SaEPSDE-MMTS vs GADE 5566.5 0.93501 127.0 122.0 117.0 106.0 86.0 87.0 77.5 95.5 108.0 119.0
SaEPSDE-MMTS vs jDElscop 7012.5 0.00000 30.0 36.0 55.0 95.0 112.0 140.0 123.0 141.0 153.5 159.5
SOUPDE vs GODE 5867.5 0.15940 129.0 97.0 83.0 90.0 94.0 97.0 109.5 111.5 115.0 119.0
SOUPDE vs SaDE-MMTS 6383.5 0.00000 69.0 80.0 86.0 89.0 98.5 112.5 114.0 126.0 133.0 137.0
SOUPDE vs SaEPSDE-MMTS 6002.0 0.01705 82.0 88.0 91.0 103.0 113.5 113.5 128.5 118.5 107.0 100.0
SOUPDE vs GADE 6184.0 0.00014 99.0 85.0 84.0 97.0 82.5 101.5 112.0 121.0 128.5 134.5
SOUPDE vs jDElscop 7005.5 0.00000 40.0 53.0 62.0 75.0 88.0 112.0 138.0 156.0 162.5 158.5
GADE vs GODE 5057.5 1.00000 151.0 134.0 111.0 109.0 120.5 102.5 92.0 84.0 74.0 67.0
GADE vs SaDE-MMTS 6455.0 0.00000 76.0 77.0 72.0 82.0 98.5 110.5 122.5 130.5 136.0 140.0
GADE vs SaEPSDE-MMTS 5928.5 0.06606 82.0 87.0 92.0 103.0 123.0 122.0 131.5 113.5 101.0 90.0
GADE vs SOUPDE 5311.0 0.99987 110.0 124.0 125.0 112.0 126.5 107.5 97.0 88.0 80.5 74.5
GADE vs jDElscop 6905.0 0.00000 32.0 42.0 61.0 82.0 108.0 147.0 144.5 148.5 143.5 136.5
jDElscop vs GODE 4462.5 1.00000 188.0 158.0 139.0 125.0 115.0 92.0 72.0 50.0 49.5 56.5
jDElscop vs SaDE-MMTS 5075.5 1.00000 181.0 167.0 106.0 71.0 81.0 81.0 84.0 85.0 90.5 98.5
jDElscop vs SaEPSDE-MMTS 4482.5 1.00000 179.0 173.0 154.0 114.0 97.0 69.0 86.0 68.0 55.5 49.5
jDElscop vs SOUPDE 4489.5 1.00000 169.0 156.0 147.0 134.0 121.0 97.0 71.0 53.0 46.5 50.5
jDElscop vs GADE 4590.0 1.00000 177.0 167.0 148.0 127.0 101.0 62.0 64.5 60.5 65.5 72.5



Table C.15
Full results of Page’s trend test on 50 dimensional functions (alternative version).

Algorithms L statistic p-Value C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

GODE vs SaDE-MMTS 6283.5 0.00000 80.0 83.0 89.0 96.0 95.5 100.5 109.5 122.5 130.5 138.5
GODE vs SaEPSDE-MMTS 6027.0 0.00997 87.0 95.0 90.0 93.0 103.0 107.0 129.5 123.5 113.5 103.5
GODE vs SOUPDE 5553.0 0.94811 93.0 116.0 123.0 116.0 112.0 106.0 99.5 99.5 93.5 86.5
GODE vs GADE 6547.5 0.00000 59.0 75.0 83.0 90.0 95.0 106.0 118.5 127.5 141.0 150.0
GODE vs jDElscop 6547.0 0.00000 41.0 64.0 83.0 97.0 110.0 127.0 140.5 124.5 130.5 127.5
SaDE-MMTS vs GODE 5211.5 1.00000 129.0 126.0 120.0 113.0 113.5 108.5 99.5 86.5 78.5 70.5
SaDE-MMTS vs SaEPSDE-MMTS 5244.5 0.99999 120.0 135.0 127.0 115.0 106.5 91.5 98.5 92.5 87.5 71.5
SaDE-MMTS vs SOUPDE 5229.5 0.99999 130.0 126.0 120.0 115.0 110.5 104.5 96.5 85.5 81.5 75.5
SaDE-MMTS vs GADE 5006.0 1.00000 130.0 136.0 137.0 128.0 114.0 101.0 86.0 78.0 71.0 64.0
SaDE-MMTS vs jDElscop 6179.5 0.00016 51.0 62.0 103.0 126.0 126.0 130.0 118.0 112.0 110.5 106.5
SaEPSDE-MMTS vs GODE 5468.0 0.99025 122.0 114.0 119.0 116.0 106.0 102.0 79.5 85.5 95.5 105.5
SaEPSDE-MMTS vs SaDE-MMTS 6250.5 0.00001 89.0 74.0 82.0 94.0 102.5 117.5 110.5 116.5 121.5 137.5
SaEPSDE-MMTS vs SOUPDE 5590.0 0.90627 114.0 112.0 112.0 113.0 102.0 101.0 90.0 96.0 100.0 105.0
SaEPSDE-MMTS vs GADE 5625.0 0.84758 114.0 116.0 111.0 109.0 103.0 100.0 78.5 92.5 104.5 116.5
SaEPSDE-MMTS vs jDElscop 6655.0 0.00000 44.0 50.0 69.0 103.0 120.0 140.0 119.0 124.0 133.0 143.0
SOUPDE vs GODE 5942.0 0.05279 116.0 93.0 86.0 93.0 97.0 103.0 109.5 109.5 115.5 122.5
SOUPDE vs SaDE-MMTS 6265.5 0.00001 79.0 83.0 89.0 94.0 98.5 104.5 112.5 123.5 127.5 133.5
SOUPDE vs SaEPSDE-MMTS 5905.0 0.09514 95.0 97.0 97.0 96.0 107.0 108.0 119.0 113.0 109.0 104.0
SOUPDE vs GADE 6471.0 0.00000 82.0 75.0 74.0 86.0 91.0 103.0 114.0 129.0 140.0 151.0
SOUPDE vs jDElscop 6925.0 0.00000 43.0 56.0 65.0 78.0 94.0 113.0 134.5 142.5 156.5 162.5
GADE vs GODE 4947.5 1.00000 150.0 134.0 126.0 119.0 114.0 103.0 90.5 81.5 68.0 59.0
GADE vs SaDE-MMTS 6489.0 0.00000 79.0 73.0 72.0 81.0 95.0 108.0 123.0 131.0 138.0 145.0
GADE vs SaEPSDE-MMTS 5870.0 0.15439 95.0 93.0 98.0 100.0 106.0 109.0 130.5 116.5 104.5 92.5
GADE vs SOUPDE 5024.0 1.00000 127.0 134.0 135.0 123.0 118.0 106.0 95.0 80.0 69.0 58.0
GADE vs jDElscop 6469.0 0.00000 48.0 58.0 77.0 98.0 118.0 144.0 141.0 124.0 121.0 116.0
jDElscop vs GODE 4948.0 1.00000 168.0 145.0 126.0 112.0 99.0 82.0 68.5 84.5 78.5 81.5
jDElscop vs SaDE-MMTS 5315.5 0.99985 158.0 147.0 106.0 83.0 83.0 79.0 91.0 97.0 98.5 102.5
jDElscop vs SaEPSDE-MMTS 4840.0 1.00000 165.0 159.0 140.0 106.0 89.0 69.0 90.0 85.0 76.0 66.0
jDElscop vs SOUPDE 4570.0 1.00000 166.0 153.0 144.0 131.0 115.0 96.0 74.5 66.5 52.5 46.5
jDElscop vs GADE 5026.0 1.00000 161.0 151.0 132.0 111.0 91.0 65.0 68.0 85.0 88.0 93.0

Table C.16
Full results of Page’s trend test on 100 dimensional functions.

Algorithms L statistic p-Value C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

GODE vs SaDE-MMTS 6061.0 0.00451 82.0 81.0 85.0 110.0 127.0 114.0 105.5 113.5 113.5 113.5
GODE vs SaEPSDE-MMTS 5939.0 0.05554 79.0 93.0 93.0 108.0 115.0 114.0 129.5 116.5 104.5 92.5
GODE vs SOUPDE 5631.0 0.83548 72.0 121.0 124.0 127.0 114.0 104.0 98.0 99.0 95.0 91.0
GODE vs GADE 6045.0 0.00661 76.0 91.0 100.0 109.0 109.0 106.0 108.5 115.5 113.5 116.5
GODE vs jDElscop 7029.0 0.00000 23.0 53.0 68.0 79.0 93.0 119.0 140.5 160.5 156.5 152.5
SaDE-MMTS vs GODE 5434.0 0.99560 127.0 128.0 124.0 99.0 82.0 95.0 103.5 95.5 95.5 95.5
SaDE-MMTS vs SaEPSDE-MMTS 6143.5 0.00048 46.0 99.0 105.5 103.5 108.0 112.0 132.5 121.5 112.5 104.5
SaDE-MMTS vs SOUPDE 5501.5 0.98013 100.0 124.0 127.0 109.0 102.5 102.5 101.0 98.0 92.0 89.0
SaDE-MMTS vs GADE 5774.0 0.41414 91.0 95.0 122.0 115.0 103.0 104.0 104.5 102.5 103.5 104.5
SaDE-MMTS vs jDElscop 6944.5 0.00000 28.0 37.0 66.0 94.0 104.0 131.0 150.5 146.5 143.0 145.0
SaEPSDE-MMTS vs GODE 5556.0 0.94539 130.0 116.0 116.0 101.0 94.0 95.0 79.5 92.5 104.5 116.5
SaEPSDE-MMTS vs SaDE-MMTS 5351.5 0.99953 163.0 110.0 103.5 105.5 101.0 97.0 76.5 87.5 96.5 104.5
SaEPSDE-MMTS vs SOUPDE 5653.0 0.78597 125.0 107.0 112.0 98.0 98.0 97.0 87.0 98.0 109.0 114.0
SaEPSDE-MMTS vs GADE 5662.5 0.76216 118.0 123.0 108.0 95.0 92.5 96.5 86.5 99.5 108.5 117.5
SaEPSDE-MMTS vs jDElscop 7121.0 0.00000 21.0 41.0 55.0 84.0 103.0 141.0 131.5 145.5 158.5 164.5
SOUPDE vs GODE 5864.0 0.16659 137.0 88.0 85.0 82.0 95.0 105.0 111.0 110.0 114.0 118.0
SOUPDE vs SaDE-MMTS 5993.5 0.02028 109.0 85.0 82.0 100.0 106.5 106.5 108.0 111.0 117.0 120.0
SOUPDE vs SaEPSDE-MMTS 5842.0 0.21647 84.0 102.0 97.0 111.0 111.0 112.0 122.0 111.0 100.0 95.0
SOUPDE vs GADE 5928.5 0.06606 106.0 95.0 95.0 98.0 98.5 101.5 107.5 109.5 114.5 119.5
SOUPDE vs jDElscop 6858.0 0.00000 42.0 60.0 70.0 87.0 89.0 110.0 130.0 146.0 155.0 156.0
GADE vs GODE 5450.0 0.99354 133.0 118.0 109.0 100.0 100.0 103.0 100.5 93.5 95.5 92.5
GADE vs SaDE-MMTS 5721.0 0.58911 118.0 114.0 87.0 94.0 106.0 105.0 104.5 106.5 105.5 104.5
GADE vs SaEPSDE-MMTS 5832.5 0.24043 91.0 86.0 101.0 114.0 116.5 112.5 122.5 109.5 100.5 91.5
GADE vs SOUPDE 5566.5 0.93501 103.0 114.0 114.0 111.0 110.5 107.5 101.5 99.5 94.5 89.5
GADE vs jDElscop 6920.0 0.00000 32.0 42.0 61.0 79.0 113.0 145.0 142.5 144.5 143.5 142.5
jDElscop vs GODE 4466.0 1.00000 186.0 156.0 141.0 130.0 116.0 90.0 68.5 48.5 52.5 56.5
jDElscop vs SaDE-MMTS 4550.5 1.00000 181.0 172.0 143.0 115.0 105.0 78.0 58.5 62.5 66.0 64.0
jDElscop vs SaEPSDE-MMTS 4374.0 1.00000 188.0 168.0 154.0 125.0 106.0 68.0 77.5 63.5 50.5 44.5
jDElscop vs SOUPDE 4637.0 1.00000 167.0 149.0 139.0 122.0 120.0 99.0 79.0 63.0 54.0 53.0
jDElscop vs GADE 4575.0 1.00000 177.0 167.0 148.0 130.0 96.0 64.0 66.5 64.5 65.5 66.5
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Table C.17
Full results of Page’s trend test on 100 dimensional functions (alternative version).

Algorithms L statistic p-Value C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

GODE vs SaDE-MMTS 5619.0 0.85907 111.0 110.0 108.0 107.0 109.0 102.0 99.5 101.5 99.5 97.5
GODE vs SaEPSDE-MMTS 5519.0 0.97196 111.0 118.0 112.0 102.0 100.0 105.0 122.5 106.5 91.5 76.5
GODE vs SOUPDE 5591.0 0.90486 85.0 119.0 122.0 125.0 112.0 102.0 95.0 94.0 97.0 94.0
GODE vs GADE 5765.0 0.44361 99.0 106.0 104.0 103.0 108.0 107.0 105.5 106.5 102.5 103.5
GODE vs jDElscop 6535.0 0.00000 41.0 66.0 81.0 95.0 109.0 131.0 144.5 126.5 125.5 125.5
SaDE-MMTS vs GODE 5876.0 0.14280 98.0 99.0 101.0 102.0 100.0 107.0 109.5 107.5 109.5 111.5
SaDE-MMTS vs SaEPSDE-MMTS 6224.5 0.00004 55.0 94.0 97.0 94.0 104.5 111.5 132.5 125.5 118.5 112.5
SaDE-MMTS vs SOUPDE 5655.0 0.78108 95.0 109.0 113.0 114.0 114.0 107.0 100.5 98.5 96.5 97.5
SaDE-MMTS vs GADE 5729.0 0.56297 96.0 100.0 116.0 109.0 110.0 107.0 104.0 100.0 101.0 102.0
SaDE-MMTS vs jDElscop 6421.0 0.00000 51.0 60.0 81.0 109.0 117.0 130.0 136.5 118.5 117.5 124.5
SaEPSDE-MMTS vs GODE 5976.0 0.02858 98.0 91.0 97.0 107.0 109.0 104.0 86.5 102.5 117.5 132.5
SaEPSDE-MMTS vs SaDE-MMTS 5270.5 0.99997 154.0 115.0 112.0 115.0 104.5 97.5 76.5 83.5 90.5 96.5
SaEPSDE-MMTS vs SOUPDE 5781.0 0.39154 103.0 95.0 103.0 110.0 112.0 109.0 101.0 99.0 104.0 109.0
SaEPSDE-MMTS vs GADE 5514.0 0.97454 122.0 127.0 112.0 99.0 99.0 104.0 83.5 91.5 99.5 107.5
SaEPSDE-MMTS vs jDElscop 6639.0 0.00000 37.0 57.0 71.0 100.0 119.0 137.0 133.5 126.5 128.5 135.5
SOUPDE vs GODE 5904.0 0.09656 124.0 90.0 87.0 84.0 97.0 107.0 114.0 115.0 112.0 115.0
SOUPDE vs SaDE-MMTS 5840.0 0.22139 114.0 100.0 96.0 95.0 95.0 102.0 108.5 110.5 112.5 111.5
SOUPDE vs SaEPSDE-MMTS 5714.0 0.61166 106.0 114.0 106.0 99.0 97.0 100.0 108.0 110.0 105.0 100.0
SOUPDE vs GADE 6020.5 0.01150 98.0 92.0 92.0 95.0 100.5 105.5 109.5 113.5 117.5 121.5
SOUPDE vs jDElscop 6794.5 0.00000 48.0 66.0 76.0 87.0 86.0 101.0 124.0 140.0 155.5 161.5
GADE vs GODE 5730.0 0.55968 110.0 103.0 105.0 106.0 101.0 102.0 103.5 102.5 106.5 105.5
GADE vs SaDE-MMTS 5766.0 0.44032 113.0 109.0 93.0 100.0 99.0 102.0 105.0 109.0 108.0 107.0
GADE vs SaEPSDE-MMTS 5981.0 0.02596 87.0 82.0 97.0 110.0 110.0 105.0 125.5 117.5 109.5 101.5
GADE vs SOUPDE 5474.5 0.98875 111.0 117.0 117.0 114.0 108.5 103.5 99.5 95.5 91.5 87.5
GADE vs jDElscop 6330.0 0.00000 55.0 65.0 84.0 102.0 124.0 135.0 132.5 116.5 114.5 116.5
jDElscop vs GODE 4960.0 1.00000 168.0 143.0 128.0 114.0 100.0 78.0 64.5 82.5 83.5 83.5
jDElscop vs SaDE-MMTS 5074.0 1.00000 158.0 149.0 128.0 100.0 92.0 79.0 72.5 90.5 91.5 84.5
jDElscop vs SaEPSDE-MMTS 4856.0 1.00000 172.0 152.0 138.0 109.0 90.0 72.0 75.5 82.5 80.5 73.5
jDElscop vs SOUPDE 4700.5 1.00000 161.0 143.0 133.0 122.0 123.0 108.0 85.0 69.0 53.5 47.5
jDElscop vs GADE 5165.0 1.00000 154.0 144.0 125.0 107.0 85.0 74.0 76.5 92.5 94.5 92.5

Table C.18
Full results of Page’s trend test on 200 dimensional functions.

Algorithms L statistic p-value C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

GODE vs SaDE-MMTS 4753.0 1.00000 190.0 144.0 119.0 116.0 98.5 89.5 78.0 76.0 69.5 64.5
GODE vs SaEPSDE-MMTS 6079.0 0.00288 71.0 90.0 98.0 104.0 109.5 114.5 117.5 115.5 113.0 112.0
GODE vs SOUPDE 5429.0 0.99611 89.0 124.0 139.0 128.0 109.5 100.5 90.0 90.0 87.5 87.5
GODE vs GADE 6158.0 0.00031 76.0 83.0 94.0 111.0 103.5 105.5 110.5 114.5 120.0 127.0
GODE vs jDElscop 7009.5 0.00000 22.0 50.0 70.0 84.0 94.0 123.0 139.5 156.5 155.0 151.0
SaDE-MMTS vs GODE 6742.0 0.00000 19.0 65.0 90.0 93.0 110.5 119.5 131.0 133.0 139.5 144.5
SaDE-MMTS vs SaEPSDE-MMTS 6541.0 0.00000 28.0 69.0 90.5 107.5 122.0 115.0 126.0 125.0 128.5 133.5
SaDE-MMTS vs SOUPDE 6479.0 0.00000 19.0 90.0 101.0 99.0 113.5 112.5 127.5 125.5 128.0 129.0
SaDE-MMTS vs GADE 6650.0 0.00000 19.0 67.0 90.0 112.0 113.0 114.0 126.5 128.5 133.5 141.5
SaDE-MMTS vs jDElscop 7129.5 0.00000 19.0 38.0 57.0 86.0 106.0 130.0 142.5 147.5 158.0 161.0
SaEPSDE-MMTS vs GODE 5416.0 0.99719 138.0 119.0 111.0 105.0 99.5 94.5 91.5 93.5 96.0 97.0
SaEPSDE-MMTS vs SaDE-MMTS 4954.0 1.00000 181.0 140.0 118.5 101.5 87.0 94.0 83.0 84.0 80.5 75.5
SaEPSDE-MMTS vs SOUPDE 5411.0 0.99753 132.0 119.0 118.0 105.0 100.5 93.5 93.5 95.5 95.0 93.0
SaEPSDE-MMTS vs GADE 5677.0 0.72318 111.0 107.0 106.0 114.0 102.0 97.0 96.0 101.0 104.0 107.0
SaEPSDE-MMTS vs jDElscop 6908.0 0.00000 34.0 49.0 62.0 84.0 102.0 138.0 136.0 144.0 148.0 148.0
SOUPDE vs GODE 6066.0 0.00399 120.0 85.0 70.0 81.0 99.5 108.5 119.0 119.0 121.5 121.5
SOUPDE vs SaDE-MMTS 5016.0 1.00000 190.0 119.0 108.0 110.0 95.5 96.5 81.5 83.5 81.0 80.0
SOUPDE vs SaEPSDE-MMTS 6084.0 0.00253 77.0 90.0 91.0 104.0 108.5 115.5 115.5 113.5 114.0 116.0
SOUPDE vs GADE 6097.0 0.00180 106.0 87.0 82.0 95.0 92.5 102.5 109.5 117.5 123.0 130.0
SOUPDE vs jDElscop 6952.5 0.00000 27.0 53.0 76.0 86.0 91.0 116.0 134.5 152.5 155.0 154.0
GADE vs GODE 5337.0 0.99970 133.0 126.0 115.0 98.0 105.5 103.5 98.5 94.5 89.0 82.0
GADE vs SaDE-MMTS 4845.0 1.00000 190.0 142.0 119.0 97.0 96.0 95.0 82.5 80.5 75.5 67.5
GADE vs SaEPSDE-MMTS 5818.0 0.27962 98.0 102.0 103.0 95.0 107.0 112.0 113.0 108.0 105.0 102.0
GADE vs SOUPDE 5398.0 0.99825 103.0 122.0 127.0 114.0 116.5 106.5 99.5 91.5 86.0 79.0
GADE vs jDElscop 7018.5 0.00000 31.0 42.0 55.0 74.0 106.0 143.0 147.0 147.0 150.5 149.5
jDElscop vs GODE 4485.5 1.00000 187.0 159.0 139.0 125.0 115.0 86.0 69.5 52.5 54.0 58.0
jDElscop vs SaDE-MMTS 4365.5 1.00000 190.0 171.0 152.0 123.0 103.0 79.0 66.5 61.5 51.0 48.0
jDElscop vs SaEPSDE-MMTS 4587.0 1.00000 175.0 160.0 147.0 125.0 107.0 71.0 73.0 65.0 61.0 61.0
jDElscop vs SOUPDE 4542.5 1.00000 182.0 156.0 133.0 123.0 118.0 93.0 74.5 56.5 54.0 55.0
jDElscop vs GADE 4476.5 1.00000 178.0 167.0 154.0 135.0 103.0 66.0 62.0 62.0 58.5 59.5
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Table C.19
Full results of Page’s trend test on 200 dimensional functions (alternative version).

Algorithms L statistic p-Value C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

GODE vs SaDE-MMTS 5234.5 0.99999 165.0 126.0 101.0 97.0 96.0 98.0 95.0 94.0 88.5 84.5
GODE vs SaEPSDE-MMTS 5935.5 0.05889 88.0 100.0 105.0 98.0 99.0 107.0 113.5 112.5 111.0 111.0
GODE vs SOUPDE 5284.5 0.99995 105.0 127.0 139.0 128.0 109.5 98.5 89.5 85.5 82.5 80.5
GODE vs GADE 6145.0 0.00046 85.0 83.0 85.0 105.0 107.0 108.0 112.0 114.0 120.0 126.0
GODE vs jDElscop 6617.0 0.00000 37.0 62.0 82.0 96.0 106.0 125.0 140.5 135.5 131.5 129.5
SaDE-MMTS vs GODE 6260.5 0.00001 44.0 83.0 108.0 112.0 113.0 111.0 114.0 115.0 120.5 124.5
SaDE-MMTS vs SaEPSDE-MMTS 6227.5 0.00003 46.0 87.0 96.0 119.0 124.0 106.0 113.0 113.0 117.5 123.5
SaDE-MMTS vs SOUPDE 5724.5 0.57771 57.0 115.0 126.0 125.0 118.0 111.0 114.0 96.0 92.5 90.5
SaDE-MMTS vs GADE 6220.0 0.00004 43.0 83.0 107.0 121.0 117.0 110.0 113.0 112.0 116.0 123.0
SaDE-MMTS vs jDElscop 6284.0 0.00000 50.0 69.0 88.0 117.0 122.0 126.0 128.0 117.0 114.0 114.0
SaEPSDE-MMTS vs GODE 5559.5 0.94209 121.0 109.0 104.0 111.0 110.0 102.0 95.5 96.5 98.0 98.0
SaEPSDE-MMTS vs SaDE-MMTS 5267.5 0.99997 163.0 122.0 113.0 90.0 85.0 103.0 96.0 96.0 91.5 85.5
SaEPSDE-MMTS vs SOUPDE 5315.0 0.99985 121.0 118.0 117.0 117.0 117.0 107.0 105.0 86.0 81.0 76.0
SaEPSDE-MMTS vs GADE 5637.0 0.82278 107.0 110.0 109.0 107.0 112.0 106.0 95.5 97.5 99.5 101.5
SaEPSDE-MMTS vs jDElscop 6507.5 0.00000 47.0 62.0 75.0 97.0 115.0 138.0 136.5 128.5 123.0 123.0
SOUPDE vs GODE 6210.5 0.00006 104.0 82.0 70.0 81.0 99.5 110.5 119.5 123.5 126.5 128.5
SOUPDE vs SaDE-MMTS 5770.5 0.42555 152.0 94.0 83.0 84.0 91.0 98.0 95.0 113.0 116.5 118.5
SOUPDE vs SaEPSDE-MMTS 6180.0 0.00016 88.0 91.0 92.0 92.0 92.0 102.0 104.0 123.0 128.0 133.0
SOUPDE vs GADE 6283.0 0.00000 91.0 84.0 79.0 87.0 94.0 104.0 111.5 124.5 131.5 138.5
SOUPDE vs jDElscop 7032.5 0.00000 27.0 50.0 73.0 86.0 91.0 110.0 130.0 151.0 160.5 166.5
GADE vs GODE 5350.0 0.99955 124.0 126.0 124.0 104.0 102.0 101.0 97.0 95.0 89.0 83.0
GADE vs SaDE-MMTS 5275.0 0.99996 166.0 126.0 102.0 88.0 92.0 99.0 96.0 97.0 93.0 86.0
GADE vs SaEPSDE-MMTS 5858.0 0.17940 102.0 99.0 100.0 102.0 97.0 103.0 113.5 111.5 109.5 107.5
GADE vs SOUPDE 5212.0 1.00000 118.0 125.0 130.0 122.0 115.0 105.0 97.5 84.5 77.5 70.5
GADE vs jDElscop 6438.0 0.00000 54.0 65.0 78.0 97.0 117.0 131.0 132.0 125.0 123.0 123.0
jDElscop vs GODE 4878.0 1.00000 172.0 147.0 127.0 113.0 103.0 84.0 68.5 73.5 77.5 79.5
jDElscop vs SaDE-MMTS 5211.0 1.00000 159.0 140.0 121.0 92.0 87.0 83.0 81.0 92.0 95.0 95.0
jDElscop vs SaEPSDE-MMTS 4987.5 1.00000 162.0 147.0 134.0 112.0 94.0 71.0 72.5 80.5 86.0 86.0
jDElscop vs SOUPDE 4462.5 1.00000 182.0 159.0 136.0 123.0 118.0 99.0 79.0 58.0 48.5 42.5
jDElscop vs GADE 5057.0 1.00000 155.0 144.0 131.0 112.0 92.0 78.0 77.0 84.0 86.0 86.0
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