
Improving the Behavior of the Nearest Neighbor

Classifier against Noisy Data
with Feature Weighting Schemes
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Abstract. The Nearest Neighbor rule is one of the most successful clas-
sifiers in machine learning but it is very sensitive to noisy data, which
may cause its performance to deteriorate. This contribution proposes
a new feature weighting classifier that tries to reduce the influence of
noisy features. The computation of the weights is based on combining
imputation methods and non-parametrical statistical tests. The results
obtained show that our proposal can improve the performance of the
Nearest Neighbor classifier dealing with different types of noisy data.
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1 Introduction

The Nearest Neighbor (NN) classifier [4] uses the full training dataset to establish
a classification rule, based on the most similar or nearest training instance to the
query example. The most frequently used similarity function for the NN classifier
is Euclidean distance [1] (see Equation 1, where X and Y are two instances and
M is the number of features that describes them).

d(X,Y ) =

√
√
√
√

M∑

i=0

(xi − yi)2 (1)

However, features containing enough noise may lead to erroneous similarities
between the examples obtained and, therefore, to a deterioration in the per-
formance of NN, which is known to be very sensitive to noisy data [10]. One
way of overcoming this problem lies in modifying the similarity function, that
is, the way in which the distances are computed. With this objective, Feature
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Weighting methods [12], [9] try to improve the similarity function, by introduc-
ing a weight for each of the features (Wi, usually Wi ∈ [0, 1]). These methods,
which are mostly based in the Euclidean distance, modify the way in which the
distance measure is computed (Equation 2), increasing the relevance of those
features with greater weights associated with them (near to 1.0).

dw(X,Y ) =

√
√
√
√

M∑

i=0

Wi · (xi − yi)2 (2)

These weights Wi can be regarded as a measure of how useful a feature is
with respect to the final classification task. The higher a weight is, the more
influence the associated feature will have in the decision rule used to compute
the classification of a given example. Therefore, an adequate scheme of weights
could be used to diminish the worst features of the domain of the problem, which
could be those containing the more harmful amount of noise to the classification
task. Thus, the accuracy of the classifier could be greatly improved if a proper
selection of weights is made.

This contribution proposes a novel approach for weighting features, based on
the usage of imputation methods [3], [6], [5]. These are commonly employed to
estimate those feature values in a dataset that are unknown, formally known as
missing values (MV), using the rest of the data available. Therefore, imputation
methods enable us to estimate a new distribution of the original dataset, in
which the distribution of each feature is conditioned to the rest of the features
or all the data. These conditioned distributions of each feature can be compared
with the original ones in order to detect the relevance of each feature, depending
on the accuracy of the estimation for that feature performed by the imputation
method.

The Kolmogorov-Smirnov statistic [11] may then be used to evaluate the dif-
ferences between the original distribution of the features and that of the imputed
ones. It is thus possible to measure how well the values of each feature can be
predicted using the rest of the data. This enables us to give less importance
to those features with high changes between their original and estimated value
distributions - these features that contain too much noise or the more harmful
noise and therefore are not easily predictable using the rest of the data, which
increases the effect of those features that are easily predictable, and which have
therefore likely a less amount of noise.

The study is completed with an experimentation in which our proposal is
compared with the NN classifier, considering 25 supervised classification prob-
lems taken from the Keel-Dataset repository [2], into which we will introduce
different types and levels of noise.

The rest of this contribution is organized as follows. In Section 2 we describe
our proposal. In Section 3 we present the experimental framework, and in Section
4 we analyze the results obtained. Finally, in Section 5 we enumerate some
concluding remarks.
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2 A Weighting Scheme to Reduce the Effect of Noisy
Data

This section describes the weighting method proposed, which is based on three
main steps, described in the following subsections. Section 2.1 is devoted to the
first step (called the imputation phase), whereas Section 2.2 describes the second
step (the computation of the weights). Finally, Section 2.3 characterizes the third
step (the classification model).

2.1 Imputation of the Dataset

The first step consists of creating a whole new estimated dataset DS′ from the
original one DS. In order to do this, an imputation method is used. In this
contribution we will consider the following imputation methods (although other
imputation methods may be chosen):

1. KNNI [3]. Based on the k-NN algorithm, every time an MV is found in
a current example, KNNI computes the k (k = 10 in our experimentation)
nearest neighbors and their average value is imputed. KNNI also uses the
Euclidean distance as a similarity function.

2. CMC [6]. This method replaces the MVs by the average of all the values of
the corresponding feature considering only the examples with the same class
as the example to be imputed.

3. SVMI [5]. This is an SVM regression-based algorithm developed to fill in
MVs. It works by firstly selecting the examples in which there are no missing
feature values. In the next step, the method sets one of the input features,
some of the values of which are missing, as the decision feature, and the
decision feature as the input feature. Finally, an SVM for regression is used
to predict the new decision feature.

If the original dataset DS is composed of the features f1, f2, . . . , fM , the
imputed dataset DS′ will be formed by the features f ′

1, f
′
2, . . . , f

′
M whose values

are obtained by the imputation method.
The procedure to obtain DS′ from DS is based on assuming iteratively that

each feature value of each example of the dataset DS, that is, e(fi), is missing.
Then, the imputation method IM is used to predict a new value for that feature
value. The new datasetDS′ is obtained by repeating this process for each feature
value, until the whole dataset has been processed. Carrying out this process, it is
possible to estimate a distribution of values for each feature, which is conditioned
to the rest of the features or the totality of the data. The new dataset DS′ will
contain these conditioned distributions for each feature.

2.2 Computation of Weights Using the Kolmogorov-Smirnov Test

The next step consists of measuring which features are most changed after the
application of the imputation method. Given the nature of the imputation tech-
niques, some features are expected to remain unchanged (or to present only
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small changes in their values’ distribution) whereas other features may present
a higher level of disruption when their imputed values are compared with the
original ones. Thus, those features that are more difficult to predict with the
rest of the features/data will contain the more harmful noise and therefore we
will try to make them less important to the classification task. The Kolmogorov-
Smirnov test [11] provides a way of measuring these changes. This test works by
computing a statistic Dn, which can be regarded as a measure of how different
two samples are.

The test is a nonparametric procedure for testing the equality of two contin-
uous, one-dimensional probability distributions. It quantifies a distance between
the empirical distribution functions of two samples. The null distribution of its
statistic, Dn, is computed under the null hypothesis that the samples are drawn
from the same distribution.

Given two samples, X and Y , and their empirical distribution functions FX

and FY

FX(x) =
1

n

n∑

i=1

IXi≤x, FY (x) =
1

n

n∑

i=1

IYi≤x (3)

(where IXi≤x is the indicator function, equal to 1 if Xi ≤ x and equal to 0
otherwise) the Kolmogorov-Smirnov statistic is

Dn = sup
x

|FX − FY | (4)

In the approach of this contribution, the Dn statistic provides a valuable way
of estimating the degree of change undergone by a feature through the impu-
tation process. By computing the Dn statistic associated with the differences
between both samples of the feature (original and imputed), it is possible to
measure the greater degree of difference between the expected distribution of
both samples. Hence, the greater Dn value obtained, the more different the
imputed version of the feature distribution will be (when compared with the
original one).

The Dn statistic can be easily transformed into a weight. Since Dn ∈ [0, 1],
features with a lower value of Dn (near to 0.0) it will have little influence on the
computation of the similarity function of the NN rule, whereas features with a
higher value of Dn (near to 1.0) will be the most influential when computing the
distance between two examples. Defining the statistical Di

n for the feature i as

Di
n = Kolmogorov-Smirnov(efi , ef ′

i
) (5)

(where efi and ef ′
i
are the empirical distributions of the features fi ∈ A and

f ′
i ∈ A′ respectively, and A denotes the set of features of the original dataset DS
and A′ denotes the set of features imputed in DS′), then the weights Wi ∈ [0, 1]
computed for a feature fi ∈ A are

Wi = (1−Di
n)/(

M∑

j=1

1−Dj
n) (6)
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Therefore, the Kolmogorov-Smirnov test is applied to measure the degree
of difference between each attribute fi and its estimated version f ′

i ; then, this
difference is used to build the weight for the attribute fi (see Equation 6).

2.3 Final Classification Model

The final classifier considers NN with the weighted Euclidean distance (Equa-
tion 2) and the weights computed throughout the Kolmogorov-Smirnov statistic
(Equation 6). Since we will consider three different imputation methods (KNNI,
CMC and SVMI), three different feature weighting classifiers will be created.
Throughout the study, we will denote them as FW-KNNI, FW-CMC and FW-
SVMI according to the imputation method used.

Considering weights computed from the Dn statistic, we aim to reduce the
effect that changing features have on the computation of the distance. These
features, with a larger associated Dn value, will be those easily estimated by the
imputation method (whose sample distribution differs poorly if the original and
imputed versions are compared). They are preferred since they will contain a
less harmful noise, and are the key features describing the dataset.

By contrast, features with a small Dn value will be those whose sample distri-
bution has been greatly changed after the application of the imputation method.
Since these features are not easily estimated when the rest of the data is avail-
able (the imputation method cannot recover their values properly), they are not
preferred in the final computation of the distance, and thus a lower weight is
assigned to them.

3 Experimental Framework

Section 3.1 describes the base datasets employed and Section 3.2 shows the noise
introduction processes. Finally, Section 3.3 describes the methodology followed
to analyze the results.

3.1 Base Datasets

The experimentation considers 25 real-world datasets from the KEEL-Dataset
repository [2]. They are described in Table 3, where #EXA refers to the number
of examples, #FEA to the number of numeric features and #CLA to the number
of classes. For datasets containing missing values (such as bands or dermatology),
the examples with missing values were removed from the datasets before their
usage and thus all the attribute values of the datasets considered are known. In
this way, the percentage of missing values of each dataset does not influence the
results or conclusions obtained. Therefore, the only missing values considered in
this contribution are those assumed during the execution of our proposal.



602 J.A. Sáez et al.

Table 1. Datasets employed in the experimentation

dataset #EXA #FEA #CLA dataset #EXA #FEA #CLA

banana 5300 2 2 pima 768 8 2
bands 365 19 2 satimage 6435 36 7
bupa 345 6 2 sonar 208 60 2
dermatology 358 34 6 tae 151 5 3
ecoli 336 7 8 texture 5500 40 11
heart 270 13 2 vowel 990 13 11
hepatitis 80 19 2 wdbc 569 30 2
ionosphere 351 33 2 wine 178 13 3
iris 150 4 3 wq-red 1599 11 11
led7digit 500 7 10 wq-white 4898 11 11
mov-libras 360 90 15 wisconsin 683 9 2
newthyroid 215 5 3 yeast 1484 8 10
phoneme 5404 5 2

3.2 Introducing Noise into Datasets

In order to control the amount of noise in each dataset and to check how it affects
the classifiers, noise is introduced into each dataset in a supervised manner. Two
different noise schemes, which are proposed in the specialized literature [14], are
used in order to introduce a noise level of x% into each dataset.

– Random Class Noise. It supposes that exactly x% of the examples are
corrupted. The class labels of these examples are randomly changed by other
one out of the M classes.

– Random Attribute Noise. x% of the values of each attribute in the
dataset are corrupted. To corrupt an attribute Ai, approximately x% of
the examples in the dataset are chosen, and their Ai value is assigned a ran-
dom value from Di. A uniform distribution is used either for numerical or
nominal attributes.

A collection of new noisy datasets are created from the aforementioned 25
base real-world datasets. Both types of noise are independently considered: class
and attribute noise. For each type of noise, the noise levels x = 10% and x = 30%
are studied. Thus, the results of our proposal will be compared with those of NN
considering three different scenarios: with the 25 unaltered real-world datasets,
with the 25 datasets with a 10% of noise level and with the 25 datasets with a
30% of noise level.

3.3 Methodology of Analysis

The performance estimation of each classifier on each dataset is obtained by
means of 3 runs of a 10-fold distribution optimally balanced stratified cross-
validation (DOB-SCV) [7], averaging its test accuracy results. The usage of this
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partitioning reduces the negative effects of both prior probability and covariate
shifts [8] when classifier performance is estimated with cross-validation schemes.

For the sake of brevity, only the averaged performance results are shown
for each classification algorithms at each type and level of induced noise, but
it must be taken into account that our conclusions are based on the proper
statistical analysis, which considers all the results (not averaged). Thus, in order
to properly analyze the results obtained, Wilcoxons signed rank statistical test
[13] is used, as suggested in the literature. This is a non-parametric pairwise
test that aims to detect significant differences between two sample means; that
is, between the behavior of the two algorithms involved in each comparison
(which is usually viewed as the the averaged test performance results for each
dataset). For each type and noise level, our proposal and NN using the Euclidean
distance will be compared using Wilcoxons test and the p-values associated
with these comparisons will be obtained. The p-value represents the lowest level
of significance of a hypothesis that results in a rejection and it allows one to
know whether two algorithms are significantly different and the degree of this
difference.

4 Analysis of Results

This section presents the analysis of the results obtained. Each table of results
is divided into two different parts. On the left hand of the table the average
accuracy results are found, whereas on the right hand of the table the associated
Wilconson’s test p-values resulting of the comparison of each one of our proposals
with the NN method are shown.

Table 2 shows the test accuracy obtained by each classifier on base and class
noise datasets.

Table 2. Results on base and class noise datasets and associated p-values

Accuracy p-values

Method Base x = 10% x = 30% Base x = 10% x = 30%

NN 79.37 74.96 65.46 - - -
FW-CMC 81.98 77.38 67.46 0.1107 0.1107 0.0787
FW-KNNI 81.97 77.36 67.41 0.1447 0.0827 0.2699
FW-SVMI 81.94 77.30 67.19 0.0626 0.0647 0.4352

From this table, several remarks can be made:

– The performance results of each one of our proposals is better than those of
the NN method with the base datasets and also with the class noise datasets
(approximately, higher than a 2% in all the cases).



604 J.A. Sáez et al.

– As the table shows, every proposal obtains low p-values when they are com-
pared with NN: with the base datasets and both levels of class noise in the
case of FW-CMC and with the base datasets and the noise level x = 10% in
the case of the methods FW-KNNI and FW-SVMI. Some of these compar-
isons are also significant at a level of significance 0.1. This shows that the
application of our approach to feature weighting improves the performance
of the NN classifier with datasets suffering from class noise (sometimes sig-
nificantly), regardless of the specific imputation method chosen.

On the other hand, Table 3 shows the test accuracy obtained by each classifier
on base and attribute noise datasets. The following points are observed from this
table:

– Our methods also outperforms the performance of NN with the datasets
with different levels of attribute noise (generally they are a 2% better with
the base datasets, a 1% better with the noise level x = 10% and a 0.5% with
the noise level x = 30%).

– The Wilcoxon’s test p-values are also low, showing and advantage of our
three proposals, even though in the case of FW-SVMI against NN with the
noise level of x = 30% the p-value obtained is slightly higher. However, very
low p-values are obtained with the two noise levels for the methods FW-
CMC and FW-KNNI; they are indeed significant considering a significance
level of 0.1.

Table 3. Results on base and attribute noise datasets and associated p-values

Accuracy p-values

Method Base x = 10% x = 30% Base x = 10% x = 30%

NN 79.37 71.69 58.40 - - -
FW-CMC 81.98 72.62 59.17 0.1107 0.0067 0.0002
FW-KNNI 81.97 72.58 58.87 0.1447 0.0483 0.0246
FW-SVMI 81.94 72.44 58.61 0.0626 0.1318 0.2414

From the results of Tables 2-3, it is possible to conclude that the proposals
presented in this contribution are able to improve the performance of the NN
classifier dealing with noisy data, and in some cases, in a significant way.

5 Conclusions

In this contribution we have proposed a new scheme for feature weighting devel-
oped to improve the performance of the NN classifier in presence of noisy data,
in which the weights are computed by combining imputation methods and the
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Kolmogorov-Smirnov statistic. We have assigned a lower weight to that features
that were more affected by the presence of noise (those features whose original
and imputed distribution of values were more different). In this way, we have
reduced the importance of these features that contain the more harmful noise
and therefore are not easily predictable using the rest of the data and increased
the importance of of those features that are easily predictable, and which have
therefore likely a less amount of noise.

The results obtained show that all our approaches enhance the performance
of NN in the presence of noise. The statistical analysis performed confirms our
conclusions, even though in some cases the differences found are not statistically
significant.
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