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a b s t r a c t

The purpose of this paper is to analyze the imbalanced learning task in the multilabel scenario, aiming to
accomplish two different goals. The first one is to present specialized measures directed to assess the
imbalance level in multilabel datasets (MLDs). Using these measures we will be able to conclude which
MLDs are imbalanced, and therefore would need an appropriate treatment. The second objective is to
propose several algorithms designed to reduce the imbalance in MLDs in a classifier-independent way,
by means of resampling techniques. Two different approaches to divide the instances in minority and
majority groups are studied. One of them considers each label combination as class identifier, whereas
the other one performs an individual evaluation of each label imbalance level. A random undersampling
and a random oversampling algorithm are proposed for each approach, giving as result four different
algorithms. All of them are experimentally tested and their effectiveness is statistically evaluated. From
the results obtained, a set of guidelines directed to show when these methods should be applied is also
provided.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multilabel classification (MLC) [1] is receiving significant atten-
tion lately, and it is being applied in fields such as text categoriza-
tion [2] and music labeling [3]. In these scenarios, each data
sample is associated with several concepts (class labels) simulta-
neously. Therefore, MLC algorithms have to be able to give several
outputs as result, instead of only one as in traditional classification.

The data used for learning a classifier is often imbalanced. Thus,
the class labels assigned to each instance are not equally repre-
sented. This is a profoundly examined problem in binary datasets
[4] and to a lesser extent to multiclass datasets [5]. A measure
called imbalance ratio (IR) [4] is used to know the datasets'
imbalance level. Traditionally, imbalanced classification has been
faced through techniques [6] such as resampling, cost-sensitive
learning, and algorithmic-specific adaptations.

That most MLDs suffer from a high level of imbalance is a
commonly accepted fact in the literature [7]. However, there are
not specific measures to assess the imbalance level in MLDs. Thus,

the imbalanced nature of MLDs is more an assumption than an
established fact. To date, there are some proposals to deal with
imbalanced MLDs focused in algorithmic adaptations of MLC
algorithms [7–9], so they are classifier-dependent solutions. An
alternative classifier-independent way to address the imbalance in
MLDs would be by means of preprocessing techniques, with
resampling algorithms in particular. This approach would allow
the use of any state-of-the-art MLC algorithm.

In this paper, we tackle the mentioned imbalanced problem for
MLDs from a double perspective, the analysis of the imbalance
level and proposals for reducing the imbalance in MLDs.1

There is a need for specific measures that can be used to obtain
information about the imbalance level in MLDs. Three measures
directed to assess the MLDs imbalance level are introduced and
discussed.

Four resampling methods aimed at reducing the imbalance in
MLDs are proposed. The measures will offer a convenient guide to
know if an MLD suffers from imbalance or not, and therefore when
it could benefit from the preprocessing. Regarding the resampling
methods, undersampling and oversampling were the reasonable
techniques to follow, although the difficulty on how to deal with
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multiple labels has to be solved. We examine two different
approaches:

� One of them is based on the Label Powerset (LP) transforma-
tion, evaluating the frequency of full labelsets. Two algorithms
founded on this approach were introduced in [33], one per-
forms random undersampling (LP-RUS) and the other one
random oversampling (LP-ROS).

� The second approach evaluates the frequency of individual
labels, instead of full labelsets, isolating the instances in which
one or more minority labels appear. Based on this approach
another two algorithms are proposed, one for random under-
sampling (ML-RUS) and the other one for random oversam-
pling (ML-ROS).

The usefulness of the measures and effectiveness of the
methods are proven experimentally, using different MLDs and
MLC algorithms, and the results are thoroughly analyzed using
statistical tests. The conducted experimentation is used as an
exploratory test on how known resampling algorithms could be
adapted to the multilabel scenario.

The rest of this paper is structured as follows: Section 2 briefly
describes the MLC task and the learning from imbalanced data
problem. Section 3 introduces the imbalance problem in MLC, and
describes the proposed measures to assess the imbalance level in
MLDs. The resampling methods proposal is presented in Section 4. In
Section 5, the experimental framework is described, and the results
obtained are analyzed. Finally, the conclusions are given in Section 6.

2. Preliminaries

MLC usually demands more complex models than traditional
classification to be faced. As traditional datasets, class distribution
in MLDs frequently involves some imbalance level. The imbalance
level in MLDs tends to be higher indeed. This characteristic makes
this task even more challenging. In this section, MLC and classi-
fication with imbalanced data problems are introduced.

2.1. Multilabel classification

In many application domains [2,3,10] each data sample is
associated with a set of labels, instead of only one class label as
in traditional classification. Therefore, with Y being the total set of
labels in an MLD D and xi a sample in D, a multilabel classifier h
must produce as output a set ZiDY with the predicted labels for
the i-th sample. As each distinct label in Y could appear in Zi, the
total number of potential different combinations would be 2j Y j .
Each one of these combinations is called a labelset. The same
labelset can appear in several instances of D.

There are two main approaches [1] to accomplish an MLC task:
data transformation and algorithm adaptation. The former aims to
produce from an MLD a dataset or group of datasets that can be
processed with traditional classifiers, while the objective of the
latter is to adapt existent classification algorithms in order to work
with MLDs. Among the transformation methods, the most popular
are those based on the binarization of the MLD, such as Binary
Relevance (BR) [11] and Ranking by Pairwise Comparison [12], and
the LP [13] transformation, which produces a multiclass dataset
from an MLD considering each labelset as class. In the algorithm
adaptation approach there are proposals of multilabel C4.5 trees
[14], algorithms based on nearest neighbors such as ML-kNN [15],
multilabel neural networks [2,16], and multilabel SVMs [17].

In the literature there are some specific measures to characterize
MLDs, such as label cardinality Card, defined as shown in Eq. (1), and
label density Dens, Eq. (2). The former is the average number of active

labels per sample in an MLD, while the latter is designed to obtain a
dimensionless measure:

CardðDÞ ¼
XjDj

i ¼ 1

jYi j
jDj : ð1Þ

DensðDÞ ¼ CardðDÞ
jY j : ð2Þ

A recent review on multilabel learning algorithms can be found
in [18].

2.2. Classification with imbalanced data

The learning from imbalanced data problem is founded on the
different distributions of class labels in the data [19], and it has
been thoroughly studied in traditional classification. In this con-
text, the measurement of the imbalance level in a dataset is
obtained as the ratio of the number of samples of the majority
class and the number associated with the minority class, being
known as IR [4]. The higher the IR, the larger the imbalance level.
The difficulty in the learning process with this kind of data is due
to the design of most classifiers, as their main goal is to reduce
some global error rate [4]. This approach tends to penalize the
classification of minority classes.

Generally, the imbalance problem has been faced with three
different approaches [6]: data resampling, algorithmic adaptations
[5], and cost sensitive classification [20]. The former is based on
the rebalancing of class distributions through resampling algo-
rithms, either deleting instances of the most frequent class
(undersampling) or adding new instances of the least frequent
one (oversampling). Random undersampling (RUS) [21], random
oversampling (ROS) and SMOTE [22] are among the most used
resampling methods to equilibrate imbalanced datasets. The
advantage of this approach is in that it can be applied as a general
method to solve the imbalance problem, independent of the
classification algorithms used once the datasets have been pre-
processed. A general overview on imbalanced learning can be
found in [23].

2.3. Learning from imbalanced MLDs

Conventional resampling methods are designed to work with
one output class only. Each sample in an MLD is associated with
more than one class, and this is a fact to be taken into account.
Furthermore, those methods usually assume that there are only
one minority label and one majority label, whereas in MLDs with
hundreds of labels many of them can be considered as minority/
majority cases. Thus, an approach to resample MLDs, which have a
set of labels as output and several of them could be considered
minority/majority labels, is needed.

Most of the published algorithms aim to deal with the imbal-
ance problem by means of algorithmic adaptations of MLC
classifiers, or the use of ensembles of classifiers. Furthermore all
of them are classifier-dependent, instead of general application
methods able to work with another MLC learning algorithms.
Some of the existent proposals are the following:

� Ensemble Multilabel Learning [7] is a method based on the use
of heterogeneous algorithms to build an ensemble of MLC
classifiers. The authors aim to face two problems simulta-
neously, learning from imbalanced data and capturing correla-
tion information among labels. The ensemble is composed of
five well-known MLC algorithms, being able to improve classi-
fication results in some configurations.
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� The algorithm proposed in [8], called Inverse Random Under-
sampling, was originally designed for traditional classification,
but the authors also did some experimentation with MLDs. The
basic idea is to train several classifiers using all the instances
associated with the minority class, while taking only a small
random subset of the majority class instances for each classifier.
The adaptation to MLC is made leaning on the BR transforma-
tion method.

� In [9] the problem faced is the prediction of subcellular
localizations of human proteins, a highly imbalanced MLC task.
The algorithm proposed is based on the use of Gaussian
Process, a Bayesian method used to build non-parametric
probabilistic models. By means of a covariance matrix the
correlations among labels are obtained, and the imbalance is
fixed associating a weight coefficient to each sample.

These methods are tied to one or more MLC algorithms by design,
and have proven that classifier-dependent algorithms are a conve-
nient path to deal with the imbalance problem. Notwithstanding,
there are other interesting ways for facing it, in particular the data
preprocessing approach. There are several advantages in this
approach. Being independent of the classification process, it can be
applied without interfering with working MLC systems. Moreover,
the separation of tasks allows each algorithm to be focused in their
specific work. Since this is an unexplored approach, we believe it is
worth examining its possibilities. In Section 4 we propose different
algorithms aimed to reduce the imbalance level in MLDs based on
resampling techniques.

3. How to assess the imbalance level in MLDs

In this section the specific characteristics of imbalanced MLDs
are discussed, and the proposed measures to assess the MLDs
imbalance level are described.

3.1. Imbalance characteristics in MLDs

Most MLDs [24] have hundreds of labels, with each instance
being associated with a subset of them. Intuitively, it is easy to see
that the more different labels exist, the more possibilities there are
that some of them have a very low/high presence.

In Fig. 1, which represents the sample distribution per label of
bibtex and enron datasets, this fact can be verified. The leftmost
bar on each subfigure corresponds to the most frequent label,
whereas the rightmost bar represents the least frequent one. This
would be the most extreme imbalance ratio in the MLD, but
similar differences exist among any of the other pairs. However, it
is not straightforward to infer the imbalance level from measures
such as Card and Dens, which are the most widely used in the
literature in order to characterize MLDs. The 3.378 Card value in
enron indicates that each sample of this MLD is associated with
slightly more than 3 labels, on average. Therefore, any of its 46
labels could appear together with other two or three labels in the
same instance. This includes combinations in which the most
frequent and least frequent labels appear jointly, but neither Card
nor Dens is designed to consider this casuistry.

Many of the proposals made in the literature [7–9] for dealing
with imbalanced datasets in MLC claim the imbalanced nature of
MLDs. However, none of them give a measurement of the
imbalance level, nor offer a procedure to measure it. Comparing
Fig. 1(a) and (b), it is easy to see that in the latter the imbalance
problem is much more prominent than in the former. Although a
few very frequent labels exist in bibtex, 3 stand out of 159, the
remainder ones appear in a quite similar number of instances. By
contrast, the differences in enron are much more remarkable.

Nonetheless, assessing the imbalance level only by means of a
graphical representation is not an accurate procedure. Therefore,
there is a need for specific measures that can be used to obtain
information about the imbalance level in MLDs.

3.2. Measures to assess the imbalance level in MLDs

In binary classification, the imbalance level is measured taking
into account only two classes: the majority class and the minority
class. Many MLDs have hundreds of labels, and several of them
may have a very low/high presence. For that reason, it is important
to define the level of imbalance in MLC considering not only two
labels, but all of them. In this scenario, we propose the use of the
following measures, which were introduced in [33].

3.2.1. IRLbl: imbalance ratio per label
With D being an MLD with a set of labels Y, and Yi the i-th label,

it is calculated for the label y as the ratio between the majority
label and the label y, as shown in Eq. (3). This value will be 1 for
the most frequent label and a greater value for the rest. The larger
the IRLbl is, the higher would be the imbalance level for the
considered label:

IRLblðyÞ ¼
argmaxY j Y j

y0 ¼ Y1
ðPj Dj

i ¼ 1 hðy0;YiÞÞPj Dj
i ¼ 1 hðy;YiÞ

; hðy;YiÞ ¼
1; yAYi

0; y=2Yi:

(

ð3Þ

3.2.2. MeanIR: mean imbalance ratio
This measure will offer a value that represents the average level

of imbalance in an MLD, obtained as shown in Eq. (4). It must be
taken into account that different label distributions can produce
the same MeanIR value; hence this measure should always be used
jointly with the following:

MeanIR¼ 1
jY j

XY j Y j

y ¼ Y1

ðIRLblðyÞÞ: ð4Þ

3.2.3. CVIR: coefficient of variation of IRLbl
This is the coefficient of variation of IRLbl, and is calculated as

shown in Eq. (5). It will indicate if all labels suffer from a similar level
of imbalance or, on the contrary, there are big differences in them. The
larger the CVIR value, the higher would be this difference:

CVIR¼ IRLblσ
MeanIR

; IRLblσ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXY j Y j

y ¼ Y1

ðIRLblðyÞ�MeanIRÞ2
jY j �1

vuut ð5Þ

Table 1 shows these three measures for 13 well-known MLDs.
The high MeanIR and CVIR values for corel5k and mediamill
suggest that these MLDs are the most imbalanced, and therefore
they could be the more benefited from the resampling. Several
MLDs measurements also indicate that they have different levels
of imbalance. On the contrary, the values associated with emotions
and scene denote their nature of well-balanced MLDs, despite the
fact that they have two of the highest Dens values. As can be seen,
the differences highlighted before between bibtex and enron,
based only on the observation of Fig. 1, are confirmed by their
MeanIR and CVIR values. The extreme frequency differences
between the most and least represented labels in enron are
denoted by MaxIR¼ 913, whereas for bibtex the value is barely
above 20. The average imbalance level of enron, with
MeanIR¼ 83:9528 and CVIR¼ 1:9596, is also much higher than in
bibtex, with MeanIR¼ 12:4983 and CVIR¼ 0:4051. Although in this
case the Card and Dens values in enron are slightly higher than in
bibtex, in general there are not a correlation between these two
measures and the imbalance level in each MLD.
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Unlike Card and Dens, which only evidence the mean number
of labels per instance, the joint use of the MeanIR and CVIR
measures would denote if an MLD is imbalanced or not, whereas
IRLbl would be useful in individual label evaluation. As a general
rule, any MLD with a MeanIR value higher than 1.5 (50% more of
samples with majority label vs minority label, in average) and CVIR
value above 0.2 (20% of variance in the IRLbl values) should be
considered as imbalanced.

4. Resampling algorithms for reducing imbalance in MLDs

In order to design any resampling algorithm for MLDs, the first
point to consider is how the specific nature of this kind of datasets
will be addressed, as the output variable is not a class but also a
group of them. Two approaches are followed in the present study
for deciding what cases can be considered minority or majority.
The following subsections discuss these approaches and describe
each one of the proposed algorithms.

4.1. LP based resampling algorithms

The first approach relies on the LP transformation method [13].
This basic method transforms the MLD in a multiclass dataset,
processing each different combination of labels (labelset) as class

identifier. A maximum of 2j Lj distinct labelsets could exist in an
MLD. It is an approach that has been successfully used as base
transformation in classification algorithms such as RAkEL [34] and
HOMER [35]. Although BR transformation is maybe more popular
when it comes to design new MLC algorithms, LP has been also
used to complete other kinds of tasks such as the stratified
partitioning of MLDs [36]. Moreover, facing multilabel resampling
through BR would imply a pair-wise imbalance treatment, instead
of the joint treatment that could be achieved through LP. There-
fore, it is a technique that deserves to be tested in the context of
the problem at hand. LP-RUS and LP-ROS interpret each labelset as
class identifier while resampling an MLD, deleting majority
labelsets and cloning minority labelsets.
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Fig. 1. Number of instances in which appear the 15 most common labels (left side of each picture) and the 15 rarest ones (right): (a) bibtex dataset. Card¼2.402, Dens¼0.015
and (b) enron dataset. Card¼3.378, Dens¼0.064.

Table 1
Basic characteristics and imbalance measures of datasets.

Dataset Instances Features Labels Card Dens MaxIR MeanIR CVIR Ref

bibtex 7395 1836 159 2.402 0.015 20.4314 12.4983 0.4051 [25],

cal500 502 68 174 26.044 0.150 88.8000 20.5778 1.0871 [26],

corel5k 5000 499 374 3.522 0.009 1120.0000 189.5676 1.5266 [27],

corel16k 13,766 500 161 2.867 0.018 126.8000 34.1552 0.8088 [28],

emotions 593 72 6 1.868 0.311 1.7838 1.4781 0.1796 [3],

enron 1702 753 53 3.378 0.064 913.0000 73.9528 1.9596 [29],

genbase 662 1186 27 1.252 0.046 171.0000 37.3146 1.4494 [10],

llog 1460 1004 75 1.180 0.016 171.0000 39.2669 1.3106 [30],

mediamill 43,907 120 101 4.376 0.043 1092.5484 256.4047 1.1749 [31],

scene 2407 294 6 1.074 0.179 1.4643 1.2538 0.1222 [13],

slashdot 3782 1079 22 1.181 0.054 194.6667 19.4624 2.2878 [30],

tmc2007 28,596 49,060a 22 2.158 0.098 41.9802 17.1343 0.8137 [32],

yeast 2417 198 14 4.237 0.303 53.4118 7.1968 1.8838 [17],

a The 500 most relevant features were selected.

Table 2
Average rankings for undersampling algorithms.

Algorithm Accuracy Micro-FM Macro-FM

LP-RUS 10 3.114 ↓ 2.795 2 2.523 ⋆
LP-RUS 20 4.227 ⇊ 3.523 ⇊ 3.443 2

LP-RUS 25 5.034 ⇊ 4.432 ⇊ 3.841 ⇊
ML-RUS 10 2.136 ⋆ 2.193 ⋆ 3.034 2

ML-RUS 20 3.023 ↓ 2.716 2 3.988 ⇊
ML-RUS 25 3.466 ⇊ 5.341 ⇊ 4.170 ⇊
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LP-based resampling methods do not rely on the measures
proposed in Section 3 to do their work. Hence a previous
measurement of the MLD imbalance level has to be performed,

then deciding if the resampling could benefit or not classification
results. As the experimentation in [33] showed, those MLDs with a
MeanIR o1:5 and a low CVIR value, below 0.5, could hardly get
any benefit from the resampling.

4.1.1. LP-RUS: LP based random undersampling
LP-RUS is a multilabel undersampling algorithm that works

deleting random samples of majority labelsets. The process will
stop when the MLD D is reduced by the indicated percentage. The
method accomplishes this task as shown in Algorithm 1.

This procedure aims to achieve a labelset representation in the
MLD as close as possible to a uniform distribution. However, since
a limit on the minimum dataset size has been established with the
P parameter, a certain degree of imbalance among the labelsets
could remain in the MLD. In any case, the imbalance level should
always be lower than in the original dataset.

Algorithm 1. LP-RUS algorithm's pseudo-code.

Inputs: 〈Dataset〉 D; 〈Percentage〉 P
Outputs: Preprocessed dataset

1: samplesToDelete’jDj=100nP ▹ P% size reduction
2: ▹ Group samples according to their labelsets

Table 3
Average rankings for oversampling algorithms.

Algorithm Accuracy Micro-FM Macro-FM

LP-ROS 10 4.830 ⇊ 5.193 ⇊ 5.170 ⇊
LP-ROS 20 4.489 ⇊ 4.943 ⇊ 4.807 ⇊
LP-ROS 25 4.307 ⇊ 4.773 ⇊ 4.591 ⇊
ML-ROS 10 2.284 ⋆ 1.409 ⋆ 2.250 2

ML-ROS 20 2.636 2 2.080 2 2.160 2

ML-ROS 25 2.455 2 2.602 ⇊ 2.023 ⋆

Table 4
Final stage – average rankings.

Algorithm Accuracy Micro-FM Macro-FM

Base 1.852 2 2.636 ⇊ 1.898 2

ML-RUS 10 2.364 ⇊ 1.568 ⋆ 2.386 ⇊
ML-ROS 10 1.784 ⋆ 1.795 2 1.716 ⋆

Table A1
Undersampling algorithms results – accuracy.

Algorithm Dataset LP-RUS 10 LP-RUS 20 LP-RUS 25 ML-RUS 10 ML-RUS 20 ML-RUS 25

CLR bibtex 0.2043 0.1958 0.1880 0.2292 0.2286 0.2261
HOMER bibtex 0.2409 0.2216 0.2193 0.2618 0.2603 0.2580
IBLR bibtex 0.1424 0.1276 0.1221 0.1684 0.1654 0.1652
RAkEL bibtex 0.2776 0.2646 0.2657 0.2966 0.2937 0.2933
CLR cal500 0.1787 0.1787 0.1787 0.1708 0.1771 0.1796
HOMER cal500 0.2410 0.2500 0.2455 0.2346 0.2324 0.2348
IBLR cal500 0.1926 0.1926 0.1926 0.1898 0.1843 0.1897
RAkEL cal500 0.2135 0.2135 0.2135 0.2101 0.2140 0.2154
CLR corel16k 0.0434 0.0409 0.0401 0.0453 0.0454 0.0466
HOMER corel16k 0.1080 0.1087 0.1023 0.1118 0.1112 0.1132
IBLR corel16k 0.0224 0.0208 0.0200 0.0256 0.0254 0.0250
RAkEL corel16k 0.0618 0.0592 0.0592 0.0633 0.0628 0.0638
CLR corel5k 0.0328 0.0319 0.0292 0.0355 0.0368 0.0363
HOMER corel5k 0.0956 0.0870 0.0907 0.1016 0.0977 0.1010
IBLR corel5k 0.0266 0.0253 0.0235 0.0296 0.0323 0.0324
RAkEL corel5k 0.0534 0.0518 0.0480 0.0589 0.0592 0.0594
CLR enron 0.3912 0.3456 0.3422 0.4184 0.4156 0.4156
HOMER enron 0.3822 0.3353 0.3349 0.4085 0.4026 0.3976
IBLR enron 0.2834 0.2756 0.2752 0.3005 0.2946 0.3147
RAkEL enron 0.3812 0.3324 0.3292 0.4034 0.3966 0.4004
CLR genbase 0.9822 0.9816 0.9812 0.9716 0.9528 0.9368
HOMER genbase 0.9802 0.9822 0.9796 0.9764 0.9582 0.9411
IBLR genbase 0.9785 0.9795 0.9770 0.9671 0.9476 0.9214
RAkEL genbase 0.9842 0.9842 0.9839 0.9782 0.9616 0.9456
CLR llog 0.0338 0.0278 0.0239 0.0458 0.0504 0.0492
HOMER llog 0.0866 0.0927 0.0889 0.1038 0.0992 0.0972
IBLR llog 0.0328 0.0288 0.0232 0.0352 0.0327 0.0350
RAkEL llog 0.1243 0.1261 0.1268 0.1325 0.1296 0.1258
CLR mediamill 0.4456 0.4370 0.4342 0.4438 0.4368 0.4334
HOMER mediamill 0.4026 0.3870 0.3842 0.4089 0.4037 0.4012
IBLR mediamill 0.4620 0.4539 0.4486 0.4590 0.4504 0.4455
RAkEL mediamill 0.4115 0.4013 0.3964 0.4144 0.4088 0.4072
CLR slashdot 0.2816 0.2152 0.2024 0.3194 0.3117 0.2991
HOMER slashdot 0.3403 0.3082 0.3216 0.3314 0.3226 0.3084
IBLR slashdot 0.0880 0.0854 0.0811 0.1486 0.1364 0.1548
RAkEL slashdot 0.3015 0.2352 0.2188 0.3392 0.3279 0.3159
CLR tmc2007 0.6061 0.5938 0.5887 0.6020 0.5860 0.5774
HOMER tmc2007 0.5930 0.5760 0.5690 0.5897 0.5801 0.5701
IBLR tmc2007 0.5266 0.5168 0.5113 0.5184 0.5119 0.5072
RAkEL tmc2007 0.5950 0.5806 0.5731 0.5913 0.5758 0.5676
CLR yeast 0.4621 0.4556 0.4566 0.4706 0.4649 0.4549
HOMER yeast 0.4294 0.4130 0.4086 0.4312 0.4294 0.4144
IBLR yeast 0.5148 0.5048 0.5017 0.5150 0.5102 0.5074
RAkEL yeast 0.4242 0.4144 0.4160 0.4344 0.4314 0.4234
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3: for i¼ 1-j labelsetsj do
4: labelSetBagi’samplesWithLabelsetðiÞ
5: end for
6: ▹ Calculate the average number of samples per labelset
7:

meanSize’1=j labelsetsjn Pj labelsetsj

i ¼ 1
j labelSetBagi j

8: ▹ Obtain majority labels bags
9: for each labelSetBagi in labelSetBag do
10: if j labelSetBagi j4meanSize then
11: majBagi’labelSetBagi
12: end if
13: end for
14: meanRed’samplesToDelete=jmajBag j
15: majBag’ SortFromSmallestToLargest(majBag)
16: ▹ Calculate # of instances to delete and remove them
17: for each majBagi in majBag do
18: rBagi’minðjmajBagi j �meanSize;meanRedÞ
19: remainder’meanRed�rBagi
20: distributeAmongBagsj4 iðremainderÞ
21: for n¼ 1-rBagi do

22: x’randomð1; jmajBagi j Þ

23: deleteSampleðmajBagi; xÞ
24: end for
25: end for

Although the imbalance level is evaluated by labelset, this
method removes samples belonging to several label combinations,
not only the most imbalanced one.

4.1.2. LP-ROS: LP based random oversampling
LP-ROS is a multilabel oversampling method that clones random

samples associated with minority labelsets, until the size of the MLD
is P% larger than the original. The procedure followed is analogous to
the described above for LP-RUS. In this case, a collection of minority
groups minBagi with ðj labelsetBagi jomeanSizeÞ is obtained, a
meanInc¼ samplesGenerate=minBag is calculated, and processing
the minority groups from the largest to the smallest an individual
increment for each minBagi is determined. If a minBagi reaches
meanSize samples before incrementBagi instances have been added,
the excess is distributed among the others minBag. Therefore, the
labelsets with a lower representation will be benefited from a bigger

Table A2
Undersampling algorithms results – micro-FMeasure.

Algorithm Dataset LP-RUS 10 LP-RUS 20 LP-RUS 25 ML-RUS 10 ML-RUS 20 ML-RUS 25

CLR bibtex 0.7607 0.7429 0.7322 0.7793 0.7740 0.3339
HOMER bibtex 0.3530 0.3346 0.3338 0.3648 0.3592 0.3408
IBLR bibtex 0.3610 0.3178 0.2986 0.3494 0.3158 0.2423
RAkEL bibtex 0.4878 0.4645 0.4573 0.5136 0.5045 0.3978
CLR cal500 0.6227 0.6227 0.6227 0.6258 0.6151 0.2993
HOMER cal500 0.3749 0.3822 0.3858 0.3732 0.3635 0.3787
IBLR cal500 0.2827 0.2827 0.2827 0.2777 0.2720 0.3166
RAkEL cal500 0.4343 0.4343 0.4343 0.4188 0.4163 0.3518
CLR corel16k 0.4188 0.4054 0.3917 0.4300 0.4239 0.0878
HOMER corel16k 0.2212 0.2152 0.2130 0.2327 0.2256 0.1868
IBLR corel16k 0.2865 0.2356 0.2092 0.3049 0.2600 0.0498
RAkEL corel16k 0.3464 0.3369 0.3339 0.3511 0.3556 0.1144
CLR corel5k 0.4494 0.4440 0.4248 0.4512 0.4540 0.0714
HOMER corel5k 0.2050 0.1964 0.1965 0.2086 0.2041 0.1708
IBLR corel5k 0.0378 0.0356 0.0337 0.0434 0.0434 0.0558
RAkEL corel5k 0.3716 0.3756 0.3652 0.3707 0.3717 0.1108
CLR enron 0.6842 0.6677 0.6544 0.6780 0.6814 0.5467
HOMER enron 0.5318 0.5111 0.5004 0.5482 0.5446 0.5086
IBLR enron 0.5660 0.5418 0.5299 0.5588 0.5279 0.4312
RAkEL enron 0.6262 0.6034 0.5858 0.6195 0.6124 0.5218
CLR genbase 0.9887 0.9887 0.9887 0.9844 0.9852 0.9374
HOMER genbase 0.9898 0.9910 0.9886 0.9852 0.9786 0.9420
IBLR genbase 0.9768 0.9799 0.9767 0.9478 0.8998 0.8920
RAkEL genbase 0.9893 0.9893 0.9893 0.9875 0.9902 0.9488
CLR llog 0.5574 0.5198 0.4866 0.5863 0.5851 0.0802
HOMER llog 0.1378 0.1468 0.1400 0.1594 0.1542 0.1452
IBLR llog 0.0535 0.0440 0.0420 0.0580 0.0565 0.0588
RAkEL llog 0.2698 0.2618 0.2634 0.2880 0.2871 0.1914
CLR mediamill 0.7664 0.7560 0.7508 0.7750 0.7720 0.5713
HOMER mediamill 0.5602 0.5266 0.5234 0.5882 0.5944 0.5372
IBLR mediamill 0.7525 0.7398 0.7326 0.7701 0.7708 0.5728
RAkEL mediamill 0.6279 0.6105 0.6013 0.6510 0.6558 0.5449
CLR slashdot 0.6546 0.6520 0.6639 0.6315 0.6354 0.4084
HOMER slashdot 0.5781 0.5683 0.5598 0.5997 0.5874 0.4001
IBLR slashdot 0.6504 0.6634 0.6554 0.6505 0.6218 0.2242
RAkEL slashdot 0.6985 0.7146 0.7098 0.6675 0.6672 0.4248
CLR tmc2007 0.7400 0.7278 0.7228 0.7500 0.7454 0.6884
HOMER tmc2007 0.6860 0.6691 0.6614 0.6908 0.6893 0.6664
IBLR tmc2007 0.7132 0.7073 0.7036 0.7221 0.7220 0.6170
RAkEL tmc2007 0.7243 0.7092 0.7016 0.7337 0.7263 0.6699
CLR yeast 0.6462 0.6380 0.6286 0.6516 0.6573 0.6055
HOMER yeast 0.5632 0.5504 0.5407 0.5680 0.5795 0.5612
IBLR yeast 0.7133 0.7124 0.7083 0.7137 0.7129 0.6378
RAkEL yeast 0.5839 0.5712 0.5644 0.5913 0.5970 0.5696
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number of clones, aiming to adjust the labelset frequency to a
uniform distribution as in LP-RUS.

4.2. Individual label evaluation resampling algorithms

Although LP is easily applicable method and it has shown its
effectiveness in many scenarios, it also has severe restrictions.
Concerning the evaluation of the imbalance level, LP is limited by
the labels sparseness in the MLD. There are MLDs with as many
distinct label combinations as instances. This entails that all labelsets
would be considered majority and minority cases at the same time,
thus LP-ROS and LP-RUS hardly could fix the imbalance problem. For
instance, cal500 has 502 instances assigned to 502 different label
combinations. Hence, all labelsets in this MLD are unique. Although
the MeanIR and CVIR values for this dataset are quite high, indicating
that it is imbalanced, the LP approach would not be able to rebalance
it as all the labelsets are equally represented.

An alternative way to accomplish this task, based on the
measures proposed in Section 3, would be evaluating the indivi-
dual imbalance level of each label. The labels whose IRLbl is higher
than MeanIR would be considered as minority labels. This criterion
will be used to extract instances to clone or to block from
removing. All the other labels, those with IRLbl smaller than
MeanIR, would be treated as majority labels.

Unlike the LP-based resampling proposals, the ML methods
described here rely on the measures proposed in Section 3. The
ML-RUS and ML-ROS algorithms are based on the technique just
described above. These two algorithms are also aimed to resample
MLDs. However, the instances to delete or clone are selected using
an individual evaluation of each label, instead of full labelsets. The
MeanIR and IRLbl measures are their cornerstones.

4.2.1. ML-ROS: individual label random oversampling
ML-ROS (see Algorithm 2) uses the IRLbl measure to obtain

bags of instances in which minority labels (whose IRLbl is higher
than MeanIR) appear. The instances to clone are randomly picked
from those bags. The method updates the IRLbl in each loop cycle,
and excludes from the processing any minority label which
reaches MeanIR. It should be considered that the cloned instances
may also contain non-minority labels, and as consequence the
process could increase their frequency in the MLD.

Algorithm 2. ML-ROS algorithm's pseudo-code.

Inputs: 〈Dataset〉 D, 〈Percentage〉 P
Outputs: Preprocessed dataset

1: samplesToClone’jDj=100nP ▹ P% size increment
2: L’labelsInDatasetðDÞ ▹ Obtain the full set of labels

Table A3
Undersampling algorithms results – macro-FMeasure.

Algorithm Dataset LP-RUS 10 LP-RUS 20 LP-RUS 25 ML-RUS 10 ML-RUS 20 ML-RUS 25

CLR bibtex 0.3328 0.3238 0.3240 0.3400 0.3409 0.3448
HOMER bibtex 0.2960 0.2870 0.2871 0.2920 0.2890 0.2907
IBLR bibtex 0.2060 0.1998 0.1904 0.2050 0.1977 0.1954
RAkEL bibtex 0.3358 0.3328 0.3356 0.3384 0.3371 0.3371
CLR cal500 0.3323 0.3323 0.3323 0.3128 0.3137 0.3067
HOMER cal500 0.3194 0.3274 0.3302 0.3194 0.3172 0.3254
IBLR cal500 0.2770 0.2770 0.2770 0.2744 0.2680 0.2789
RAkEL cal500 0.2934 0.2934 0.2934 0.3028 0.3013 0.3021
CLR corel16k 0.1001 0.0990 0.0967 0.1031 0.0968 0.1054
HOMER corel16k 0.1272 0.1222 0.1168 0.1322 0.1374 0.1380
IBLR corel16k 0.1056 0.0988 0.0946 0.1049 0.1054 0.0956
RAkEL corel16k 0.1216 0.1180 0.1176 0.1244 0.1197 0.1218
CLR corel5k 0.1410 0.1298 0.1328 0.1304 0.1386 0.1272
HOMER corel5k 0.1682 0.1660 0.1628 0.1852 0.1840 0.1856
IBLR corel5k 0.0939 0.0909 0.0840 0.1092 0.1069 0.1104
RAkEL corel5k 0.1631 0.1652 0.1552 0.1792 0.1831 0.1775
CLR enron 0.4208 0.4014 0.4184 0.4132 0.4055 0.4306
HOMER enron 0.3702 0.3558 0.3641 0.3798 0.3746 0.3604
IBLR enron 0.3450 0.3333 0.3300 0.3399 0.3296 0.3180
RAkEL enron 0.4062 0.3968 0.4086 0.4039 0.3996 0.4126
CLR genbase 0.9846 0.9845 0.9842 0.9675 0.9530 0.9303
HOMER genbase 0.9796 0.9836 0.9775 0.9718 0.9517 0.9331
IBLR genbase 0.9678 0.9686 0.9670 0.9424 0.9122 0.8929
RAkEL genbase 0.9890 0.9890 0.9887 0.9834 0.9716 0.9501
CLR llog 0.2224 0.2037 0.2032 0.2550 0.2670 0.2534
HOMER llog 0.2210 0.2336 0.2398 0.2267 0.2166 0.2020
IBLR llog 0.1738 0.1627 0.1589 0.1998 0.1786 0.1798
RAkEL llog 0.2784 0.2791 0.2927 0.2670 0.2652 0.2538
CLR mediamill 0.2294 0.2358 0.2340 0.2176 0.2218 0.2188
HOMER mediamill 0.2374 0.2444 0.2348 0.2290 0.2115 0.2088
IBLR mediamill 0.2804 0.2796 0.2776 0.2634 0.2452 0.2362
RAkEL mediamill 0.2778 0.2791 0.2766 0.2692 0.2509 0.2434
CLR slashdot 0.3800 0.3530 0.3472 0.3898 0.3834 0.3661
HOMER slashdot 0.4059 0.3809 0.3825 0.3766 0.3733 0.3581
IBLR slashdot 0.2276 0.2199 0.2192 0.2242 0.2218 0.2530
RAkEL slashdot 0.3841 0.3675 0.3605 0.3982 0.3842 0.3750
CLR tmc2007 0.6091 0.6089 0.6078 0.5954 0.5781 0.5717
HOMER tmc2007 0.5944 0.5911 0.5861 0.5855 0.5722 0.5662
IBLR tmc2007 0.4716 0.4760 0.4758 0.4406 0.4298 0.4260
RAkEL tmc2007 0.6022 0.5966 0.5942 0.5878 0.5707 0.5652
CLR yeast 0.4481 0.4538 0.4562 0.4483 0.4298 0.4285
HOMER yeast 0.4431 0.4345 0.4274 0.4351 0.4238 0.4164
IBLR yeast 0.4990 0.4828 0.4761 0.4597 0.4671 0.4570
RAkEL yeast 0.4450 0.4407 0.4436 0.4474 0.4367 0.4357
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3: MeanIR’calculateMeanIRðD; LÞ
4: for each label in L do ▹ Bags of minority labels samples
5: IRLbllabel’calculateIRperLabelðD; labelÞ
6: if IRLbllabel4MeanIR then
7: minBagiþ þ’Baglabel
8: end if
9: end for
10: while samplesToClone40 do ▹ Instances cloning loop
11: ▹ Clone a random sample from each minority bag
12: for each minBagi in minBag do
13: x’randomð1; jminBagi j Þ
14: cloneSampleðminBagi; xÞ
15: if IRLblminBagi o ¼MeanIR then
16: minBag-minBagi ▹ Exclude from cloning
17: end if
18: - -samplesToClone
19: end for
20: end while

4.2.2. ML-RUS: individual label random undersampling
ML-RUS uses the minority bags to prevent the deletion of

samples that belong to minority labels. The instances contained in
these bags are excluded from the removing process, which works

randomly choosing from the remaining samples. These only can
contain majority labels, whose IRLbl is lower than MeanIR. As ML-
ROS, ML-RUS reassess the IRLbl of the labels affected by the
operation, banning those that reach the MeanIR value.

5. Experimentation and analysis

The performance of the four proposed resampling methods has
been tested using several MLDs and MLC algorithms. The following
experimental framework is described and the results obtained are
analyzed.

5.1. Experimental framework

The proposed resampling methods were tested using the MLDs
shown in Table 1. This table shows some basic characterization
measures: number of attributes, samples, and labels, and the
average number of labels per sample, along with the proposed
measures related to the imbalance level. Emotions and scene
datasets were not used, as their MeanIRo1:5 denote them as
well-balanced MLDs. As can be seen, there are datasets with a
variety of values in Card/Dens, as well as some big differences in
the number of labels, attributes, samples, and the imbalance

Table A4
Oversampling algorithms results – accuracy.

Algorithm Dataset LP-ROS 10 LP-ROS 20 LP-ROS 25 ML-ROS 10 ML-ROS 20 ML-ROS 25

CLR bibtex 0.1670 0.1688 0.1724 0.2364 0.2367 0.2388
HOMER bibtex 0.1515 0.1542 0.1504 0.2677 0.2614 0.2548
IBLR bibtex 0.1007 0.1014 0.1038 0.1768 0.1767 0.1783
RAkEL bibtex 0.2072 0.2064 0.2066 0.2925 0.2882 0.2888
CLR cal500 0.2150 0.2147 0.2110 0.2038 0.2138 0.2140
HOMER cal500 0.2040 0.2062 0.2030 0.2210 0.2116 0.2128
IBLR cal500 0.1940 0.1896 0.1896 0.1900 0.1941 0.1940
RAkEL cal500 0.2060 0.2036 0.2047 0.2121 0.2102 0.2109
CLR corel16k 0.0555 0.0576 0.0584 0.0480 0.0508 0.0500
HOMER corel16k 0.0764 0.0759 0.0760 0.1107 0.1039 0.1026
IBLR corel16k 0.0454 0.0472 0.0475 0.0292 0.0324 0.0344
RAkEL corel16k 0.0590 0.0594 0.0603 0.0700 0.0698 0.0690
CLR corel5k 0.0417 0.0426 0.0444 0.0390 0.0416 0.0429
HOMER corel5k 0.0696 0.0700 0.0727 0.0996 0.0958 0.0946
IBLR corel5k 0.0347 0.0361 0.0368 0.0327 0.0340 0.0351
RAkEL corel5k 0.0621 0.0608 0.0608 0.0612 0.0634 0.0650
CLR enron 0.3167 0.3160 0.3170 0.4068 0.4019 0.4030
HOMER enron 0.2665 0.2653 0.2598 0.4024 0.3840 0.3926
IBLR enron 0.2530 0.2457 0.2466 0.3155 0.3182 0.3147
RAkEL enron 0.2802 0.2797 0.2783 0.3890 0.3838 0.3808
CLR genbase 0.9755 0.9770 0.9764 0.9842 0.9844 0.9849
HOMER genbase 0.9776 0.9792 0.9800 0.9834 0.9849 0.9820
IBLR genbase 0.9798 0.9809 0.9809 0.9842 0.9836 0.9841
RAkEL genbase 0.9820 0.9842 0.9844 0.9864 0.9866 0.9871
CLR llog 0.0272 0.0258 0.0246 0.0470 0.0437 0.0443
HOMER llog 0.0642 0.0672 0.0672 0.1105 0.1031 0.0961
IBLR llog 0.0497 0.0533 0.0524 0.0357 0.0367 0.0353
RAkEL llog 0.0922 0.0950 0.0940 0.1324 0.1286 0.1315
CLR mediamill 0.3876 0.3884 0.3881 0.4559 0.4558 0.4556
HOMER mediamill 0.2749 0.2770 0.2776 0.4002 0.3946 0.3925
IBLR mediamill 0.3205 0.3210 0.3214 0.4644 0.4633 0.4624
RAkEL mediamill 0.2808 0.2816 0.2816 0.4114 0.4062 0.4046
CLR slashdot 0.1993 0.2212 0.2298 0.3260 0.3258 0.3302
HOMER slashdot 0.2610 0.2713 0.2585 0.3550 0.3432 0.3488
IBLR slashdot 0.1646 0.1700 0.1723 0.1343 0.1384 0.1392
RAkEL slashdot 0.2116 0.2370 0.2458 0.3496 0.3518 0.3578
CLR tmc2007 0.4845 0.4858 0.4850 0.6148 0.6164 0.6152
HOMER tmc2007 0.4020 0.4056 0.4073 0.6012 0.6012 0.6016
IBLR tmc2007 0.3481 0.3483 0.3492 0.5281 0.5232 0.5232
RAkEL tmc2007 0.4170 0.4180 0.4182 0.6022 0.6023 0.6008
CLR yeast 0.3928 0.3894 0.3866 0.4614 0.4567 0.4572
HOMER yeast 0.3316 0.3293 0.3290 0.4053 0.3979 0.3982
IBLR yeast 0.3910 0.3936 0.3946 0.5142 0.5048 0.4998
RAkEL yeast 0.3422 0.3380 0.3394 0.4101 0.4022 0.4063
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measures. The goal is to analyze how the proposed resampling
methods work with MLDs that are not similar, but quite different.
A 2�5 folds cross validation scheme was used, and the training
partitions have been preprocessed with the four proposed meth-
ods using three different Percentage values: 10, 20, and 25.

Regarding the MLC algorithms, the following were chosen: CLR
[37], RAkEL [34], IBLR [38], and HOMER [35]. The C4.5 tree-based
classification algorithm was used as underlying classifier where a
binary/multiclass classification algorithmwas needed. The number of
clusters for HOMER was set to the minimum between 4 and the
number of labels in the MLD. Default values were used for the rest of
parameters. Each MLC algorithm was run over the base datasets,
without any preprocessing, as well as using the datasets once they
have been preprocessed with LP-RUS, LP-ROS, ML-RUS, and ML-ROS.

The performance of a multilabel classifier can be evaluated using a
large range of measures. As stated in [39], it is important to use several
of them to assess predictive performance. Thesemeasures are grouped
into three categories [1]: sample-based measures, label-based mea-
sures, and ranking-based measures. To assess the influence of each
separated label in the obtained results the measures to use are label-
based. These measures reflect the correct classification of majority or
minority labels better than others, and therefore are a way to follow
when the interest is in evaluating how a resampling algorithm has
changed the predictions made by a classifier.

The label-based measures are grouped into two categories,
called macro-measures and micro-measures. For each group there
are several measures, precision, recall and F-measure (also known
as F1-score or simply F1) among them. A macro-measure is
computed as shown in Eq. (6), evaluating the underlying measure
separately, once for each label, and eventually calculating the
mean as result. As stated in [40], this approach is heavily affected
by the results of “rare categories” (minority labels), the labels
whose classification results the resampling applied aims to
improve. In contrast, a micro-measure begins by aggregating the
predictions of all labels, and evaluates the measure at the end, as
can be seen in Eq. (7). Therefore, the bad or good results in
classification of minority labels are diluted among the much more
abundant predictions from majority labels, being a type of mea-
sure more appropriate to estimate the global performance of the
classifier. In both equations, TP stands for True Positives, FP for False
Positives, TN for True Negatives, and FN for False Negatives:

MacroM¼ 1
L

XL
i ¼ 1

evalMðTPi; FPi; TNi; FNiÞ ð6Þ

MicroM ¼ evalM
XL
i ¼ 1

TPi;
XL
i ¼ 1

FPi;
XL
i ¼ 1

TNi;
XL
i ¼ 1

FNi

 !
ð7Þ

Table A5
Oversampling algorithms results – micro-FMeasure.

Algorithm Dataset LP-ROS 10 LP-ROS 20 LP-ROS 25 ML-ROS 10 ML-ROS 20 ML-ROS 25

CLR bibtex 0.6529 0.6514 0.6535 0.7690 0.7555 0.7542
HOMER bibtex 0.2084 0.2104 0.2098 0.3656 0.3532 0.3520
IBLR bibtex 0.1661 0.1698 0.1728 0.4070 0.4053 0.4074
RAkEL bibtex 0.2999 0.2961 0.2946 0.4756 0.4567 0.4444
CLR cal500 0.5526 0.5569 0.5526 0.5911 0.5729 0.5669
HOMER cal500 0.3385 0.3404 0.3358 0.3512 0.3451 0.3460
IBLR cal500 0.2790 0.2737 0.2724 0.2802 0.2822 0.2828
RAkEL cal500 0.3387 0.3356 0.3376 0.3709 0.3510 0.3520
CLR corel16k 0.3140 0.3209 0.3209 0.4232 0.4168 0.4070
HOMER corel16k 0.1339 0.1348 0.1337 0.2128 0.2032 0.2002
IBLR corel16k 0.1156 0.1204 0.1208 0.2718 0.2456 0.2366
RAkEL corel16k 0.1352 0.1336 0.1335 0.2998 0.2602 0.2446
CLR corel5k 0.3489 0.3484 0.3527 0.4402 0.4326 0.4290
HOMER corel5k 0.1335 0.1310 0.1334 0.2040 0.1966 0.1915
IBLR corel5k 0.0500 0.0523 0.0530 0.0512 0.0570 0.0604
RAkEL corel5k 0.1980 0.1861 0.1839 0.3113 0.2932 0.2888
CLR enron 0.5929 0.5952 0.5929 0.6772 0.6752 0.6762
HOMER enron 0.3840 0.3852 0.3858 0.5237 0.5108 0.5074
IBLR enron 0.4513 0.4419 0.4438 0.5934 0.5975 0.5914
RAkEL enron 0.4336 0.4297 0.4254 0.5924 0.5845 0.5706
CLR genbase 0.9850 0.9840 0.9846 0.9868 0.9874 0.9868
HOMER genbase 0.9794 0.9845 0.9869 0.9904 0.9916 0.9821
IBLR genbase 0.9814 0.9836 0.9843 0.9863 0.9868 0.9862
RAkEL genbase 0.9880 0.9881 0.9887 0.9898 0.9904 0.9898
CLR llog 0.3919 0.4208 0.4098 0.5974 0.5949 0.6476
HOMER llog 0.0955 0.0898 0.0941 0.1645 0.1512 0.1520
IBLR llog 0.0560 0.0604 0.0606 0.0688 0.0757 0.0752
RAkEL llog 0.1220 0.1219 0.1203 0.2525 0.2429 0.2493
CLR mediamill 0.6112 0.6141 0.6138 0.7650 0.7608 0.7600
HOMER mediamill 0.3611 0.3629 0.3646 0.5516 0.5379 0.5354
IBLR mediamill 0.4084 0.4068 0.4064 0.7386 0.7176 0.7109
RAkEL mediamill 0.3663 0.3677 0.3681 0.6024 0.5863 0.5817
CLR slashdot 0.5188 0.5272 0.5272 0.6537 0.6448 0.6528
HOMER slashdot 0.3381 0.3346 0.3456 0.5554 0.5934 0.5775
IBLR slashdot 0.2881 0.2911 0.2934 0.6385 0.5937 0.5712
RAkEL slashdot 0.4196 0.4308 0.4281 0.6848 0.6786 0.6786
CLR tmc2007 0.5973 0.6016 0.6032 0.7530 0.7515 0.7512
HOMER tmc2007 0.4740 0.4752 0.4774 0.6941 0.6912 0.6891
IBLR tmc2007 0.4519 0.4522 0.4529 0.7135 0.7049 0.7038
RAkEL tmc2007 0.4917 0.4958 0.4970 0.7283 0.7214 0.7192
CLR yeast 0.5389 0.5388 0.5356 0.6359 0.6338 0.6332
HOMER yeast 0.4604 0.4604 0.4546 0.5475 0.5440 0.5445
IBLR yeast 0.4976 0.5000 0.5015 0.7039 0.6843 0.6767
RAkEL yeast 0.4748 0.4715 0.4733 0.5639 0.5578 0.5606
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Because F-measure (8) is in fact the harmonic mean of preci-
sion (9) and recall (10), it gives a way to do a weighted evaluation
of these two factors using the obtained results. Macro-FMeasure
will be used to determine the changes produced in those results
placing more emphasis in minority labels, while Micro-FMeasure
will better take in account the influence of majority labels. In these
equations Yi is the set of real labels associated with the instance xi,
whereas hðxiÞ would be the set of labels predicted by the multi-
label classifier:

F�measure¼ 2n
PrecisionnRecall
PrecisionþRecall

: ð8Þ

Precision¼ 1
jDj

Xj Dj

i ¼ 1

jYi \ hðxiÞj
jhðxiÞj

¼ TP
TPþFP

: ð9Þ

Recall¼ 1
jDj

XjDj

i ¼ 1

jYi \ hðxiÞj
jYi j

¼ TP
TPþFN

: ð10Þ

In addition, the common Accuracy measure, Eq. (11), will also

be used to obtain a general view of the methods' performance.

Accuracy is a measure that assess the positive and negative

predictive performance of the classifier:

Accuracy¼ 1
jDj

Xj Dj

i ¼ 1

jYi \ hðxiÞj
jYi [ hðxiÞj

ð11Þ

5.2. Results and analysis

The experimentation has been done in three stages. The first
two allowed us to choose the best undersampling configuration
and the best oversampling configuration. The final step compares
these two best configurations with the results obtained without
resampling.

In each phase, the statistical analysis of results was performed
in two steps, as recommended in [41,42]. In the first step, the
Friedman test is used to rank the methods, and to establish if any
statistical differences exist. The second step performs a multiple
comparison using Holm and Shaffer post hoc procedures, able to
elucidate pair-wise differences among the algorithms. The full
statistical study is provided as supplementary material.2

Table A6
Oversampling algorithms results – macro-FMeasure.

Algorithm Dataset LP-ROS 10 LP-ROS 20 LP-ROS 25 ML-ROS 10 ML-ROS 20 ML-ROS 25

CLR bibtex 0.2927 0.2923 0.2974 0.3386 0.3358 0.3379
HOMER bibtex 0.2180 0.2212 0.2210 0.2970 0.2945 0.2863
IBLR bibtex 0.1533 0.1558 0.1550 0.2200 0.2176 0.2184
RAkEL bibtex 0.2754 0.2739 0.2755 0.3288 0.3229 0.3236
CLR cal500 0.3236 0.3238 0.3199 0.3202 0.3318 0.3221
HOMER cal500 0.2888 0.2900 0.2841 0.3019 0.2967 0.2958
IBLR cal500 0.2756 0.2705 0.2742 0.2700 0.2750 0.2755
RAkEL cal500 0.2915 0.2906 0.2924 0.2966 0.2971 0.2972
CLR corel16k 0.1059 0.1046 0.1075 0.1033 0.1076 0.1080
HOMER corel16k 0.0861 0.0893 0.0910 0.1363 0.1292 0.1273
IBLR corel16k 0.0778 0.0805 0.0804 0.1094 0.1055 0.1085
RAkEL corel16k 0.0835 0.0832 0.0822 0.1278 0.1176 0.1192
CLR corel5k 0.1366 0.1374 0.1395 0.1355 0.1384 0.1431
HOMER corel5k 0.1418 0.1398 0.1451 0.1896 0.1884 0.1877
IBLR corel5k 0.0987 0.1012 0.1008 0.1157 0.1192 0.1235
RAkEL corel5k 0.1555 0.1552 0.1521 0.1784 0.1851 0.1850
CLR enron 0.3819 0.3760 0.3792 0.4220 0.3968 0.4082
HOMER enron 0.2957 0.3117 0.2988 0.3740 0.3597 0.3575
IBLR enron 0.3088 0.3046 0.3092 0.3580 0.3447 0.3485
RAkEL enron 0.3188 0.3252 0.3177 0.3930 0.3856 0.3880
CLR genbase 0.9732 0.9754 0.9755 0.9800 0.9802 0.9804
HOMER genbase 0.9746 0.9746 0.9754 0.9814 0.9877 0.9778
IBLR genbase 0.9730 0.9737 0.9734 0.9799 0.9756 0.9787
RAkEL genbase 0.9834 0.9876 0.9878 0.9890 0.9893 0.9894
CLR llog 0.2241 0.1763 0.1823 0.2508 0.2308 0.2418
HOMER llog 0.2020 0.2040 0.1942 0.2495 0.2510 0.2494
IBLR llog 0.1662 0.1694 0.1730 0.2096 0.2240 0.2124
RAkEL llog 0.2316 0.2318 0.2372 0.2921 0.2744 0.3018
CLR mediamill 0.2020 0.2037 0.2073 0.2322 0.2318 0.2336
HOMER mediamill 0.1565 0.1572 0.1582 0.2422 0.2350 0.2348
IBLR mediamill 0.2086 0.2091 0.2106 0.2800 0.2813 0.2834
RAkEL mediamill 0.1705 0.1721 0.1685 0.2618 0.2579 0.2556
CLR slashdot 0.3410 0.3463 0.3602 0.4061 0.4069 0.4203
HOMER slashdot 0.3298 0.3272 0.3288 0.3907 0.3978 0.3941
IBLR slashdot 0.2256 0.2274 0.2284 0.2319 0.2328 0.2112
RAkEL slashdot 0.3280 0.3407 0.3516 0.4002 0.4024 0.4137
CLR tmc2007 0.5731 0.5782 0.5777 0.6332 0.6440 0.6430
HOMER tmc2007 0.4673 0.4692 0.4727 0.6068 0.6082 0.6114
IBLR tmc2007 0.3880 0.3891 0.3886 0.4740 0.4765 0.4844
RAkEL tmc2007 0.4870 0.4895 0.4916 0.6138 0.6180 0.6162
CLR yeast 0.4206 0.4260 0.4159 0.4537 0.4464 0.4590
HOMER yeast 0.3985 0.3925 0.3963 0.4314 0.4134 0.4182
IBLR yeast 0.4433 0.4460 0.4467 0.4566 0.4622 0.4704
RAkEL yeast 0.4233 0.4166 0.4150 0.4528 0.4512 0.4507

2 Dataset partitions, tables of results and full statistical analysis are available to
download at http://simidat.ujaen.es/NeucomIDMLC.
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5.2.1. Best undersampling method selection
Tables A1, A2 and A3 in Appendix A show classification results

for undersampling methods, LP-RUS and ML-RUS, respectively.
Best values for each classifier-dataset combination are highlighted
in bold. The results obtained from the statistical analysis are
summarized in Table 2. There is a column for each evaluation
measure, showing the average ranking for the algorithms. The
meaning of the symbols to the right of the values is the following:

� ⋆: A star denotes that Friedman test has rejected the null
hypothesis. Therefore, statistically significant differences exist
among some of the algorithms. The one to the left of the star
has the best ranking.

� 2: There is not statistically significant difference between this
method and the best one.

� ↓: This method is statistically worse than the best one, with
p�valueo0:1.

� ⇊: This method is statistically worse than the best one, with
p�valueo0:05.

Table 2 shows that ML-RUS 10 is the winner for Accuracy and
Micro-FMeasure, whereas for Macro-FMeasure appears as second
but without statistical difference from the best one (LP-RUS 10).

Thus, it can be concluded that ML-RUS 10 is on average the best
undersampling method.

5.2.2. Best oversampling method selection
Tables A4, A5 and A6 correspond to classification results for

oversampling methods. From Table 3, which shows the statistical
analysis, that a clear statistical difference between ML-ROS and LP-
ROS methods exists can be seen. For Accuracy and Micro-FMeasure
the winner is ML-ROS 10, whereas for Macro-FMeasure it is ML-
ROS 25. In the last case, there is not statistical difference with ML-
ROS 10. On the contrary, for Micro-FMeasure ML-ROS 10 appears
as statistically better than ML-ROS 25. Thus, that ML-ROS 10 is the
best oversampling method on average can be concluded.

After finishing the two first experimental steps, it is possible to
deduce that ML-ROS/ML-RUS are overall better than their counter-
parts LP-ROS/LP-RUS, even though not always a statistical differ-
ence between them exists. Therefore, the resampling based on the
evaluation of imbalance by individual labels seems superior to the
LP based approach.

5.2.3. Base MLC algorithms vs best configurations
The third experimentation phase compares ML-RUS 10 and ML-

ROS 10 with classification without preprocessing results, denoted

Table A7
Base vs best methods – accuracy.

Algorithm Dataset Base ML-RUS 10 ML-ROS 10

CLR bibtex 0.2316 0.2292 0.2364
HOMER bibtex 0.2714 0.2618 0.2677
IBLR bibtex 0.1746 0.1684 0.1768
RAkEL bibtex 0.3002 0.2966 0.2925
RAkEL cal500 0.2135 0.1708 0.2038
HOMER cal500 0.2496 0.2346 0.2210
CLR cal500 0.1787 0.1898 0.1900
IBLR cal500 0.1922 0.2101 0.2121
CLR corel16k 0.0456 0.0453 0.0480
HOMER corel16k 0.1138 0.1118 0.1107
IBLR corel16k 0.0253 0.0256 0.0292
RAkEL corel16k 0.0645 0.0633 0.0700
RAkEL corel5k 0.0586 0.0355 0.0390
HOMER corel5k 0.1029 0.1016 0.0996
CLR corel5k 0.0360 0.0296 0.0327
IBLR corel5k 0.0315 0.0589 0.0612
RAkEL enron 0.4010 0.4184 0.4068
HOMER enron 0.4110 0.4085 0.4024
CLR enron 0.4171 0.3005 0.3155
IBLR enron 0.3226 0.4034 0.3890
RAkEL genbase 0.9842 0.9716 0.9842
HOMER genbase 0.9792 0.9764 0.9834
CLR genbase 0.9837 0.9671 0.9842
IBLR genbase 0.9790 0.9782 0.9864
CLR llog 0.0456 0.0458 0.0470
HOMER llog 0.1053 0.1038 0.1105
IBLR llog 0.0322 0.0352 0.0357
RAkEL llog 0.1419 0.1325 0.1324
CLR mediamill 0.4490 0.4438 0.4559
HOMER mediamill 0.4088 0.4089 0.4002
IBLR mediamill 0.4660 0.4590 0.4644
RAkEL mediamill 0.4194 0.4144 0.4114
CLR slashdot 0.3236 0.3194 0.3260
HOMER slashdot 0.3534 0.3314 0.3550
IBLR slashdot 0.1269 0.1486 0.1343
RAkEL slashdot 0.3452 0.3392 0.3496
CLR tmc2007 0.6132 0.6020 0.6148
HOMER tmc2007 0.6029 0.5897 0.6012
IBLR tmc2007 0.5322 0.5184 0.5281
RAkEL tmc2007 0.6044 0.5913 0.6022
RAkEL yeast 0.4338 0.4706 0.4614
HOMER yeast 0.4292 0.4312 0.4053
CLR yeast 0.4698 0.5150 0.5142
IBLR yeast 0.5210 0.4344 0.4101

Table A8
Base vs best methods – micro-FM.

Algorithm Dataset Base ML-RUS 10 ML-ROS 10

CLR bibtex 0.3371 0.7793 0.7690
HOMER bibtex 0.3568 0.3648 0.3656
IBLR bibtex 0.2628 0.3494 0.4070
RAkEL bibtex 0.4021 0.5136 0.4756
RAkEL cal500 0.3488 0.6258 0.5911
HOMER cal500 0.3978 0.3732 0.3512
CLR cal500 0.2977 0.2777 0.2802
IBLR cal500 0.3184 0.4188 0.3709
CLR corel16k 0.0846 0.4300 0.4232
HOMER corel16k 0.1866 0.2327 0.2128
IBLR corel16k 0.0504 0.3049 0.2718
RAkEL corel16k 0.1145 0.3511 0.2998
RAkEL corel5k 0.1096 0.4512 0.4402
HOMER corel5k 0.1744 0.2086 0.2040
CLR corel5k 0.0706 0.0434 0.0512
IBLR corel5k 0.0542 0.3707 0.3113
RAkEL enron 0.5334 0.6780 0.6772
HOMER enron 0.5265 0.5482 0.5237
CLR enron 0.5596 0.5588 0.5934
IBLR enron 0.4561 0.6195 0.5924
RAkEL genbase 0.9867 0.9844 0.9868
HOMER genbase 0.9820 0.9852 0.9904
CLR genbase 0.9852 0.9478 0.9863
IBLR genbase 0.9768 0.9875 0.9898
CLR llog 0.0734 0.5863 0.5974
HOMER llog 0.1491 0.1594 0.1645
IBLR llog 0.0560 0.0580 0.0688
RAkEL llog 0.2062 0.2880 0.2525
CLR mediamill 0.5928 0.7750 0.7650
HOMER mediamill 0.5493 0.5882 0.5516
IBLR mediamill 0.5987 0.7701 0.7386
RAkEL mediamill 0.5622 0.6510 0.6024
CLR slashdot 0.4416 0.6315 0.6537
HOMER slashdot 0.4429 0.5997 0.5554
IBLR slashdot 0.2042 0.6505 0.6385
RAkEL slashdot 0.4598 0.6675 0.6848
CLR tmc2007 0.7228 0.7500 0.7530
HOMER tmc2007 0.6982 0.6908 0.6941
IBLR tmc2007 0.6447 0.7221 0.7135
RAkEL tmc2007 0.7063 0.7337 0.7283
RAkEL yeast 0.5796 0.6516 0.6359
HOMER yeast 0.5763 0.5680 0.5475
CLR yeast 0.6168 0.7137 0.7039
IBLR yeast 0.6502 0.5913 0.5639
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as Base in all tables. Tables A7, A8 and A9 contain this final stage
results. The output from the statistical tests (Table 4) indicates that
ML-ROS 10 performs statistically better than ML-RUS 10 in
Accuracy and Macro-FMeasure. Although it is also better than
Base in these two measures, the differences have not statistical
significance. For Micro-FMeasure both ML-RUS 10 and ML-ROS 10
are statistically better than Base, but there are not meaningful
differences between them.

Overall, ML-ROS is noticeably better than ML-RUS. Even though
for Micro-FMeasure ML-RUS obtains the best rank, the difference
with ML-ROS is not significant. On the other hand, for Accuracy
and Macro-FMeasure the performance of ML-ROS is significantly
better than ML-RUS from a statistical point of view. Theoretically,
removing majority instances should produce a similar effect that
adding new minority ones. The two actions tend to balance label
representation in the MLD. However, multilabel instances are
representatives of a set of labels, not only one class as in traditional
classification. Removing an instance has a side effect over a
potential large number of labels. Thus, the loss of information
caused by ML-RUS comes in detriment of the results when
compared with ML-ROS.

From this exploratory experimentation on how the classical
resampling techniques could be adapted to work with MLDs, it is
possible to infer the following consequences:

� Although only the most basic resampling methods based on
random removing and cloning of samples have been applied, a
comprehensive improvement of the results is obtained, some-
times even with statistical significant differences.

� The best undersampling method performs significantly worse
than the best oversampling in two of the three evaluation
measures. This result is consistent with published studies such
as [43] and with the nature of MLDs, as the deletion of one
instance does not influence only the evaluated label, but all the
other labels which appear in this sample.

� Focusing in the oversampling techniques, the ML approach is
clearly superior to the LP one (see Table 3). The use of full
labelsets to assess the imbalance incurs the risk of increasing
only the number of instances with majority labels, as they can
generate many different combinations. The minority labels could
appear usually together, becoming more frequent labelsets than
those associated with the majority ones. The individual imbal-
ance evaluation in the ML approach, extracting minority bags,
guarantees that all the cloned samples include some minority
label, although they can also include majority ones.

6. Conclusion

The learning from imbalanced datasets problem has been
deeply studied in recent years in the domain of traditional
classification. In this paper, a new group of measures aimed to
evaluate the imbalance level in MLDs, along with four resampling
algorithms, have been proposed, and the experimentation made to
validate them has been described. LP-RUS is a random under-
sampling algorithm, whereas LP-ROS does random oversampling,
in both cases taking as class value the labelset assigned to each
data instance. ML-RUS and ML-ROS are also undersampling and
oversampling methods, but work with an individual imbalance
evaluation per label, instead of using full labelsets.

The proposed measures can be used to assess the imbalance
level, and being able to decide if a certain MLD could be benefited
from the proposed resampling methods. Using these measures, we
stated that emotions and scene should not be preprocessed as they
do not suffer from imbalance. These measures are also the
foundation of the ML-RUS and ML-ROS algorithms, which use
them to decide the instances that will be cloned/removed.

Among the resampling algorithms proposed, ML-ROS with a
10% of oversampling obtains the best overall results considering
different quality measures. The multilabel oversampling accom-
plished by ML-ROS is able to improve classification results when it
is applied to imbalanced MLDs, whatever MLC algorithm is used.

Most of all, the probationary implementation of resampling
algorithms and the conducted experimentation have proved that
resampling techniques can be an alternative to the published
proposals when it comes to work with imbalanced MLDs, opening
a new path to face this problem. As in traditional classification, a
further step would be the study of new algorithms able to generate
artificial multilabel samples.
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Appendix A. Tables of results

See Tables A1–Tables A9.

Table A9
Base vs best methods – macro-FM.

Algorithm Dataset Base ML-RUS 10 ML-ROS 10

CLR bibtex 0.3342 0.3400 0.3386
HOMER bibtex 0.3042 0.2920 0.2970
IBLR bibtex 0.2140 0.2050 0.2200
RAkEL bibtex 0.3368 0.3384 0.3288
RAkEL cal500 0.2934 0.3128 0.3202
HOMER cal500 0.3316 0.3194 0.3019
CLR cal500 0.3323 0.2744 0.2700
IBLR cal500 0.2772 0.3028 0.2966
CLR corel16k 0.1003 0.1031 0.1033
HOMER corel16k 0.1363 0.1322 0.1363
IBLR corel16k 0.1141 0.1049 0.1094
RAkEL corel16k 0.1277 0.1244 0.1278
RAkEL corel5k 0.1774 0.1304 0.1355
HOMER corel5k 0.1916 0.1852 0.1896
CLR corel5k 0.1330 0.1092 0.1157
IBLR corel5k 0.1059 0.1792 0.1784
RAkEL enron 0.4029 0.4132 0.4220
HOMER enron 0.3790 0.3798 0.3740
CLR enron 0.4198 0.3399 0.3580
IBLR enron 0.3458 0.4039 0.3930
RAkEL genbase 0.9890 0.9675 0.9800
HOMER genbase 0.9780 0.9718 0.9814
CLR genbase 0.9848 0.9424 0.9799
IBLR genbase 0.9655 0.9834 0.9890
CLR llog 0.2330 0.2550 0.2508
HOMER llog 0.2380 0.2267 0.2495
IBLR llog 0.1830 0.1998 0.2096
RAkEL llog 0.2824 0.2670 0.2921
CLR mediamill 0.2276 0.2176 0.2322
HOMER mediamill 0.2404 0.2290 0.2422
IBLR mediamill 0.2806 0.2634 0.2800
RAkEL mediamill 0.2774 0.2692 0.2618
CLR slashdot 0.3982 0.3898 0.4061
HOMER slashdot 0.3996 0.3766 0.3907
IBLR slashdot 0.2382 0.2242 0.2319
RAkEL slashdot 0.4038 0.3982 0.4002
CLR tmc2007 0.6073 0.5954 0.6332
HOMER tmc2007 0.5968 0.5855 0.6068
IBLR tmc2007 0.4668 0.4406 0.4740
RAkEL tmc2007 0.6015 0.5878 0.6138
RAkEL yeast 0.4466 0.4483 0.4537
HOMER yeast 0.4334 0.4351 0.4314
CLR yeast 0.4480 0.4597 0.4566
IBLR yeast 0.4944 0.4474 0.4528
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