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Abstract 
Metaheuristics are techniques that use approximate and intuitive strategies to quickly find 
near-optimal solutions of complex optimization problems. A number of outstanding 
examples belong to evolutionary computation, the class of methods inspired to biological 
and evolutionary phenomena. These techniques have been extensively and successfully 
applied to feature-based image registration in medicine. However, with the increase in 
computational power during the last decade, intensity-based (or voxel-based) image 
registration methods have been preferred in many medical imaging applications, due to 
their robustness, accuracy and applicability, in cases where landmarks or other features 
are not available or easy to detect. While traditional numerical optimization techniques are 
employed to solve the registration problem, a number of contributions in the literature 
support the use of metaheuristics to overcome the shortcomings of classic methods. The 
aim of the paper is to review the state of the art in the application of evolutionary 
computation and other metaheuristics to intensity-based medical image registration. The 
study considers both well-know techniques with a large number of references in the 
literature as well as recent, outstanding proposals. The analysis focuses on the design of the 
methods to highlight common and successful practices. In addition, recommendations and 
open research lines in the field are provided. 

1. Introduction 
In its most general formulation, image registration [1] is the task of aligning two or more 
images in order to establish a spatial correspondence of their common content. Such 
images usually have the same or a similar subject but have been acquired under different 
conditions, such as time and viewpoint, or by multiple sensors. In medical image analysis, 
IR is a key technology that allow to ``fuse'' visual information from different sources [2]. 
Applications include combining images of the same subject from different modalities, 
detecting changes before/after treatment, aligning temporal sequences of images to 
compensate for motion between scans, image guidance during interventions and aligning 
images from multiple subjects in cohort studies. The remarkable developments in medical 
imaging technology over the last decades determines a constant demand for better image 
processing and analysis techniques. Dealing with novel, more diverse, and increasingly 
accurate sources of imaging data is the main challenge in IR and it explains why it is still a 
very active research field. 

The alignment between two images is specified as a spatial transformation, mapping the 
content of one image to the corresponding area of the other. A popular strategy among IR 
methods is to perform the alignment based on only salient and distinctive parts of the 
image, such as lines, corners and contours, called features, ignoring the rest of the image 
content. This approach, called feature-based [2], has the advantage of greatly reducing the 
complexity of the problem, but relies on the ability to precisely detect the features, either 
manually or automatically. Any error during the feature extraction stage will propagate 
into the registration and can hardly be recovered at a later stage. Moreover, this approach 
is limited to the cases in which features provide enough information to characterize the 
image content. To avoid these drawbacks, it is possible to use the image intensities directly 
without any feature extraction, an approach called intensity-based (or voxel-based). Though 
more expensive in computational terms, intensity-based methods achieve the superior 



level of accuracy and robustness demanded by medical applications, and over the last 
decade they have become the method of choice in medical image analysis. 

Regardless of the division, the core of every IR technique is an optimization process that 
explores the space of geometrical transformations. Two strategies are available. In 
parameters-based approaches the search is directly performed in the space of the 
transformation parameters. Hence, a solution is a vector of values for the parameters of the 
registration transformation. In matching-based approaches, features or regions of the 
image are matched through a search in the space of possible correspondences; once a 
suitable matching has been found, the transformation parameters are derived accordingly 
through numerical methods. In both cases the search is guided by a similarity metric, a 
function that measures the degree of resemblance between the input images after the 
alignment. This can be done either by comparing the whole images or just their 
corresponding features. Traditional parameters-based methods use classic numerical 
optimization algorithms, while matching-based methods use matching algorithms like 
iterative closest point (ICP) [3]. 

Many characteristics of the IR problem, such as noise, discretization and large differences 
in the order of magnitude of the transformation parameters still pose a challenge to 
traditional optimization methods. A number of alternative approaches based on 
evolutionary computation (EC) [4] and other metaheuristics (MH) [5] are often used to deal 
with complex real-world problems in computer vision and image processing. As for 
feature-based IR, approaches using metaheuristics have demonstrated to be promising 
solutions to overcome the drawbacks of traditional optimization algorithms in medical 
applications, as shown in a recent review [6]. This contribution, instead, focuses on 
intensity-based methods, for which no such study has been performed. We aim to review 
the state-of-the-art of the IR methods that lay their foundations on EC and other MHs, 
including the most established and relevant works. The design of the optimization 
component will be the central point of our analysis, which will highlight the most relevant 
components of each method and those that made them successful. This will allow us to 
provide recommendations for the design of new methods as well as to point out open 
research lines in the field. 

The paper is organized as follows. Section 2 provides preliminaries on medical image 
registration, metaheuristics and evolutionary computation. The latter part includes a 
general overview, as well as a description of common techniques and their adaptation to 
IR. Section 3 reviews outstanding contributions in medical IR using MH and EC, while in 
section 4 trends and other patterns in the design of the methods are discussed. Finally, 
section 5 provides conclusions. 

2. Image registration 
This section is devoted to medical image registration based on metaheuristics. In section 
2.1 we define the IR problem and its main components. Section 2.2 reviews applications of 
IR in medicine, while section 2.3 introduces metaheuristics and their adaptation to IR. 



2.1 Definition and components 
A typical IR problem involves two images, conventionally called model (  ) and  (  ), with 
different roles in the registration process. The model is the reference (or target) image, 
while the scene is the image that is transformed to reach the geometry of the other. The 
registration aims to find a geometric transformation   that aligns the scene to the model; in 
other words,   is such that the model    and the transformed scene       are as similar as 
possible. Image registration can be stated as a minimization problem, i.e. 

                                 

A number of components characterize an IR method, but the main ones are just three: the 
kind of transformation used to relate the images, the similarity metric that measures the 
quality of the alignment and the optimization procedure that perform the search for a 
suitable transformation. 

2.1.1 Transformation model 
The transformation model determines which kind of geometrical transformation can be 
applied to the scene image to reach the model. This also controls which geometrical 
properties (e.g. size, shape, position, orientation, etc.) are preserved through the process. 
Common models include rigid transform, which allows translations and rotations, 
similarity transform, which also admits scaling, and affine transformation, which can also 
represent shearing. These are examples of global transformations having respectively 6, 7 
and 12 degrees of freedom for 3D images. At the other end of the spectrum there are non-
rigid (also called elastic) transformations, such as B-spline and thin-plate splines 
transformations, able to represent local deformations (warping) using hundreds or even 
thousands of parameters. 



 

Figure 1. Images obtained from the same scene (top left) by applying different transformations: similarity (top 
right), affine (bottom left) and B-spline (bottom right). 

The choice of the transformation model depends entirely on the needs of the application at 
hand. A simple 2D translation transform can be enough in certain contexts such as remote 
sensing, while registering images subject to respiratory motion requires a deformable 
model. On the other hand, a too flexible transformation model is not just more complex and 
computationally expensive to apply, but can also lead to undesired or anatomically 
implausible results, such as bones being bent or tissues growing at an unrealistic rate. 

2.1.2 Similarity metric 
A similarity metric is a function          that measures the resemblance of two images. The 
quality of a transformation   is assessed by computing the similarity metric over the model 
   and the transformed scene      . The actual evaluation mechanism depends on the 
nature of the registration approach. In feature-based methods the similarity metric usually 
measures the distance between corresponding features [7]. For instance, if the features are 
points, the alignment can be evaluated using the mean square error (MSE) between the 
position of a point in the model and that of the corresponding (or closest) point in the 
transformed scene, i.e. 
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In intensity-based approaches, similarity metrics are usually based on the resemblance of 
the intensity values in the two images. The subject of the images along with their modality 
determine what kind of the relationship is established between their intensity 



distributions. For instance, if we assume this relationship is linear, we can assess the 
similarity between the images by computing the linear correlation coefficient; this is the 
approach of the similarity metric called normalized correlation (NC), which is defined as 
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where       are the average intensity value of the images and   is the common part of their 
domain. When two images have been acquired using different sensors, a scenario called 
multi-modal registration, the relationship between the intensity values in the images can be 
strongly non-linear. Metrics based on information theory, such as mutual information (MI), 
are better suited for this scenario. MI is defined as 

 

          ∑ ∑    

    

    

        
        

           
 

 

where     and       are, respectively, the joint and marginal probability distributions of 
the intensity values of the images. 

The final performance of any IR method depends on the accurate estimation of the 
alignment of the images, therefore the similarity metric is considered a crucial component 
[8]. 

2.1.3 Optimization procedure 
The third main component of an IR method is the optimizer. It is responsible for finding the 
best transformation, in terms of similarity metric, among the transformations in our 
transformation model. Each optimizer has a different search strategy, which depends also 
on the nature of the algorithm. One approach is to perform the search directly in the space 
of the transformation parameters. This turns the registration in a continuous optimization 
problem, therefore classic numerical optimization algorithms can be used. Gradient 
descent, Newton's method, Powell's method and discrete optimization [9] are among the 
most common choices along with approaches based on evolutionary computation (EC) and 
other metaheuristics [10]. IR algorithms that follow this approach are called parameter-
based. An alternative approach consists in searching for a matching between features, in 
feature-based methods, or areas of the image, in intensity-based ones. From the match, one 
can derive the parameters of the corresponding transformation using least squares 
estimation or other more robust model fitting techniques [13]. This class of algorithms is 



called matching-based; the iterative closest point algorithm (ICP) is a notorious example of 
this second approach [14]. 

2.1.4 The complete IR procedure 
IR is usually an iterative process. The optimizer computes a candidate transformation, 
which is then applied to the scene image. The similarity metric compares the model with 
the transformed scene image and returns a quality value that is sent back to the optimizer. 
Figure 2 shows a flow chart of the process. The loop ends when a suitable transformation 
has been found or the algorithm has performed a certain number of iterations. 

 

Figure 2. The interactions among the components of a registration technique. 

A number of additional minor components are involved in the registration. For instance, 
after a transformation has been applied to an image, interpolation is used to compute the 
new intensity values. We mention two of these components that play a special role in the 
design of the optimization procedure. In intensity-based methods, computing the similarity 
metric on the whole image is usually unfeasible and unnecessary, therefore a sampling 
strategy determines how many and which voxels are actually used. Those are usually 
selected at random with uniform probability or sampled along a regular grid. 

Second, following a hierarchical approach, it is common to perform the registration in 
multiple stages. The registration begins using a down-scaled, blurred version of the input 
images, so that small local optima are removed and the computation of the transformation 
is faster. Once the optimizer has found a suitable solution, the registration process enters 
the next stage. Part of the details of the input images is restored and the optimizer aims to 
adapt the solution of the previous phase to fit the new, more detailed data. The multi-



resolution strategy determines which kind of processing is performed on the images in each 
different stage of the registration; usually the procedure includes down-sampling and 
smoothing. The sequence of images used during the registration is called pyramid. 

2.2 Applications in medical imaging 
This section presents a taxonomy of IR scenarios that will illustrate the challenges and 
diversity of IR applications, in particular in medical imaging. Usually, image registration 
applications fall in one of the following four groups according to the way in which images 
have been acquired. 

• In multi-view registration, images of the same scene are acquired from different 
viewpoints in order to gain a larger 2D view or a 3D representation of the scanned 
scene. Examples of applications are surgery planning and 3D object reconstruction. 

• In multi-temporal registration, images of the same scene are acquired at different 
times, often on regular basis, with the aim of detecting the changes in the scene that 
occurred between consecutive acquisitions. This is the case of motion tracking in 
cardiovascular malfunctions and monitoring of tumor evolution in medical imaging. 

• In multi-modal registration, images of the same scene are acquired by different 
sensors. The aim is to integrate the information obtained from different sources to 
gain a more complex and detailed representation of the scene. This approach is widely 
used in medical imaging, in which images from sensors recording the anatomical body 
structure such as MRI, CT or ultrasound are combined with images from sensors that 
monitor functional and metabolic activities like PET, SPECT or MRS. 

• In scene to model registration, images of a scene and a model of the scene are 
registered. The model can be a computer representation of the scene, possibly with a 
different dimension, or a scene with a similar or canonical content. The aim is either to 
localize the acquired scene into the model or to compare them. The latter is usually the 
case in medical imaging, in which a patient's image is compare with digital atlases or 
``average'' specimens. 

2.3 Evolutionary and metaheuristics-based image registration 

2.3.1 Metaheuristics and evolutionary computation 
This section provides a general introduction to metaheuristics and evolutionary 
computation. An extensive survey of the matter is beyond the scope of this contribution; 
interested readers can find a large amount of literature reviewing the field [4]. 

A metaheuristic is an approximate and usually non-deterministic strategy that guides a 
search process, with the aim of efficiently explore a search space in order to find optimal 
solutions. MHs are among the most prominent and successful techniques to solve a large 
amount of complex and computationally hard combinatorial and numerical optimization 
problems arising in human activities, such as economics (e.g., portfolio selection), industry 
(e.g., scheduling or logistics), or engineering (e.g., routing), among many others. MHs can be 
seen as general algorithmic frameworks that require relatively few modifications to be 



adapted to tackle a specific problem. They are a diverse group of optimization algorithms 
that includes simulated annealing (SA), tabu search (TS), multi-start methods, iterated local 
search (ILS), greedy randomized adaptive search procedures (GRASP), memetic algorithms 
(MAs) and scatter search (SS). 

Evolutionary Computation (EC) is a remarkable family of MHs drawing their inspiration 
from nature, with particular emphasis on evolutionary models of computation. The field 
includes evolutionary algorithms (EAs) [4] such as genetic algorithms (GAs), evolution 
strategies (ES), genetic programming (GP), differential evolution (DE) and evolutionary 
programming (EP). In particular, GAs are probably the most used EA in the literature to 
face real-world optimization problems. Another important branch of EC is swarm 
intelligence (SI), the area of artificial intelligence that concerns the collective behavior of 
decentralized, self-organized systems, either natural or artificial. This includes ant colony 
optimization (ACO) and particle swarm optimization (PSO). 

Nowadays, MHs have become an interdisciplinary research area intertwining disciplines 
such as computer science, operations research, engineering, etc. They have received 
enormous attention as witnessed by thousands of journal and conference papers, hundreds 
of authored and edited books published, and a large number of dedicated conference 
series. 

2.3.2 Common metaheuristics for Image Registration 
In this section we describe in detail the three metaheuristics used in most of the methods 
under review, namely genetic algorithms, particle swarm optimization and simulated 
annealing. These are also good representatives of different branches of metaheuristics, 
therefore this section also gives a flavor of MHs and the diversity of this kind of approaches. 

Simulated Annealing 
The name and inspiration of simulated annealing come from annealing in metallurgy, a 
technique involving heating and controlled cooling of a material. SA is similar to a hill-
climbing algorithm. At each iteration, the algorithm considers a solution   in the 
neighborhood of the current one   and computes its quality. Just like in hill-climbing, if   
has a higher quality than  ,   becomes the current solution and the iteration ends. 
Otherwise, if   is worse then  ,   is accepted with probability 

 

 
                     

  
 

The ability to accept worse solutions allows the algorithm to escape local minima and 
perform a global optimization. The temperature parameter   controls the probability of 
accepting a worse solution, which also depends on the decrease in quality: the worse the 
new solution, the lower is the probability of its acceptance. 

The temperature is initially set to a high value and then decreased at each iteration, 
according to a schedule. At high temperatures, a solution is likely to be accepted regardless 
of its quality, and the behavior of the algorithm is similar to that of random search. At 



temperatures close to zero, instead, worse solutions are rarely accepted, so simulated 
annealing works like a hill-climbing algorithm. The slower the temperature is decreased, 
the more the algorithm explores the search space. 

Simulated annealing - pseudocode 

t = initial temperature   
s = initial solution   
repeat 
    r = neighbor(s)   
    p = random(0,1) 
    if quality(r) > quality(s) or  
    p < e^((quality(r)-quality(s))/t) then 
        s = r 
    decrease t 
until stop condition 
return s 

Genetic Algorithms 
Like most algorithms in EC, genetic algorithms mimics the processes observed in natural 
evolution. A solution of the optimization problem is though as an individual and is 
represented as a string of values called chromosome. The quality of a solution becomes its 
likelihood of survival or fitness. The algorithm considers multiple solutions at the same 
time, organized in a set called population, which is evolved (improved) in an iterative 
process. First, the fittest individuals in the population are randomly selected for 
reproduction. Their chromosomes are recombined and undergo minor random variations; 
the resulting individuals are placed in a new population, which replaces the current one at 
the end of the iteration, forming a new generation. 

Genetic algorithm - pseudocode 

generate a random population 
repeat 
    evaluate the fitness of each individual 
    repeat 
        select two parents from the population 
        create two offsprings by combining the chromosomes of the parents 
        apply a small mutation to the chromosomes of the offspings 
        add the offsprings to the new population 
    until the new population is full 
    replace the population with the new one 
until stop condition 

The term crossover is used for the operation of generating new individuals by combining 
chromosomes of other individuals, while mutation refers to applying a small variation to 
the chromosome of an individual. Other important components of a GA are those that 
create the initial population and select the individuals for reproduction. All these four 
operations are inherently stochastic, and both crossover and mutation are applied with 
certain probabilities. 



The design of the components of a GA depends on the optimization problem and the 
encoding of a solution. For instance, consider an optimization problem over the set of 
integers          . To represent a solution as a string, one could use the binary 
representation of the integer value. Here is an possible design of a GA to solve this problem. 
The chromosome is a binary string of length 8; the initial population is generated at 
random with uniform probability over       ; parents are selected by sampling five 
elements from the population and taking the best and second best individuals in the 
sample; mutation flips a random bit; crossover choose a random position   in the 
chromosomes and copies the bits up to   from the first parent and those after   from the 
second one. 

Particle Swarm Optimization 
PSO is a population-based algorithm, but rather than a population of biological organisms, 
this group of solutions is though as a swarm of particles in the search space. For simplicity, 
assume we are dealing with a continuous optimization problem. The position of a particle 
is what actually encodes a solution of the optimization problem, while the velocity of a 
particle depends on the quality of the associated solution and on the interaction with the 
other particles. Through the movement of the particles the algorithm examines new 
solutions and the optimization is performed. 

In a typical PSO algorithm, the particles are initially generated at random with uniform 
probability over the whole search space. Then, an iterative process begins. First, the quality 
of the solutions associated with particles is computed. Then, velocity and position of the 
particles are updated. The position of a particle  ,   , is updated using the rule         , 
just like an object moving at constant speed    for a unit time interval. The velocity update 
rule is 

 
                               

 

where         are called respectively the inertia weight and the acceleration coefficients, 
while       are random vectors with uniform distribution over       . The term    is the 
personal best position, meaning the best position found by the particle   since the beginning 
of the algorithm, while    is the global best known position, considering current and past 
positions of all the particles in the swarm. 

The velocity update rule is what governs the evolution of the swarms, which is more 
complex than that of a physical system. In addition to the inertia component, indeed, there 
is a memory component, which moves a particle toward its best past position, and also a 
social component, based on the global best position shared across the whole swarm. 

Particle swarm optimization - pseudocode 

generate a random population of particles 
repeat 
    evaluate the quality of the particles 
    update global and personal best positions 



    update the velocity of the particles 
    update the position of the particles 
until stop condition 

2.3.3 Suitability of Evolutionary Computation and other Metaheuristics in Image Registration 
There are different strengths and limitations that have been stated either to justify or to 
avoid the use of these methods when tackling complex optimization problems like IR. Some 
of the advantages are: 

• Unlike classical gradient-based search methods, those based on EC and other MHs do 
not depend on the starting solution, thus being more robust approaches. Moreover, 
they provide specific strategies to escape from local optima. In particular, they can 
cope with multimodal functions to tackle IR [20]. 

• EC and MHs have been used in a wide variety of optimization tasks within IR including 
numerical optimization and combinatorial optimization problems, i.e. facing both the 
transformation parameters and the matching-based IR approaches, respectively. 

• They are conceptually simple and easy to implement. 

• They can handle arbitrary kinds of constraints and objectives easily. 

• Unlike other numerical IR techniques (e.g. gradient-based) that are only applicable for 
continuous functions or other constrained sets, their performance is independent of 
the solution representation. 

• They offer a framework wherein including prior knowledge about the problem is easy. 
Thus, the search process is more appropriate, yielding a more efficient exploration of 
the space of possible solutions. For instance, feature-based IR approaches [21] 
improved the design of the objective function to exploit 
information related to the geometry the images. 

• They can also be easily combined with more traditional optimization techniques such 
as gradient-based methods [24]. An outstanding approach to exploit the benefits of 
both strategies is their hybridization in the well-known memetic computation 
paradigm [26]. Such scheme was successfully applied to the IR problem in [25]. 
Currently, this hybrid approach brings an outstanding performance due to the proper 
combination of the exploration and the exploitation capabilities of both stochastic and 
deterministic optimization schemes. 

The most important shortcomings related to the use of EC and other MHs are shown as 
follows: 

• They require a tuning of the control parameters, which is often a manual, error-prone, 
expert-based procedure. Approaches based on automatic parameter tuning [28] or 
MHs with an adaptive behavior [26, 61, 62] have been recently introduced to solve this 
problem. 



• Typically, EC and MHs are time consuming, therefore they are usually avoided in real-
time applications. Parallel and GPU implementations are increasingly more common 
[29]. 

• Some MHs lack a formal proof of convergence to the global optimum and there is 
hardly any theoretical result on the performance of MH. However, there is a very large 
amount of empirical results to support effectiveness. 

2.3.4 Early evolutionary image registration methods 

 

Figure 3. The number of publications in proposing MHs and EC to solve intensity-based medical image 
registration.1 

The application of MHs and EC to intensity-based medical IR enjoyed a growing interest in 
the scientific community over the last fifteen years, as shown in Figure 3. The first attempts 
at IR can be found in the early eighties. The size of data as well as the number of 
parameters that are looked for prevent from an exhaustive search of the solutions. An 
approach based on a GA was proposed in 1984 for the 2D case and applied to angiographic 
images [30]. Later, in 1989, Mandava et al. [31] used a 64-bit structure to represent a 
possible solution when trying to find the eight parameters of a bilinear transformation 
through a binary GA. Brunnström and Stoddart [21] proposed a new method based on the 

                                                        
1 The data for the graph was obtained from Thomson Reuter's Web of Science using the query (Title OR 
Abstract OR Keywords) = ("image registration" OR "image alignment" OR "image matching") AND 
("evolutionary algorithm" OR "evolutionary computation" OR "genetic programming" OR "genetic algorithm" 
OR "evolutionary programming" OR "evolution strategy" OR "differential evolution" OR "swarm intelligence" 
OR "particle swarm" OR "ant colony" OR "bee colony" OR "scatter search" OR "tabu search" OR "simulated 
annealing" OR "grasp"). The literature corpus was then manually filtered to include only contributions in 
medical imaging using the intensity-based approach. 
 



manual prealignment of range images followed by an automatic IR process using a novel 
GA that searches for solutions following the matching-based approach. Tsang [32] used 48-
bit chromosomes to encode three test points as a base for the estimation of the 2D affine 
registration function by means of a binary-coded GA. In the case of Yamany et al. [11] and 
Chalermwat et al. [12] proposals, the same binary coding is found when dealing with 3D 
and 2D rigid transformations, respectively. Yamany et al. enforced a range of      over the 
angles of rotation and      units in displacement by defining a 42-bit chromosome with 
eight bits for each translation parameter and six bits for each rotation angle. Meanwhile, 
Chalermwat et al. used twelve bits for the coding of the 2D rotation parameter to get a 
search scope of        , therefore allowing the use of a precision factor for the 
discretization of the continuous rotation angle interval. Other ten bits stored each of the 
two translation parameters (     pixels). 

All the latter approaches showed several pitfalls from an EC perspective. On the one hand, 
they make use of the basic binary coding to solve inherently real coded problems, when it is 
well known that binary coding suffers from discretization flaws (as problem solutions of 
search space never visited) and requires transformations to real values for each solution 
evaluation. Moreover, the kind of GA considered is usually based on the old-fashioned 
original proposal by Holland [33]. In this way, a selection strategy based on fitness-
proportionate selection probability assignment and the stochastic sampling with 
replacement, as well as the classical one-point crossover and simple bit flipping mutation, 
are used. On the one hand, it is well known that such selection strategy causes a strong 
selective pressure, thus having a high risk of premature convergence of the algorithm. On 
the other hand, it has also been demonstrated that it is difficult for the single-point 
crossover to create useful descendants as it is excessively disruptive with respect to the 
building blocks. 

3. State of the art in intensity-based medical IR using EC and MHs 
This section presents a selection of well-established and relevant intensity-based medical 
IR methods that use EC and MHs. We included in the study the most cited contributions in 
the literature, and in addition, we chose a number of outstanding proposals published 
between 2011 and 2013 that, being introduced only recently, have not yet reached a high 
number of citations. 

3.1 Well-established proposals 

Wachowiak et al.'s PSO 
The proposal [34] tackles the registration of 2D slices to 3D volumes having different 
modality. The authors introduce a number of alternative designs for the optimization 
component based on PSO. The proposed modifications make use of the following 
components: 

• the local best position instead of the global best position, meaning that the particles 
are attracted to the best particle in their neighborhood rather than in the whole 
swarm. This can prevent premature convergence, but also makes the optimization 
more susceptible to local optima; 



• a crossover operator, which combines linearly both the position and the velocity of 
two particles; 

• a constriction coefficient on the velocity of the particles, using the popular approach 
proposed in [35], trough which the amplitude of a particle’s oscillation decreases over 
time and allow its convergence 

• subpopulations, i.e. the particles are clustered in different groups, and the crossover 
operator is applied to particles in the same group or in different groups according to a 
probability   

• the use of Powell's direction set algorithm, a numeric optimization technique, to 
improve the final solution provided by PSO, as well as to refine the initial solution. 

Furthermore, all the algorithm versions are designed to exploit an initial solution supplied 
by the user. This provides an extra term in the velocity of the particles, in addition to those 
based on the global or local best, the personal best and the current position. 

A total of eight PSO variants are tested, and the authors compare the results with those 
obtained by Evolution Strategy with seven different configurations. The experimental study 
involves the registration of abdomen and head images across several modalities 
(histological images, ultrasound, CT, T1 and T2 MRI). Rigid registration model and 
normalized mutual information are used. Three PSO variants delivered a promising 
performance, however, the quality of the initial solution has a very pronounced effect on 
the final result. This limits the robustness of the algorithm even in the cases in which an 
initial solution is a available. 

Kagadis et al.'s GA 
In [36], the authors propose a method for the registration of intra-subject SPECT and CT 
brain images of patients suffering from ischemia or hemorrhage. The optimization is 
performed by real-coded GA with two distinctive traits. First, the mutation probability is 
not global, but it is specific of each individual. The probability is encoded in the individual's 
representation and it undergoes the variation operators just like the rest of the 
chromosome. Second, after the GA has terminated, the best individual is improved using 
Powell's method, and the outcome of the process is the final solution provided by the 
algorithm. 

In the experimental study, the GA is used as an optimizer for an intensity-based method, as 
well as for a feature-based one. The latter register the brain outer surface, whose extraction 
requires a substantial preprocessing step. Both algorithms use affine transformation and, 
respectively, mutual information and mean square error as similarity metric. The ICP 
method is also included in the comparison as a reference. The results show that the 
intensity-based method is significantly more accurate and, unlike its competitors, it does 
not require a fine-tuned feature extraction stage to work properly. 



Wang et al.'s GA 
In [37], a memetic approach combines a GA with the Nelder-Mead simplex method. In 
addition to the simplex, the authors introduce the use of a novel immigration operator, 
which replaces the worse   individuals in the populations with random solutions. 

The proposed GA is designed around the concept of earlier/latter stage of evolution. The 
current stage is determined by the difference in fitness between individuals: large 
differences mean the population is far from convergence, while small differences are a sign 
that the population is about to converge. At the end of an iteration, if the population is in 
the earlier stage, the Nelder-Mead simplex is applied to the individuals before being moved 
into the next population. Otherwise, the immigration operator is used. This operation is 
meant to prevent the algorithm from converging prematurely. 

In the experimental study, the proposed GA is tested over the task of registering 2D brain 
MRI with CT using similarity transformations. For comparison, a regular GA without 
simplex and immigration is also tested. The novel method delivered moderately better 
registration results, but the comparison appears to be unfair. The additional computation 
effort of the simplex was not taken into account, and the novel GA was run for almost twice 
as much time as the regular GA. It is thus unclear whether this improvement is due to the 
new operators or just the larger running time. There is also a lack of detail about the GA, 
and crucial information such as the coding scheme are missing. 

Xu and Dony's DE 
In [38], the authors present an IR method using multiple resolutions. At the first, coarse 
resolution, a DE algorithm is used, while in the further resolutions the optimization is 
carried out by Powell's direction set method. This approach combines the ability of global 
optimization of the DE with the fast, local optimization provided by Powell's method. 

Another novelty of the proposal is the similarity metric, which combines normalized MI 
with gradient information [39]. The second quantity measures the similarity of the gradient 
vectors between the model and the transformed scene images. For each point  , the length 
and the angle   between the gradients in the two images is computed. The gradient 
information between the images     is the sum 
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where   is a weighting function that favors angles that are either very small or close to  . 
The final similarity metric of the algorithm is the product between the gradient information 
and the normalized MI. 

The experiments are run on 2D brain MRIs that have been transformed using known rigid 
transformations. By comparing the results those obtained using Powell's method alone, the 
authors can highlight the benefits of using DE in the first resolution. Registration scenarios 
are created applying increasing larger rotations and translations, and it is shown that the 



performance of Powell's method drops significantly as the magnitude of the transformation 
increases. In the proposed method, instead, DE is able to recover the initial transformation 
with enough precision that in the further resolutions Powell's method can then converge to 
a high quality solution. Quantitatively, the ratio of suitable registrations found by the full 
method stays above 90% in all scenarios, while that of Powell's method alone drops below 
20% when large rotations are applied to the images. 

Talbi and Batouche's PSO 
In [40], a hybrid PSO / DE algorithm is proposed. A standard, local-best PSO design is 
augmented with a mutation operator inspired by DE. The key idea is to use the difference 
between two individuals in the population to disrupt another one. What is actually used is 
the difference between the personal best position of two randomly-chosen particles, called 
 . Each component of a solution undergoes mutation with a fixed probability. When a 
mutation occurs, the  -th position of a solution   is replaced by       , where    is the best 

neighbor solution of  . The use of    provides the social learning capability that speeds up 

the convergence. In the proposed algorithm, regular particle evolution is alternated with 
applying mutation to all particles. 

The algorithm was tested on rigid registration of 2D bran MRI with CT using MI. The results 
of the registration seems visually accurate, but there is no quantitative evaluation other 
than the similarity metric values. Moreover, there is no comparison with other algorithms 
or different designs, so it is difficult to assess the performance of the proposal and the 
effect of the different novel components. 

Winter et al.'s CMA-ES 
The proposal in [41] is a surface to volume registration algorithm for pedicle screw 
insertion during spinal surgery. The surface of the vertebra is extracted from a CT scan and 
registered to a 3D ultrasound using a rigid 3D transformation. The similarity metric 
exploits the fact that the tissue-bone interface is the brightest part of the image, so the 
registration tries to maximize the sum of gray values of the voxels covered by the bone 
surface. 

The proposed optimization method is a covariance adaptation matrix evolution strategy 
(CMA-ES), which the author turned into a multi start algorithm. The design of the actual 
CMA-ES component and even the parameters values were taken from a generic setup for 
multimodal continuous functions [42]. 

The author carried out a thorough experimental study comparing CMA-ES with nonlinear 
conjugate gradient, the Broyden-Fletcher-Goldfarb-Shanno algorithm and resilient 
backpropagation. All algorithms were tested using multiple starting positions to avoid 
introducing any bias in favor of the proposed algorithm. The authors found CMA-ES to be 
the best algorithm in the comparison, with large differences in the results of different 
algorithms. This applies to both the rate of successful registrations and the size of the 
misalignment after registration. Impressively, the multi start CMA-ES failed to deliver an 
acceptable registration in just four of 12,000 trials. 



He and Narayana's GA 
In [43], the authors combine a real-coded GA with DIRECT, a deterministic, global 
optimization method based on branch and bound [44]. In a two-resolution strategy, the GA 
is used in the first resolution, while DIRECT is applied in the second. This exploits the 
ability of the GA to explore a large search space and the features of DIRECT, which is able to 
find a globally optimal solution in a small search space. 

The GA uses arithmetic crossover and a custom mutation operator. A "perturbation" vector 
  determines the magnitude of the change produced by a mutation. An individual 
component    is replaced with     , where   is sampled from a normal distribution with 
mean 0 and standard deviation   . The value of the perturbation vector was set to a fraction 
of the transformation parameter ranges, whose value was determined experimentally. 

The algorithm was tested on registering brain MRI with 3D rigid transformations. The 
registration is actually multi modal, as different MR setups (echo times, pre/post contrast) 
were used to acquire the images. Accordingly, mutual information was employed. The 
results show that the GA is able to converge in the neighborhood of the global solution, and 
DIRECT is able to locate it more accurately. A comparison with the AIR medical software 
[45] shows that the proposed method is just slightly more precise when a small 
transformation is required, but it is greatly more robust when the transformation is larger. 

Castellanos et al.'s GA 
The work presented in [46] tackles deformable registration. The authors propose a novel 
transformation model which is a composition of circular warpings of different size. The 
warpings are applied in a hierarchically; first, there is a large, central warping that covers 
the whole image, then the image is divided in four squares and for each of them, a warping 
of the size of the square is placed at its the center. The process continues in a similar 
fashion increasing the number of squares, until the desired level of granularity is reached. 

Each warping is defined by five real parameters. The optimization focus on one warping at 
the time, starting from the largest one, so the optimizer is run multiple times and it uses 
just the part of the image that is below the warping being optimized. The authors used a 
real-coded GA with two main novelties. First, when the reproduction operator is employed 
on a solution  , the algorithms performs an arithmetic crossover of   with the current best 
solution  . The weight of this linear combination depends on the ratio between the fitness 
of   and  , so that bad solutions are moved toward the current best, while good solutions 
undergo a negligible change. Second, the mutation rate depends on the current iteration, so 
it can be raised when the algorithm is approaching convergence. 

The authors carried out an experimental study on both synthetic and real medical images, 
using normalized mutual information as similarity measure. A multi resolution strategy is 
used, so that during the registration, the smaller the warping, the bigger and more detailed 
the images. The test are performed over brain MRIs, chest Rx scans and a pair PET-CT of 
chest. The results show that the combination of an original transformation model and the 
proposed optimizer is able to deal with deformable registration with visually acceptable 
results. What the study is missing is a comparison with other, more established 
approaches, both in terms of transformation model and optimization procedure. 



Li et al.'s SA 
In [47], the authors study the repeat radiosurgery of trigeminal neuralgia. This process 
requires the registration of two brain MRI taken before and after the first radiotheraphy 
treatment, but only a limited number of slices can be acquired, e.g. 28 in the experimental 
study. This can be a challenge due to the small volume on which the quality of the 
registration is assessed. 

The registration is rigid and mutual information is used. The proposed algorithm, based on 
simulated annealing, was able to register the volumes correctly in all 41 cases considered 
in the study, while Nelder-Mead simplex and Powell's method were unsuccessful in 11 and 
9 cases, respectively. The factor that affects the results the most is the initial overlap 
between the volumes to be registered, and when this amount is small, SA is the only 
algorithm which is still able to deliver accurate results. 

Chen et al.'s PSO 
In [48], a deformable 2D IR algorithm based on PSO is developed. The algorithm uses rigid 
and B-Spline transformation, while the PSO design is essentially that of [34]. A brief 
experimental study compares the proposal with gradient descent on two registration of 
MRI and CT images of liver. When the rotation applied to the images is small, both 
algorithms deliver accurate results, but if a large rotation is used, PSO is able to recover the 
pose of the liver, while GD fails. The description of the experiments on deformable 
registration is not informative enough to make any conclusion, although it shows PSO is 
able to deliver a visually acceptable result. 

Li and Sato's PSO 
The study in [49] compares different PSO designs for multimodal rigid IR. The method aims 
to be applicable in different fields, so the experimentation includes images of very different 
subjects and modalities, such as administrative maps, satellite images as well as proton 
density and MR images of brain. The analysis of the PSO design focuses on the velocity 
update equation. The study found that the best rule includes an additional term, which is 
based on the difference between the global best solution    and the personal best solution 

  of the particle, i.e. 

 
                                     

 

where            are used-defined weights and          are random vector whose 
components have uniform distribution over      . 

Loeckx et al.'s SA 
The study [50] presents a nonrigid registration algorithm for temporal subtraction of 2D 
thorax X-rays. The algorithm is rather complex and relies on machine learning to exploit 
previous knowledge on the problem. First, there is an initialization phase, in which the lung 
field is segmented using an active contour model approach. This requires a deformable 
model of the lungs, which is learned through principal component analysis on training data. 
The segmentation provides the ROI for the actual registration step. The transformation 



model is based on B-Splines with nine control points (which very small for the large area 
covered by the lungs). By using PCA on registered training data, the algorithm can compute 
the principal components of the transformation. Then, instead of optimizing the 
parameters of the spline, the algorithm optimizes the coefficients of the principal 
components. 

The similarity metric of choice is called Pattern Intensity (PI), which has been specifically 
designed to minimize subtraction artifacts. Pattern intensity is similar to MSE, but artifacts 
smaller than the threshold      are considered noise. The actual formula is 
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where       is the difference image and   acts as a sort of threshold over the intensity 
difference in an artifact, meaning differences smaller than   have a small contribution to PI. 

The optimization procedure uses simulated annealing with a two-resolution strategy. The 
range of the parameters as well as the initial and final temperatures are changed between 
resolutions, so that in the second resolution the search is more focused around the solution 
found at the first resolution. The algorithm was tested on 26 pairs of images and in the 85% 
of the cases the results were rated adequate for clinical use. Although no formal 
comparison is developed in the paper, the author praise the quality of the optimization 
obtained through SA and highlight its reproducibility despite the stochastic nature of the 
method. 

Du et al.'s SA 
In [51], the authors introduce a method for multi-modal image registration in noisy 
scenarios. The algorithm is based on a novel similarity metric called double directional 
partition intensity uniformity (DRPIU), which is designed to be less affected by outliers and 
noise through the use of a robust estimator [52]. 

Two resolution are used. The algorithm uses simulated annealing at the coarse resolution 
and Powell's method at the fine one. This approach aims to provide Powell's method with a 
starting point near the global optimum and, at the same time, it does not require a large 
computation time. 

The experimental study focus on the rigid registration of T1, T2 MRIs and PET brain scans. 
Strong salt-and-pepper and speckle noise is added to the images to highlight the 
robustness of the method. Compared to MI and PIU, the use of DRPIU yielded much more 
accurate results and allowed correct registration in all the test scenarios. 



3.2 Recent contributions (2011-2013) 

Valsecchi et al.'s GA 
In [53], the authors designed an IR method based on a genetic algorithm. The GA is real-
coded and uses BLX-crossover, random mutation, elitism and tournament selection. The 
design is flexible enough to support multiple similarity metrics and the transformation 
models, include deformable ones. 

The main novelty of the algorithm is that it combines a two-resolution strategy with a 
restart and a search space adaptation mechanism. The key idea is that the first resolution is 
devoted to finding a coarse approximation of the desired transformation, while the second 
resolution is meant to improve it rather then finding a completely new one. Therefore, at 
the end of the first resolution, the best solution found    is tested on quality. If the quality is 
high enough, the registration continues with the second resolution, otherwise the process 
restarts and the algorithm performs the first resolution again. In the original proposal [54], 
the test on    was a simple comparison with a threshold. However, the authors found that 
appropriate threshold values were strongly dependent on the actual pair of images, even 
when the content was similar, therefore they proposed a different policy. The first 
resolution is repeated a fixed number of times, and at the end of the process the population 
containing the best solution overall is used for the second resolution. This approach does 
not guarantee a certain quality level, but the probability of a bad solution reaching the 
second resolution decreases exponentially at each restart. As the first resolution uses 
downsampled images, the computational cost of performing a restart is small compared to 
that of the whole process. In addition, at second resolution the search space is restricted 
around the transformation parameters values in   . This focuses the search on the area of 
the search space that is supposed to contain the global optimum. 

The algorithm is thoroughly tested on the registration of brain MRIs and an atlas-based 
segmentation application. The experimental comparison includes other methods based on 
evolutionary algorithms, both intensity- and feature-based, as well as classic gradient-
based technique from a medical toolkit. The GA is able to outperform all competitors in 
almost all test scenarios, proving its applicability. 

Zhou et al.'s PSO 
The study [55] proposes an advanced quantum-behaved PSO algorithm (QPSO) [56]. 
Regular PSO is not a globally convergence-guaranteed algorithm as the particles are 
restricted to a finite search space in each iteration, which weakens the global search 
capability of the algorithm. In QPSO, each individual particle exhibits quantum behavior 
and it is able to cover the whole search space. The position of a particle is updated using 
the rule 
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where            ,   is the basin of attraction and   regulates the extent of the particle 
movement. In this proposal, the particles are attracted toward the mean personal best of all 
particles, named  , and   depends on the distance of the particle with respect to its 
personal best  . This way particles far from the swarm have a lager search scope and 
viceversa. The update equation can be rewritten as 

 

             
 

 
          

 

where            . The parameters   and   balance the exploration and exploitation 
behavior of the algorithm. 

Just like regular PSO, QPSO faces the problem of premature convergence due to the fast 
flow of information between particles. The second novelty of the proposal is that   and   
are adjusted dynamically, depending on the diversity of the swarm, hence the name 
diversity-controlled QPSO (DQPSO). The algorithm uses the average distance between a 
particle and the center of the swarm, which is then normalized by dividing by the longest 
diagonal in the search space. At every iteration, the diversity is computed and a threshold 
triggers the adaptation of   and  . In this proposal, both parameters decreased linearly 
from their initial value to a final value, while the threshold is set to the maximum number 
of iterations times 0.8. Each time the diversity declines, the decrease in     triggers an 
"explosion" of the swarm that allows it to escape local optima. The size of the explosion 
decreases through time, so that eventually the algorithm focuses on the promising area of 
the parameter space. 

The authors developed an experimental study on classic numeric benchmark functions to 
fine-tune the algorithm, focusing mainly on the initial and final values for   and  . In 
comparison with PSO variants and a few other metaheuristics, DQPSO had better results in 
terms of precision and it exhibited a much faster convergence. 

Last, using the results of the tuning, the algorithm is incorporated in a multi-modal IR 
approach for brain MRI, CT and PET images. Rigid 3D transformations and mutual 
information are the other main components. The method is tested over six MRI-CT pairs 
and six MRI-PET pairs. The results show DQPSO is more precise than regular and quantum 
PSO, as well as Powell's method. DQPSO is also more robust than its competitor, as it 
always delivered correct registrations but in one of the scenarios. 

4. Discussion 
The aim of this section is to analyze trends and other patterns that occur in the group of 
algorithms described in the previous section. A classification is provided in Table 1. 

 
Strategy Optimizers 

Transformation 
Model 

Multiple 
resolutions 

Multi 
modal 

Metric Modalities Target 

Kagadis 
2002 

Parameters GA, Powell Affine 3D No Yes MI CT, SPECT brain 

He 
2002 

Parameters GA, DIRECT Rigid 3D 
Yes, 5, 

gaussian 
Yes MI MRI brain 



Loeckx 
2003 

Custom SA 
Affine + B-
splines 2D 

Yes, 2 No 
Patter  

Intensity 
Rx thorax 

Wachowia
k 

2004 
Parameters 

PSO, 
Powell 

Rigid 3D No Yes NMI 
Histological, MRI, 

US, CT 
brain, 

abdomen 

Xu 
2004 

Parameters DE, Powell Rigid 3D 
Yes, 2, 

wavelet 
Yes 

MI and 
Gradient 

Information 
MRI, CT brain 

Talbi 
2004 

Parameters PSO Rigid 2D No Yes MI MRI, SPECT, CT brain 

Castellanos 
2004 

Parameters GA 
Comp. of local 
warpings 2D 

Yes, 3, 
shrinking 

Yes NMI MRI, Rx, PET, CT 
brain, 
thorax 

Li 
2005 

Parameters SA Rigid 3D No No MI MRI brain 

Du 
2006 

Parameters SA, Powell Rigid 3D Yes, 2 Yes 
Double 

directional 
partition PIU 

MRI, PET brain 

Li 
2007 

Parameters PSO Rigid 2D No Yes MI PD, MRI brain 

Winter 
2008 

Parameters CMA-ES Rigid 3D No Yes 
Application 

specific 
CT, 3D US spine 

Chen 
2008 

Parameters PSO Rigid 2D No Yes MI MRI, CT liver 

Wang 
2011 

Parameters 
GA, 

Nelder-
Mead 

Similarity 2D No Yes NMI MRI, CT brain 

Zhou 
2011 

Parameters 
Quantum 

PSO 
Rigid 3D No Yes MI MRI, CT, PET brain 

Valsecchi2
013 

Parameters GA Affine 3D 
Yes, 2, 

gaussian 
No 

(yes) 
MI (any) MRI brain 

Table 1. The characteristics of the methods under review. 

We begin by remarking that all algorithms follow the parameter-based strategy. The 
alternative approach of matching areas of the image is rather complex, therefore those kind 
of algorithms consider a very specific type of images and use an additional parameter-
based registration step, so that corresponding areas are already very close to each other 
[57]. 

The next component is the optimization procedure, which is the focus of our study. For the 
MH part, the most prevailing choices are GAs, PSO and SA, with respectively 5, 5 and 3 
contributions over 15. This is not unexpected, as GAs are among the most established 
algorithms in MHs and they have been applied successfully to IR in the past (check with 
introduction to avoid repetitions). Also, PSO is the most prominent example of techniques 
based on swarm intelligence, and contributions in computer vision constitute a very large 
share of its application bibliography [58]. SA appears less frequently in recent publications, 
but its applicability in spite of a conceptually simple mechanism still makes it a popular 
choice. The remaining two algorithms use DE and CMA-ES. It is worth to mention that the 
results of the algorithm based on CMA-ES ([41]) are quite impressive. However, in a 
different study [59], CMA-ES delivered one of the worst performance among a large group 
of IR algorithms despite being granted a larger time limit. 

As for the complete optimization process, in six cases a single MH is often combined with a 
local optimization technique, i.e. Powell's method (four algorithms), Nelder-Mead simplex 



(one) and DIRECT (one). This approach exploits the ability of the MH to explore a large 
search space, while the local optimizer is used to refine a single, high-quality solution in 
narrow solution space. In alternative, a single algorithm can be designed to exhibit an 
exploratory behavior in one phase of the processes, and then focus on the neighborhood 
the solution found so far. Both approaches are easily combined with a multiple resolution 
strategy. With a scaling pyramid, the first resolution offers a smoother search space in 
which exploration is cheap but effective. Once a suitable area of the search space has been 
located, switching to a higher resolution allow the algorithm to adapt the solutions to the 
new level of detail. 

The experimental comparison in the various studies show the advantages of these two-
component or two-stage approaches. With respect to using a single local optimizer, the MH 
part improve the robustness of the algorithm and, in general, provides the ability to deal 
with a wider range of scenarios. Indeed, as classic numeric optimization techniques are 
local optimizers, starting the optimization far from the global optimum is likely to result in 
a low quality solution. In practice, this means that the larger the transformation to be 
found, the higher the chance of a considerable misregistration. As a result, an algorithm can 
suddenly be made inadequate by a change in the way the images are acquired or processed. 
Using multiple resolutions can mitigate the problem to some extent, but does not guarantee 
the optimizer will not get stuck along the way due to rugged fitness landscape. 

On the other hand, a single MH with a static (as opposed to dynamic) behavior may lack in 
precision. Given that the computational cost of using a local optimization technique is 
usually quite small compared to that of a global one, refining a solution found by a MH with 
a local approach is a simple, cheap and effective way of improve the final solution. 
Nevertheless, a clever design of the MH can make this operation needless, as shown by the 
most modern approaches. 

Ten methods use rigid transformations, either in two or three dimensions. This is a 
consequence of the fact that those methods are not designed for a specific application. 
Instead, they offer a more general IR solution, and therefore the authors chose a common 
transformation model in applications in medical imaging as well as outside this field. Rigid 
transformation is the ideal candidate for a wide range of applications, as it can be used to 
alter the position of the image subject while keeping its shape and size unchanged. More 
flexible models, especially the deformable ones, are more difficult to handle and can lead to 
undesired or anatomically unrealistic transformations. The remaining methods use affine 
transformation (two algorithms), similarity transformation (one) or a combination of affine 
and deformable transformation (two). 

A very similar rationale is behind the prevailing use of mutual information and its variants 
as similarity metric. MI is popular in medical IR, but most importantly it is also the most 
flexible among "general" similarity metrics, meaning it is able to handle both single and 
multiple modality scenarios, making an ideal candidate for a general registration method. 
Eight algorithms use MI directly, three algorithms use normalized MI and one algorithm 
combines MI with gradient information. The remaining two methods use an application 
specific similarity metric. 



Six methods use multiple resolutions. Unlike local optimization approaches, global 
optimizers do not require multiple resolution to deliver good results, however, significant 
speedup can be obtained without any major drawback. Using of subsampling in the 
calculation of the similarity metric is an alternative or complementary solution, and it has a 
similar effect on the computational cost. It can be though as a tradeoff between the speed of 
computing the fitness function and its precision, which can be exploited to save time during 
the initial phase of the optimization, in which high accuracy in evaluation a solution is not 
required. 

The methods in this review use a variety of image modalities, with the most common being 
MRI (12 cases), CT (9) and PET (3). This is not likely to indicate any particular aptitude of 
MHs in dealing with these type of images, but it rather reflects the higher availability of this 
kind of data as well as the higher interest in the medical community. The fact that the brain 
is by far the prevailing subject, with 12 proposals out of 15 including brain images in their 
experiments, has a similar explanation: human brain MRI images are publicly available in a 
number of repositories, such as BrainWeb [60]. 

5. Conclusions 
Image registration is a fundamental step in medical image analysis and a very active 
research field due to the steady improvement of medical imaging technology. Being based 
on an optimization process, IR can be tackled by metaheuristics, such as those belonging to 
evolutionary computation, creating a global optimization approach that is able to overcome 
the limitations of classic numerical optimization techniques. While metaheuristic-based 
approaches performing registration based on features (i.e. salient points or lines) have 
been recently reviewed, to the best of our knowledge this paper is the first study to analyze 
intensity-based techniques using metaheuristics. The review considered established, well-
know techniques as well recent, outstanding contributions. We classified the approaches 
based on the basic components common to every IR method: the search strategy, the 
optimization component, the transformation model, the similarity metric, the use of 
multiple resolutions, the modalities and the content of the images being registered. 

Having reviewed the state-of-the-art in the field, we make the following recommendations 
for the design of new, generic IR methods as well as for possible research lines on the topic. 

• follow the parameter-based strategy and use a metaheuristic with a real-coded design 
and appropriate operators for continuous optimization problems. Matching-based 
algorithms are complex to design even for specific applications and they have no clear 
advantage over parameter-based ones. 

• design the optimization component to have a flexible or adaptable behavior. IR 
requires the optimizer to quickly explore a large search space, locate the most 
promising area and then focus on it. This can be accomplished either by explicitly 
diving the optimization in multiple stages or by smoothly transitioning from one to the 
other. In the first case, one can exploit multiple resolutions and combine the MH with a 
local numerical optimization technique. 



• take advantage of multiple resolutions. The ability of gradually increasing the 
complexity of the registration has several advantages and virtually no drawbacks. 
Reducing the size of the images makes the optimization faster in its early stages, and it 
also makes any numerical optimization technique involved more effective and less 
prone to get stuck in local optima. In addition, a pyramid including smoothing can 
reduce the influence of noise and make the algorithm more robust. 

• use subsampling to speed up the calculation of the similarity metric. Unless the 
registration involves a very fine-grained deformable transformation, not every voxel is 
needed to measure the quality of the alignment. 

• use mutual information or a measure based on it. Outside specific applications, MI has 
become the de-facto standard similarity measure and it allows the algorithm to deal 
with different modalities. Compared to other metrics, the disadvantage in terms of 
accuracy and speed is negligible. 

• support multiple transformation models, as the right model depends on the 
application at hand. Affine transformation is flexible enough for a large number 
medical application, and it can easily turned into a similarity or rigid transformation 
model by setting simple constrains on the transformation parameters. For deformable 
registration, B-splines is the method of choice. 

Finally, we remark that existing proposals focused on a very small group of MHs. It is likely 
that different MHs can improve current methods; this holds especially for those using SA, 
which has a basic and rigid structure that is difficult to tune properly. A possible research 
line, therefore, concerns the application of other, advanced MHs to intensity-based IR. To 
this regard, we suggest using MHs that allow a high degree of flexibility in their design. 
Among others, we find scatter search to be an ideal candidate. Its structure makes it easy to 
adapt to the specific features of the optimization problem at hand, and it has already been 
applied to feature-based medical IR with very good results [6]. An additional suggestion is 
to consider a memetic algorithm, in which the optimizer takes systematically advantage of 
a local optimization technique. This was one of the key features of several methods under 
review, although it was employed to a smaller extent. 
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