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Abstract. There are two possible ways for integrating fuzzy logic and evolution-
ary algorithms. The first one involves the application of evolutionary algorithms
for solving optimization and search problems related with fuzzy systems, obtaining
genetic fuzzy systems. The second one concerns the use of fuzzy tools and fuzzy
logic-based techniques for modelling different evolutionary algorithm components
and adapting evolutionary algorithm control parameters, with the goal of improv-
ing performance. The evolutionary algorithms resulting from this integration are
called fuzzy evolutionary algorithms. In this chapter, we shortly introduce genetic
fuzzy systems and fuzzy evolutionary algorithms, giving a short state of the art, and
sketch our vision of some hot current trends and prospects. In essence, we paint a
complete picture of these two lines of research with the aim of showing the benefits
derived from the synergy between evolutionary algorithms and fuzzy logic.

1 Introduction

Computational intelligence techniques such as artificial neural networks [157],
fuzzy logic [204], and genetic algorithms (GAs) [87, 63] are popular research sub-
jects, since they can deal with complex engineering problems which are difficult to
solve by classical methods [109].

Hybrid approaches have attracted considerable attention in the computational in-
telligence community. One of the most popular approaches is the hybridization be-
tween fuzzy logic and GAs leading to genetic fuzzy systems (GFSs) [38] and fuzzy
evolutionary algorithms [79, 149, 183]. Both are well known examples of a positive
collaboration between soft computing techniques.

A GFS is basically a fuzzy rule based system (FRBS) augmented by a learning
process based on evolutionary computation, which includes GAs, genetic program-
ming, and evolution strategies, among other evolutionary algorithms (EAs) [56].
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The automatic definition of a FRBS can be seen as an optimization or search prob-
lem, and GAs are a well known and widely used global search technique with the
ability to explore a large search space for suitable solutions only requiring a perfor-
mance measure. In addition to their ability to find near optimal solutions in complex
search spaces, the generic code structure and independent performance features of
GAs make them suitable candidates to incorporate a priori knowledge. In the case
of FRBSs, this a priori knowledge may be in the form of linguistic variables, fuzzy
membership function parameters, fuzzy rules, etc. These capabilities extended the
use of GAs in the development of a wide range of approaches for designing FRBSs
over the last few years.

The behaviour of the EAs in general, and GAs in particular, is strongly determined
by the balance between exploration (to investigate new and unknown areas in a search
space) and exploitation (to make use of knowledge acquired by exploration to reach
better positions on the search space). The GA control parameter settings, such as mu-
tation probability, crossover probability, and population size, are key factors in the
determination of the exploitation versus exploration tradeoff. It has long been ac-
knowledged that they have a significant impact on GA performance. If poor settings
are used, the exploration/exploitationbalance may not be reached in a profitable way;
the GA performance shall be severely affected due to the possibility of premature con-
vergence. Finding robust control parameter settings is not a trivial task, since their
interaction with GA performance is a complex relationship and the optimal ones are
problem-dependent. Furthermore, different control parameter values may be neces-
sary during the course of a run to induce an optimal exploration/exploitationbalance.
For these reasons, adaptive GAs have been built that dynamically adjust selected
control parameters or genetic operators during the course of evolving a problem so-
lution. Their objective is to offer the most appropriate exploration and exploitation
behaviour. FRBSs provide a tool which can convert the linguistic control strategy
based on expert knowledge into an automatic control strategy. They are particularly
suited to model the relationship between variables in environments that are either
ill-defined or very complex. The adaptation of GA parameters is one such complex
problem that may benefit from the use of FRBS, producing the so-called fuzzy adap-
tive GAs. If we consider any kind of EA that can be improved by means of fuzzy
logic based techniques, then we can use the name of fuzzy EAs.

In this chapter we shortly introduce GFSs and fuzzy EAs, giving a short state of
the art, and sketch our vision of some hot current trends and prospects.

The remainder of this article is organized as follows. In Section 2, we provide an
overview of FRBSs. In Section 3, we focus our attention to GFSs. In Section 4, we
tackle fuzzy EAs. Finally, in Section 5, we provide some concluding remarks of this
work.

2 Fuzzy Rule Based Systems

FRBSs constitute one of the main contributions of fuzzy logic. The basic con-
cepts which underlie these fuzzy systems are those of linguistic variables and fuzzy
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IF-THEN rules. A linguistic variable, as its name suggests, is a variable whose val-
ues are words rather than numbers, e.g., small, young, very hot and quite slow.
Fuzzy IF-THEN rules are of the general form: if antecedent(s) then consequent(s),
where antecedent and consequent are fuzzy propositions that contain linguistic vari-
ables. A fuzzy IF-THEN rule is exemplified by “if the temperature is high then the
fan-speed should be high”. With the objective of modelling complex and dynamic
systems, FRBSs handle fuzzy rules by mimicking human reasoning (much of which
is approximate rather than exact), reaching a high level of robustness with respect
to variations in the system’s parameters, disturbances, etc. The set of fuzzy rules of
an FRBS can be derived from subject matter experts or extracted from data through
a rule induction process.

In this section, we present a brief overview of the foundations of FRBSs, with the
aim of illustrating the way they behave. In particular, in Section 2.1, we introduce
the important concepts of fuzzy sets and linguistic variables. In Section 2.2, we deal
with the basic elements of FRBSs. Finally, in Section 2.3, we describe a simple
instance of FRBS, a fuzzy logic controller for the inverted pendulum.

2.1 Preliminaries: Fuzzy Set and Linguistic Variable

A fuzzy set is distinct from a crisp set in that it allows its elements to have a degree
of membership. The core of a fuzzy set is its membership function: a surface or line
that defines the relationship between a value in the set’s domain and its degree of
membership. In particular, according to the original ideal of Zadeh [208], member-
ship of an element x to a fuzzy set A, denoted as μA(x) or simply A(x), can vary
from 0 (full non-membership) to 1 (full membership), i.e., it can assume all values
in the interval [0,1]. Clearly, a fuzzy set is a generalization of the concept of a set
whose membership function takes on only two values {0,1}.

The value of A(x) describes a degree of membership of x in A. For example,
consider the concept of high temperature in an environmental context with temper-
atures distributed in the interval [0, 50] defined in degree centigrade. Clearly 0oC is
not understood as a high temperature value, and we may assign a null value to ex-
press its degree of compatibility with the high temperature concept. In other words,
the membership degree of 0oC in the class of high temperatures is zero. Likewise,
30oC and over are certainly high temperatures, and we may assign a value of 1 to ex-
press a full degree of compatibility with the concept. Therefore, temperature values
in the range [30, 50] have a membership value of 1 in the class of high tempera-
tures. From 0oC to 30oC, the degree of membership in the fuzzy set high tempera-
ture gradually increases, as exemplified in Figure 1, which actually is a membership
function A : T → [0,1] characterizing the fuzzy set of high temperatures in the uni-
verse T = [0,50]. In this case, as temperature values increase they become more and
more compatible with the idea of high temperature.

Linguistic variables are variables whose values are not numbers but words or
sentences in a natural or artificial language. This concept has clearly been developed
as a counterpart to the concept of a numerical variable. More precisely, a linguistic
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Fig. 2 Example of linguistic variable Temperature with three linguistic terms

variable L is defined as a quintuple [107]: L = (x,A,X ,g,m), where x is the base
variable, A = {A1,A2, . . . ,AN} is the set of linguistic terms of L (called term-set), X
is the domain (universe of discourse) of the base variable, g is a syntactic rule for
generating linguistic terms and m is a semantic rule that assigns to each linguistic
term its meaning (a fuzzy set in X). Figure 2 shows an example of a linguistic
variable Temperature with three linguistic terms “Low, Medium, and High”. The
base variable is the temperature given in appropriate physical units.

Each underlying fuzzy set defines a portion of the variable’s domain; but this
portion is not uniquely defined. Fuzzy sets overlap as a natural consequence of their
elastic boundaries. Such an overlap not only implements a realistic and functional
semantic mechanism for defining the nature of a variable when it assumes various
data values but provides a smooth and coherent transition from one state to another.



Fuzzy Evolutionary Algorithms and Genetic Fuzzy Systems 87

2.2 Basic Elements of FRBSs

The essential part of FRBSs is a set of IF-THEN linguistic rules, whose antecedents
and consequents are composed of fuzzy statements, related by the dual concepts of
fuzzy implication and the compositional rule of inference.

An FRBS is composed of a knowledge base (KB), that includes the information
in the form of IF-THEN fuzzy rules;

IF a set of conditions are satisfied
THEN a set of consequents can be inferred

and an inference engine module that includes:

• A fuzzification interface, which has the effect of transforming crisp data into
fuzzy sets.

• An inference system, that uses them together with the KB to make inference by
means of a reasoning method.

• A defuzzification interface, that translates the fuzzy rule action thus obtained to
a real action using a defuzzification method.

FRBSs can be broadly categorized into different families:

• The first includes linguistic models based on collections of IF-THEN rules,
whose antecedents are linguistic values, and the system behaviour can be de-
scribed in natural terms. The consequent is an output action or class to be applied.
For example, we can denote them as:
Ri : If Xi1 is Ai1 and · · · and Xin is Ain then Y is Bi

or
Ri : If Xi1 is Ai1 and · · · and Xin is Ain then Ck with wik

with i = 1 to M, and with Xi1 to Xin and Y being the input and output variables
for regression respectively, and Ck the output class associated to the rule for clas-
sification, with Ai1 to Ain and Bi being the involved antecedents and consequent
labels, respectively, and wik the certain factor associated to the class. They are
usually called linguistic FRBSs or Mamdani FRBSs [134].

• The second category is based on a rule structure that has fuzzy antecedent and
functional consequent parts. This can be viewed as the expansion of piece-wise
linear partition represented as
Ri : If Xi1 is Ai1 and · · · and Xin is Ain then Y = p(Xi1, · · · ,Xin),
with p(·) being a polynomial function, usually a linear expression, Y = p0 +
p1 · Xi1 + · · ·+ pn ·Xin. The approach approximates a nonlinear system with a
combination of several linear systems. They are called Takagi and Sugeno’s type
fuzzy systems [177] (TS-type fuzzy systems).

• Other kinds of fuzzy models are the approximate or scatter partition FRBSs,
which differ from the linguistic ones in the direct use of fuzzy variables [4].
Each fuzzy rule thus presents its own semantic, i.e., the variables take different
fuzzy sets as values (and not linguistic terms from a global term set). The fuzzy
rule structure is then as follow:
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Ri : If Xi1 is Âi1 and · · · and Xin is Âin then Y is Ĝi

with Âi j to Âin and Ĝi being fuzzy sets. The major difference with respect to
the rule structure considered in linguistic FRBSs is that rules of an approximate
nature are semantics free, whereas descriptive rules operate in the context formu-
lated by means of the linguistic semantics.

In linguistic FRBSs, the KB is composed of two components, a data base (DB)
and a rule base (RB).

• A DB, containing the linguistic term sets considered in the linguistic rules and
the membership functions defining the semantics of the linguistic labels.
Each linguistic variable involved in the problem will have an associated fuzzy
partition of its domain representing the fuzzy set associated with each of its
linguistic terms. Figure 5 shows an example of a fuzzy partition with five la-
bels. This can be considered as a discretization approach for continuous domains
where we establish a membership degree to the items (labels), we have an over-
lapping between them, and the inference engine manages the matching between
the patterns and the rules, providing an output according to the rule consequents
with a positive matching. The determination of the fuzzy partitions is crucial in
fuzzy modelling [11], and the granularity of the fuzzy partition plays an impor-
tant role for the FRBS behaviour [39].

If we manage approximate FRBSs, then we do not have a DB due to the fact
that rules have associated the fuzzy values.

• An RB, comprises a collection of linguistic rules that are joined by a rule con-
nective (”also” operator). In other words, multiple rules can fire simultaneously
for the same input.

The inference engine of FRBSs acts in a different way depending on the kind of
problem (classification or regression) and the kind of fuzzy rules (linguistic ones,
TS-ones, etc). It always includes a fuzzification interface that serves as the input
to the fuzzy reasoning process, an inference system that infers from the input to
several resulting output (fuzzy set, class, etc) and the defuzzification interface or
output interface that converts the fuzzy sets obtained from the inference process into
a crisp action that constitutes the global output of the FRBS, in the case of regression
problems, or provide the final class associated to the input pattern according to the
inference model.

The generic structure of an FRBS is shown in Figure 3.
For more information about fuzzy systems the following books may be consulted

[204, 113, 38, 94]. For different issues associated with the trade-off between the
interpretability and accuracy of FRBSs, the two following edited books present a
collection of contributions on the topic [25, 26].

Finally, we must point out that we can find a lot of applications of FRBSs in all
areas of engineering, sciences, medicine, etc. At present it is very easy to search
for these applications using the publisher web search tools focusing the search in
journals of different application areas.
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Fig. 3 Structure of an FRBS

2.3 Example of FRBS: Fuzzy Logic Control of an Inverted
Pendulum

Fuzzy logic controllers [53] are a particular model of FRBS that provide a tool
which can convert the linguistic control strategy based on expert knowledge into
an automatic control strategy. In these controllers, the domain knowledge is repre-
sented by a set of fuzzy IF-THEN rules that approximate a mapping from a state
space X to an output space Y. They have been used in many practical applications,
especially industrial ones in Japan and Europe. Industrial success stories of fuzzy
control include portable video cameras, automatic transmission of automobiles, fur-
nace temperature, robotics, urban underground railway, and banking.

The example of the inverted pendulum given in [205] is selected to illustrate
elementary fuzzy control principles. Consider the problem of keeping an inverted
pendulum (which is fixed) articulated at a fixed point on a mobile cart. The cart
can move forward and backward, and the controller decides on the direction and
acceleration of the cart (Figure 4).

To balance an upright pendulum, we know from naive physics that the control
force F should be chosen according to the magnitudes of the input variables θ and
ω that measure the angle from the upright position and the angular velocity, respec-
tively. The relation between these variables is linguistic, a much weaker form than
differential equations. That is exactly what happens in a human mind that processes
information qualitatively. Humans choose F using common sense knowledge in the
form of rules such as “if the pendulum is in a balanced position, then hold very still,
that is, do not apply any force”. By taking all such rules into account, the inverted
pendulum can be successfully controlled.
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Fig. 4 Inverted pendulum

A sensor measures θ and ω (state variables) and a fuzzy logic controller may
adjust F (output or control space) via a real time feedback loop with the objec-
tive of taking the pendulum to the vertical position. While the classical equations
of motion of this system are extremely complicated and depend upon the specific
characteristics of the pendulum (mass distribution, length), Yamakawa [205] found
a set of linguistic fuzzy rules providing a stable fuzzy control of the pendulum in-
dependently of its characteristics. They are the following:

Rule 1. IF θ is PM AND ω is ZR THEN F is PM.
Rule 2. IF θ is PS AND ω is PS THEN F is PS.
Rule 3. IF θ is PS AND ω is NS THEN F is ZR.
Rule 4. IF θ is NM AND ω is ZR THEN F is NM.
Rule 5. IF θ is NS AND ω is NS THEN F is NS.
Rule 6. IF θ is NS AND ω is PS THEN F is ZR.
Rule 7. IF θ is ZR AND ω is ZR THEN F is ZR.

The linguistic term set for θ , ω , and F is {Negative Large (NL), Negative
Medium (NM), Negative Small (NS), Zero (ZR), Positive Small (PS), Positive
Medium (PM), Positive Large (PL)}, which has associated the fuzzy partition of
their corresponding domains shown in Figure 5.

Given a sensor measured state (θ , ω), the inference obtained from the fuzzy con-
troller is the result of interpolating among the response of these linguistic fuzzy
rules. The inference’s outcome is a membership function defined on the output
space, which is then aggregated (defuzzified) to produce a crisp output.

The fuzzy logic controller described above is an example of linguistic FRBS.
However, the problem of controlling the inverted pendulum may be tackled as well
by means of a fuzzy logic controller based on the TS-type fuzzy system model. In
this case, possible TS-type rules may include:

If θ is ZR and ω is ZR then F = 0.
If θ is PS and ω is ZR then F = 0.5×θ .
If θ is PS and ω is NS then F = 0.4×θ + 0.6×ω .
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Fig. 5 Membership functions of the linguistic variables (where y stands for θ , ω , and F)

3 Genetic Fuzzy Systems

FRBSs constitute an extension to classical rule-based systems, because they deal
with ”IF-THEN” rules, whose antecedents and consequents are composed of fuzzy
logic statements, instead of classical ones. They have demonstrated their ability for
control problems [146], modelling [148], classification or data mining [113, 94] in
a huge number of applications.

A GFS is basically a fuzzy system augmented by a learning process based on
evolutionary computation, which includes GAs, genetic programming, and evolu-
tion strategies, among other EAs. Figure 6 illustrates this idea, where the genetic
process learns or tunes different components of an FRBS.

The central aspect of the use of a GA for automatic learning of an FRBS is that
the KB design process can be analyzed as an optimization problem.

From the optimization point of view, to find an appropriate KB is equivalent to
coding it as a parameter structure and then finding the parameter values that give
us the optimum for a fitness function. The KB parameters provide the search space
that is transformed according to a genetic representation. Therefore, the first step in
designing a GFS is to decide which parts of the KB are subject to optimization by
the GA.

In the last few years we observe an increase of published papers in the topic due
to the high potential of GFSs. In contrast to neural networks, clustering, rule induc-
tion and many other machine learning approaches, GAs provide a means to encode
and evolve rule antecedent aggregation operators, different rule semantics, rule base
aggregation operators and defuzzification methods. Therefore, GAs remain today
as one of the few knowledge acquisition schemes available to design and, in some
sense, optimize FRBSs with respect to the design decisions, allowing decision mak-
ers to decide what components are fixed and which ones evolve according to the
performance measures.

The predominant type of GFS is that focused on FRBSs. However other kinds
of GFSs have been developed, with successful results. They include genetic fuzzy
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Fig. 6 Genetic fuzzy systems

neural networks and genetic fuzzy clustering algorithms. We will not analyze
them in this papers. Readers can find an extended introduction to them in [38]
(chapter 10).

In this section, we propose a taxonomy of GFSs focused on the FRBS compo-
nents and sketch our vision of some hot current trends of GFSs [73].

3.1 Taxonomy of Genetic Fuzzy Systems

The central aspect on the use of GAs for automatic learning of FRBSs is that the
design process can be analyzed as a search problem in the space of models, such as
the space of rule sets, by means of the coding of the model in a chromosome.

From the optimization point of view, to find an appropriate fuzzy model is equiva-
lent to code it as a parameter structure and then to find the parameter values that give
us the optimum for a concrete fitness function. Therefore, the first step in designing
a GFS is to decide which parts of the fuzzy system are subjected to optimization by
the GA coding them into chromosomes.

We divide the GFS approaches into two processes, tuning and learning. It is diffi-
cult to make a clear distinction between tuning and learning processes, since estab-
lishing a precise borderline becomes as difficult as defining the concept of learning
itself. The first fact that we have to take into consideration is the existence or not
of a previous KB, including DB and RB. In the framework of GFSs we can briefly
introduce the following distinction.

• Genetic tuning. If there exists a KB, we apply a genetic tuning process for
improving the FRBS performance but without changing the existing RB. That
is, to adjust FRBS parameters for improving its performance, maintaining the
same RB.
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Fig. 7 GFSs Taxonomy

• Genetic learning. The second possibility is to learn KB components (where we
can even include an adaptive inference engine). That is, to involve the learning
of KB components among other FRBS components.

We classify the proposals according to these two processes and according to the
FRBS components involved in the genetic learning process. In this way, we consider
the taxonomy shown in Figure 7 [73].

There are three main areas in the taxonomy that we can observe in the first tree:
genetic tuning, genetic KB learning, and genetic learning of KB components and
inference engine parameters.

In the following, we briefly analyze the three areas. We will provide some refer-
ences as examples for every approach, but we do not present an exhaustive list of
papers, this is far from the chapter’s objective.
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Fig. 8 Genetic tuning pro-
cess

Genetic tuning

With the aim of making the FRBS perform better, some approaches try to improve
the preliminary DB definition or the inference engine parameters once the RB has
been derived. A graphical representation of this kind of tuning is shown in Figure 8.

The following three tuning possibilities can be considered (see the sub-tree under
“genetic tuning”).

1. Genetic tuning of KB parameters. In order to do so, a tuning process considering
the whole KB obtained (the preliminary DB and the derived RB) is used a pos-
teriori to adjust the membership function parameters. Nevertheless, the tuning
process only adjusts the shapes of the membership functions and not the number
of linguistic terms in each fuzzy partition, which remains fixed from the begin-
ning of the design process. In [100], we can find a first and classic proposal on
tuning. We can also find recent proposals that introduce linguistic modifiers for
tuning the membership functions, see [24]. This latter approach is close to the
inference engine adaptation.

2. Genetic adaptive inference systems. The main aim of this approach is the use
of parameterized expressions in the Inference System, sometimes called Adap-
tive Inference Systems, for getting higher cooperation among the fuzzy rules and
therefore more accurate fuzzy models without loosing the linguistic rule inter-
pretability. In [8, 42, 43], we can find proposals in this area focused in regression
and classification.

3. Genetic adaptive defuzzification methods. The most popular technique in prac-
tice, due to its good performance, efficiency and easier implementation, is to
apply the defuzzification function to every inferred rule fuzzy set (getting a
characteristic value) and to compute them by a weighted average operator. This
method introduces the possibility of using parameter based average functions,
and the use of GAs can allow us to adapt the defuzzification methods. In [105],
we can find a proposal in this area.

Genetic KB learning

As a second big area we find the learning of KB components. We will now describe
the four approaches that can be found within the genetic learning of a KB (see the
second tree under “genetic KB learning”).
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Fig. 9 Genetic rule learning
process

1. Genetic rule learning. Most of the approaches proposed to automatically learn
the KB from numerical information have focused on the RB learning, using a
predefined DB. The usual way to define this DB involves choosing a number of
linguistic terms for each linguistic variable (an odd number between 3 and 9,
which is usually the same for all the variables) and setting the values of the sys-
tem parameters by an uniform distribution of the linguistic terms into the variable
universe of discourse. Figure 9 shows this type of RB learning graphically. The
pioneer proposal for this approach can be found in [180].

On the other hand, we also find approaches that are focused on the extraction
of some descriptive rules for data mining problems (association rules, subgroup
discovery, etc.) [102, 48].

2. Genetic rule selection. Sometimes we have a large number of rules extracted
via a data mining method that subsequently provide us with a large number of
rules associated with our problem. A big RB and an excessive number of rules
makes it difficult to understand the FRBS behaviour. Thus we can find different
kinds of rules in a fuzzy rule set: irrelevant rules, redundant rules, erroneous rules
and conflictive rules, which perturb the FRBS performance when they coexist
with others. To face this problem we can use a genetic rule selection process for
obtaining an optimized subset of rules from a previous fuzzy rule set, by selecting
some of them. Figure 10 illustrates this idea graphically. In [95] we can find the
most classic and first contribution in this area and in [92] we can find the first
journal paper on multiobjective genetic rule selection.

We must point out that rule selection can be combined with tuning approaches,
to try to get a good rule set together with a tuned set of parameters. In [24, 5], we
can find two recent proposal that combines genetic tuning with rule selection.

3. Genetic DB learning. There is another way to generate the whole KB that con-
siders two different processes to derive each component, DB and RB. A DB
generation process allows us to learn the shape or the membership functions and
other DB components such as the scaling functions, the granularity of the fuzzy
partitions, etc. This DB generation process can use a measure for evaluating the
quality of the DB, we can call it “a priori genetic DB learning”. The second
possibility is to consider an embedded genetic learning process where the DB
generation process wraps an RB learning one working as follows: each time a



96 F. Herrera and M. Lozano

Fig. 10 Genetic rule selection process

Fig. 11 Genetic DB learning (embedded and a priori)

DB has been obtained by the DB definition process, the RB generation method
is used to derive the rules, and some type of error measure is used to validate the
whole KB obtained. We should note this operation mode involves a partitioning
of the KB learning problem. These two kinds of learning models are represented
in Figure 11. In [41], we can find a proposal following the embedded genetic DB
learning.

4. Simultaneous genetic learning of KB components. Other approaches try to learn
the two components of the KB simultaneously. This kind of learning is depicted
in Figure 12. Working in this way, they have the possibility of generating better
definitions but there is a need to deal with a larger search space that makes the
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Fig. 12 Genetic KB learn-
ing process

learning process more difficult and slow. In [85], we can find a contribution that
uses the simultaneous genetic KB learning process.

Genetic learning of KB components and inference engine parameters

This is the last area of GFSs taxonomy,belonging to a hybrid model between an adap-
tive inference engine and KB components learning. We can find novel approaches
that try to find high cooperation between the inference engine via parameter adapta-
tion and the learning of KB components, including both in a simultaneous learning
process. In [135], we can find a recent proposal to learn a linguistic RB and the para-
metric aggregation connectors of the inference and defuzzification in a single step.
Figure 13 presents the coding scheme of the model proposed in this paper.

3.2 Genetic Learning: Rule Coding and Cooperation/Competition
Evolutionary Process

Although GAs were not specifically designed for learning, but rather as global
search algorithms, they offer a set of advantages for machine learning. Many
methodologies for machine learning are based on the search for a good model inside
the space of possible models. In this sense, they are very flexible because the same
GA can be used with different representations. Genetic learning processes cover

Fig. 13 Example of the coding scheme for learning an RB and the inference connective
parameters
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different levels of complexity according to the structural changes produced by the
algorithm, from the simplest case of parameter optimization to the highest level of
complexity for learning the rule set of a rule-based system, via the coding approach
and the cooperation or competition between chromosomes.

When considering the task of learning rules in a rule based system, a wider range
of possibilities is open. When considering a rule based system and focusing on learn-
ing rules, the different genetic learning methods follow two approaches in order to
encode rules within a population of individuals:

• The “Chromosome = Set of rules”, also called the Pittsburgh approach, in which
each individual represents a rule set (Smith 1980). In this case, a chromosome
evolves a complete RB and they compete among them along the evolutionary
process. GABIL is a proposal that follows this approach [47].

• The “Chromosome = Rule” approach, in which each individual codifies a sin-
gle rule, and the whole rule set is provided by combining several individuals in
a population (rule cooperation) or via different evolutionary runs (rule competi-
tion). In turn, within the “Chromosome = Rule” approach, there are three generic
proposals:

– The Michigan approach, in which each individual encodes a single rule. These
kinds of systems are usually called learning classifier systems [88]. They are
rule-based, message-passing systems that employ reinforcement learning and
a GA to learn rules that guide their performance in a given environment. The
GA is used for detecting new rules that replace the bad ones via the compe-
tition between the chromosomes in the evolutionary process. An interesting
study on the topic can be found in [110].

– The IRL (Iterative Rule Learning) approach, in which each chromosome rep-
resents a rule. Chromosomes compete in every GA run, choosing the best rule
per run. The global solution is formed by the best rules obtained when the algo-
rithm is run multiple times. SIA [188] is a proposal that follows this approach.

– The GCCL (genetic cooperative-competitive learning) approach, in which the
complete population or a subset of it encodes the RB. In this model the chro-
mosomes compete and cooperate simultaneously. COGIN [67], REGAL [62]
and LOGENPRO [200] are examples with this kind of representation.

These four genetic learning approaches (Pittsburgh, Michigan, IRL and GCCL) have
been considered for learning KB components, and we can find different examples
of them in the literature. Two of the pioneer GFS proposals were focused on the
Pittsburgh [180] and Michigan [186] approaches. MOGUL [37, 83, 35] and SLAVE
[64] are two proposals that follow the IRL approach in the framework of GFSs. In
[93, 97], we find two proposals following the GCCL approach.

3.3 Some GFS Milestones: Books and Special Issues

For beginners, in the following we present the GFS milestones associated to the
books and special issues published in the specialized literature.
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We can find two authored books and three edited ones:

• A, Geyer-Schulz. Fuzzy Rule-Based Expert Systems and Genetic Machine
Learning. Physica-Verlag, 1995. This is the first GFS book. It is a very specific
book focused on fuzzy classifier systems (Michigan approach) and RB learning
with genetic programming.

• O. Cordón, F. Herrera, F. Hoffmann and L. Magdalena. Genetic Fuzzy Systems.
Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, World Scientific,
2001. This is the first general GFS book. It covers the overall state of the art of
GFSs at that time.

These three following books compile an important number of contributions that
gave maturity to the topic.

• F. Herrera and J.L. Verdegay (Eds.). Genetic Algorithms and Soft Computing.
Physica-Verlag, 1996.

• E. Sanchez, Shibata and L. Zadeh (Eds.). Genetic Algorithms and Fuzzy Logic
Systems. Soft Computing Perspectives. World Scientific, 1997.

• W. Pedrycz (Ed.). Fuzzy Evolutionary Computation. Kluwer Academic Publish-
ers, 1997.

In the following we provide a list of the journal special issues devoted to GFSs,
including important contributions to all topics of GFSs.

• F. Herrera. Special Issue on Genetic Fuzzy Systems for Control and Robotics. In-
ternational Journal of Approximate Reasoning, Volume 17, Number 4, November
1997.

• F. Herrera and L. Magdalena. Special Issue on Genetic Fuzzy Systems. Inter-
national Journal of Intelligent Systems, Volume 13, Numbers 10-11, Oct.-Nov.
1998.

• O. Cordón, F. Herrera, F. Hoffmann and L. Magdalena. Special Issue on Recent
Advances in Genetic Fuzzy System. Information Sciences, Volume 136, Num-
bers 1-4 , August 2001.

• O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena. Special Issue
on Genetic Fuzzy Systems. Fuzzy Sets and Systems, Volume 141, Number 1,
January 2004.

• J. Casillas, M.J. del Jesus, F. Herrera, R. Pérez, P. Villar. Special Issue on Genetic
Fuzzy Systems and the Interpretability-Accuracy Trade-off. International Journal
of Approximate Reasoning. Volume 44, Number 1, February 2007.

• O. Cordón, R. Alcalá, J. Alcalá-Fdez, I. Rojas. Genetic Fuzzy Systems. Special
Section on Genetic Fuzzy Systems: What’s Next?. IEEE Transactions on Fuzzy
Systems. Volume 15, Number 4, August 2007.

• B. Carse, A.G. Pipe. Special Issue on Genetic Fuzzy Systems. International Jour-
nal of Intelligent Systems. Volume 22, Number 9, September 2007.

• J. Casillas, B. Carse. Special Issue on Genetic Fuzzy Systems: Recent De-
velopments and Future Directions. Soft-Computing Volume 13, Number 5,
March 2009.



100 F. Herrera and M. Lozano

The collection of papers that we could find on these special issues give us
a historical tour on the different stages we can find in the evolution of GFSs
research:

• The two first special issues (1997, 1998) contain contributions devoted to learn-
ing KB components using the different learning approaches (Michigan, IRL,
Pittsburgh) together with some applications. We can find representative ap-
proaches of different areas of the taxonomy.

• In the next two special issues (2001, 2004) we can find contributions that exploit
the mentioned genetic learning approaches together with contributions that stress
new branches such as genetic rule selection, multiobjective genetic algorithms
for rule selection, the use of genetic programming for learning fuzzy systems,
hierarchical genetic fuzzy systems, coevolutionary genetic fuzzy systems, the
combination of boosting and evolutionary fuzzy systems learning, embedded ge-
netic DB learning, and first studies for dealing with high dimensional problems,
among others. We would like to point out the review paper that was published
in the last issue [36] that was the first review in the topic, briefly introducing
GFS models and applications, trends and open questions. Another short review
was presented in [72]. The present chapter can be considered as a continuation
of those, with the novelty of the taxonomy, the GFSs outlook based on the pio-
neer papers, the ISI Web of Science based visibility and the milestones along the
GFSs history and new trends and prospects.

• The next three special issues, published in 2007, emphasize three different di-
rections. Carse and Pipe’s special issue collect papers focused in the mentioned
areas (multiobjective evolutionary learning, boosting and evolutionary learning,
etc) and stress some new ones such as evolutionary adaptive inference systems.
Casillas et al.’s special issue is focused on the trade-off between interpretabil-
ity and accuracy, collecting four papers that proposed different GFSs for tackling
this problem. Cordón et al.’s special issue focuses its attention on novel GFS pro-
posals under the title “What’s Next?”, collecting highly innovative GFS propos-
als that can mark new research trends. The four collected papers are focused on:
a new Michigan approach for learning RBs based on XCS [22], GFSs for impre-
cisely observed data (low quality data) [162], incremental evolutionary learning
of TS-fuzzy systems [86], and evolutionary fuzzy rule induction for subgroup
discovery [48].

• The last special issue, co-edited by J. Casillas and B. Carse, is devoted to new
developments, paying attention to multiobjective genetic extraction of linguistic
fuzzy rule based systems from imprecise data [163], multiobjetive genetic rule
selection and tuning [60], parallel distributed genetic fuzzy rule selection [144],
context adaptation of fuzzy systems [17], compact fuzzy systems [28], neuro-
coevolutionary GFSs [153], evolutionary learning of TSK rules with variable
structure [140] and genetic fuzzy association rules extraction [29].
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3.4 Current Research Trends in GFSs

In this subsection, from the abundant GFSs literature published, we focus our atten-
tion into six current trends that are of high interest at the present and show consid-
erable potential in the near future.

Evolutionary Multiobjective learning of FRBSs: interpretability-precision
trade-off

Multiobjective evolutionary algorithms (MOEAs) are one of the most active re-
search areas in the field of evolutionary computation, due to population-based al-
gorithms being capable of capturing a set of non-dominated solutions in a single
run of the algorithm. A large number of algorithms have been proposed in the liter-
ature [45, 34]. Among them, NSGA-II [46] and SPEA2 [209] are well known and
frequently-used MOEAs.

Obtaining high degrees of interpretability and accuracy is a contradictory aim,
and, in practice, one of the two properties prevails over the other. Nevertheless, a
new tendency in the fuzzy modelling scientific community that looks for a good
balance between interpretability and accuracy is increasing in importance. The im-
provement of the interpretability of rule based systems is a central issue in recent
research, where not only the accuracy is receiving attention but also the compacting
and the interpretability of the obtained rules [114, 138].

In multiobjective GFSs it is desirable to design genetic learning algorithms in
which the learning mechanism itself finds an appropriate balance between inter-
pretability and accuracy. We consider objectives based on accuracy and objectives
that include different complexity/interpretability measures. Figure 14 from [91] il-
lustrates this idea where each ellipsoid denotes a fuzzy system. There exists a large
number of non-dominated fuzzy systems along the accuracy-complexity trade-off
curve.

S i m p l e
&  I n a c c u r a t e

L o w

C o m p l i c a t e d
&  A c c u r a t e

C o m p l e x i t y H i g h

S m a l l

E r r o r

L a r g e

Fig. 14 Non-dominated fuzzy systems
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There exists an important number of contributions focused on this topic, in fact,
Chapter 5 of this book is devoted to this topic. Therefore, we will not extend our
description on the topic.

GA-based techniques for mining fuzzy association rules and novel data
mining approaches

Fayyad et al. defined knowledge discovery (KD) as the nontrivial process of identi-
fying valid, novel, potentially useful, and ultimately understandable patterns in data
[57]. KD may not be viewed as synonymous with DM, but they are intimately re-
lated. KD is a wide ranging process which covers distinct stages: the comprehension
of the problem, the comprehension of the data, pre-processing (or preparation) of
the data, DM and post-processing (assessment and interpretation of the models).
The DM stage is responsible for automatic KD at a high level, and from informa-
tion obtained from real data. Some of the important problems that DM and KD deal
with are: rule extraction, identification of associations, feature analysis, linguistic
summarization, clustering, classifier design and novelty/anomaly detection.

The interpretability of knowledge is crucial in the field of DM/KD where knowl-
edge should be extracted from data bases and represented in a comprehensible form,
or for decision support systems where the reasoning process should be transparent
to the user. In fact, the use of linguistic variables and linguistic terms in a discovered
process has been explored by different authors.

Frequent pattern mining has been a focused theme in DM research for over a
decade. Association analysis is a methodology that is useful for the discovery of
interesting relationships hidden in large data sets. The uncovered relationships can
be represented in the form of association rules or sets of frequent items. Abundant
literature can be found presenting tremendous progress in the topic [179, 71].

As claimed in [54], the use of fuzzy sets to describe associations between data
extends the types of relationships that may be represented, facilitates the interpreta-
tion of rules in linguistic terms, and avoids unnatural boundaries in the partitioning
of the attribute domains.

Linguistic variables with linguistic terms can contribute in a substantial way to
the advance in the design of association rules and the analysis of data to establish
relationships and identify patterns, in general [90]. On the other hand, GAs in par-
ticular, and EAs in general, are widely used for evolving rule extraction and patterns
association in DM/KD [59]. The conjunction in the GFS field provides novel and
useful tools for pattern analysis and for extracting new kinds of useful information
with a distinct advantage over other techniques: its interpretability in terms of fuzzy
IF-THEN rules. We find interesting recent contributions focused on the genetic ex-
traction of fuzzy association rules in [102, 89, 101, 184].

We would like to pay attention to a subdivision of descriptive induction algo-
rithms which has recently received attention from researchers, called subgroup dis-
covery. It is a form of supervised inductive learning of subgroup descriptions in
which, given a set of data and having a property of interest to the user, attempts to
locate subgroups which are statistically “most interesting” for the user. Subgroup
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discovery has the objective of discovering interesting properties of subgroups ob-
taining simple rules (i.e. with an understandable structure and with few variables),
highly significant and with high support (i.e. covering many of the instances of the
target class). The concept was initially formulated by Klösgen in his rule learning al-
gorithm EXPLORA [108] and by Wrobel in the algorithm MIDOS [201]. Both use a
rule-extraction model based on decision trees, in order to obtain the best subgroups
among the population. In order to evaluate the subgroups, evaluation measurements
are defined which determine the interest of an expression through a combination of
unusualness and size. MIDOS tackles, within this same approach, the problem of
discovery in multi-relational databases. A recent study on the topic can be found in
[118]. In [48] we find a first approach to the use of GFSs for subgroup discovery.

The use of GFSs for association analysis is a topic that would provide interesting
future contributions focusing attention on the different research problems that we
can find in the frequent pattern mining area [71].

Learning genetic models based on low quality data (noise data and vague data)

There are many practical problems requiring learning models from uncertain data.
The experimental designs of GFSs learning from data observed in an imprecise way
are not being actively studied by researchers. However, according to the point of
view of fuzzy statistics, the primary use of fuzzy sets in classification and mod-
elling problems is for the treatment of vague data. Using vague data to train and test
GFSs we could analyze the performance of these classifiers on the type of problems
for which fuzzy systems are expected to be superior. Preliminary results in this area
involve the proposals of different formalizations for the definition of fuzzy classi-
fiers, based on the relationships between random sets and fuzzy sets [161] and the
study of fitness functions (with fuzzy values) defined in the context of GFSs [162].

This is a novel area that is worth being explored in the near future, which may
provide interesting results.

Genetic learning of fuzzy partitions and context adaptation

The DB learning comprises the specification of the universes of discourse, the num-
ber of labels for each linguistic variable, as well as the definition of the fuzzy mem-
bership functions associated with each label. In [39] the influence of fuzzy partition
granularity in the FRBS performance was studied. Showing that using an appropri-
ate number of terms for each linguistic variable, the FRBS accuracy can be signifi-
cantly improved without the need of a complex RB learning method.

On the other hand, the idea of introducing the notion of context into fuzzy sys-
tems comes from the observation that, in real life, the same basic concept can be
perceived differently in different situations. In some cases, this information is re-
lated to the physical properties or dimensions of the system or process, including
restrictions imposed due to the measurement acquisition or actuators. In the litera-
ture, context adaptation in fuzzy systems has been mainly approached as the scaling
of fuzzy sets from one universe of discourse to another by means of non-linear scal-
ing functions whose parameters are identified from data.
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Different approaches have been proposed to deal with the learning of membership
functions, granularity, non-linear contexts using GAs, etc. [133, 69, 40, 41, 15, 16, 6].

Although there is a large number of contributions in the area of DB Learning,
we think that this remains a promising research area, due to the importance of using
adequate membership functions and an appropriate context. The use of GFSs has
much potential due to its flexibility for encoding DB components together with other
fuzzy system components.

Genetic adaptation of inference engine components

We know that it is possible to use parametric aggregation operators in the design
of the inference system and the defuzzification method, in an attempt to get the
most appropriate parameter configuration in any application. The tuning of these
components can be considered to get more accurate fuzzy models. We have come
across different GFS approaches for finding the most appropriate parameters [42, 8].

This is an interesting research area that can provide us with the opportunity to
adapt the inference parameters to an FRBS and to design learning models that can
coevolve the inference engine parameters together with the KB components.

Revisiting the Michigan-style GFSs

The first description of a Michigan-style GFS was given in [186]. All the initial ap-
proaches in this area were based on the concept of“rule strength” in the sense that a
rule (classifier) gains “strength” during interactions with the environment (through
rewards and /or penalties). This strength can then be used for two purposes: resolv-
ing conflicts between simultaneously matched rules during learning episodes; and
as the basis of fitness for the GAs.

A completely different approach can be considered in which a rule’s fitness, from
the point of view of the GA, is based on its “accuracy”, i.e., how well a rule predicts
payoff whenever it fires. Notice that the concept of accuracy used here is differ-
ent from that traditionally used in fuzzy modelling (i.e., the capability of the fuzzy
model to faithfully represent the modelled system). This accuracy-based approach
offers a number of advantages, such as avoiding overgeneral rules, obtaining opti-
mally general rules, and learning a complete covering map. The first accuracy-based
evolutionary algorithm, called XCS, was proposed in [199] and it is currently of ma-
jor interest to the research community in this field.

Casillas et al. proposed in [22] a new approach to achieve accuracy-based
Michigan-style GFSs. The proposal, Fuzzy-XCS, is based on XCS but properly
adapted to fuzzy systems, with promising results for function approximation prob-
lems and for robot simulation online learning. In [145], an extension of the UCS
algorithm is proposed, a recent Michigan-style genetic learning algorithm for clas-
sification [14].

These approaches build a bridge between the Michigan-style genetic learning
studies and the fuzzy systems models. This is a promising research line that can
provide interesting results in the near future.
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4 Fuzzy Evolutionary Algorithms

Nowadays, there exists an increasing interest in the use of fuzzy tools and fuzzy logic-
based techniques for modelling different EA components or adapting EA control
parameters, with the aim of enhancing the performance of these search algorithms
[79, 149, 183]. Generally, EAs resulting from this integration are called fuzzy EAs.

This section focuses on fuzzy EAs. We give an overview of the existing research
on this topic, describing several instances grouped into three categories that were
identified after revising specialized literature. The first one involves the adaptation
of GA control parameters by means of FRBSs (in particular, fuzzy logic controllers)
and, at present, it has a consolidated background of knowledge (Section 4.1). The
second one includes those EA models whose components (genetic operators, repre-
sentation, stop criterion, etc.) are designed using fuzzy tools (Section 4.2). The third
one consists of different innovative EA models (particle swarm optimization algo-
rithms, ant colony optimization algorithms, differential evolution, etc.) that make
use of fuzzy logic as way to improve their performance (Section 4.3). In addition,
we attempt to identify some open issues and summarize a few new promising re-
search directions for fuzzy EAs (Section 4.4).

4.1 Fuzzy Adaptive GAs

Adaptive GAs dynamically adjust their parameters during the course of evolving a
solution with the aim of inducing exploitation/exploration relationships that avoid
the premature convergence problem and improve the final results [185, 55]. How-
ever, the design of this type of GA is very difficult, because the interaction of GA
control parameter settings and GA performance is generally acknowledged as a
complex relationship which is not completely understood. Although there are ways
to understand this relationship (for instance, in terms of stochastic behavior), this
kind of understanding does not necessarily result in a normative theory.

Fuzzy logic controllers (FLCs) [53] are a particular model of FRBS (Section 2)
that provide a tool which can convert the linguistic control strategy based on expert
knowledge into an automatic control strategy. They are particularly suited to model
the relationship between variables in environments that are either ill-defined or very
complex.

The adaptation of GA parameters is one such complex problem that may ben-
efit from the use of FLCs, producing the so-called fuzzy adaptive GAs (FAGAs)
[78, 123]. The rule-bases of FLCs facilitate the capture and representation of a broad
range of adaptive strategies for GAs (for example, they may provide the support for
the automatic learning of such strategies). The main idea of FAGAs is to use an FLC
whose inputs are any combination of GA performance measures or current con-
trol parameters and whose outputs are GA control parameters. Current performance
measures of the GA are sent to the FLC, which computes new control parameter
values that shall be used by the GA. Figure 15 shows this process.
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Fig. 15 FAGA model

4.1.1 Designing FAGAs

In this section, we briefly describe the issues that should be tackled in order to
build the FLC used by an FAGA. They include the choice of inputs and outputs,
the definition of the data base associated with them, and the specification of the
rule-base:

Inputs, Outputs, and Data Base

• Inputs. They should be robust measures that describe GA behaviour and the
effects of the genetic setting parameters and genetic operators. Some possible
inputs may be: diversity measures, maximum, average, and minimum fitness,
etc. The current control parameters may also be considered as inputs.

• Outputs. They indicate values of control parameters or changes in these pa-
rameters. In [182], the following outputs were reported: mutation probability,
crossover probability, population size, selective pressure, the time the controller
must spend in a target state in order to be considered successful, the degree to
which a satisfactory solution has been obtained, etc.

• Data Base. Each input and output should have an associated set of linguistic
labels. The meaning of these labels is specified through membership functions of
fuzzy sets, the fuzzy partition, contained in the Data Base. Thus, it is necessary
that every input and output have a bounded range of values in order to define
these membership functions over it.

Rule-Base

After selecting the inputs and outputs and defining the Data Base, the fuzzy rules
describing the relations between them should be defined. They facilitate the capture
and representation of a broad range of adaptive strategies for GAs.

Although, the experience and the knowledge of GA experts may be used to derive
rule-bases, many authors have found difficulties in doing this. In this sense, the
following three reflections were quoted by different authors:

“Although much literature on the subject of GA control has appeared, our initial at-
tempts at using this information to manually construct a fuzzy system for genetic con-
trol were unfruitful.” [120].
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“Statistics and parameters are in part universal to any evolutionary algorithm and
in part specific to a particular application. Therefore it is hard to state general fuzzy
rules to control the evolutionary process.” [182].

“The behaviour of GAs and the interrelations between the genetic operators are very
complex. Although there are many possible inputs and outputs for the FLCs, frequently
fuzzy rule-bases are not easily available: finding good fuzzy rule bases is not an easy
task.” [74].

Automatic learning mechanisms to obtain rule-bases have been introduced to
avoid this problem. By using these mechanisms, relevant relations and membership
functions may be automatically determined and may offer insight to understand the
complex interaction between GA control parameters and GA performance [120].
Two types of rule-base learning techniques have been presented: the offline learning
technique [120, 121] and the online learning technique [77]:

• The offline learning mechanism is an evolutionary algorithm that is executed
once, before the operation of the FAGA, however it has associated with it a
high computational cost. It works by considering a fixed set of test functions,
following the same idea as the meta-GA of Grefenstette [68]. Unfortunately, the
test functions may have nothing to do with the particular problem to be solved,
which may limit the robustness of the rule-bases returned.

• In the online learning technique, the rule-bases used by the FLCs come from an
evolutionary process that interacts concurrently with the GA to be adapted. The
learning technique underlying this approach only takes into account the prob-
lem to be solved (in contrast to the previous one, which never considers it). In
this way, the rule-bases obtained will specify adaptation strategies particularly
appropriate for this problem.

4.1.2 A Taxonomy for FAGAs

In this section, we present a taxonomy for FAGAs, focussing on the combination of
two aspects:

• The way in which the rule-bases are derived:

– Through the expertise, experience, and knowledge of GAs, which have be-
come available as a result of empirical studies conducted over a number of
years.

– Using an offline learning mechanism, which finds rule-bases that induce a
suitable FAGA behaviour on a fixed set of test functions. It is executed before
the application of the FAGA on any real problem.

– By means of an online learning mechanism, which learns rule-bases during
the run of the FAGA on a real problem.

• The level where the adaptation takes place in FAGAs:

– Population-level adaptations adjust control parameters that apply for the entire
population.
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– Individual-level adaptations tune control parameters that have an effect on the
individual members of the population.

Table 1 outlines the main features of several FAGA instances presented in the liter-
ature. It includes the inputs and outputs of the FLCs, the adaptation level, and the
method considered to derive the rule-base. A visual inspection of Table 1 allows one
to conclude that:

1. The study of FAGAs has been an active line of research in the evolutionary com-
putation community that has produced a significant amount of work during the
last fifteen years.

2. Most FAGAs presented in the literature involve population-level adaptation.
However, adaptive mechanisms at the individual level based on FLCs may be in-
teresting to adjust control parameters associated with genetic operators [210, 77].
In this case, the control parameters will be defined on individuals instead of on
the whole population. Inputs to the FLCs may be central measures and/or mea-
sures associated with particular chromosomes or sets of them, and outputs may
be control parameters associated with genetic operators that are applied to those
chromosomes. A justification for this approach is that it allows for the applica-
tion of different search strategies in different parts of the search space. This is
based on the reasonable assumption that, in general, the search space will not be
homogeneous, and that different strategies will be better suited to different kinds
of sublandscapes.

3. Most instances use rule-bases derived from GA experts. The use of an online
learning mechanism has been less explored, though nowadays it is becoming
one of the most prospective alternatives (see Section 4.4.1). An example of is
approach was proposed in [77], which was called coevolution with fuzzy be-
haviours. Its main ideas are:

• It incorporates genetic operator adaptation at an individual-level based on
FLCs. Control parameter values for a genetic operator are computed for each
set of parents that undergo it, using an FLC that considers particular features
associated with the parents as inputs.

• The rule-bases of the FLCs applied are learnt implicitly throughout the run by
means of a separate GA that coevolves with the one that applies the genetic
operator to be controlled. The goal of this GA is to obtain the rule-bases that
produce suitable control parameter values to allow the genetic operator to
show an adequate performance on the particular problem to be solved.

Since the learning technique underlying this approach only takes into account
the problem to be solved (in contrast to the approaches based on offline learning
mechanisms), the rule-bases obtained shall specify adaptation strategies particu-
larly appropriate for this problem.



Fuzzy Evolutionary Algorithms and Genetic Fuzzy Systems 109

Ta
bl

e
1

In
st

an
ce

s
of

FA
G

A
s

in
th

e
li

te
ra

tu
re

FA
G

A
In

st
an

ce
s

In
pu

ts
O

ut
pu

ts
A

da
pt

at
io

n
L

ev
el

M
et

ho
d

to
D

er
iv

e
R

ul
e-

B
as

e

X
u

an
d

Vu
ko

vi
ch

(1
99

3,
19

94
)[

20
2,

20
3]

G
en

er
at

io
n

an
d

po
pu

la
tio

n
si

ze
p c

an
d

p m
Po

pu
la

tio
n-

le
ve

l
G

A
ex

pe
rt

kn
ow

le
dg

e
Le

e
an

d
Ta

ka
gi

(1
99

3,
19

94
)[

12
0,

12
1]

Tw
o

ph
en

ot
yp

ic
al

di
ve

rs
ity

m
ea

su
re

s
an

d
ch

an
ge

in
th

e
be

st
fit

ne
ss

si
nc

e
th

e
la

st
co

nt
ro

la
ct

io
n

C
ha

ng
es

to
p c

an
d

p m
,

an
d

po
pu

la
tio

n
si

ze
Po

pu
la

tio
n-

le
ve

l
O

ffl
in

e
le

ar
ni

ng

B
er

gm
an

n,
B

ur
ga

rd
,a

nd
H

em
ke

r
(1

99
4)

[1
3]

E
nt

ro
py

ev
ol

ut
io

n
In

ve
rs

io
n

ra
te

,p
c,

an
d

p m
Po

pu
la

tio
n-

le
ve

l
G

A
ex

pe
rt

kn
ow

le
dg

e
H

er
re

ra
an

d
Lo

za
no

(1
99

6)
[7

4]
G

en
ot

yp
ic

al
di

ve
rs

ity
m

ea
su

re
an

d
ph

en
ot

yp
ic

al
di

ve
rs

ity
m

ea
su

re
Fr

eq
ue

nc
y

of
ap

pl
ic

at
io

n
of

tw
o

cr
os

so
ve

r
op

er
at

or
s

an
d

se
le

ct
io

n
pr

es
su

re

Po
pu

la
tio

n-
le

ve
l

G
A

ex
pe

rt
kn

ow
le

dg
e

W
an

g
et

al
(1

99
6)

[1
98

]
C

ha
ng

e
in

av
er

ag
e

fit
ne

ss
of

th
e

po
pu

la
tio

n
at

tw
o

co
ns

ec
ut

iv
e

ge
ne

ra
tio

ns
C

ha
ng

es
to

p c
an

d
p m

Po
pu

la
tio

n-
le

ve
l

G
A

ex
pe

rt
kn

ow
le

dg
e

Ze
ng

an
d

R
ab

en
as

ol
o

(1
99

7)
[2

10
]

V
ar

ia
nc

e
of

fit
ne

ss
va

lu
es

,d
is

ta
nc

e
be

tw
ee

n
th

e
fit

ne
ss

of
th

e
be

st
pa

re
nt

an
d

th
e

be
st

fit
ne

ss
,d

is
ta

nc
e

be
tw

ee
n

pa
re

nt
s,

an
d

no
rm

al
iz

ed
fit

ne
ss

va
l-

ue
s

of
th

e
pa

re
nt

s

p c
fo

re
ve

ry
pa

ir
of

pa
re

nt
s

In
di

vi
du

al
-l

ev
el

G
A

ex
pe

rt
kn

ow
le

dg
e

So
ng

et
al

.
(1

99
6,

19
97

)[
17

2,
17

3]
C

ha
ng

e
in

av
er

ag
e

fit
ne

ss
of

th
e

po
pu

la
tio

n
at

tw
o

co
ns

ec
ut

iv
e

ge
ne

ra
tio

ns
C

ha
ng

es
to

p c
an

d
p m

Po
pu

la
tio

n-
le

ve
l

G
A

ex
pe

rt
kn

ow
le

dg
e

C
lin

to
ck

,L
un

ne
y,

an
d

H
as

hi
m

(1
99

7)
[3

1,
32

]
Po

pu
la

tio
n

st
at

is
tic

s
an

d
di

ve
rs

ity
st

at
is

tic
s

p c
,

p m
,

an
d

pa
ra

m
et

er
th

at
de

te
rm

in
es

th
e

ap
pl

ic
at

io
n

of
di

ff
er

en
tc

ro
ss

ov
er

op
-

er
at

or
s

Po
pu

la
tio

n-
le

ve
l

G
A

ex
pe

rt
kn

ow
le

dg
e

Su
bb

u,
Sa

nd
er

so
n,

an
d

B
on

is
so

ne
(1

99
8)

[1
75

]
G

en
ot

yp
ic

an
d

ph
en

ot
yp

ic
di

ve
rs

ity
m

ea
su

re
s

of
th

e
po

pu
la

tio
n

Po
pu

la
tio

n
si

ze
,p

c,
an

d
p m

Po
pu

la
tio

n-
le

ve
l

O
ffl

in
e

le
ar

ni
ng

Sh
i,

E
be

rh
ar

t,
an

d
C

he
n

(1
99

9)
[1

68
]

B
es

tfi
tn

es
s,

nu
m

be
r

of
ge

ne
ra

tio
ns

fo
r

un
ch

an
ge

d
be

st
fit

ne
ss

,a
nd

va
ri

-
an

ce
of

fit
ne

ss
p c

an
d

p m
Po

pu
la

tio
n-

le
ve

l
G

A
ex

pe
rt

kn
ow

le
dg

e

H
er

re
ra

an
d

Lo
za

no
(2

00
0)

[7
6]

C
ur

re
nt

pm
an

d
co

nv
er

ge
nc

e
m

ea
su

re
p m

Po
pu

la
tio

n-
le

ve
l

G
A

ex
pe

rt
kn

ow
le

dg
e

M
at

ou
se

k,
O

sm
er

a,
an

d
R

ou
pe

c
(2

00
0)

[1
36

]
V

ar
ia

bi
lit

y
of

po
pu

la
tio

n,
co

ef
fic

ie
nt

of
pa

rt
ia

l
co

nv
er

ge
nt

e,
an

d
H

-
ch

ar
ac

te
ris

tic
s

p m
an

d
se

le
ct

io
n

pr
es

su
re

Po
pu

la
tio

n-
le

ve
l

G
A

ex
pe

rt
kn

ow
le

dg
e

W
an

g
(2

00
1)

[1
96

]
G

en
et

ic
dr

ift
de

gr
ee

,p
he

no
ty

pi
ca

ld
iv

er
si

ty
m

ea
su

re
an

d
nu

m
be

r
of

ge
n-

er
at

io
ns

w
ith

ou
ti

m
pr

ov
in

g
th

e
be

st
in

di
vi

du
al

p c
an

d
p m

Po
pu

la
tio

n-
le

ve
l

G
A

ex
pe

rt
kn

ow
le

dg
e

H
er

re
ra

an
d

Lo
za

no
(2

00
1)

[7
7]

R
an

ks
as

so
ci

at
ed

w
ith

th
e

pa
re

nt
sw

ith
re

ga
rd

st
o

th
ei

rfi
tn

es
sv

al
ue

si
n

th
e

po
pu

la
tio

n
C

on
tro

lp
ar

am
et

er
as

so
ci

at
ed

w
ith

fu
zz

y
re

co
m

bi
na

tio
n

In
di

vi
du

al
-l

ev
el

O
nl

in
e

le
ar

ni
ng

Zh
u,

Zh
an

g,
an

d
Ji

ng
(2

00
3)

[2
11

]
Po

pu
la

tio
n

si
ze

,g
en

er
at

io
n

nu
m

be
r,

an
d

tw
o

ph
en

ot
yp

ic
m

ea
su

re
fo

rb
ot

h
di

ve
rs

ity
an

d
co

nv
er

ge
nc

e
p c

,p
m

,a
nd

se
le

ct
io

n
pr

es
su

re
Po

pu
la

tio
n-

le
ve

l
O

nl
in

e
le

ar
ni

ng

Yu
n

an
d

G
en

(2
00

3)
[2

07
]

C
ha

ng
es

of
av

er
ag

e
fit

ne
ss

in
po

pu
la

tio
n

of
tw

o
co

nt
in

uo
us

ge
ne

ra
tio

ns
C

ha
ng

es
to

p c
an

d
p m

Po
pu

la
tio

n-
le

ve
l

G
A

ex
pe

rt
kn

ow
le

dg
e

Su
bb

u
an

d
B

on
is

so
ne

(2
00

3)
[1

76
]

G
en

ot
yp

ic
di

ve
rs

ity
an

d
pe

rc
en

ta
ge

co
m

pl
et

ed
tr

ia
ls

C
ha

ng
es

to
th

e
po

pu
la

tio
n

si
ze

an
d

p m
Po

pu
la

tio
n-

le
ve

l
G

A
ex

pe
rt

kn
ow

le
dg

e
A

h
K

in
g,

R
ad

ha
,a

nd
R

ug
ho

op
ut

h
[1

]
C

ha
ng

e
in

av
er

ag
e

fit
ne

ss
of

th
e

po
pu

la
tio

n
at

tw
o

co
ns

ec
ut

iv
e

ge
ne

ra
tio

ns
C

ha
ng

es
to

p c
an

d
p m

Po
pu

la
tio

n-
le

ve
l

G
A

ex
pe

rt
kn

ow
le

dg
e

K
in

g,
R

ad
ha

,a
nd

R
ug

ho
op

ut
h

(2
00

4)
[1

06
]

C
ha

ng
es

in
av

er
ag

e
fit

ne
ss

at
tw

o
co

ns
ec

ut
iv

e
st

ep
s

C
ha

ng
es

to
p c

an
d

p m
Po

pu
la

tio
n-

le
ve

l
G

A
ex

pe
rt

kn
ow

le
dg

e
La

st
an

d
E

ya
l(

20
05

,2
00

6)
.[

11
5,

11
6]

A
ge

an
d

lif
et

im
e

of
th

e
ch

ro
m

os
om

es
to

be
cr

os
se

d
ov

er
(p

ar
en

ts
)a

nd
th

e
po

pu
la

tio
n

av
er

ag
e

lif
et

im
e

p c
In

di
vi

du
al

-l
ev

el
G

A
ex

pe
rt

kn
ow

le
dg

e

Li
u,

X
u,

an
d

A
br

ah
am

(2
00

5)
[1

26
]

C
ha

ng
es

of
th

e
be

st
fit

ne
ss

an
d

av
er

ag
e

fit
ne

ss
in

th
e

G
A

po
pu

la
tio

n
of

tw
o

co
nt

in
uo

us
ge

ne
ra

tio
ns

C
ha

ng
es

to
p c

an
d

p m
Po

pu
la

tio
n-

le
ve

l
G

A
ex

pe
rt

kn
ow

le
dg

e

Li
et

al
(2

00
6)

[1
22

]
A

ve
ra

ge
fit

ne
ss

va
lu

e
of

th
e

in
di

vi
du

al
s

an
d

st
an

da
rd

de
vi

at
io

n
be

tw
ee

n
tw

o
co

ns
ec

ut
iv

e
ge

ne
ra

tio
ns

p c
an

d
p m

Po
pu

la
tio

n-
le

ve
l

G
A

ex
pe

rt
kn

ow
le

dg
e

H
am

ze
h,

R
ah

m
an

i,
an

d
Pa

rs
a

(2
00

6)
[7

0]
M

ea
su

re
s

as
so

ci
at

ed
w

ith
an

X
C

S
le

ar
ni

ng
cl

as
si

fie
rs

ys
te

m
E

xp
lo

ra
tio

n
pr

ob
ab

ili
ty

ra
te

Po
pu

la
tio

n-
le

ve
l

G
A

ex
pe

rt
kn

ow
le

dg
e

La
u,

C
ha

n,
an

d
Ts

ui
(2

00
7)

[1
17

]
A

ve
ra

ge
fit

ne
ss

va
lu

es
in

th
e

po
pu

la
tio

n
an

d
m

ea
su

re
of

po
pu

la
tio

n
di

ve
r-

si
ty

C
ha

ng
es

to
p c

an
d

p m
Po

pu
la

tio
n-

le
ve

l
G

A
ex

pe
rt

kn
ow

le
dg

e

Sa
ho

o
et

al
(2

00
6,

20
07

)[
15

9,
16

0]
St

an
da

rd
de

vi
at

io
n

of
fit

ne
ss

di
st

rib
ut

io
n

of
po

pu
la

tio
n

an
d

in
cr

em
en

ta
l

ch
an

ge
in

av
er

ag
e

fit
ne

ss
of

th
e

po
pu

la
tio

n
fr

om
ge

ne
ra

tio
n

to
ge

ne
ra

tio
n

p m
Po

pu
la

tio
n-

le
ve

l
G

A
ex

pe
rt

kn
ow

le
dg

e



110 F. Herrera and M. Lozano

4.2 EA Components Based on Fuzzy Tools

In this section, we review different EA components built using fuzzy tools that have
appeared in the literature.

Fuzzy Genetic Operators

Fuzzy connectives and triangular probability distributions have been considered for
designing powerful real-parameter crossover operators that establish adequate pop-
ulation diversity levels and thus help to avoid premature convergence:

• FCB-crossovers [82]. These are crossover operators for real-coded GAs based
on the use of fuzzy connectives: t-norms, t-conorms and average functions. They
were designed to offer different exploration and exploitation degrees.

• Heuristic FCB-crossovers [75]. These produce a child each whose components
are closer to the corresponding component of its fitter parent.

• Dynamic FCB-crossovers [81]. These are crossover operators based on the use
of parameterized fuzzy connectives. These operators keep a suitable sequence
between the exploration and the exploitation along the GA run: “to protect the
exploration in the initial stages and the exploitation later”.

• Dynamic Heuristic FCB-crossovers [81]. These operators put together the heuris-
tic properties and the features of the Dynamic FCB-crossover operators. They
showed very good results as compared with other crossover operators proposed
for RCGAs, even better than the FCB-crossover operators and the dynamic ones.

• Soft Genetic Operators. In [192, 193, 195], crossover and mutation operators
were presented, which are based on the use of triangular probability distributions.
These operators, called soft modal crossover and mutation, are a generalization
of the discrete crossover operator and the BGA mutation, respectively, proposed
for the Breeder GA [141]. The term soft is gleaned from fuzzy set theory only to
help grasp the main idea, since probability distributions are considered instead of
membership functions.

Fuzzy Representations

Classical EAs, such as GAs and evolution strategies, do not take into account the
development of an individual or organism from the gene level to the mature pheno-
type. There are no one-gene, one-trait relationships in natural evolved systems. The
phenotype varies as a complex, non-linear function of the interaction between un-
derlying genetic structures and current environmental conditions. Nature follows the
universal effects of pleiotropy and polygeny. Pleiotropy is the fact that a single gene
may simultaneously affect several phenotype traits. Polygeny is the effect when a
single phenotypic characteristic may be determined by the simultaneous interaction
of many genes [58]. An attempt to deal with more complex genotype/phenotype re-
lations in EAs was presented in [191, 194]. A fuzzy representation is proposed for
the case of tackling optimization problems of parameters with variables on contin-
uous domains. Each problem parameter has associated a number (m) fuzzy decision
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variables belonging to the interval [0,1]. The chromosomes are formed by linking
together the values of the decision variables for each parameter. For each parameter,
the decoding process is carried out using a function g : [0,1]m → [0,1], and a linear
transformation from the interval [0,1] to the corresponding parameter domain. As
an example of such a function the authors presented the following:

∀d = (d1, ...,dm) ∈ [0,1]m, g(d) =
1

2m−1 −1

m

∑
j=1

d j2 j−1.

When m > 1, this coding type breaks the one-to-one correspondence between
genotype and phenotype (assumed by classical EAs), since two different genotypes
may induce the same phenotype. So, it is impossible to find inferences from pheno-
type to genotype, i.e., the mapping from genotype to phenotype is not isomorphic.
Different experiments carried out in [194] with m = 1 and m = 2 showed that the
use of a fuzzy representation allows robust behavior to be obtained. In some cases, a
better performance than the Breeder GA was achieved. Furthermore, another impor-
tant conclusion was stated: for a small population size the performance for m = 2 is
slightly better than for m = 1, whereas the opposite is true for large population sizes.

Sharma and Irwin [167], addressed the use of appropriate fuzzy sets to represent a
parameter depending upon its contribution within a problem domain. They proposed
a chromosome encoding method, named fuzzy coding, for representing real number
parameters in a GA. Fuzzy coding is an indirect method for representing a chro-
mosome, where each parameter is represented by two sections. In the first section,
the fuzzy sets associated with each parameter are encoded in binary bits with a “1”
representing the corresponding set selected. In the second section, each parameter
contains degrees of membership corresponding to each fuzzy set. These are encoded
as real numbers and represent the degrees of firing. The actual parameter value of
interest is obtained through the information contained in the chromosome by means
of a defuzzification method. This coding method represents the knowledge asso-
ciated with each parameter and is an indirect method of encoding compared with
the alternatives in which the parameters are directly represented in the encoding.
Two test examples, along with neural identification of a nonlinear pH (measure of
acidity or alkalinity of water) process from experimental data, were studied. It was
shown that fuzzy coding is better than the conventional methods (binary, gray, and
floating-point coding) and is effective for parameter optimization in problems where
the search space is complicated. In addition, the authors claim that this new tech-
nique also has the flexibility to embed prior knowledge from the problem domain
which is not possible in the regular coding methods. We should point out that an ad-
ditional investigation was carried out by Pedycz [149] into the exploitation of fuzzy
sets as a basis for encoding an original search space.

Finally, in [174], an algorithm for adaptively controlling GA parameter coding
using fuzzy rules is presented, which was called fuzzy GAP. This uses an inter-
mediate mapping between the genetic strings and the search space parameters. In
particular, each search parameter is specified by the following equation:
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ps = (
pg

2l −1
) ·R + O,

where ps is the search parameter, pg is the genetic parameter, l is the number of bits
in the genetic parameter, R is a specified parameter range, and O is a specified offset.
By controlling the offset and range, more accurate solutions are obtained using the
same number of binary bits.

Fuzzy GAP performs a standard genetic search until the population of strings has
converged. Convergence was measured by evaluating the average number of bits
which differ between all the genetic strings. Each string is compared to every other
string and the number of different bits is counted. If the average number of differing
bits per string pair is less than a threshold, the GA has converged. After the genetic
strings have converged, a new range and offset for the search parameters are deter-
mined by means of an FLC with an input that measures the distance between the
centre of the current range and the best solution found in the search. After applying
the FLC, the GA is executed again with the new values for the range and offset.
The performance of fuzzy GAP on a hydraulic brake emulator parameter identifica-
tion problem was investigated. It was shown to be more reliable than other dynamic
coding algorithms (such as the dynamic parameter encoding algorithm), providing
more accurate solutions in fewer generations.

Fuzzy Stopping Criteria

Due to the possibility of premature convergence, GAs do not guarantee that the op-
timal solution shall be found. Therefore, if the optimal solution is not known, GA
performance is difficult to measure accurately. In [137], a fuzzy stopping criterion
mechanism (FSCM) is developed to provide a useful evaluation of the GA’s real
time performance. FSCM is based on achieving a user-defined level of performance
for the given problem. In order to do so, it includes a predicting process based on
statistics for estimating the value of the GA optimal solution, then it compares the
current solution to this optimal one by checking if an acceptable percentage (spec-
ified by the user) of the latter is reached. If so, the GA stops and returns belief and
uncertainty measures that provide reliability measure for the GA chosen solution.
The acceptable percentage optimal solution defined by the user represents a fuzzy
stopping criterion for halting GA if an appropriate solution is reached. The predict-
ing process is invoked every 40 iterations and uses performance values such as the
minimum solution value, average solution value and belief and plausibility values,
all obtained during these iterations. The underlying idea for the FSCM is that the
user does not need to find the global solution, but rather an approximate solution that
is close to the optimal one, i.e., the GA is used for solving a fuzzy goal instead of a
crisp one because of the vagueness of the term approximate. This term is quantita-
tively measured by the user through the acceptable percentage of the optimal solu-
tion that he requires in the final solution. Results obtained on a 25-city TSP problem
indicate this approach is preferable to a simple GA, in term of cost/performance and
in decreasing the amount of time the GA searches for acceptable solutions.
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4.3 Other Fuzzy EA Models

Different fuzzy logic tools have been employed to improve the behavior of other EA
models, such as EAs for multiobjective problems, parallel EAs, genetic program-
ming, differential evolution, particle swarm optimization algorithms, ant colony op-
timization algorithms, and cultural algorithms. Next, we briefly explain the way
these EA approaches benefited from fuzzy logic.

Fuzzy EAs for Multiobjective Optimization Problems

In [189], a FAGA is presented for multiobjective optimization problems. In each
generation, an FLC decides what transformation of the cost components into a one-
dimensional fitness function is taken. In this vein, [152], Rachmawati and Srinivasan
present an algorithm that employs a fuzzy inference system to model and aggregate
different objectives. They are represented as fuzzy variables, which act as inputs to
a fuzzy inference system evaluating the fitness of the associated candidate solution.
The fuzzy system captures preferences of the decision maker in the compromise
between various objectives, thereby guiding the search to interesting regions in the
objective space. In [190], a more complex method, called a fuzzy reduction GA,
is proposed. It attempts to enable a uniform approximation of the Pareto optimal
solutions (those that cannot be improved with respect to any cost function without
making the value of some other worse). The authors started by explicitly formulating
desirable goals for the evolution of the population towards the target Pareto optimal
solutions (which could be expressed in vague terms only). Then, they defined devi-
ation measures for a population from these goals, which were the inputs to an FLC.
Later, they fixed a set of possible actions that could serve as countermeasures to
decrease the deviations. These actions are different selection mechanisms based on
classical ones proposed to tackle multiobjective optimisation problems. The FLC
determines activation rates for the actions. The action that should actually be taken
is decided according to the activation rates found. As an application, a timetable
optimisation problem is presented where the method was used to derive cost-benefit
curves for the investment into railway nets. The results showed that the fuzzy adap-
tive approach avoids most of the empirical shortcomings of other multiobjective
GAs by the adaptive nature of the procedure. Other models of multiobjective GA
based on the fuzzy logic tools are found in [44, 52, 98, 119].

Fuzzy Parallel EAs

The availability, over the last few years, of fast and cheap parallel hardware has
favoured research into possible ways for implementing parallel versions of EAs
[20]. EAs are good candidates for effective parallelization, since they are inspired
on the principles of parallel evolution, for a population of individuals. Among the
many types of parallel EAs, distributed and cellular algorithms are two popular op-
timization tools. The basic idea of the distributed EAs lies in the partition of the
population into several subpopulations, each one of them being processed by an
EA, independently from the others. Furthermore, a migration process produces a
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chromosome exchange between the subpopulations. An important control param-
eter that determines the operation of this process is the migration rate, which
controls how many chromosomes migrate. Maeda et al. [131, 132] propose an adap-
tive search method for distributed EAs. Its main characteristic feature is the fuzzy
adaptive control of the migration rate by evaluating the evolutionary degree for each
subpopulation. Simulations were performed to confirm the efficiency of this method,
which was shown to be superior to both ordinary and parallel EAs. In a cellular EA,
the concept of (small) neighbourhood is intensively used; this means that an individ-
ual may only interact with its nearby neighbours in the breeding loop [3]. In [156],
the fuzzy adaptive mechanism proposed by Shi et al. [168] was considered to adapt
parameters associated with cellular EAs, obtaining a fuzzy cellular EA model.

Fuzzy Genetic Programming

Genetic Programming’s [111] basic distinction from GAs is the evolution of
dynamic tree structures, often interpreted as programs, rather than fixed-length vec-
tors. In [10], it is claimed that genetic programming requires human supervision
during their routine use as practical tools for the following reasons: 1) to detect
the emergence of a solution, 2) to tune algorithm parameters and 3) to monitor the
evolution process in order to avoid undesirable behaviour such as premature con-
vergence. It is also advised that any attempt to develop artificial intelligence tools
based on genetic programming should take these issues into account. The authors
proposed FLCs for this task. They called the collection of fuzzy rules and routines
in charge of controlling the evolution of the GA population “fuzzy government”.
Fuzzy government was applied to the symbolic inference of the formulae problem.
Genetic programming was used to solve the problem along with different FLCs,
which dynamically adjusted the maximum length for genotypes, acted on the muta-
tion probability, detected the emergence of a solution, and stopped the process. The
results showed that the performance of the fuzzy governed GA was almost impos-
sible to distinguish from the performance of the same algorithm operated directly
with human supervision. Other work on fuzzy adaptive search methods for genetic
programming is [130].

Fuzzy Cultural Algorithms

Cultural algorithms (CAs) [154] are dual inheritance systems that consist of a
social population and a belief space. The problem solving experience of individ-
uals selected from the population space by an acceptance function is used to gen-
erate problem solving knowledge that resides in the belief space. This knowledge
can be viewed as a set of beacons that can control the evolution of the popula-
tion component by means of an influence function. The influence function can use
the knowledge in the belief space to modify any aspect of the population compo-
nent. Various evolutionary models have been used for the population component of
CAs, including GAs, genetic programming, evolution strategies, and evolutionary
programming. In [155], a fuzzy approach to CAs is presented in which an FLC reg-
ulates the amount of information to be transferred to the belief space used by the CA
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over time. In particular, the FLC determines the number of individuals which shall
impact the current beliefs. Its inputs are the individual success ratio (ratio of the
number of successes to the total number of mutations) and the current generation.
A comparison was made between the fuzzy version of a CA (that used evolution-
ary programming as the population component) and its non fuzzy version on 34
optimization functions. The conclusions were: 1) the fuzzy interface between the
population and belief space outperformed the non fuzzy version in general, and 2)
the use of a fuzzy acceptance function significantly improved the success ratio and
reduced CPU time.

Fuzzy Ant System

Ant Colony Optimization (ACO) [51] is a population-based metaheuristic approach
for solving hard combinatorial optimization problems. The inspiring source of ACO
is the foraging behavior of real ants which enables them to find shortest paths be-
tween a food source and their nest. They are based on a colony of artificial ants, that
is, simple computational agents that work cooperatively and communicate through
artificial pheromone trails. ACO algorithms are essentially construction algorithms:
every ant constructs a solution to the problem by travelling on a construction graph.
The edges of the graph, representing the possible steps the ant can make, have two
kinds of associated information (heuristic information and artificial pheromone trail
information), which are used to define transition probabilities of moving from one
node to other, guiding ant movement. This information is modified during the al-
gorithm run, depending on the solutions found by the ants. In [181], a fuzzy ACO
approach is presented, which uses fuzzy logic to calculate an ant’s utility to visit the
next node. In particular, transition probabilities (usually given in a classical ACO
in closed form) are computed by a fuzzy rule-based system. Their authors claim
that when using fuzzy logic as a separate module within the ACO, it is possible to
handle the uncertainty that sometimes exists in some complex combinatorial opti-
mization problems. The control strategies of an ant can also be formulated in terms
of descriptive fuzzy rules. Other ACO models based on fuzzy logic are presented in
[104, 142].

Fuzzy Particle Swarm Optimization

Particle Swarm Optimization (PSO) algorithm [103] is inspired by social behaviour
patterns of organisms that live and interact within large groups. In particular, PSO
incorporates swarming behaviours observed in flocks of birds, schools of fish, or
swarms of bees, and even human social behaviour. The standard PSO model con-
sists of a swarm of particles, which are initialized with a population of random can-
didate solutions. Each particle has a position represented by a position-vector, and
a velocity represented by a velocity vector. The particles move iteratively through
the d-dimension problem space to search new solutions, where the fitness can be
calculated as a quality measure. A particle decides where to move next, considering
its own experience, which is the memory of its best past position, and the experience
of the most successful particle in the swarm. It has been shown that the trajectories
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of the particles oscillate in different sinusoidal waves and converge quickly, some-
times prematurely. Liu and Abraham [124] proposed an adaptive mechanism based
on FLCs to control the velocity of particles in order to avoid premature convergence
in PSO. Empirical results demonstrated that the performance of standard PSO de-
grades remarkably with the increase in the dimension of the problem, while the
influence is very little in the fuzzy PSO approach. Another instance of a PSO model
tuned by FLCs may be found in [99]. Finally, we should point out that a fuzzy ver-
sion of PSO specifically designed to tackle the quadratic assignment problem was
presented in [125].

Fuzzy Differential Evolution

The differential evolution algorithm (DE) is one of the most recent EAs for solving
real-parameter optimization problems [151]. Like other EAs, DE is a population-
based, stochastic global optimizer capable of working reliably in nonlinear and
multimodal environments. DE has few control parameters. However, choosing the
best parameter setting for a particular problem is not easy [129]. Liu and Lampinen
[127, 128, 129] present the fuzzy adaptive differential evolution algorithm, which
uses FLCs controllers to adapt the search parameters for the DE mutation opera-
tion and crossover operation. These two parameters were adapted individually for
each generation. Parameter vector change and function value change over the whole
population members between the last two generations were nonlinearly depressed
and then used as the inputs for both FLCs. Experimental results, provided by the
proposed algorithm for a set of standard test functions, outperformed those of the
standard differential evolution algorithm for optimization problems with higher di-
mensionality.

4.4 Future Work on Fuzzy EAs

Despite the recent activity and the associated progress in fuzzy EAs research, there
remain many directions in which the work may be improved or extended. Next, we
report on some of these.

4.4.1 Improvements for FAGAs

Future research may take into account the following issues in order to produce ef-
fective FAGAs.

Relevant Inputs for the FLCs

Research on determining relevant input variables for the FLCs controlling GA be-
haviour should be studied in greater depth. These variables should describe either
states of the population or features of the chromosomes, so that control parameters
may be adapted on the basis thereof to introduce real performance improvements.
In this vein, Boulif and Karim [18] claimed recently that previous researches on
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FAGAs allowed building FAGA systems that outperform significantly conventional
GAs. However, these works, albeit interesting, do not consider the causes that pro-
pel the GA in its search for good solutions but rather their effects. Indeed, the fuzzy
models use as input either convergence speed, the population diversity or its av-
erage fitness (see Table 1). These authors think that it will be more interesting to
deal with cause inputs first, admitting that nothing forbids complementing them by
effect inputs. This perspective may prove useful for detecting relevant inputs and
determining how to exploit them to adequately tune GA parameters.

Adaptation by Coevolution with Fuzzy Behaviors

The adaptation of GA parameters by coevolution with fuzzy behaviours (FBs) be-
comes a prospective way for future FAGA works, mainly for two reasons: 1) The use
of online learning techniques to derive rule-bases for FAGA has been little explored
(see Table 1) and 2) Adaptation of EAs by means of the coevolutionary model is,
nowadays, a topic of high interest [171].

Different types of parameter settings were associated with genetic operators,
which could be adapted by means of coevolution with FBs. These include the fol-
lowing:

• Operator probabilities. There is a type of GA that does not apply both crossover
and mutation to the selected solutions. Instead, a set of operators is available,
each with a probability of being used, and only one of these is selected to pro-
duce offspring. Many adaptive GAs have been designed starting from this GA
approach, which adjust the operator probabilities throughout the run [185].

• Operator parameters. These parameters determine the way in which genetic op-
erators work. Examples include: 1) the step size of mutation operators for real-
coded GAs, which determines the strength in which real genes are mutated, 2)
parameters associated with crossover operators for real-coded GAs (see [84]) and
dynamic FCB-crossovers [81], 3) the number of parents involved in multi-parent
recombination operators, and 4) parameters associated with crossover operators
for binary-coded GAs, such as n-point crossover and uniform crossover.

The adaptation at individual-level of operator probabilities and operator pa-
rameters by coevolution with FBs may be carried out by considering these vari-
ables as a consequence of the fuzzy rules represented in the FBs. Furthermore,
appropriate features of the parents should be chosen, as a basis oo which the ad-
justment of these variable is expressed. On the other hand, hybrid models may
be built, in such a way that FBs include information for both the adaptation of
operator probabilities and operator parameters. In this case, the model shall de-
tect the operators that should be applied more frequently, along with favourable
operator parameter values for them.

• Mate selection parameters. In mate selection mechanisms [158], chromosomes
carry out the choice of mates for crossover on the basis of their own preferences
(which are formulated in terms of different chromosome characteristics, such as
the phenotypical distance between individuals).
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Mate selection strategies may be expressed by means of FBs. In particular,
given two chromosomes, an FB may induce a probability of mating depending on
their characteristics. This probability determines whether or not they are crossed.
Then, the process of coevolution with FBs shall discover FBs containing mate se-
lection strategies that encourage recombination between chromosomes that have
useful information (characteristics) to exchange.

The adaptive mechanism by coevolution with FBs may also be used for problems
where we intuit that particular features of the parents may be taken into account to
allow the crossover operator behaviour to be more effective, but we do not know the
precise fuzzy rules determining the relation between these features and the appropri-
ate control actions for the operator. In this fashion, this approach allows particular
knowledge about the problem to be integrated in the EA in order to improve its
behaviour.

4.4.2 Applications and Extensions of Fuzzy EAs

Fuzzy EAs may be defined to tackle particular problems such as multimodal opti-
misation problems. In addition, fuzzy logic may help modern hybrid metaheuristics
to improve their behaviour, obtaining fuzzy hybrid metaheuristics.

Multimodal Optimisation Problems

Given a problem with multiple solutions, a simple EA will tend to converge to a sin-
gle solution. As a result, various mechanisms have been proposed to stably maintain
a diverse population throughout the search, thereby allowing EAs to identify mul-
tiple optima reliably. Many of these methods work by encouraging artificial niche
formation through sharing and crowding [169], but these methods introduce one or
more parameters that affect algorithm performance, parameters such as the shar-
ing radius in fitness sharing or the crowding factor in crowding. In many problems,
the uniform specification of niche size is inadequate to capture solutions of varying
location and extent without also increasing the population size beyond reasonable
bounds. Therefore, there remains a need to develop niching methods that stably and
economically find the best niches, regardless of their spacing and extent. FLCs may
be useful for the adaptation of parameters associated with sharing and crowding
methods. Possible inputs may be: diversity measures, the number of niches that are
currently in the population, etc.

Application of Fuzzy Tools to Improve Hybrid Metaheuristics

Over the last years, a large number of search algorithms were reported that do not
purely follow the concepts of one single classical metaheuristic, but they attempt
to obtain the best from a set of metaheuristics (and even other kinds of optimiza-
tion methods) that perform together and complement each other to produce a prof-
itable synergy from their combination. These approaches are commonly referred to
as hybrid metaheuristics [178]. Memetic algorithms (MAs) [112] are well-known
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instances of this class of algorithms. They combine an EA in charge of the global
search with a local search (LS) procedure, which is executed within the EA run,
looking for a synergy that takes benefits from both. The classic scheme of MAs ap-
plies the local search procedure on the solutions obtained by the EA with the aim of
improving the accuracy of the population members. An important aspect in MAs is
the number of fitness function evaluations required by the LS algorithm during their
operation (LS intensity). It is fundamental to identify a proper intensity for the LS,
because a LS that is too short may be unsuccessful at exploring the neighbourhood
of the solution and therefore unsuccessful at improving the search quality. On the
other hand, too long LS may backfire by consuming additional fitness evaluations
unnecessarily.

A great part of the experience acquired about the application of fuzzy logic to
improve EAs may be reused to enhance the behaviour of these innovative search
algorithms. For example, FLCs may be designed with the aim of coordinating the
different components in a hybrid metaheuristic, assigning different fitness function
evaluations to them depending on their specific exploration and/or exploitation fea-
tures. In particular, for the case of MAs, the adaptation of the LS intensity by FLCs
becomes a prospective line of research for obtaining effective MAs.

5 Concluding Remarks

In this chapter, we painted a complete picture of GFSs and fuzzy EAs. In particular,
we overviewed important design principles for these algorithms, cited existing liter-
ature whenever relevant, provided a taxonomy for each one of them, and discussed
future directions and some challenges for these two lines of research. Mainly, this
work reveals that GFSs and fuzzy EAs have consolidated backgrounds of knowl-
edge, and therefore, they are two outstanding examples of positive collaboration
between soft computing technologies. In addition, it shows that there still remain
many exciting research issues connected with these two topics.
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