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Abstract

Covering based Rough Sets are an important general-
ization of Rough Set Theory. Basically, they replace
the partition generated from an equivalence relation by
a covering. In this context many approximation oper-
ators can be defined [16, 26, 27, 28, 34]. In this paper
we want to discover relationships among approxima-
tion operators defined from neighborhoods. We use
the concepts of duality, adjointness and conjugacy to
characterize the approximation operators. Moreover
we establish an order relation for these approximation
operators.
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1. Introduction

Rough Set Theory has been generalized from differ-
ent perspectives. One generalization of rough sets is
to replace the equivalence relation by a general binary
relation. In this case, the binary relation determines
collections of sets that no longer form a partition of the
universal set U . This generalization has been used in
applications with incomplete information systems and
tables with continuous attributes [3, 4, 19]. A second
generalization is to replace the partition obtained by
the equivalence relation with a covering; i.e., a collec-
tion of nonempty sets with union equal to U . There
are many works in these two directions and some con-
nections between the two generalizations have been
established, for example in [19, 32, 31, 35]. Order re-
lations among different approximation operators are
important

We are interested in approximation operators de-
fined from a general neighborhood operator. Accord-
ing to [22] there are at least four neighborhood oper-
ators from a covering C. The classification analysis
in the rough set theory can be included into neigh-
borhood system theory because for each object in the
system, one or more classes are related to such object.

For instance, in Pawlak’s rough set, each object has
an equivalence class; in covering approximation space,
each object belongs to at least one block of the cover-
ing [17]. We want to establish relationships between
the various definitions of approximation operators in
the covering-based rough set model; and secondly, we
want to evaluate the existing proposals with respect
to the adjointness condition, providing in particular a
characterization of approximation operators pairs that
are both dual and adjoint. In this way, we hope to pro-
vide a clear cut roadmap for the covering-based rough
set landscape, pinpointing the most useful operators
among the many that have been proposed in the liter-
ature and guiding future research directions.

The remainder of this paper is organized as follows.
Section 2 presents preliminary concepts about rough
sets and lower and upper approximations in cover-
ing based rough sets, as well as the necessary lat-
tice concepts about duality, conjugacy and adjoint-
ness. In Section 3, we present equivalences and re-
lationships between various approximation operators,
evaluate which of them satisfy adjointness, and end
with the characterization theorem for dual and ad-
joint pairs. Section 4 presents an order relation among
different approximation operators. Finally, Section 5
presents some conclusions and future work.

2. Preliminaries

2.1. Information Systems

An information system in the sense of Pawlak [8] is
a 4-tuple S = (U, A, V, f) where U is a finite set of
objects, A is a finite set of attributes, V is a function
with domain: Dom V = A, Va is the set of values of
a ∈ A and f : U → Πa∈AVa is called the information
function.

Each subset P ⊆ A of attributes determines an
equivalence relation EP on U , called the indiscerni-
bility relation for P , and defined for x, y ∈ U by:

xEP y ⇔ ∀a ∈ P, (f(x)a = f(y)a). (1)
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A decision System is an information system with a
distinguished attribute, which establishes a classifica-
tion. In Table 1 the distinguished attribute is “Class”.
The classification in this case is the partition: {nor-
mal, sick} = {{1, 5, 6}, {2, 3, 4}}.

Objects Attributes
Patient a1 a2 a3 Class

1 G G B normal
2 B B B sick
3 M G A sick
4 M B B sick
5 M B B normal
6 G B A normal

Table 1: A decision system.

2.2. Lower and upper approximations

The ordered pair (U, E), where U is a set and E is an
equivalence relation is called an approximation space.
U/E is the set of equivalence classes, called quotient
set. In rough set theory the equivalence classes are
used to define approximations of a set A.
Definition 1. If A ⊆ U , we define a lower and an
upper approximation of A, by means of:

apr(A) = {x ∈ U : [x] ⊆ A} (2)
apr(A) = {x ∈ U : [x] ∩ A �= ∅} (3)

The difference between the upper and the lower ap-
proximations: B(A) = apr (A) − apr (A), is called
the boundary of A. If A is a subset of U such that
B(A) �= ∅, A is called a rough set.
Example 1. From table 1, if we select the attributes
P = {a1, a2, a3}, the equivalence relation defines the
partition:

U/E = {{1}, {2}, {3}, {4, 5}, {6}}.

6
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apr(A)
apr(A)

U

5

2
3

4
1

Fig. 1: Approximations of A = 234.

In figure 1 the set A = {2, 3, 4} represents the con-
cept “sick”, according to partition, the lower approxi-
mation of A is apr(A) = {2, 3} and the upper approx-
imation is apr(A) = {2, 3, 4, 5}.

From the definition is easy to see that apr(A) ⊆ A ⊆
apr(A).

2.3. Properties

The upper approximation operator apr satisfies the
properties of table 2. Properties 3, 5 and 7 mean that

Upper approximation
1 apr(U) = U
2 apr(∅) = ∅
3 X ⊆ apr(X)
4 apr(X ∪ Y ) = apr(X) ∪ apr(Y )
5 apr2 = apr
6 apr(−X) = −apr(X)
7 X ⊆ Y ⇒ apr(X) ⊆ apr(Y )

Table 2: Properties of upper approximation.

apr is a closure operator, while properties 2 and 4
that apr is a topological closure operator [35]. Similar
properties can be established for lower approximation.
Property 6 establishes a duality relation between apr
and apr.

2.4. Covering based Rough Sets

We consider a generalization of Rough Sets where the
partition is replaced by a covering of U .

Definition 2. [26] Let C = {Ki} be a family of
nonempty subsets of U . C is called a covering of U
if ∪Ki = U . The ordered pair (U,C) is called a cover-
ing approximation space.

It is clear that a partition generated by an equiva-
lence relation is a special case of a covering of U , so the
concept of covering is a generalization of a partition.

In [22], Yao and Yao proposed a general framework
for the study of covering based rough sets. It is
based on the observation that when the partition
U/E is generalized to a covering, the lower and
upper approximations in Definition 1 are no longer
equivalent. A distinguishing characteristic of their
framework is the requirement that the obtained lower
and upper approximation operators form a dual pair,
that is, for A ⊆ U , apr(−A) = −apr(A), where −A
represents the complement of A, i.e., −A = U \ A.

Below, we briefly review the generalizations of the
element based definitions. In the element based defini-
tion, equivalence classes are replaced by neighborhood
operators:

Definition 3. [22] A neighborhood operator is a map-
ping N : U → P(U). If N(x) �= ∅ for all x ∈ U , N
is called a serial neighborhood operator. If x ∈ N(x)
for all x ∈ U , N is called a reflexive neighborhood
operator.

Each neighborhood operator defines an ordered pair
(aprN , apr

N
) of dual approximation operators:
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apr
N

(A) = {x ∈ U : N(x) ⊆ A} (4)

aprN (A) = {x ∈ U : N(x) ∩ A �= ∅} (5)

Different neighborhood operators, and hence differ-
ent approximation operators in covering based rough
sets, can be obtained from a covering C.

Definition 4. [22] If C is a covering of U and x ∈ U ,
a neighborhood system C(C, x) is defined by:

C(C, x) = {K ∈ C : x ∈ K} (6)

In a neighborhood system C(C, x), the minimal and
maximal sets that contain an element x ∈ U are par-
ticularly important.

Definition 5. Let (U,C) be a covering approximation
space and x in U . The set of minimal elements in
C(C, x), ordered by inclusion, is called the minimal de-
scription of x, and denoted as md(C, x) [2]. On the
other hand, the set of maximal elements in C(C, x),
ordered by inclusion, is called the maximal description
of x, denoted as MD(C, x) [34].

The sets md(C, x) and MD(C, x) represent extreme
points of C(C, x): for any K ∈ C(C, x), we can find
neighborhoods K1 ∈ md(C, x) and K2 ∈ MD(C, x)
such that K1 ⊆ K ⊆ K2. From md(C, x) and
MD(C, x), Yao and Yao [22] defined the following
neighborhood operators:

1. N1(x) = ∩{K : K ∈ md(C, x)}
2. N2(x) = ∪{K : K ∈ md(C, x)}
3. N3(x) = ∩{K : K ∈ MD(C, x)}
4. N4(x) = ∪{K : K ∈ MD(C, x)}

For i = 1, 2, 3, 4, Ni is a reflexive neighborhood oper-
ator.

The set N1(x) = ∩md(C, x) for each x ∈ U , is
called the minimal neighborhood of x, and it satisfies
some important properties as is shown in the following
proposition:

Proposition 1. [16] Let C be a covering of U and
K ∈ C, then

• K = ∪x∈KN1(x)
• If y ∈ N1(x) then N1(y) ⊆ N1(x).

The other neighborhood operators do not satisfy
Proposition 1, as can be seen in the following example.

Example 2. For simplicity, we use a special nota-
tion for sets and collections. For example, the set
{1, 2, 3} will be denoted by 123 and the collection
{{1, 2, 3}, {2, 3}} will be written as {123, 23}. Let

x md(C, x) MD(C, x)
1 {1} {123}
2 {23, 24} {123, 234}
3 {23} {123, 234}
4 {24} {234}

Table 3: Minimal and maximal description.

us consider the covering C = {1, 23, 123, 24, 234} of
U = 1234. The minimal and the maximal description
md(C, x) and MD(C, x) are listed in Table 3.

The four neighborhood operators obtained from
C(C, x) are listed in Table 4.

x N1(x) N2(x) N3(x) N4(x)
1 1 1 123 123
2 2 234 23 1234
3 23 23 23 1234
4 4 24 234 234

Table 4: Illustration of neighborhood operators.

For the set A = 13, we have that apr
N1

(A) = 1,
because N1(x) ⊆ A only for x = 1. apr

N2
(A) = 1 and

apr
N3

(A) = apr
N4

(A) = ∅. The upper approximations
are: aprN1 (A) = aprN2(A) = 2346, and aprN3(A) =
aprN4(A) = 1234 then they do not satisfy Proposition
1.

We can see that 2 ∈ N2(3), but N2(2) � N2(3); also
3 ∈ N4(4), but N4(3) � N4(4).

2.5. Duality, conjugacy and Adjointness

In this section we present some basic notion about lat-
tices, join and meet morphisms, conjugate and Galois
connections. If L, K are lattices, a map f : L → K is a
complete join morphism if whenever S ⊆ L and ∨S ex-
ists in L, then ∨f(S) exists in K and f(∨S) = ∨f(S).
Analogously, a map f : L → K is a complete meet
morphism if whenever S ⊆ L and ∧S exists in L, then
∧f(S) exists in K and f(∧S) = ∧f(S) [1].

A finite lattice is always complete, i.e. ∨S and ∧S
exist for all S ⊆ L. In this case a meet morphism
f (a morphism that satisfies f(a ∧ b) = f(a) ∧ f(b)
for a and b in L) is a complete meet morphism, and
dually, a join morphism f (a morphism that satisfies
f(a ∨ b) = f(a) ∨ f(b) for a and b in L) is a complete
join morphism. Since in this paper, we assume that
U is a finite universe, for the approximation operators
we consider it will thus be sufficient to establish that
they are meet (resp., join) morphisms.

Definition 6. [5] Let f and g be two self-maps on a
complete Boolean lattice B. We say that g is the dual
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of f , if for all x ∈ B,

g(∼ x) =∼ f(x),

where ∼ x represents the complement of x ∈ B.

Definition 7. [5] Let f and g be two self-maps on
complete Boolean lattice B. We say that g is a conju-
gate of f , if for all x, y ∈ B,

x ∧ f(y) = 0 if and only if y ∧ g(x) = 0.

If g is a conjugate of f , then f is a conjugate of g.
If a map f is the conjugate of itself, then f is called
self-conjugate.

Definition 8. [5] Let P and Q be two preorders; a
pair (f, g) of maps f : P → Q and g : Q → P is called
a Galois connection if

f(p) ≤ q if and only if p ≤ g(q) (7)

The map g is called the adjoint of f and will be
noted as fa. The map f is called the co-adjoint of g
and will be denoted as ga.

Proposition 2. [5] Let f be a self-map on a complete
Boolean lattice B. Then f has a conjugate if and only
if f is a complete join morphism on B.

Proposition 3. [5] Let B be a complete Boolean lat-
tice. For any complete join morphism f on B, its
adjoint is the dual of the conjugate of f . On the other
hand, for any complete meet morphism g on B, its
co-adjoint is the conjugate of the dual of g.

3. Approximations from neighborhood
operators

In this section N : U → P(U) represents a reflexive
neighborhood operator.

3.1. Lower and upper approximation

Let N be a neighborhood operator. We will consider
two lower approximation, defined by:

• LN
1 (A) = {x : N(x) ⊆ A}

• LN
2 (A) = ∪{N(x) : N(x) ⊆ A}

We can note that LN
1 is the usual approximation

operator defined in Equation 4, while LN
2 is the gener-

alization of lower approximation apr, used in granule
based definition [22]. For upper approximation opera-
tors, we will consider the following :

• GN
5 (A) = ∪{N(x) : x ∈ A}

• GN
6 (A) = {x ∈ U : N(x) ∩ A �= ∅}

• GN
7 (A) = ∪{N(x) : N(x) ∩ A �= ∅}

This notation is a generalization of the pairs of ap-
proximation operators defined in [14, 15, 31], using a
general neighborhood operator.

By definition, we know that LN
1 = apr

N
, and GN

6 =
aprN , therefore LN

1 is the dual of GN
6 , i.e:

LN
1 (−A) = −GN

6 (A)

For the neighborhood operator N1, we have the
equality:

LN1
1 (A) = LN1

2 (A).

In general, LNi
1 (A) �= LNi

2 (A), for i = 2, 3, 4.
For establishing a relation among these approxima-

tion operators, we first establish an important conju-
gacy relation between the upper approximation oper-
ators G5 and G6. This relationship holds regardless
of the neighborhood operator N which is used in the
definition, so we begin by proving the following propo-
sition.

Proposition 4. If N a neighborhood operator, then
GN

5 is the conjugate of GN
6 .

Proof. We show that A ∩ GN
5 (B) �= ∅ if and only if

B ∩ GN
6 (A) �= ∅, for A, B ⊆ U .

If A ∩ GN
5 (B) �= ∅, then there exists w ∈ U such

that w ∈ A and w ∈ GN
5 (B). Since w ∈ GN

5 (B), there
exists x0 ∈ B such that w ∈ N(x0). Then N(x0)∩A �=
∅, with x0 ∈ GN

6 (B). Since x0 ∈ B, then B∩GN
6 (A) �=

∅.
If B∩GN

6 (A) �= ∅, then there exists w ∈ U such that
w ∈ B and w ∈ GN

6 (A), i.e., w ∈ B and N(w)∩A �= ∅.
Then there exists z such that z ∈ N(w) and z ∈ A.
Since z ∈ N(w) and w ∈ B, then z ∈ GN

5 (B). So,
z ∈ A ∩ GN

5 (B), with A ∩ GN
5 (B) �= ∅.

Next, we prove that LN1
2 is the adjoint of GN1

5 . For
this, we need the following lemma.

Lemma 1. For all w ∈ U , GN1
5 (N1(w)) = N1(w).

Proof. By Proposition 1, from x ∈ N1(w) follows
N1(x) ⊆ N1(w), hence GN1

5 (N1(w)) ⊆ N1(w). On
the other hand, it is clear that N1(w) ⊆ GN1

5 (N1(w)),
since w ∈ N1(w).

This lemma is valid only for the N1 neighborhood
operator. For example, we can see that GN2

5 (N2(3)) =
GN2

5 (23) = 234 �= N2(3) and GN4
5 (N4(1)) =

GN4
5 (123) = 1234 �= N4(1).

Proposition 5. LN1
2 = (GN1

5 )a.

Proof. We will show that LN1
2 (A) ⊆ (GN1

5 )a(A) and
(GN1

5 )a(A) ⊆ LN1
2 (A), for A ⊆ U . If w ∈ LN1

2 (A),
there exists x ∈ U such that w ∈ N1(x) with N1(x) ⊆
A. The upper approximation HGN1

5 of N1(x) is equal
to N1(x), by Lemma 1; i.e., GN1

5 (N1(x)) = N1(x).
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Hence, w ∈ ∪{Y ⊆ U : GN1
5 (Y ) ⊆ A}, so w ∈

(GN1
5 )a(A). On the other hand, if w ∈ (GN1

5 )a(A),
then there exists Y ⊆ U , such that w ∈ Y and
GN1

5 (Y ) ⊆ A; i.e., ∪{N1(x) : x ∈ Y } ⊆ A; in particu-
lar, w ∈ N1(w) ⊆ GN1

5 (Y ) ⊆ A, so w ∈ LN1
2 (A).

Corollary 1. The dual of GN1
6 is equal to LN1

2 .

According to Propositions 5 and 3, we have: LN1
2 =

(GN1
5 )a = ((GN1

5 )c)∂ = (GN1
6 )∂ .

Proposition 6. GN1
7 is self-conjugate.

Proof. According to Proposition 3 and the fact that
GN1

7 is a join morphism, (GN1
7 )a = ((GN1

7 )c)∂ , so GN1
7

is self-conjugate if and only if (GN1
7 )a = (GN1

7 )∂ , that
is (GN1

7 )a(∼ A) =∼ GN1
7 (A). We show that (GN1

7 )a(∼
A) =∼ GN1

7 (A) for any A ⊆ U . x /∈ GN1
7 (A) if and

only if N1(x)∩A = ∅ if and only if N1(x) ⊆∼ A if and
only if x ∈ (GN1

7 )a(∼ A).

3.2. Neighborhood systems from binary
relations

Järvinen shows in [5] that there also exist Galois con-
nections in generalized rough sets based on a binary
relations. In particular, if R is a binary relation on U
and x ∈ U , the sets:

R(x) = {y ∈ U : xRy}
R−1(x) = {y ∈ U : yRx} (8)

are called successor and predecessor neighborhoods,
respectively. The ordered pairs (aprR, apr

R−1 ) and
(aprR−1 , apr

R
), defined using the element based defi-

nitions (4) and (5), with R(x) and R−1(x) instead of
N(x), form adjoint pairs. Moreover, (aprR, apr

R
) and

(aprR−1 , apr−1
R

) are dual pairs.
On the other hand, Yao [19] established the follow-

ing important proposition which relates dual pairs of
approximation operators with the relation-based gen-
eralized rough set model considered by Järvinen.

Proposition 7. [18] Suppose (apr, apr) : P(U) →
P(U) is a dual pair of approximation operators, such
that apr is a join morphism and apr(∅) = ∅. There ex-
ists a symmetric relation R on U , such that apr(A) =
apr

R
(A) and apr(A) = aprR(A) for all A ⊆ U if and

only if the pair (apr, apr) satisfies: A ⊆ apr(apr(A)).

By duality, we know that apr is a join morphism if
and only if apr is a meet morphism and apr(∅) = ∅ if
and only if apr(U) = U . According to the proof, the
symmetric relation R is defined by, for x, y in U ,

xRy ⇔ x ∈ apr({y}) (9)

We first establish that upper (resp., lower) approxi-
mation element based definitions have adjoints (resp.,
co-adjoints).

Proposition 8. For any neighborhood operator N ,
apr

N
is a meet morphism.

Proof. Since apr
N

(A) = {x ∈ U : N(x) ⊆ A}, we
have x ∈ apr

N
(A ∩ B) iff N(x) ⊆ A ∩ B iff N(x) ⊆ A

and N(x) ⊆ B iff x ∈ apr
N

(A) and x ∈ apr
N

(B) iff
x ∈ apr

N
(A) ∩ apr

N
(B).

Corollary 2. For any neighborhood operator N , aprN

is a join morphism.

Corollary 3. For any neighborhood operator N , apr
N

has a co-adjoint and it is equal to the conjugate of
aprN .

By Proposition 3 and the duality of aprN and apr
N

,(
apr

N

)
a

=
(

apr∂
N

)c

= (aprN )c = (GN
6 )c = GN

5 .

Corollary 4. For any neighborhood operator N , aprN

has an adjoint and it is equal to the dual of GN
5 .

Indeed, by Proposition 3, we find (aprN )a =
((aprN )c)∂ =

(
GN

5
)∂ .

The remaining question now is whether
(aprN , apr

N
) can ever form an adjoint pair. For

this to hold, based on the above we need to have that(
apr

N

)
a

= GN
5 = GN

6 = aprN .

Proposition 9. (aprN , apr
N

) is an adjoint pair if and
only if N satisfies GN

5 = GN
6 .

The following proposition characterizes the neigh-
borhood operators N that satisfy GN

5 = GN
6 , and es-

tablishes the link with the generalized rough set model
based on a binary relation.

Proposition 10. Let N be a neighborhood operator.
The following are equivalent:

1. For all x, y in U , N satisfies

y ∈ N(x) ⇒ x ∈ N(y) (10)

2. GN
5 = GN

6
3. There exists a symmetric binary relation R on U

such that N(x) = {y ∈ U : xRy}.

Proof. We first prove (i) ⇒ (ii). Let A ⊆ U . If w ∈
GN

5 (A), then w ∈ ∪{N(x) : x ∈ A}. This means that
w ∈ N(x) for some x ∈ A, and by (10) x ∈ N(w), so
N(w) ∩ A �= ∅. Hence w ∈ GN

6 (A).
If w ∈ GN

6 (A), then N(w) ∩ A �= ∅. In other words,
there exists x ∈ U with x ∈ A and x ∈ N(w). By (10),
w ∈ N(x) and thus w ∈ ∪{N(x) : x ∈ A} = GN

5 (A).
On the other hand, to prove (ii) ⇒ (i), by the

definition of GN
5 , we have GN

5 ({x}) = N(x). If
GN

5 (A) = GN
6 (A), for all A ⊆ U and y ∈ N(x) then

N(x) ∩ {y} �= ∅, so x ∈ GN
6 ({y}) = GN

5 ({y}) = N(y).
Finally, the equivalence (i) ⇔ (iii) is immediate,

with R defined by xRy ⇔ x ∈ N(y) for x, y in U .
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The proposition thus shows that the only adjoint
pairs among element-based definitions are those for
which the neighborhood is defined by Eq. (8), with
symmetric R.

4. Order relation for neighborhood operators

We establish the relationship among approximation
operators defined in equations (4) and (5) from the
neighborhood systems using the following proposi-
tions.

Proposition 11. If N and N ′ are neighborhood op-
erators such that N(x) ⊆ N ′(x) for all x ∈ U , then
apr

N
≥ apr

N ′ and aprN ≤ aprN ′ .

Proof. If x ∈ apr
N ′(A), N ′(x) ⊆ A, but N(x) ⊆

N ′(x) ⊆ A for all x ∈ U , so x ∈ apr
N

(A). The other
relation can be proved similarly.

From the definition of neighborhood system it is
easy to show that N1(x) ⊆ N2(x) and N3(x) ⊆ N4(x),
so apr

N1
≥ apr

N2
and aprN3 ≤ aprN4 . We also have

the following result:

Proposition 12. For x ∈ U , it holds that N1(x) ⊆
N3(x) and N2(x) ⊆ N4(x).

Proof. For N1(x) ⊆ N3(x), we can see that for each
K ∈ N1(x) there exists K ′ ∈ N3(x) such that K ⊆
K ′ and vice versa. So, ∩{K ∈ md(C, x)} ⊆ ∩{K ′ ∈
MD(C, x)} from which follows N1(x) ⊆ N3(x). The
other relation can be proved similarly.

From propositions 11 and 12 we have the order re-
lation between the approximation operators: LN4

1 ≤
LN2

1 ≤ LN1
1 and LN4

1 ≤ LN3
1 ≤ LN1

1 . The order re-
lations for upper and lower approximation operators,
defined by order “≤” is shown in Figure 2.

N3G6

N4G6

N2G6

N1G6

N3L1

N1L1

N2L1

N4L1

Fig. 2: Order relation for neighborhood based approx-
imations

By definition of upper approximation operators it is
easy to show that: GN

6 (A) ⊆ GN
7 (A) and GN

6 (A) ⊆
GN

7 (A) for every A ⊆ U . On the other hand GN
5 and

GN
6 are not comparable, so we have the order depicted

in Figure 3.

N1
G5

N1
G7

N1
G6

Fig. 3: Order relation for neighborhood based approx-
imation operators

5. Conclusions

In this paper, we have studied relationships between
approximation operators defined from neighborhood
operators within the covering-based rough set model.
We have also demonstrated that (GN1

5 , LN1
2 ) is an ad-

joint, non-dual pair, while (GN1
6 , LN1

2 ) is a dual, non
adjoint pair. We have established a characterization of
pairs of dual approximation operators based in neigh-
borhoods, using adjointness.

We have also established an order relation among
approximation operators. As future work, will be in-
teresting to study similar properties with other ap-
proximation operators for covering based rough sets.
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