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In this age, big data applications are increasingly becoming the main focus of attention
because of the enormous increment of data generation and storage that has taken place
in the last years. This situation becomes a challenge when huge amounts of data are pro-
cessed to extract knowledge because the data mining techniques are not adapted to the
new space and time requirements. Furthermore, real-world data applications usually pres-
ent a class distribution where the samples that belong to one class, which is precisely the
main interest, are hugely outnumbered by the samples of the other classes. This circum-
stance, known as the class imbalance problem, complicates the learning process as the
standard learning techniques do not correctly address this situation.

In this work, we analyse the performance of several techniques used to deal with imbal-
anced datasets in the big data scenario using the Random Forest classifier. Specifically,
oversampling, undersampling and cost-sensitive learning have been adapted to big data
using MapReduce so that these techniques are able to manage datasets as large as needed
providing the necessary support to correctly identify the underrepresented class. The Ran-
dom Forest classifier provides a solid basis for the comparison because of its performance,
robustness and versatility.

An experimental study is carried out to evaluate the performance of the diverse algo-
rithms considered. The results obtained show that there is not an approach to imbalanced
big data classification that outperforms the others for all the data considered when using
Random Forest. Moreover, even for the same type of problem, the best performing method
is dependent on the number of mappers selected to run the experiments. In most of the
cases, when the number of splits is increased, an improvement in the running times can
be observed, however, this progress in times is obtained at the expense of a slight drop
in the accuracy performance obtained. This decrement in the performance is related to
the lack of density problem, which is evaluated in this work from the imbalanced data
point of view, as this issue degrades the performance of classifiers in the imbalanced sce-
nario more severely than in standard learning.
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1. Introduction

Many real-world areas such as telecommunications, health care, pharmaceutical or financial businesses generate massive
amounts of data. Gaining critical business insights by querying and analysing such massive amounts of data is becoming the
need of the hour [24] and has become a challenge to the standard data mining approaches.

Traditionally, data warehouses have been used to manage large amounts of data. However, for the management of mas-
sive data that grow day after day, these are not able to provide reasonable response times. Big data can be defined as data
that exceeds the processing capacity of conventional systems [36]. The traditional techniques for machine learning and data
mining cannot cope with such amounts of data when there is a growing need to run machine learning and data mining algo-
rithms on very large datasets [31].

Furthermore, real-world applications also present classes which are represented by a negligible number of instances with
respect to other classes that are considered. This situation is known as classification with imbalanced datasets and has
gained lots of attention in the last years [27,33,50]. Moreover, the classes which are underrepresented are usually the cases
under consideration on the study; therefore, its correct identification becomes even more important.

Classifying imbalanced datasets is not usually a trivial task. Standard learning techniques are often guided by global
search measures which do not take into consideration this contingency. In this manner, it is necessary to consider the char-
acteristics of the problem and then solve it accordingly.

A large number of approaches have been proposed to address classification with imbalanced datasets. These approaches
fall largely in two groups: data sampling solutions [6,12], which modify the original training set, and algorithmic modifica-
tions [32] which modify existing algorithms trying to benefit the classification of the minority class. Cost-sensitive solutions
[18,60] combine the two previous options trying to minimise the misclassification costs, which are higher for the instances of
the minority class.

The techniques used to deal with big data are focused on obtaining fast, scalable and parallel implementations. To achieve
this goal, one of the more popular solutions nowadays is to follow a MapReduce procedure [37], dividing the original set into
subsets which are more easily addressed, and then combining the partial solutions that are obtained. However, this data dis-
tribution operation may have a special negative effect in imbalanced datasets. Among the difficulties that can degrade the
performance when classifying imbalanced datasets we can encounter the problem of small sample size [45] which is ampli-
fied as the original data is distributed in different machines. Furthermore, we may also confront the dataset shift problem
[38] which occurs when the training and test set partitions are quite different between them.

In this work, we present an analysis of several techniques to deal with imbalanced big data. Specifically, the techniques
evaluated in this study are techniques that have been proved as useful for imbalanced datasets and which we have adapted
for big data following a MapReduce scheme. Concretely, we analyse the performance of several data sampling techniques
such as random oversampling [6], random undersampling [6], the ‘‘Synthetic Minority Oversampling TEchnique’’ (SMOTE)
algorithm [12] and cost-sensitive learning [14,34]. For each one of them, we will present an approach based on the MapRe-
duce framework. These approaches are examined considering the effectiveness in the correct classification of the instances of
each class and the runtime spent in the building of the model and classification of samples. The presence of small sample size
problems [54] which are related to the lack of density is also analysed.

In order to do so, we use as base classifier the Random Forest algorithm [9], which is a well-known decision tree ensemble
famous for its robustness and good performance. Ensembles have demonstrated a good behavior when confronted with
imbalanced datasets [20] and therefore, using one of them as basis of the comparison should not bias the results neglecting
the minority class.

For the experimental study, we will focus on three imbalanced big data problems that have been subdivided in several
binary cases of study with different degrees of imbalance and size. The experiments performed provide, at first, a study about
the limitations of the sequential versions when the size of the data available is increased, and then, an analysis of the
performance obtained by the different methods together with the runtime needed to get each result. The effectiveness in
classification for the approaches considered will be evaluated using two measures that are able to efficaciously rate the suc-
cess in imbalanced classification: the Geometric Mean of the true rates [5] and the b-f-measure [27], so that the results are
not biased by a specific metric. Additionally, we also provide some insight into the small sample size problem related to the
minority class associated to the splitting of data that is performed in the MapReduce approaches and its relationship to the
lack of density [28].

The paper is organized as follows. First, in Section 2, an introduction to classification with big data and imbalanced
datasets is presented. Then, in Section 3, the Random Forest algorithm is presented together with some of its versions that
are able to deal with big data and imbalanced datasets separately. Later, Section 4 provides the description of the imbal-
anced approaches that we have adapted for big data using the Random Forest algorithm. Next, Section 5 presents the
experimental study performed, detailing information about the experiments configuration, the results obtained and
providing a thorough analysis of them. Section 6 summarizes and concludes the work. Finally, we must point out that
the paper has an associated website http://sci2s.ugr.es/rf_big_imb which collects additional information like detailed
experimental results.

http://sci2s.ugr.es/rf_big_imb
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2. Classification with big data and imbalanced datasets

In this section we present the context in which this work is included. We first provide an introduction to big data and the
MapReduce framework (Section 2.1) and and then, the problem of classification with imbalanced datasets is described
(Section 2.2).

2.1. Big data and the MapReduce framework

The constantly increasing speed of data generation is heading us to handling large amounts of data using the traditional
machine learning algorithms. This data is obtained from diversified sources and domains, building massive datasets that
need to be inspected within reasonable response times. For instance, Facebook and Twitter are examples of applications that
generate such amounts of data. In 2010, Facebook had 21 Peta Bytes of internal warehouse data with 12 TB new data added
every day and 800 TB compressed data scanned daily [51].

This situation tends to be a problem as the knowledge extraction algorithms are not adapted to deal with such vast
amounts of data. Nowadays, it is necessary to process those huge data collections quickly and efficiently in order to make
an appropriate use of the available resources as well as to scale the traditional machine learning algorithms.

Big data is the popular term used to describe amounts of data so large and complex that it becomes difficult to process or
analyse using traditional techniques. As far back as 2001, Gartner analyst Doug Laney introduced the 3Vs concept defining
big data as high volume, velocity and variety information that require new forms of data processing [8]:

� Volume: Refers to the huge amount of data that are being produced daily and that have gone from MB and GB to PB.
� Velocity: Refers to how fast the data is coming in and how fast it needs to be analysed.
� Variety: Deals with the many number of types of data, both structured and unstructured.

More recently, additional big data Vs are getting attention and are added to the model like veracity, validity, volatility,
variability or value.

In 2004, the MapReduce programming framework [15] was proposed. It is a platform designed for processing massive
amounts of data in an extremely parallel manner, while providing an environment to easily develop scalable and fault tol-
erant applications. The MapReduce programming model abstracts the calculation process in two phases: Map and Reduce.

In the Map phase, the master node splits the input dataset into independent sub-problems and distributes them to work-
er nodes. Then, the worker nodes process in a parallel way the smaller problems and pass the answer back to its master node.
Finally, in the Reduce phase, the master node takes the answers to all the sub-problems and combines them in a way to form
the output. The users in this paradigm only have to define what should be computed in the Map and Reduce functions while
the system automatically distributes the data processing over a highly distributed cluster of machines.

In the MapReduce model all the computation is organized around hkey; valuei pairs. In the first stage, the Map function,
takes a single hkey; valuei pair as input and produces a list of intermediate hkey; valuei pairs as output. It could be repre-
sented as:
mapðkey1;value1Þ �! listðkey2;value2Þ ð1Þ
Then, the system merges and groups by keys these intermediate pairs and passes them to the Reduce function. Finally, the
Reduce function, takes a key and an associated value list as input and generates a new list of values as output, which can be
represented as follows:
reduceðkey2; listðvalue2ÞÞ �! ðkey2; value3Þ ð2Þ
Fig. 1 shows the data flow of a MapReduce operation.
Fig. 1. Data flow overview of MapReduce.
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Apache Hadoop [2,57], is the most popular open source implementation of MapReduce. Mahout [3,43] is a machine learn-
ing library that runs on top of a Hadoop system. It features a set of algorithms for clustering, recommendation systems and
classification problems. Like Hadoop, Mahout is an open source project. Mahout contains various implementations of clas-
sification models such as Logistic Regression, Bayesian models, Support Vector Machines, and Random Forest among others.

More recently, other projects are emerging to deal big data. Some of them are Spark [47], a cluster computing system that
aims to make data analytics fast; Storm [48], a distributed and fault-tolerant real-time computation system that makes it
easy to reliably process unbounded streams of data; Dremel [35], a scalable, interactive ad hoc query system for analysis
of read-only nested data; and Apache Drill [1], a distributed system that supports data-intensive distributed applications
for interactive analysis of large-scale datasets.

2.2. Classification with imbalanced datasets

In this section we present the related aspects to classification with imbalanced datasets. First, an introduction to the prob-
lem is given in Section 2.2.1. Then, the techniques to address imbalanced classification are presented in Section 2.2.2. Finally,
Section 2.2.3 describes specific evaluation metrics for imbalanced datasets.

2.2.1. The problem of imbalanced datasets
The problem of classification with imbalanced datasets occurs when there is a notable difference between the number of

samples belonging to different classes [27,50], having one class with an abundant number of instances (known as the major-
ity or negative class) and the other class with few number of samples (known as the minority or positive class). This problem
has gained much importance in the last years because of its presence in lots of real-world applications such as medical diag-
nosis [39], software defects detection [44], finances [61], drug discovery [41] or bioinformatics [58]. In these problems, the
class with the lower number of instances is usually the most important from the learning point of view and it entails high
costs when its identification is not properly performed [18,60].

The difference in the class distribution poses a major challenge to standard machine learning algorithms because the
search process that is embedded in most of the techniques is guided by a global search measure that does not consider
the differences in the number of instances that belong to each class. In this manner, the instances of the minority class
are usually neglected during the model construction as its identification is performed using specific learning rules. These
specific rules are usually ignored in favor of more general rules, which are precisely the rules that cover the majority class.

Traditionally, the imbalance ratio (IR) [42], which is defined as the ratio of the number of instances from the majority class
and the minority class, is the main identification to determine the difficulty level associated to a specific dataset. However,
there are some additional factors that negatively influence the classification with imbalanced datasets, the data intrinsic char-
acteristics [33]. These data intrinsic characteristics include the presence of small disjuncts [55,56], the lack of density or small
sample size associated to the problem [54], the overlapping between the classes [16,23], the presence of noisy [46] and bor-
derline [40] samples, and the differences in the data distribution for the training and test data, known as dataset shift [38].

2.2.2. Addressing imbalanced datasets
Numerous techniques are used to deal with imbalanced datasets in classification [19,33,34]. These techniques are usually

divided into several groups: data level approaches [6,12,21], which modify the original training set to obtain a nearly bal-
anced class distribution that can be used with standard learning algorithms, and algorithm level approaches [32,59] that
modify current existing algorithms modifying inner operations to introduce mechanisms that are able to deal with the
imbalance. Cost-sensitive learning solutions combine the ideas from both the data level and algorithm level approaches
adopting higher misclassification costs for instances that belong to the minority class and minimizing the overall cost
[18,60]. Ensemble methods are also frequently adapted to imbalanced domains where they have demonstrated a good per-
formance [20].

The data level approaches are divided usually in several groups: oversampling methods, undersampling methods and hy-
brid methods. Oversampling methods [11,12,26] aim to balance the class distribution adding to the new dataset instances
from the minority class; undersampling methods [22,30,52] try to adjust the class proportion deleting instances from the
majority class; and hybrid methods [6] combine the two previous approaches, usually starting with an oversampling step
that creates new samples for the minority class and then applying an undersampling step that can delete samples from
the majority class or from both classes to ease the creation of accurate classification models.

The easiest oversampling method, random oversampling (ROS) [6], randomly replicates minority class instances from the
original dataset until the number of instances from the minority and majority classes is the same. The simplest undersam-
pling method, random undersampling (RUS) [6], randomly deletes majority class examples from the original dataset until
the balance with the minority class is achieved.

The SMOTE algorithm [12] is an oversampling method that adds synthetic minority class examples to the original dataset
until the class distribution becomes balanced. In order to do so, the SMOTE algorithm generates the synthetic minority class
examples using the original minority class examples in the following way: the SMOTE algorithm searches the k nearest
neighbors of the minority class sample that is going to be used as base for the new synthetic sample. Then, in the segment
that unites the minority class sample with one or all of its neighbors, a synthetic sample is randomly taken and is added to
the new oversampled dataset. This process is depicted in Fig. 2, where xi is the selected minority class instance, xi1 to xi4 are



Fig. 2. An illustration of how to create the synthetic data points in the SMOTE algorithm.
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some of its k nearest neighbors and r1 to r4 are the synthetic data points created by the randomized interpolation that will be
added to the new training set.

Cost-sensitive learning methods consider the cost of a misclassification with respect to the classes available in the prob-
lem [17,60]. The misclassification costs (Cði; jÞ is the penalty of classifying examples of the class i as class j) are usually rep-
resented in a cost matrix.

The obtaining of the cost matrix is a key issue when using cost-sensitive learning and should be provided by domain ex-
perts, however, when it is not available an estimation can be used [49,50]. When we are facing imbalanced datasets, it is
much more important to correctly identify the positive class samples than the negative class ones, and therefore, in imbal-
anced datasets we find that the misclassification cost of a positive class sample is higher than the misclassification cost of a
negative class sample Cðþ;�Þ > Cð�;þÞ. Furthermore, it is usually assumed that the correct classification of the examples in
imbalanced datasets should entail no penalization costs Cðþ;þÞ ¼ Cð�;�Þ ¼ 0.

The usage of these costs in methods for imbalanced learning can be done in several ways. Usually, these costs are added to
specific parts of a specific algorithm giving more importance to the instances of the minority class following a weighted
scheme. In this case, the resulting model is only using costs at a data level and can be considered equivalent to preprocessing
methods. However, these costs can be also used to modify specific operations within the algorithms in a manner that differs
from the direct weighted scheme and changing the inner way of working of the methods. In this situation, we encounter that
cost-sensitive learning is used as an algorithm level approach. That is why cost-sensitive learning is considered a combina-
tion of the data level and algorithm level solutions for classification with imbalanced datasets.
2.2.3. Evaluation in imbalanced domains
The measures of the quality of classification are built from a confusion matrix (shown in Table 1) which organizes the

samples of each class according to their correct or incorrect identification.
The most frequently used empirical measure, accuracy, is not able to discriminate the correct classification of instances

belonging to different classes and their importance towards the final performance, neither the misclassification cost is in-
cluded. For this reason, in this work we will utilize two metrics that are widely known for classification with imbalanced
datasets.

The Geometric Mean (GM) [5,29] is one measure that is able to avoid the problems related to the traditional accuracy
metric and is defined as:
GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sensitiv ity � specificity

p
ð3Þ
where sensitivity ¼ TP
TPþFN and specificity ¼ TN

FPþTN. This metric attempts to maximize the accuracy of each one of the two classes
with a good balance. It is a performance metric that links both objectives.

Another popular metric that is used in an imbalanced class scenario is the b-f-measure (b-f-m) [27], which is defined as
follows:
b-f-measure ¼ ð1þ b2Þðpositive predictive value � sensitiv ityÞ
ðb2 � positive predictive valueÞ þ sensitiv ity

ð4Þ
where positive predictive value ¼ TP
TPþFP. The positive_predictive_value and sensitivity values are usually known as precision and

recall respectively. The f-measure metric comes from information retrieval domains and in these problems the b parameter is
equal to 1 giving the same importance to the positive_predictive_value and the sensitivity.

However, giving b a value of 1 is not suitable in an imbalanced scenario when we have this class imbalance in both the
training and test datasets [7]. In this manner, larger values of b need to be used as we are more interested in improving the
sensitivity than in increasing the positive_predictive_value. In this article, we follow the estimation given in [13], with b ¼ Cðþj�Þ

Cð�jþÞ

where Cðþ j �Þ is the misclassification cost of a positive instance as negative and Cð� j þÞ is the misclassification cost of the
contrary case, classifying a negative instance as positive.



Table 1
Confusion matrix for a two-class problem.

Positive prediction Negative prediction

Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)
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3. Random Forest

In this section, we present several previous results about Random Forest. We briefly describe the original Random Forest
algorithm (Section 3.1) and and two of its variations that were proposed to solve separately classification with big data
(Section 3.2) and and the challenge of classification with imbalanced datasets (Section 3.3).

3.1. Random Forest for classification

Random Forest (RF) [9] is a well-known decision tree ensemble that is commonly used in classification. RF popularity
comes from its good performance in relation with other classification algorithms [53].

As a decision tree ensemble, RF needs to build several different decision trees. In order to do so, each tree is built consid-
ering a bootstrap sample set of the original training data, that is, obtaining a new set sampling with replacement instances
from the original set until we get the size of that original training data. Using one of the bootstrap sample sets of the training
data, a random tree is created.

Each random tree follows a traditional top-down induction procedure with several modifications performed to favor the
diversity of the ensemble. At each step, when the best attribute is selected, only a small subset of attributes from the dataset
is considered, m� M, where m is the number of attributes selected for a node building decision and M is the total number of
attributes of the dataset. Considering only the subset of attributes selected, then the best attribute is computed as in CART [10].

Each tree is built to its maximum depth and no pruning procedure is applied after the tree has been fully built. The predicted
class for a sample is computed by aggregating the predictions of the ensemble of decision trees through majority voting.

3.2. Random Forest for classification with big data

To deal with big data experiments the original RF algorithm needs to be modified so it can effectively process all the data
available. The Mahout Partial implementation (RF-BigData) [25] is an algorithm that builds multiple trees for different por-
tions of the data.

This algorithm is divided into two different phases: the first phase is devoted to the creation of the model and the second
phase is dedicated to the estimation of the classes associated with the dataset using the previous learned model.

In the first phase, the Random Forest is built from the original training set following a MapReduce procedure. This process
is illustrated in Fig. 3 and consists of three steps: Initial, Map and Final. The Initial step performs a segmentation of the
training dataset into independent data blocks; then, these blocks are replicated and transferred between the different pro-
cessing nodes. Next, in the Map step, each Map task builds a subset of the forest (several random trees of the forest) with the
data block of its partition and generates a file containing the built trees. Finally, the Final step parses the output files gen-
erated by the all mappers to extract the trees. The collection of all trees forms the forest.

When the building of the forest is finished, the classification phase is initiated to estimate the class associated to a data
sample set. This process is illustrated in Fig. 4 and consists of three steps: Initial, Map and Final. The Initial step performs a
segmentation of the available data sample set (it may be a large training or test set) into independent data blocks; replicates
and transfers them to other machines to be finally processed independently by each map task in parallel. Next, in the Map
step, each mapper estimates the class for the examples available in it using a majority vote of the predicted class by the trees
in the RF model built in the previous phase. Finally, in the Final step, the predictions generated by each mapper are concat-
enated to form the final predictions file.

Algorithms 1 and 2 show the pseudocode of the Map function of the MapReduce job for the building of the model phase.
Algorithm 1 is devoted to obtain all the instances in a mapper’s partition in a hkey; valuei pair structure. When the previous
process is finished, Algorithm 2 is called to build a subset of the forest (some random trees) using only instances previously
obtained.

Algorithm 1. Map phase for the RF-BigData algorithm for the building of the model phase MAP (key, value):

Input: hkey; valuei pair, where key is the offset in bytes and value is the content of an instance.
Output: hkey0; value0i pair, where key’ indicates both the tree id and the data partition id used to grow the tree and

value’ contains a grow tree and its predictions.
1: instance INSTANCE REPRESENTATIONðvalueÞ {instances will contain all instances in this mapper’s split}
2: instances instances:addðinstanceÞ



Fig. 3. A flowchart of how the building of the Random Forest is organized in Mahout.

Fig. 4. A flowchart of how the classifying step of the Random Forest algorithm is organized in Mahout.
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Algorithm 2. Map phase for the RF-BigData algorithm for the building of the model phase CLEANUP ():

1: bagging  BAGGINGðinstancesÞ
2: for i ¼ 0 to number of trees to be built by this mapper � 1 do
3: tree bagging:buildðÞ
4: key key:setðpartitionId; treeIdÞ
5: EMIT (key, tree)
6: end for
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Algorithm 3 provides the pseudocode of the Map function of the MapReduce job for the estimation of the classes. In this
algorithm, Step (2) estimates the class for an instance and Step (5) saves the previously generated predictions.
Algorithm 3. Map phase for the RF-BigData algorithm for classifying phase MAP (key, value):
Input: hkey; valuei pair, where key is the offset in bytes and value is the content of an instance.
Output: hkey0; value0i pair, where key0 indicates the class of an instance and value’ contains its prediction.
1: instance INSTANCE REPRESENTATIONðvalueÞ
2: prediction CLASSIFYðinstanceÞ
3: lkey lkey:setðinstance:getClassðÞÞ
4: lvalue lvalue:setðpredictionÞ
5: EMIT (lkey, lvalue)

This MapReduce design does not use a Reduce stage in any of the two phases, building of the model and classification of
new instances, since the outputs of each mapper are combined in a straightforward way: in the first phase all the trees gen-
erated are combined with the same importance level and contribute equally to the final class prediction. The same situation
occurs with the predicted class in the second phase.
3.3. Random Forest for classification with imbalanced datasets

Classification with imbalanced datasets poses a challenge to most of the standard learning techniques. The original RF
algorithm is also negatively influenced by an imbalanced class distribution and therefore, it is needed to address this situ-
ation effectively for this method.

Weighted Random Forest [14] is a cost-sensitive learning based version of RF that has been prepared to deal with imbal-
anced datasets (RF-CS). As a cost-sensitive learning method, it depends on the misclassification costs associated to each class
and incorporates these costs into its inner way of running. This cost-sensitive RF approach modifies the original RF in two
key steps: during the building of the tree and during the classification step, modifying the voting scheme that is used.

During the building of the tree, costs are incorporated into all the inner computations performed. For instance, the split-
ting criterion used is influenced by the costs associated to the instances where instead of counting all instances equally, the
instances influence the information measure considering its associated cost. Additionally, these costs are also used when a
leaf computes its label being this calculation also influenced asymmetrically.

Additionally to the previous modifications, it is also necessary to change the majority voting scheme into a weighted vot-
ing scheme. For each leaf of a tree, a weight associated to it is computed. This weight is calculated as a proportion of the cost
associated to the instances of the leaf in relation to how many instances are there in the leaf. This weight will be the con-
tribution to the ensemble when we need to predict the class for a sample: instead of the equal contribution of the original RF,
an aggregated weighted vote that uses the weights of the leaf nodes determines the final classification.

The addition of costs to RF is not done in a straight-forward way that will be equivalent to the use of a random oversam-
pling method. For the construction of the tree, the imbalance procedure of RF-CS does not add specific operations that imply
a different behavior from a general weighted method. However, when a class is predicted for a new sample, the mechanism
that is used has been specifically developed to enhance the performance of RF and is not a direct usage of the costs.

4. Random Forest for imbalanced big data

In this section, we will present the different alternatives that we have developed following the MapReduce paradigm to
deal with imbalanced big data. First, in Section 4.1, we will describe a RF MapReduce version that uses cost-sensitive learning
to enhance the learning of the minority class, named as RF-BigDataCS. Then, several data level solutions for imbalanced clas-
sification which have been adapted to the big data scenario are presented. These adaptations also follow the MapReduce
scheme and have been designed to modify the initial input dataset that will be then fed to the Random Forest version for
big data (RF-BigData) described in Section 3.2. Specifically, we have selected as preprocessing algorithms the ROS algorithm,
the RUS algorithm and the SMOTE algorithm, whose MapReduce versions are detailed in Sections 4.2, 4.3 and 4.4
respectively.

4.1. RF-BigDataCS: A cost-sensitive approach for Random Forest to deal with Imbalanced Big Data using MapReduce

Inspired by the Mahout RF Partial implementation we build a new RF version that can be used to classify imbalanced big
data. To adapt RF-CS to the Mahout environment, we need to include the cost-sensitive operations into the basic RF imple-
mentation. First of all (before the dataset is distributed among the mappers), we need to estimate the costs for each class
(Fig. 5).
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We modify the criteria used to select the best split to build the tree weighting the instances with respect to the misclassi-
fication costs. Furthermore, we also consider the costs to calculate which class is associated with the leaf (Fig. 5).

Algorithms 4 and 5 show the pseudocode of the Map function of the MapReduce job. Algorithm 4 is devoted to obtaining
all instances in a mapper’s partition and the Hadoop framework calls it for each hkey; valuei pair in this partition. When the
previous process is finished, Algorithm 5 is called for each mapper to build a subset of the forest using the instances previ-
ously obtained.

Algorithm 4. Map phase for the RF-BigDataCS algorithm for the building of the model phase MAP (key, value):

Input: hkey; valuei pair, where key is the offset in bytes and value is the content of an instance.
Output: hkey0; value0i pair, where key0 indicates both the tree id and the data partition id used to grow the tree and

value0 contains a grow tree and its predictions.
1: instance INSTANCE REPRESENTATIONðvalueÞ {instances will contain all instances in this mapper’s split}
2: instances instances:addðinstanceÞ
Algorithm 5. Map phase for the RF-BigDataCS algorithm for the building of the model phase CLEANUP ():

1: bagging  BAGGINGðinstancesÞ
2: for i ¼ 0 to number of trees to be built by this mapper � 1 do
3: tree bagging:buildðclass weights estimationÞ
4: key key:setðpartitionId; treeIdÞ
5: EMIT (key, tree)
6: end for

When each mapper has finished the building of its subset of the forest, we modify the method to classify new examples:

� As a finishing step of the building of the model, the algorithm calculates the leaves weights for each tree. In this manner,
for each instance of the dataset the algorithm accumulates in each leaf the number of instances classified and the class
weight. Finally, the leaf weight is the accumulated weight divided by the number of instances classified. After that, the
Fig. 5. A flowchart of how the building of the Random Forest is organized in the RF-BigDataCS algorithm.
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algorithm combines the outputs from each mapper. Even if the weights are computed similarly to RF-CS, the trees gen-
erated are different from the ones that would be built using the previous algorithm on the same training set. Not only the
splits are modified according to the data included in each mapper partition but also the estimated weights for each tree
leaf are also modified, influencing directly the final classification model (Fig. 5).
� When the final classification step is performed, for each tree involved in the prediction of the example, for each predicted

class, the algorithm accumulates the leaf weight which classifies the example. For each instance in all classes, the accu-
mulated weight is divided by the number of trees involved in the classification. Finally, the selected class is the one which
obtains the highest value after this process (Fig. 6).

Algorithm 6 gives the pseudocode of the Map function of the MapReduce job for classifying phase. In this algorithm, Step
(2) estimates the class for an instance and Step (5) saves the predictions generated.

Algorithm 6. Map phase for the RF-BigDataCS algorithm for classifying phase MAP (key, value):

Input: hkey; valuei pair, where key is the offset in bytes and value is the content of an instance.
Output: hkey0; value0i pair, where key0 indicates the class of an instance and value0 contains its prediction.
1: instance INSTANCE REPRESENTATIONðvalueÞ
2: prediction CLASSIFYðinstanceÞ
3: lkey lkey:setðinstance:getClassðÞÞ
4: lvalue lvalue:setðpredictionÞ
5: EMIT (lkey, lvalue)
4.2. Random oversampling for big data: An approximation with MapReduce

The ROS algorithm has been adapted to deal with big data following a MapReduce design where each Map process is
responsible for adjusting the class distribution in a mapper’s partition through the random replication of minority class in-
stances and the Reduce process is responsible for collecting the outputs generated by each mapper to form the balanced
dataset.

This process is illustrated in Fig. 7 and consists of four steps: Initial, Map, Reduce and Final. At the beginning, in the Initial
step, the algorithm performs a segmentation of the input dataset into independent data blocks; replicates and transfers them
to other machines. Next, in the Map step, each map task balances the class distribution through the random replication of
minority class examples. Then, the Reduce step collects the output generated by each mapper and randomizes the instances
in the balanced dataset. In the Final step, the balanced dataset that is generated in the Reduce process forms the final dataset
that will be the entry data for the RF-BigData algorithm.
Fig. 6. A flowchart of how the classifying step is organized in the RF-BigDataCS algorithm.



Fig. 7. A flowchart of how the ROS MapReduce design works.
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Algorithm 7. Map phase for the ROS algorithm MAP (key, value):

Input: hkey; valuei pair, where key is the offset in bytes and value is the content of an instance.
Output: hkey0; value0i pair, where key0 is any Long value and value0 is the content of an instance.
1: instance INSTANCE REPRESENTATIONðvalueÞ
2: class instance:getClassðÞ
3: replication factor  COMPUTE REPLICATION FACTORðclassÞ
4: for i ¼ 0 to replication factor � 1 do
5: EMIT (key, instance)
6: end for

Algorithms 7 and 8 give the pseudocode of the Map and Reduce functions of the MapReduce job respectively. In Algo-
rithm 7, Step (3) calculates the total number of replicas of each instance and is referred as the replication factor. For example,
a replication factor of 1 means that there is only one copy of each instance in a mapper’s partition, a replication factor of 2
means two copies of each instance and so on. This replication factor is calculated with the total majority class instances and
the total instances of the class of the instance that we want to replicate. Step (5) outputs the intermediate hkey0; value0i pair,
hkey; instancei. When each mapper has finished, Algorithm 8 is called to randomize (Step 5) the final instances obtained pre-
viously and write them as final output (Step 7).
Algorithm 8. Reduce phase for the ROS algorithm REDUCE (key, values):

Input: hkey; valuei pair, where key is any Long value and values is the content of the instances.
Output: hkey0; value0i pair, where key0 is a null value and value0 is the content of an instance.
1: while values:hasNextðÞ do
2: instance INSTANCE REPRESENTATIONðvalues:getValueðÞÞ
3: instances instances:addðinstanceÞ
4: end while
5: final instances RANDOMIZEðinstancesÞ
6: for i ¼ 0 to final instances:length � 1 do
7: EMIT (null, final_instances.get (i))
8: end for



Fig. 8. A flowchart of how the RUS MapReduce design works.
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4.3. Random undersampling for big data: Selecting samples following a MapReduce procedure

The RUS version adapted to deal with big data follows a MapReduce design where each Map process is responsible for
grouping by classes all the instances in its data partition and the Reduce process is responsible for collecting the output
by each mapper and equilibrating the class distribution through the random elimination of majority class instances to form
the balanced dataset.

This process is illustrated in Fig. 8 and consists of four steps: Initial, Map, Reduce and Final. First of all, in the Initial step,
the algorithm splits the input dataset into independent data blocks; these blocks are then automatically replicated and trans-
ferred between the distinct cluster nodes. Then, in the Map step each map task processes and groups by classes all the in-
stances of its data portion. Next, the Reduce step collects the output generated by each mapper and balances the class
distribution randomly eliminating majority class examples. Finally, the balanced dataset that is generated in the reduce pro-
cess is the final dataset that will be the entry data for the RF-BigData algorithm.

Algorithm 9. Map phase for the RUS algorithm MAP (key, value):
Input: hkey; valuei pair, where key is the offset in bytes and value is the content of an instance.
Output: hkey0; value0i pair, where key0 is the class name associated with the instance and value0 is the content of an

instance.
1: instance INSTANCE REPRESENTATIONðvalueÞ
2: class instance:getClassðÞ
3: EMIT (class, value)

Algorithm 9 shows the operations of the Map function which generates a new hkey; valuei pair for each input hkey; valuei
pair. The new key is the class name of the input instance and the new value is directly the instance. In this way, the Reduce
function will receive all the instances grouped by class. Algorithms 10 and 11 display the pseudocode of the Reduce function.
In Algorithm 10, the Steps (2–8) are executed when the input key corresponds to the majority class. In this case, the input
values are shuffled (Step 6) to select (Step 7) a number of majority class instances equal to the number of minority class in-
stances. On the other hand, Steps (10–13) are initiated when the input key corresponds to the minority class and select the
input values as final instances. When the above process is finished, Algorithm 11 is called to randomize the instances ob-
tained that later will be fed to the RF-BigData algorithm.
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Algorithm 10. Reduce phase for the RUS algorithm REDUCE (key, values):

Input: hkey; valuei pair, where key represents a class name and values is the content of the instances.
Output: hkey0; value0i pair, where key0 is a null value and value0 is the content of an instance.

1: if key ¼¼ majorityClass then
2: while values:hasNextðÞ
3: instance INSTANCE REPRESENTATIONðvalues:getValueðÞÞ
4: instances instances:addðinstanceÞ
5: end while
6: instances SHUFFLEðinstancesÞ
7: instances instances:subListð0;number of ocurrences of minority class � 1Þ
8: final instances:addðinstancesÞ
9: else

10: while values:hasNextðÞ
11: instance INSTANCE REPRESENTATIONðvalues:getValueðÞÞ
12: final instances:addðinstanceÞ
13: end while
14: end if
Algorithm 11. Reduce phase for the RUS algorithm CLEANUP ():

1: final instances RANDOMIZEðfinal instancesÞ
2: for i ¼ 0 to final instances:length � 1 do
3: EMIT (null, final_instances.get (i))
4: end for
4.4. SMOTE for big data: Adapting the generation of synthetic minority samples using MapReduce

The SMOTE algorithm has been adapted to deal with big data following a MapReduce design where each Map process
oversamples the minority class and the Reduce process randomizes the output generated by each mapper to form the bal-
anced dataset.

This process is illustrated in Fig. 9 and consists of four steps: Initial, Map, Reduce and Final. In the Initial step, the algo-
rithm performs a segmentation of the input dataset into independent data blocks; replicates and transfers them to other ma-
chines. Next, in the Map phase, each map process balances the class distribution in a mapper’s partition using the basic
SMOTE algorithm over the available data. Then, the Reduce step collects the output generated by each mapper and random-
izes the final data. In the Final step, the balanced dataset that is generated in the Reduce process forms the final output that
will be the entry data for the RF-BigData algorithm.

Algorithm 12. Map phase for the SMOTE algorithm MAP (key, value):

Input: hkey; valuei pair, where key is the offset in bytes and value is the content of an instance.
Output: hkey0; value0i pair, where key0 is any Long value and value0 is the content of an instance.
1: instance INSTANCE REPRESENTATIONðvalueÞ
2: instances instances:addðinstanceÞ

Algorithms 12 and 13 give the pseudocode of the Map function and Algorithm 14 shows the pseudocode of the Reduce func-
tion of the MapReduce job. In Algorithm 12, Steps (1 and 2) are called for each hkey; valuei pair in this partition and obtain all
instances in a mapper’s partition. Then, Algorithm 13 is called for each mapper to execute the SMOTE algorithm (Step 2). When
each mapper has completed its operations, Algorithm 14 is run to randomize (Step 5) the SMOTE instances obtained previously.
Algorithm 13. Map phase for the SMOTE algorithm CLEANUP ():

1: smote SMOTEðinstancesÞ
2: smote instances smote:runðÞ
3: for i ¼ 0 to smote instances:length � 1 do
4: EMIT (key, smote_instances.get (i))
5: end for



Fig. 9. A flowchart of how the SMOTE MapReduce design works.
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Algorithm 14. Reduce phase for the SMOTE algorithm REDUCE (key, values):
Input: hkey; valuei pair, where key is any Long value and values is the content of the instances.
Output: hkey0; value0i pair, where key’ is a null value and value’ is the content of an instance.
1: while values:hasNextðÞ
2: instance INSTANCE REPRESENTATIONðvalues:getValueðÞÞ
3: smote instances smote instances:addðinstanceÞ
4: end while
5: final instances RANDOMIZEðsmote instancesÞ
6: for i ¼ 0 to final instances:length � 1 do
7: EMIT (null, final_instances.get (i))
8: end for
5. Experimental study

This section describes the experimental study that is carried out to compare the performance of the different approaches
to deal with imbalanced big data using the Random Forest algorithm. First, Section 5.1 presents the classification problems
that are utilized in the experiments together with the algorithms that are used in the comparison, as well as the parameters
selected for them. Later, Section 5.2 provides a study about the limitations that the sequential versions encounter when deal-
ing with datasets with an increased size. Next, in Section 5.3, the performance results for the approaches using the imbal-
anced classification measures can be found. Finally, Section 5.4 shows an analysis that evaluates the runtime spent by all the
imbalanced big data techniques used in the comparison.

5.1. Experimental framework: Datasets, algorithms selected for the study and parameter settings

In order to analyse the quality of the solutions provided by the different algorithms for imbalanced big data, we have se-
lected three big data problems that are available in the UCI Machine Learning Repository [4]. Specifically, we have selected
the KDD Cup 1999 dataset, the Record Linkage Comparison Patterns (RLCP) dataset and the Poker Hand dataset. In the case
where missing values were present, the attributes that contained them have been discarded.

As the selected problems contain multiple classes, we have derived several cases of study from them to address each issue
separately. Concretely, we have created new datasets using the classes that contained a notable number of samples in com-
parison with the rest as majority classes, while the classes less represented have been considered as minority classes. The
data are summarized in Table 2, where we include the number of examples (#Ex.), number of attributes (#Atts.), class name
of each class (minority and majority), number of instances for each class, class distribution and IR.

To develop the different experiments we consider a 5-fold stratified cross-validation partitioning scheme, i.e., five random
partitions of data with a 20% and the combination of four of them (80%) as training set and the remaining one as test set. The
results provided for each dataset are the average results obtained by computing the mean of all the partitions.



Table 2
Summary of imbalanced datasets.

Datasets #Ex. #Atts. Class (maj; min) #Class (maj; min) %Class (maj; min) IR

kddcup_DOS_versus_normal 4,856,151 41 (DOS; normal) (3,883,370; 972,781) (79.968; 20.032) 3.992
kddcup_DOS_versus_PRB 3,924,472 41 (DOS; PRB) (3,883,370; 41,102) (98.953; 1.047) 94.481
kddcup_DOS_versus_R2L 3,884,496 41 (DOS; R2L) (3,883,370; 1126) (99.971; 0.029) 3448.819
kddcup_DOS_versus_U2R 3,883,422 41 (DOS; U2R) (3,883,370; 52) (99.999; 0.001) 74680.192
kddcup_normal_versus_PRB 1,013,883 41 (normal; PRB) (972,781; 41,102) (95.946; 4.054) 23.667
kddcup_normal_versus_R2L 973,907 41 (normal; R2L) (972,781; 1126) (99.884; 0.116) 863.926
kddcup_normal_versus_U2R 972,833 41 (normal; U2R) (972,781; 52) (99.995; 0.005) 18707.327

poker_0_vs_2 562,530 10 (0; 2) (513,702; 48,828) (91.32; 8.68) 10.521
poker_0_vs_3 535,336 10 (0; 3) (513,702; 21,634) (95.959; 4.041) 23.745
poker_0_vs_4 517,680 10 (0; 4) (513,702; 3978) (99.232; 0.768) 129.136
poker_0_vs_5 515,752 10 (0; 5) (513,702; 2050) (99.603; 0.397) 250.586
poker_0_vs_6 515,162 10 (0; 6) (513,702; 1460) (99.717; 0.283) 351.851
poker_1_vs_2 481,925 10 (1; 2) (433,097; 48,828) (89.868; 10.132) 8.870
poker_1_vs_3 454,731 10 (1; 3) (433,097; 21,634) (95.242; 4.758) 20.019
poker_1_vs_4 437,075 10 (1; 4) (433,097; 3978) (99.09; 0.91) 108.873
poker_1_vs_5 435,147 10 (1; 5) (433,097; 2050) (99.529; 0.471) 211.267
poker_1_vs_6 434,557 10 (1; 6) (433,097; 1460) (99.664; 0.336) 296.642

RLCP 5,749,132 2 (FALSE; TRUE) (5,728,201; 20,931) (99.636; 0.364) 273.671

126 S. del Río et al. / Information Sciences 285 (2014) 112–137
In our comparisons we test all the algorithms that have been described in this work. When the sequential versions are
examined, we check the behavior of the original Random Forest (RF) and its adaptation to the imbalanced scenario
(RF-CS) described in Sections 3.1 and 3.3 respectively. The basic RF is also combined with the preprocessing approaches
described in Section 2.2.2, namely ROS, RUS and SMOTE, to deal with imbalanced datasets.

When our focus is directed towards the algorithms that are able to deal with imbalanced big data, we test the behavior of
the Random Forest Partial Implementation (RF-BigData) described in Section 3.2 and the modifications that we have added
to it, to adapt its behavior to properly deal with imbalanced data (RF-BigDataCS), detailed in Section 4.1. The RF-BigData
algorithm is again associated with the ROS, RUS and SMOTE algorithms that have been updated using MapReduce to deal
with big data and that were respectively described in Sections 4.2, 4.3 and 4.4.

Please note that we use the ‘‘BigData’’ notation to differentiate the sequential versions in contrast with the MapReduce
designs in their description, however, we will not add that suffix to the names of the preprocessing algorithms to save space.
The sequential preprocessing algorithms are run with the sequential RF versions while the MapReduce preprocessing ap-
proaches are run with the MapReduce RF.

The RF variations are run using the following parameters: maxDepth = unlimited, numFeatures = log2ðNattsÞ þ 1 and
numTrees = 100. The maxDepth, numFeatures and numTrees parameters represent how the forest is built: the numTrees
parameter indicates how many trees compose the forest, maxDepth indicates the depth of each of the trees generated and
the numFeatures parameter shows how many attributes are selected to build one of those trees.

For the RF-BigData variants we also include the parameter numMappers = 8/16/32/64 which is related to the MapReduce
procedure that is included to deal with big data: this parameter represents the number of subsets of the original data that are
created and are provided for the map tasks. In this manner, the number of trees associated to each map task is also modified
according to the number of partitions of the data, as the final forest is composed of the trees generated by each map task.

The preprocessing algorithms (ROS, RUS and SMOTE) modify the dataset until the class distribution becomes completely
balanced. The SMOTE algorithm uses the 5 nearest neighbors of minority class samples to generate new instances and it
computes the distances using the Euclidean function.

The misclassification costs used for the cost-sensitive learning approaches and the computation of the b value of the
f-measure are Cðþ j �Þ ¼ IR and Cð� j þÞ ¼ 1.

Considering the infrastructure used, all the experiments were run at the atlas research group cluster. This cluster is com-
posed of 12 nodes, each with two Intel E5-2620 microprocessors (at 2 GHz, 15 MB cache) and 64 MB of main memory, con-
nected with 1 Gb/s ethernet. All of them work under Linux CentOS 6.3. The cluster is configured with Hadoop and Mahout.
One of the nodes is configured as name-node and job-tracker, and the remaining nodes are both datanodes and trask-track-
ers. The Hadoop version used is 1.0 (Cloudera CDH4) and the Mahout version is 0.8.
5.2. Analysis of the sequential versions of the Random Forest algorithm when the size of the data available is increased

To analyse the behavior of the sequential versions when they are faced with data that grows in size, we select three of the
cases of study that were derived from the KDD Cup 1999 dataset. For each one of these cases of study, we create smaller
versions of them selecting a 10%, 20%, 30%, 40% and 50% of the samples of the original problem maintaining the proportion
between the classes. A 5-fold stratified cross-validation model is also used in the smaller versions considered in this section.
Table 3 shows the details of the selected cases of study and their generated reduced versions.



Table 3
Summary of imbalanced datasets with reduced size.

Datasets #Ex. #Atts. Class (maj; min) #Class (maj; min) %Class (maj; min) IR

kddcup_10_DOS_versus_normal 485,615 41 (DOS; normal) (388,337; 97,278) (79.968; 20.032) 3.992
kddcup_20_DOS_versus_normal 971,230 41 (DOS; normal) (776,674; 194,556) (79.968; 20.032) 3.992
kddcup_30_DOS_versus_normal 1,456,845 41 (DOS; normal) (1,165,011; 291,834) (79.968; 20.032) 3.992
kddcup_40_DOS_versus_normal 1,942,460 41 (DOS; normal) (1,553,348; 389,112) (79.968; 20.032) 3.992
kddcup_50_DOS_versus_normal 2,428,075 41 (DOS; normal) (1,941,685; 486,390) (79.968; 20.032) 3.992
kddcup_DOS_versus_normal 4,856,151 41 (DOS; normal) (3,883,370; 972,781) (79.968; 20.032) 3.992

kddcup_10_DOS_versus_U2R 388,342 41 (DOS; U2R) (388,337; 5) (99.999; 0.001) 77667.400
kddcup_20_DOS_versus_U2R 776,684 41 (DOS; U2R) (776,674; 10) (99.999; 0.001) 77667.400
kddcup_30_DOS_versus_U2R 1,165,026 41 (DOS; U2R) (1,165,011; 15) (99.999; 0.001) 77667.400
kddcup_40_DOS_versus_U2R 1,553,368 41 (DOS; U2R) (1,553,348; 20) (99.999; 0.001) 77667.400
kddcup_50_DOS_versus_U2R 1,941,711 41 (DOS; U2R) (1,941,685; 26) (99.999; 0.001) 74680.192
kddcup_DOS_versus_U2R 3,883,422 41 (DOS; U2R) (3,883,370; 52) (99.999; 0.001) 74680.192

kddcup_10_normal_versus_R2L 97,390 41 (normal; R2L) (97,278; 112) (99.885; 0.115) 868.554
kddcup_20_normal_versus_R2L 194,781 41 (normal; R2L) (194,556; 225) (99.884; 0.116) 864.693
kddcup_30_normal_versus_R2L 292,171 41 (normal; R2L) (291,834; 337) (99.885; 0.115) 865.976
kddcup_40_normal_versus_R2L 389,562 41 (normal; R2L) (389,112; 450) (99.884; 0.116) 864.693
kddcup_50_normal_versus_R2L 486,953 41 (normal; R2L) (486,390; 563) (99.884; 0.116) 863.925
kddcup_normal_versus_R2L 973,907 41 (normal; R2L) (972,781; 1126) (99.884; 0.116) 863.926
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In Tables 4 and 5 we can see the performance results for all the sequential RF versions considered in the study over the
three selected cases of study using increasing sized versions and considering the GM and b-f-measure respectively as effec-
tiveness measures. The N.D. (Not Determinable) symbol is included for some of the results and it indicates that the corre-
sponding algorithm was not able to complete the associated experiment. All the sequential implementations tested have
not been especially enhanced to deal with large datasets and have been taken or implemented as they are described in
the original references. In this manner, the presence of the N.D. symbol is not biased and the assumption that the subsequent
algorithm is not able to manage datasets this size is reliable.

In terms of the precision achieved by the different alternatives considered in the study we can first observe that there are
no differences about the increase or descent of the results when comparing the performance measures used, namely the GM
and b-f-measure. The approaches show a more or less stable performance when the training set is used, however, the results
vary depending on the case of study when we look at the test results. For the kddcup_DOS_versus_normal case we can see that
the RF algorithm is able to provide very good results that are not affected by the size of the dataset; for the kddcup_DOS_ver-
sus_U2R case of study we can see that the results in test increase when larger datasets are used while the kddcup_normal_ver-
sus_R2L case is not able to show a tendency to improvement or its opposite for its test results.

Considering the algorithms that were able to provide results we can see that the results are what were expected: for the
largest case of study, the algorithms stopped working in the smaller versions of the problem, for the medium sized, the algo-
rithms were not able to provide results when the data variants were of medium size and for the smallest one, most of the
versions were able to deal with the full sized datasets and only two algorithms were not able to provide results.

When looking at the specific type of algorithm that were able to provide an answer, we can find three groups of behavior,
one corresponding to the direct RF usage either in its basic version or in its cost-sensitive learning variant; another one that
incorporates the two oversampling approaches, ROS and SMOTE; and the third one containing only the undersampling pro-
cedure RUS. Since the oversampling approaches increase the size of the input data for the RF algorithm, it is expected that
they are the methods that are able to deal with less data. In the opposite case, we find the undersampling procedure, as the
one that can manage larger datasets because it reduces the size of the input data for RF. The direct application of RF provides
results for data with sizes larger than the ones managed by the oversampling approaches but smaller than RUS.
5.3. Analysis of the effectiveness in classification of the diverse approaches for imbalanced big data

At this point, we present the results obtained by the MapReduce RF versions that are able to manage imbalanced big data over
the whole datasets considered in the study according to the precision measures tested in this work: the GM and the b-f-measure.
Instead of using all the datasets together to get an idea of which approaches are the best for dealing with this type of data, we have
grouped the data available in three groups so that we can get a better idea of what is happening in the correct identification of
instances of each class (from bigger datasets to smaller): the cases of study derived from the kddcup dataset define the first group;
the second group involves the RLCP dataset; and the last group is composed of the cases of study derived from the poker dataset.

Table 6 shows the average results in training and test for all the MapReduce approaches studied in this work using 8, 16,
32 and 64 mappers respectively over the cases of study derived from the kddcup dataset and considering the GM perfor-
mance measure. The bold values highlight the best performing algorithm related to the number of mappers considered.
The detailed results per case of study (for all the tables in this section) are available in an associated website.1
1 <http://sci2s.ugr.es/rf_big_imb/>.

http://sci2s.ugr.es/rf_big_imb/


Table 4
Average results for the sequential RF versions for the imbalanced big data cases of study using the GM measure.

Datasets RF RF-CS ROS + RF RUS + RF SMOTE + RF

GMtr GMtst GMtr GMtst GMtr GMtst GMtr GMtst GMtr GMtst

kddcup_10_DOS_versus_normal 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
kddcup_20_DOS_versus_normal 1.000 1.000 1.000 1.000 N.D. N.D. 1.000 1.000 N.D. N.D.
kddcup_30_DOS_versus_normal N.D. N.D. N.D. N.D. N.D. N.D. 1.000 1.000 N.D. N.D.
kddcup_40_DOS_versus_normal N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.
kddcup_50_DOS_versus_normal N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.
kddcup_DOS_versus_normal N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

kddcup_10_DOS_versus_U2R 1.000 0.000 1.000 1.000 1.000 0.500 0.600 0.000 1.000 0.500
kddcup_20_DOS_versus_U2R 1.000 0.741 1.000 1.000 1.000 0.741 0.981 0.981 1.000 1.000
kddcup_30_DOS_versus_U2R 1.000 0.918 1.000 1.000 N.D. N.D. 1.000 1.000 N.D. N.D.
kddcup_40_DOS_versus_U2R N.D. N.D. N.D. N.D. N.D. N.D. 1.000 1.000 N.D. N.D.
kddcup_50_DOS_versus_U2R N.D. N.D. N.D. N.D. N.D. N.D. 1.000 1.000 N.D. N.D.
kddcup_DOS_versus_U2R N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

kddcup_10_normal_versus_R2L 1.000 0.981 0.999 0.996 1.000 0.985 0.997 0.996 1.000 0.988
kddcup_20_normal_versus_R2L 1.000 0.922 1.000 0.998 1.000 0.927 0.991 0.990 1.000 0.943
kddcup_30_normal_versus_R2L 1.000 0.960 1.000 0.998 1.000 0.961 0.993 0.992 1.000 0.967
kddcup_40_normal_versus_R2L 1.000 0.950 1.000 0.989 1.000 0.953 0.994 0.979 1.000 0.956
kddcup_50_normal_versus_R2L 1.000 0.976 1.000 0.998 1.000 0.968 0.994 0.993 1.000 0.978
kddcup_normal_versus_R2L 1.000 0.947 1.000 0.999 N.D. N.D. 0.998 0.992 N.D. N.D.

Table 5
Average results for the sequential RF versions for the imbalanced big data cases of study using the b-f-measure.

Datasets RF RF-CS ROS + RF RUS + RF SMOTE + RF

b-f-mtr b-f-mtst b-f-mtr b-f-mtst b-f-mtr b-f-mtst b-f-mtr b-f-mtst b-f-mtr b-f-mtst

kddcup_10_DOS_versus_normal 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
kddcup_20_DOS_versus_normal 1.000 1.000 1.000 1.000 N.D. N.D. 1.000 1.000 N.D. N.D.
kddcup_30_DOS_versus_normal N.D. N.D. N.D. N.D. N.D. N.D. 1.000 1.000 N.D. N.D.
kddcup_40_DOS_versus_normal N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.
kddcup_50_DOS_versus_normal N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.
kddcup_DOS_versus_normal N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

kddcup_10_DOS_versus_U2R 1.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000
kddcup_20_DOS_versus_U2R 1.000 0.700 1.000 1.000 1.000 0.875 1.000 1.000 1.000 1.000
kddcup_30_DOS_versus_U2R 1.000 0.853 1.000 1.000 N.D. N.D. 1.000 1.000 N.D. N.D.
kddcup_40_DOS_versus_U2R N.D. N.D. N.D. N.D. N.D. N.D. 1.000 1.000 N.D. N.D.
kddcup_50_DOS_versus_U2R N.D. N.D. N.D. N.D. N.D. N.D. 1.000 1.000 N.D. N.D.
kddcup_DOS_versus_U2R N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

kddcup_10_normal_versus_R2L 1.000 0.963 1.000 1.000 1.000 0.971 1.000 0.998 1.000 0.976
kddcup_20_normal_versus_R2L 1.000 0.852 1.000 1.000 1.000 0.860 1.000 0.996 1.000 0.890
kddcup_30_normal_versus_R2L 1.000 0.923 1.000 1.000 1.000 0.924 1.000 0.997 1.000 0.936
kddcup_40_normal_versus_R2L 1.000 0.903 1.000 0.981 1.000 0.909 1.000 0.969 1.000 0.915
kddcup_50_normal_versus_R2L 1.000 0.952 1.000 0.998 1.000 0.937 1.000 0.998 1.000 0.956
kddcup_normal_versus_R2L 1.000 0.896 1.000 1.000 N.D. N.D. 1.000 0.989 N.D. N.D.
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In a first glance, we can see that the results in training indicate that there is not a strong overfitting in most of the versions
(except for oversampling methods) tested as there is not a huge gap between the training and test results. Looking at that
table we can also observe that when 8 mappers are used the best performing algorithm in average is the RUS approach, clo-
sely followed by the ROS algorithm. However, when the number of mappers is increased we can see that the RUS method has
a drop in its performance greater than the loss of performance for the other methods, leaving the ROS algorithm as the best
performing one with a large number of mappers. The other algorithms also show a descent in the correct identification of
samples when the number of mappers is incremented, being that descent in a close proportion among them.

In Table 7, we can observe the average results in training and test of all the MapReduce approaches studied in this work
using 8, 16, 32 and 64 mappers respectively but in this case, considering the b-f-measure to test the performance over the
kddcup dataset cases of study. The best performing algorithm is highlighted in bold for each number of mappers considered.

When the b-f-measure is used we can see that the tendencies observed for the GM have not changed. There is no over-
fitting (except for oversampling techniques) as the performance in training and test results is not quite different. For this
measure, we can see again that the RUS algorithm is the one that obtains better results when using a smaller number of map-
pers while it is the ROS algorithm the one that performs better when a larger number of mappers are used. This behavior
appears because the RUS algorithm is more degraded than the ROS algorithm when the number of mappers grows due to



Table 6
Average GM results for the MapReduce RF versions using 8, 16, 32 and 64 mappers on the imbalanced big data kddcup cases.

Dataset Average (kddcup)

8 Mappers 16 Mappers 32 Mappers 64 Mappers

GMtr GMtst GMtr GMtst GMtr GMtst GMtr GMtst

Big data versions
RF-BigData 0.7620 0.7505 0.6985 0.6976 0.6852 0.6836 0.6626 0.6598
RF-BigDataCS 0.9404 0.9305 0.9480 0.9651 0.9173 0.9328 0.9372 0.9286
ROS + RF-BigData 1.0000 0.9661 0.9999 0.9696 0.9999 0.9773 0.9999 0.9857
RUS + RF-BigData 0.9869 0.9843 0.9490 0.9336 0.7103 0.7104 0.7049 0.7048
SMOTE + RF-BigData 0.9477 0.9140 0.9381 0.9191 0.9445 0.9091 0.8994 0.8722

Table 7
Average b-f-measure results for the MapReduce RF versions using 8, 16, 32 and 64 mappers on the imbalanced big data kddcup cases.

Dataset Average (kddcup)

8 Mappers 16 Mappers 32 Mappers 64 Mappers

b-f-mtr b-f-mtst b-f-mtr b-f-mtst b-f-mtr b-f-mtst b-f-mtr b-f-mtst

Big data versions
RF-BigData 0.7169 0.7111 0.6842 0.6825 0.6605 0.6576 0.6252 0.6208
RF-BigDataCS 0.9008 0.9038 0.9132 0.9406 0.8784 0.8968 0.8969 0.8836
ROS + RF-BigData 1.0000 0.9406 0.9999 0.9473 0.9999 0.9608 0.9999 0.9735
RUS + RF-BigData 0.9864 0.9816 0.9642 0.9444 0.8839 0.8841 0.8527 0.8525
SMOTE + RF-BigData 0.9111 0.8707 0.9250 0.8985 0.9088 0.8522 0.8602 0.8173
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the small sample size problem. The rest of the algorithms have a similar degradation development when the number of map-
pers is decreased.

These results in performance are directly related to the number of instances present in the mapper to build the final mod-
el. In Fig. 10 we can see for the first partition of the kddcup_DOS_vs_PRB case of study the average number of minority class
instances per mapper that are made available for the RF-BigDataCS approach (Fig. 10a), the ROS approach (Fig. 10b), and the
RUS method (Fig. 10c).

Fig. 10 shows three curves with a same tendency in the number of examples available, however, the magnitude of the
minority class samples is notably higher for the ROS algorithm than for the other two approaches. When we consider the
most difficult case, using 64 mappers, we can see that the ROS methodology has approximately 90 more times the number
of instances than the other methods.

In this case, we can observe a small sample size problem for the minority class when we are using the RF-BigDataCS ap-
proach or the RUS method. The number of samples from the minority class that are used when a higher number of mappers
are considered is considerably smaller than the original minority class and amplifies the lack of density that is inherent to
some imbalanced distributions. In fact, this reduction of available samples can even be detected with a quantity of mappers
not that high.

The small sample size problem has even a greater impact when the RF algorithm is used. The original RF algorithm (and
all its versions) first perform a bootstrap sample of the dataset given to the algorithm. This bootstrap sample is said to pre-
serve about two-thirds of the original population samples while it leaves one-third of the samples out of it. This means, that
each random tree that is learned does not consider one-third of the minority class instances available in the problem, an
event which causes a bias when we do not have enough samples to properly represent the class.
Fig. 10. Average number of positive instances by mapper for kddcup_DOS_vs_PRB.



Fig. 11. Average results for kddcup_DOS_vs_PRB using the GM measure.
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In this manner, the ROS algorithm is less affected by the small sample size problem because it provides a high number of
samples from the positive class in comparison with the other algorithms. However, it is not only because it provides a higher
number of examples but, because it replicates the original number of minority class samples so that the examples available
can be represented in the bootstrap thus alleviating the lack of density.

Fig. 11 shows the average results for the first partition of the kddcup_DOS_vs_PRB case of study for the algorithms con-
sidered for the previous graph: the RF-BigDataCS approach (Fig. 11a), the ROS approach (Fig. 11a), and the RUS method
(Fig. 11c). This figure shows the evolution of the GM, the sensitivity and specificity measures when the number of mappers
is varied.

When we analyse each of the graphs separately we can find that the results shown match the extracted conclusions from
the previous tables.

� For the RF-BigDataCS algorithm we can see that the diminishment in the GM when using a larger number of mappers
comes from a loss of performance for the minority class as we do not have enough samples to create a reliable RF model
when the number of mappers is large. These are clear signs of the small sample size problem on the minority class.
� When we look at the results for the ROS algorithm used together with RF-BigData we can see that results are very good for

both the GM and the sensitivity measures, with a slight drop in performance for the correct identification of the majority
class. In this case, we avoid the small sample size problem because we have extra samples to identify the minority class.
� The RUS method combined with RF decreases its GM because the accuracy in its classification for both classes decreases

when the number of mappers is incremented. This method is a example of how the number of examples can degrade a
classifier performance as we observe the small sample size problem for both classes when the number of mappers is
incremented.

In Tables 8 and 9 the average results in training and test of all the MapReduce approaches studied in this work using 8, 16,
32 and 64 mappers respectively and considering the GM and b-f-measure performance measures respectively are shown for
the RLCP dataset. The bold values highlight the best performing method for each number of mappers considered.

Considering the results presented in both tables we can see, first of all, that there are no differences in behavior depending
on the performance measure used in each dataset, so the information that can be extracted from the two tables is the same.
Considering the practically lack of differences between the training and test results for each algorithm we can also say that
the approaches tested do not suffer from the overfitting problem. When we compare the approaches tested, we can see that
there are two groups of behavior with respect to the performance obtained: the basic RF-BigData algorithm and its usage
together with the SMOTE algorithm, which do not provide good results for the classification; and the RF-BigDataCS, the
ROS and RUS methods used together with the RF-BigData method which obtain a good performance for all the cases consid-
ered. This second group of algorithms with good behavior does not show a drop in the performance when the number of
mappers used is incremented.

Table 10 presents the GM average results in training and test of all the MapReduce approaches studied in this work using
8, 16, 32 and 64 mappers respectively over the poker dataset cases of study. The best performing algorithm is highlighted in
bold for each number of mappers considered.

Table 10 allows us to divide again the algorithms in two groups according to their results: the basic RF-BigData algorithm
and its usage with SMOTE, which obtain very poor results for the cases under consideration; and the RF-BigDataCS algorithm
together with the ROS and RUS methods that are combined with the basic RF-BigData approach which are able to yield better
results.

Comparing the performance obtained in training and test we can see that there is some overfitting for all the algorithms
considered, however, it is especially noticeable for the ROS algorithm with a smaller number of mappers. Considering the
performance of the RF-BigDataCS method, we can see that it obtains the best performance with a smaller number of mappers
and it is only exceeded by the ROS method when using 64 mappers. The RF-BigDataCS method reduces its performance when
the number of mappers is increased while the ROS algorithm is able to increase its efficacy when that situation arises, due to
the small sample size problem. The RUS approach starts with a better behavior than ROS when it is run using 8 mappers,
however, RUS also lowers its performance when the number of mappers grows leaving this algorithm at disadvantage



Table 8
Average GM results for the MapReduce RF versions using 8, 16, 32 and 64 mappers on the RLCP dataset.

Dataset RLCP

8 Mappers 16 Mappers 32 Mappers 64 Mappers

GMtr GMtst GMtr GMtst GMtr GMtst GMtr GMtst

Big data versions
RF-BigData 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116
RF-BigDataCS 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932
ROS + RF-BigData 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932
RUS + RF-BigData 0.932 0.932 0.932 0.932 0.931 0.931 0.931 0.931
SMOTE + RF-BigData 0.117 0.116 0.118 0.118 0.118 0.118 0.118 0.118

Table 9
Average b-f-measure results for the MapReduce RF versions using 8, 16, 32 and 64 mappers on the RLCP dataset.

Dataset RLCP

8 Mappers 16 Mappers 32 Mappers 64 Mappers

b-f-mtr b-f-mtst b-f-mtr b-f-mtst b-f-mtr b-f-mtst b-f-mtr b-f-mtst

Big data versions
RF-BigData 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
RF-BigDataCS 0.992 0.991 0.992 0.991 0.992 0.991 0.991 0.991
ROS + RF-BigData 0.992 0.991 0.992 0.992 0.992 0.992 0.992 0.992
RUS + RF-BigData 0.991 0.991 0.991 0.991 0.991 0.991 0.990 0.990
SMOTE + RF-BigData 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014

Table 10
Average GM results for the MapReduce RF versions using 8, 16, 32 and 64 mappers on the imbalanced big data poker cases.

Dataset Average (poker)

8 Mappers 16 Mappers 32 Mappers 64 Mappers

GMtr GMtst GMtr GMtst GMtr GMtst GMtr GMtst

Big data versions
RF-BigData 0.191 0.108 0.066 0.053 0.038 0.035 0.023 0.021
RF-BigDataCS 0.946 0.878 0.926 0.853 0.891 0.818 0.828 0.771
ROS + RF-BigData 0.974 0.748 0.972 0.810 0.943 0.816 0.948 0.863
RUS + RF-BigData 0.885 0.843 0.838 0.811 0.793 0.772 0.705 0.696
SMOTE + RF-BigData 0.231 0.206 0.205 0.201 0.198 0.195 0.091 0.076
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against ROS which has a different attitude in that case. We find again in this case the results of the small sample size problem
associated to the minority class as we increase the number of splits performed in the data.

In Table 11, the average results in training and test of all the MapReduce approaches studied in this work using 8, 16,
32 and 64 mappers are presented for the poker dataset cases of study and using to test the effectiveness of the approaches
the b-f-measure. The bold values highlight the best performing method for each number of mappers considered.

The results obtained using the b-f-measure are equivalent to the ones discussed for the GM: there is overfitting for all the
algorithms and being more obvious for the ROS method. The basic RF-BigData algorithm and its usage together with SMOTE
provide poor results for the poker cases of study. The RF-BigDataCS is the best performing algorithm when a smaller number
of mappers is used but it is outperformed by ROS when the number of mappers is 64. RF-BigDataCS and RUS offer worse
results when the number of mappers is increased in contrast with ROS that obtain better performance results in that case.

To sum up, in this study we have tested the different approaches developed in this work over a wide range of cases of
study that have helped us to have an insight into imbalanced big data. There is not a clear winner, however, we would like
to highlight three of the methods tested: the RF-BigDataCS approach, ROS and RUS. The RUS method is very effective when
dealing with a small number of mappers while ROS is very useful when larger values of mappers are used because it is able to
come up against the small sample size problem. The cost-sensitive learning is not as good as ROS when a high number of
mappers is used but it provides a good trade-off when smaller number of mappers are considered.

In the contrary case, the SMOTE algorithm, which is one of the best performing in the imbalanced scenario, has provided
poor results in several of the cases considered. These results suggest that another view should be taken to generate synthetic
minority samples in the imbalanced big data scenario.



Table 11
Average b-f-measure results for the MapReduce RF versions using 8, 16, 32 and 64 mappers on the imbalanced big data poker cases.

Dataset Average (poker)

8 Mappers 16 Mappers 32 Mappers 64 Mappers

b-f-mtr b-f-mtst b-f-mtr b-f-mtst b-f-mtr b-f-mtst b-f-mtr b-f-mtst

Big data versions
RF-BigData 0.068 0.031 0.019 0.014 0.008 0.006 0.003 0.002
RF-BigDataCS 0.990 0.881 0.965 0.842 0.911 0.787 0.803 0.709
ROS + RF-BigData 0.965 0.624 0.976 0.721 0.946 0.739 0.957 0.808
RUS + RF-BigData 0.919 0.840 0.867 0.816 0.821 0.781 0.771 0.753
SMOTE + RF-BigData 0.203 0.200 0.200 0.200 0.194 0.191 0.043 0.034
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5.4. Analysis of the runtime of the diverse approaches for imbalanced big data

One of the main issues about using distributed and parallel implementations is the obtaining of better runtime results. In
this section we compare the runtime between all the approaches for imbalanced big data for the different problems selected
and the diverse number of mappers used in the experiments. We present the average results for the runtime in a similar
manner to the analysis of the precision given in Section 5.3, presenting in a first group the results for the cases of study based
on the kddcup dataset; then, the runtime associated to the RLCP dataset; and finally, the cases of study based on the poker
dataset are shown.

Table 12 shows the average time elapsed in seconds and in the hh:mm:ss.SS format for the cases of study derived from
the kddcup dataset on the MapReduce algorithms selected for imbalanced big data with 8, 16, 32 and 64 mappers respec-
tively. Fig. 12 represents this information using a logarithmic scale. For this and future tables we use the hh:mm:ss.SS for-
mat: we show the hours spent using the hh symbol, the minutes needed with the mm symbol, the seconds are represented
through the ss digits, and the SS token represents the centiseconds elapsed. The bold values highlight the quickest algorithm
for each number of mappers considered.

Considering these results, we can see that the runtime spent is directly related to the operations that need to be
performed by the different approaches. The quickest method is the basic RF-BigData approach, followed in speed by the
RF-BigDataCS method. Then, RUS is the next method considering the execution times, pursued by ROS and SMOTE.

When we observe the performance of the methods considering the different number of mappers, we can detect three dif-
ferent groups of behavior: one for the RUS method; another for RF-BigData, RF-BigDataCS and ROS; and a third one for
SMOTE.

The RUS method seems to have stable runtimes with respect to the number of mappers in the experiments. In this case, it
is very difficult to find a speed gain when larger values for the number of mappers are used.

RF-BigData, RF-BigDataCS and ROS runtime slowly descends when we increase the number of mappers. However, this
speed gain is not equally distributed. When 16 mappers are tested against 8 mappers, the advance in the runtime can be
appreciated, however, when 32 and 64 mappers are compared we cannot find differences in the time needed for the algo-
rithms to run.

The SMOTE algorithm is the slowest algorithm considered for the kddcup cases of study. Even though it starts with slow
runtimes in comparison with the other algorithms, the improvement that can be seen for the method when the number of
mappers is augmented is notable for all the different number of mappers. Furthermore, we can also observe that the speed
gain is less powerful when higher values of mappers are considered.

Table 13 displays in seconds and in the hh:mm:ss.SS format the runtime for the RLCP dataset using the MapReduce algo-
rithms developed for imbalanced big data with 8, 16, 32 and 64 mappers respectively. Fig. 13 represents this information
using a logarithmic scale.

When ordering the alternatives with respect to the runtime spent, we can see that the order obtained in the previous
cases is maintained: the fastest method is RF-BigData, followed by RF-BigDataCS and RUS, which are pursued by ROS and
SMOTE.
Table 12
Average runtime elapsed in seconds and in the hh:mm:ss.SS format for the MapReduce RF versions on the imbalanced big data kddcup cases.

Dataset Average (kddcup)

8 Mappers 16 Mappers 32 Mappers 64 Mappers

seconds hh:mm:ss.SS seconds hh:mm:ss.SS seconds hh:mm:ss.SS seconds hh:mm:ss.SS

Big data versions
RF-BigData 169.03 0:02:49.03 122.91 0:02:02.91 110.29 0:01:50.29 110.37 0:01:50.37
RF-BigDataCS 238.15 0:03:58.15 190.86 0:03:10.86 179.44 0:02:59.44 178.17 0:02:58.17
ROS + RF-BigData 440.86 0:07:20.86 336.26 0:05:36.26 318.17 0:05:18.17 300.97 0:05:00.97
RUS + RF-BigData 205.20 0:03:25.20 200.11 0:03:20.11 196.63 0:03:16.63 194.87 0:03:14.87
SMOTE + RF-BigData 6694.61 1:51:34.61 1863.29 0:31:03.29 679.38 0:11:19.38 445.00 0:07:25.00



Fig. 12. Average runtime over the kddcup cases (logarithmic scale).

Table 13
Runtime elapsed in seconds and in the hh:mm:ss.SS format for the MapReduce RF versions on the RLCP dataset.

Dataset RLCP

8 Mappers 16 Mappers 32 Mappers 64 Mappers

seconds hh:mm:ss.SS seconds hh:mm:ss.SS seconds hh:mm:ss.SS seconds hh:mm:ss.SS

Big data versions
RF-BigData 131.55 0:02:11.55 99.12 0:01:39.12 89.71 0:01:29.71 87.80 0:01:27.80
RF-BigDataCS 179.04 0:02:59.04 140.18 0:02:20.18 128.34 0:02:08.34 127.45 0:02:07.45
ROS + RF-BigData 454.57 0:07:34.57 361.70 0:06:01.70 348.70 0:05:48.70 208.75 0:03:28.75
RUS + RF-BigData 140.50 0:02:20.50 136.40 0:02:16.40 136.34 0:02:16.34 130.48 0:02:10.48
SMOTE + RF-BigData 9684.96 2:41:24.96 1675.56 0:27:55.56 428.06 0:07:08.06 487.83 0:08:07.83
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Looking at groups of behavior, we can find in this case four different attitudes: one for the RUS method; another for
RF-BigData and RF-BigDataCS; a third one for ROS and a fourth for SMOTE.

The RUS method maintains an equivalent behavior to the one observed for kddcup: it has stable runtimes with respect to
the number of mappers in the experiments. RF-BigData and RF-BigDataCS also preserve their behavior as their runtime im-
proves its speed when the number of mappers is increased, however, that improvement is not much appreciated when 32
and 64 mappers are used with respect to the speed gain obtained when 16 mappers are considered.

The ROS method is the one that shows a continuous speed gain, however, it is more notable when higher values for the
number of mappers are employed in contrast with RF-BigData and RF-BigDataCS.

The SMOTE algorithm again starts with slow runtimes in comparison with the other algorithms, the improvement that
can be seen for the method when the number of mappers is enlarged is notable when 16 and 32 mappers are used, however,
when 64 mappers are used the runtime suffers from a negative effect that increases the execution times.

Table 14 presents the average runtime for the poker cases of study in seconds and in the hh:mm:ss.SS format. This run-
time is referred to the MapReduce algorithms developed for imbalanced big data and has been tested with 8, 16, 32 and 64
mappers respectively. Fig. 14 represents this information using a logarithmic scale.

The different approaches are positioned according to their runtime in a similar manner than the one observed in the pre-
vious groups: the fastest method is RF-BigData closely followed by RF-BigDataCS, then we find the RUS method and finally
we encounter the ROS and SMOTE algorithms.
Fig. 13. Average runtime over the RLCP dataset (logarithmic scale).



Table 14
Average runtime elapsed in seconds and in the hh:mm:ss.SS format for the MapReduce RF versions on the imbalanced big data poker cases.

Dataset Average (poker)

8 Mappers 16 Mappers 32 Mappers 64 Mappers

seconds hh:mm:ss.SS seconds hh:mm:ss.SS seconds hh:mm:ss.SS seconds hh:mm:ss.SS

Big data versions
RF-BigData 67.51 0:01:07.51 66.12 0:01:06.12 59.92 0:00:59.92 58.85 0:00:58.85
RF-BigDataCS 70.41 0:01:10.41 63.35 0:01:03.35 60.23 0:01:00.23 59.10 0:00:59.10
ROS + RF-BigData 113.44 0:01:53.44 98.58 0:01:38.58 93.67 0:01:33.67 87.19 0:01:27.19
RUS + RF-BigData 80.70 0:01:20.70 78.36 0:01:18.36 76.17 0:01:16.17 72.81 0:01:12.81
SMOTE + RF-BigData 338.35 0:05:38.35 141.54 0:02:21.54 105.43 0:01:45.43 102.53 0:01:42.53
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When we try to establish different patterns of behavior for the approaches, we are able to establish three groups as in the
first case: one for the RUS method; another for RF-BigData, RF-BigDataCS and ROS; and a third one for SMOTE. Looking at
groups of behavior, we can find in this case four different attitudes: one for the RUS method; another for RF-BigData and
RF-BigDataCS; a third one for ROS and a fourth for SMOTE.

The RUS method maintains an equivalent behavior to the one previously observed: it has stable runtimes with respect to
the number of mappers in the experiments. RF-BigData, RF-BigDataCS and ROS slightly improve their runtime as the number
of mappers are enlarged, however, that improvement is not clearly shown when 32 and 64 mappers are used in contrast with
the improvement observed when 16 mappers are considered. The SMOTE algorithm also starts with slow runtimes which
enable it to obtain a higher speed gain for all the different number of mappers. However, this speed gain is less impressive
as the used number of mappers is higher.

To summarize the findings of this runtime study we can say that the runtimes obtained by each algorithm are what are
expected from them considering the operations that have to be computed in order to obtain a final result. The simplest ap-
proach, RF-BigData, is usually the fastest one, closely followed by RF-BigDataCS that only adds extra computation in its inter-
nal operations. The RUS method is also relatively quick and can be considered as fast as these simpler methods in general.

On the other hand, the oversampling approaches are the ones that present higher runtimes with respect to the other
methods considered for handling imbalanced big data. ROS is a rather straightforward algorithm that does not spend much
time preparing the input dataset for RF while the SMOTE algorithm needs to spend some time preparing the input data with
some non-trivial operations, something that notably increases the runtime needed to complete an experiment.

We have also seen that when the number of mappers is increased it generally implies a reduction on the runtime. How-
ever, this reduction is not uniform for all the number of mappers, datasets and algorithms. The greatest diminution in the
runtime is found for the slowest algorithms, the preprocessing methods, and for the larger datasets such as the cases of study
based on kddcup. When we use fast methods over smaller problems the gain when using a larger number of mappers is usu-
ally imperceptible. That is clearly observed for the RUS algorithm, as speed gains are not observed in any cases. Furthermore,
using larger values of the number of mappers does not usually imply great speed gains in most of the cases and smaller val-
ues for this parameter are preferred.

This situation arises due to the overhead introduced by the Hadoop environment when running the algorithms: when the
total runtime is small, the time spent distributing the data and collecting the results around the processing nodes is quite
noticeable with respect to the processing time spent in each node. That is why the speed gain is higher in the methods that
need to perform more complex operations and in bigger datasets.

Finally, we selected as good approaches the RF-BigDataCS method together with the RUS and ROS algorithms, but we
have found here that they have different behavior with respect to the runtime. In this manner, the RF-BigDataCS and RUS
approaches demonstrated a good performance for a small or medium sized number of mappers because they suffer from
the small sample size problem when the number of mappers is elevated. As these methods do not gain much in runtime
by increasing the number of mappers it is best in these cases to use them with these number of mappers. On the other hand,
Fig. 14. Average runtime over the poker cases (logarithmic scale).
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the ROS algorithm tends to obtain more precise results when a higher number of mappers are used. As it is a slower algo-
rithm than the mentioned approaches and it is benefited by the runtime gain when larger values for the number of mappers
are found, it would be a good idea to use it with a relatively high number of mappers.
6. Concluding remarks

In this work we have presented a comparison among several techniques for imbalanced big data. More specifically, we
have contrasted different approaches for imbalanced classification, namely, ROS, RUS, the SMOTE algorithm and cost-
sensitive learning which we have adapted to deal with big data. In order to do so, we used the RF algorithm as base, which
is a well-known decision tree ensemble famous for its good performance.

Nowadays, big data is gaining recognition because of the large amounts of data that are currently generated. The tradi-
tional data mining approaches are not able to cope with the new requirements imposed by big data. In this manner, we use
one of the most popular environment nowadays to deal with big data: the MapReduce framework. We use the Hadoop
framework, which is the most popular open source implementation of MapReduce which facilitates the development of
scalable and distributed solutions. Furthermore, one of the complications that difficult the extraction of useful information
is the problem of classification with imbalanced datasets and the importance of this problem resides on its prevalence in
numerous real-world applications. Big data is also affected by this kind of unequal distribution because of the variety and
veracity of the collected information.

The results obtained show that the sequential versions are not an appropriate approach to deal with imbalanced big data
and it is necessary to address those problems to provide appropriate solutions when the size of the data available is in-
creased, such as the MapReduce approaches suggested in this work. The execution time is reduced typically when the num-
ber of mappers is increased, however, a too large number of mappers may cause a negative impact in the performance, due to
the small sample size problem.

We have also found that there is not a best approach to deal with imbalanced big data when using the RF algorithm since
it depends on the type of problem and the influence of the lack of density over the specific approach. We can highlight the
poor classification performance of the SMOTE algorithm in the imbalanced big data problems considered when it is adapted
for big data as it is considered one of the more competitive methods for imbalanced classification. Furthermore, we have also
seen that the RUS version drops in classification performance to a greater extent than its competitors when increasing the
number of mappers because it is affected in a greater degree by the small sample size problem.

On the other hand, the obtained results allow us to conclude that is needed to analyse the topic in more depth about the
following challenges:

1. It is needed to determine the threshold for the minority class with respect to the number of mappers in order to find
the best configuration that provides a better performance and lesser response time. Our results show that in the
extremely imbalanced big data problems considered the average results are much lower and the small sample size
is encountered.

2. Considering the results of the SMOTE algorithm, is necessary to design new techniques that are able to generate syn-
thetic data that represent the minority class instances in the best way when a MapReduce framework is used.

3. It is necessary to analyse some data intrinsic characteristics that interact with this issue aggravating the problem in
order to increase the performance with imbalanced big data. It is needed to pay special attention to the presence of
noisy and borderline examples since these characteristics can difficult the imbalanced problem when the number of
minority class examples included in a mapper’s partition is too small; the induction of the small sample size problem
over the selected datasets; the presence of small disjuncts in the data when the size of the original data is reduced;
the overlapping between the classes which can be spread by the division of the original data in subsets and the data-
set shift problem that is aggravated even more when increasing the number of splits.

In future studies, it is necessary to study in depth the described challenges so that the classification performance can be
greatly improved with new approaches. Furthermore, it is also advisable to improve the current approaches considering the
small sample size problem so that we can decrease the performance loss observed when using a higher number of mappers.
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