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One-vs-One strategy divides the original multi-class problem into as many binary classifi-
cation problems as pairs of classes. Then, independent base classifiers are learned to face
each problem, whose outputs are combined to predict a single class label. This way, the
accuracy of the baseline classifiers without decomposition is usually enhanced, aside from
enabling the usage of binary classifiers, i.e., Support Vector Machines, to solve multi-class
problems. This paper analyzes the fact that existing aggregations favor easily recognizable
classes; hence, the accuracy enhancement mainly comes from the higher correct classifica-
tion rates over these classes. Using other evaluation criteria, the significant improvements
of One-vs-One are diminished, showing a weakness due to the presence of difficult classes.
Difficult classes can be defined as those obtaining a lower correct classification rate than
that obtained by the other classes in the problem. After studying the problem of difficult
classes in this framework and aiming to empower these classes, a novel similarity-based
aggregation is presented, which generalizes the well-known weighted voting. The experi-
mental analysis shows that the new methodology is able to increase the recognition of dif-
ficult classes, obtaining a more balanced performance over all classes, which is a desirable
behavior. The methodology is tested within several Machine Learning paradigms and is
compared with the state-of-the-art on aggregations for One-vs-One strategy. The results
are contrasted by the proper statistical tests, as suggested in the literature.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Classification problems involving multiple categories are more general than their binary counterparts. When multiple
classes are present, the complexity of finding the decision boundaries usually increases, making the construction of the
classifiers more difficult. A number of real-world problems involve the classification of multiple classes, for instance, the
classification of texts [44], microarrays [58] or textures [40].

Decomposition strategies [42] are commonly used to overcome these type of problems. In some cases, because the base
classifier cannot deal with multiple classes by itself, whereas in others, because these strategies enhance the results of the
baseline classifiers (without using decomposition) [24,56]. These strategies, also called binarization strategies, are based on
divide and conquer paradigm, and most of them can be included within Error Correcting Output Codes (ECOC) [14,4]
nechea),
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Fig. 1. An example of the difficult classes problem. The class in the center is more difficult to be correctly classified due to its overlapping with the other two
classes.
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framework. One of the most commonly used strategy is One-vs-One (OVO) [37], where the original problem is divided in as
many pairs of classes as possible. When a new instance is presented to all the base classifiers, which were independently
learned for each pair of classes, an aggregation is used to decide the final class label. In [24], an extensive review of different
aggregations was carried out, concluding that the best aggregation depends on the base learner, but the weighted voting [35]
and those based on probability estimates [62] were proven to be the most robust, even though no significant differences
were often found.

In the specialized literature different studies analyzing the behavior of multi-class learning algorithms have been carried
out, such as those learning class structures, which speed-up the test phase in problems with a huge amount of classes
[9,64,45], those studying the consistency of multi-class classification [41,59] or works dealing with the calibration of prob-
abilistic classifiers in multi-class problems [38,20].

Within a multi-class problem, the characteristics defining the classes are usually different: for example, the number of
instances, the inter-class relations and the overlapping with other classes may vary. Depending on these characteristics,
some of the classes might be easier to distinguish than others. Difficult classes can be defined as those obtaining a lower cor-
rect classification rate; that is, the number of correctly classified examples from the class divided by the total number of
examples from that class (True Positive Rate, TPR1). The TPR of a class varies depending on both the mentioned characteristics
and the classifier used, hence, this definition is subjective, since some classes might be easier or more difficult for a classifier
than for another one. However, most of the classifiers are affected by the characteristics of the classes, being this part the most
important one.

In this scenario, using the most commonly considered metric, i.e., accuracy rate (percentage of correctly classified exam-
ples) as an evaluation criterion, these classes might lose their importance, since it averages the results over all instances
without taking into account the TPR over each class [36]. As a consequence, it becomes easier to increase the accuracy
improving the classification of the easiest classes in exchange for misclassifying some of the instances from these difficult
ones. This problem comprises the well-known class imbalance problem [31,25], where the difficult classes are those un-
der-represented in the data-set; however, the problem of difficult classes is more general, since the hitch is not only caused
by the skewed class distribution. For this reason, traditional solutions proposed for class imbalance, such as balancing the
data-set, are not useful in this context and different approaches must be studied.

In this paper, we aim to undertake multi-class learning problems from a different perspective and centering on a com-
pletely distinct problem, i.e., the problem of difficult classes and its possible solutions from the point of view of decompo-
sition strategies, and more specifically, paying attention to OVO strategy. We tackle the problem with a double study:

1. OVO strategy weakens when the enhancement is sought for the difficult classes. We aim to explain the reason why this
occurs, which is mainly due to the way in which the decomposition is carried out and the aggregation used.

2. We introduce a new aggregation model based on similarity measures [10], which enables the modification of the decision
boundaries of the base classifiers; in such a way, the classification of the difficult classes can be boosted without changing
the underlying base classifiers. Hence, this methodology is independent of the base classifier, allowing the achievement of
1 We refer to the true values of the TPR to show the difficult classes problem in Sections 2 and 3. Since these values cannot be obtained from data, the
estimated TPR, by means of the results on the test sets in the cross-validation procedure, are considered to report the results along the experiments.
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solutions that cannot be obtained if the enhancement of the base classifiers is sought separately (as we will show follow-
ing the example of Fig. 1 in Section 2.2).

In order to study this problem and show the validity of our proposal in the framework of OVO strategy, the experiments
carried out in this paper include a set of twenty-eight real-world problems from KEEL [3,2] and UCI [5] data-set repositories
and several well-known classifiers from different paradigms: Support Vector Machines (SVMs) [60], decision trees [53] and
instance-based learning [1]. Besides the usage of the accuracy rate to evaluate the performance of the classifiers, we include
other measures [36] accounting for the problem of difficult classes (introduced in Section 2.2). The comparisons among the
results obtained are contrasted using the proper statistical tests, as suggested in the literature [13,28].

The remainder of this paper is as follows. In Section 2, the problem of difficult classes is analyzed, focusing on OVO strat-
egy. Next, Section 3 shows our proposal to empower the difficult classes in OVO. The tuning of the parameters to benefit the
difficult classes is presented in Section 4. The experimental framework used to carry out the empirical analysis is presented
in Section 5. The experimental analysis, showing the weakness of OVO and studying the validity of our aggregation, is devel-
oped in Section 6. Thereafter, Section 7 discusses the results obtained and the future research lines emerged out of this work.
Finally, Section 8 concludes the paper.
2. Difficult classes problem in One-vs-One strategy

In this section, we start recalling the basis of OVO strategy and its simplest aggregation, the voting method (SubSec-
tion 2.1). Then, we introduce the problem of difficult classes and we analyze the performance measures that are considered
in this paper (SubSection 2.2). Finally, we aim to show the difficult classes problem in OVO scheme (SubSection 2.3).
2.1. One-vs-One decomposition

OVO consists of dividing a m-class problem into mðm� 1Þ=2 binary subproblems considering all the possible pairs of clas-
ses, these subproblems are formed of the instances from the pair of classes considered and are faced by independent base
learners. This binarization procedure is supposed to produce simpler subproblems, aside from enabling the classifiers orig-
inally designed to deal with two-class problems (e.g., SVM [60,33,55,34,32]) to address multiple classes problems.

In order to label a new instance, it is submitted to all the base classifiers. Each classifier, distinguishing a pair of classes
fCi;Cjg, outputs a confidence degree rij 2 ½0;1� in favor of Ci; thus, the confidence in favor of Cj is computed as rji ¼ 1� rij. All
the confidence degrees can be organized within a score-matrix R, given by Eq. (1):
R ¼

� r12 � � � r1m

r21 � � � � r2m

..

. ..
.

rm1 rm2 � � � �

0
BBBB@

1
CCCCA ð1Þ
From the score-matrix, the final output class is inferred. Different aggregations have been presented in the literature to per-
form this task [24]. The simplest aggregation, yet powerful, is the voting strategy, where each classifier votes for its predicted
class, and the class obtaining the largest number of votes is predicted:
Class ¼ arg max
i¼1;...;m

X
16j–i6m

sij ð2Þ
where sij is 1 if rij > rji and 0 otherwise.
The aggregation phase is critical in OVO scheme. Given that the decomposition procedure is fixed, the way in which the

class is selected can alter the predictions, and therefore, most of the problems of OVO strategy arise at this point. The selec-
tion of the aggregation method is the first problem; notice that if all the classifiers distinguishing the real class of the in-
stance make a correct prediction, any aggregation should be able to predict the correct class. However, if any of them
fails, the aggregation strategy must decide upon the class to be predicted, which might not be the real class. Despite the
number of existing aggregations, no significant differences are usually found among their usage [24], since all of them start
from the same score-matrices. Another problem is the so-called non-competence [29,26]. Some of the classifiers giving a
confidence for the instance to be classified have no knowledge about the real class of the instance (they have not been
trained using instances from that class); hence, they might distort the results of the aggregation. Even though this problem
has received low attention in the literature, it has been shown that reducing the number of non-competent classifiers can
lead to an enhancement of the results [26]. Hierarchical strategies [45] can also reduce the number of non-competent clas-
sifiers evaluated, but these strategies are mainly focused on reducing the computational complexity rather than in improving
the results obtained, avoiding non-competent classifiers. In this work, we focus on another problem that we have identified
in OVO strategy, the difficult classes problem, which we put forward hereafter.
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2.2. Difficult classes problem

The characteristics of each class within a problem are directly translated into their degree of separability. Even though all
the classes in a problem could be equally separable, this is not the usual case, since their characteristics generally differ. The
simplest way to present the difficult classes problem is by means of the example shown in Fig. 1(a). One can observe that the
class in the center is more difficult to distinguish than the other two due to the class overlapping. In this example, a classifier
maximizing accuracy could define the three regions shown in Fig. 1(b), from which the classification would be carried out.

In this case, two of the classes have achieved a high TPR (TPR ¼ 95%), whereas the TPR of the difficult one is only of the
60%, being the accuracy rate of the 83.33%. Assuming that the difficult class is the concept of interest of the problem, or at
least it is as important as the rest of the classes, it would be interesting to obtain lower TPRs for the easier classes, while
increasing that of the difficult one. For example, obtaining a TPR ¼ 83:33% (homogeneous) for all the classes, which would
lead to the same accuracy rate of the 83.33%, which is completely different from the real situation; in this case, all classes
would be equally recognized, whereas in the previous, there was a difficult class achieving a low TPR. This last result could
be much better than the previous one in many problems that require to equally recognize all classes [52,47]. As we have
shown in this example, a very important point when dealing with difficult classes is that the most commonly used metric
does not reflect the problem, since the same accuracy rate is achieved in both cases, whereas the results on the difficult class
highly differ.

This is why in this paper, in addition to the accuracy rate, we need to consider other measures accounting for the difficult
classes problem [36]. We should recall that the accuracy rate is computed as
Table 1
On the
Heterog

Class

Hete
Hom
Acc ¼ 1
nT

Xm

i¼1

TPRi � ni; ð3Þ
where ni is the number of examples of class i and nT is the total number of examples evaluated. In fact, the issue that the
accuracy rate is the weighted mean of the TPRs over each class, where the weights are given by the proportion of examples
from each class, makes this measure inadequate to account for the importance of all classes at the same time. The new
measures should consider the TPR over each class without taking into account the number of examples. There are two
well-known metrics that could be considered:

� The Average Accuracy rate (AvgAcc) [19],
AvgAcc ¼ 1
m

Xm

i¼1

TPRi: ð4Þ
� The Geometric Mean (GM) [6],
GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYm

i¼1
TPRi

m
q

: ð5Þ
The AvgAcc is different from the accuracy rate, since it partially accounts for the TPR over the different classes; nonethe-
less, a low rate on one class might not severely affect this measure. Moreover, the greater the number of classes is, the easier
to hide low TPRs in some classes becomes. Otherwise, the GM accounts for the maximization of the TPR over all classes at the
same time, strongly penalizing those cases achieving a low TPR in any of the classes. In fact, a TPR ¼ 0% in any of the classes
will produce a GM ¼ 0. In the rest of the paper, we will show that the GM is the measure better accounting for the problem
we aim to undertake, whereas the AvgAcc could serve as a complementary measure, but cannot be used alone. All these facts
can be easily understood with the example we have presented. Table 1 shows the values obtained for each one of the mea-
sures considered in this paper for the two classifiers we have supposed (the one obtaining heterogeneous TPRs, different in
each class, and the one obtaining homogeneous TPRs, the same in all classes).

2.3. A weakness of One-vs-One strategy: dealing with difficult classes

The fact that the base (binary) classifiers of OVO are optimal (in terms of Acc, AvgAcc, GM and balance between the TPRs
over both classes in the subproblem) need not mean that their combination would lead to the optimal solution in terms of
Acc, AvgAcc, GM and balance among all the TPRs over all the classes of the problem. This can be clearly observed following
use of performance measures in the difficult classes problem. Homogeneous classifier refers to that obtaining the same TPR for all classes, whereas
eneous refers to that obtaining a different TPR for each class.

ifier TPR1 TPR2 TPR3 Acc (%) AvgAcc (%) GM

rogeneous 0.95 0.6 0.95 83.33 83.33 0.8151
ogeneous 0.8333 0.8333 0.8333 83.33 83.33 0.8333
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the example of Fig. 1. We divide this problem into three new subproblems considering each pair of classes (Fig. 2(a–c)),
which are faced by independent base classifiers whose decision boundaries are shown in Fig. 2(d–f). The TPRs obtained
by these classifiers for each one of the two classes could be considered equal for the same classifier (balanced for both
Fig. 2. OVO decomposition of the problem in Fig. 1(a) and the base classifiers learned for this decomposition.
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classes, i.e., locally optimal in terms of Acc, AvgAcc, GM). However, notice that their combination considering the voting
scheme (Eq. (2)) would lead exactly to the class separation in Fig. 1(b), which is optimal in terms of Acc but achieves a
low GM due to the low TPR over the difficult class.

For this reason, we aim to study the low TPR achieved over the difficult classes in OVO strategy, or rather the non-existent
improvement over those classes. In other words, the usually reported [24,22] accuracy enhancement of OVO strategy over
the baseline classifiers (without decomposition) is mainly due to the improvement of the TPR over the easiest classes. In Sec-
tion 6, we will also show this fact by an exhaustive experimental analysis.

Hereafter, our aim is to formalize why OVO strategy tends to improve the accuracy over the easiest classes, ignoring (not
enhancing) the classification of the difficult ones. In order to do so, we consider a simple scenario, where OVO strategy using
the voting strategy is considered.

Problem statement and notation.

� m-class problem, C ¼ fC1; . . . ;Cmg.
� There are md classes which are much more difficult to classify (for example, due to overlapping, noise, or even imbalance).
� The rest of the classes are easier to be classified.
� Let TPRi

ij be the TPR over class Ci of the classifier distinguishing classes fCi;Cjg.

Problem assumptions.

1. Independence of the base classifiers, which is supposed in OVO scheme.
2. An instance is correctly classified if all the competent base classifiers [26] (those considering the real class of the instance

in the training phase) correctly classify the instance (although in some cases a fail might not suppose an erroneous
prediction).

3. Given a difficult class (Ci) and an easier class (Cj) then, TPRi
ik 6 TPRj

jt for all k; t ¼ 1; . . . ;m; k – i; t – j and there exist
p; q 2 f1; . . . ;mg; p – i; q – j such that TPRi

ip < TPRj
jq.

The first assumption suppose that the output labels given by the classifiers are not related (one does not depend on the
other), which by definition is assumed in OVO classifiers. The second one refers to the fact that all the predictions of the com-
petent classifiers need to be correct in order to correctly classify an instance. We are aware that this might be an over-sim-
plification as there might be cases in which a single fail will not affect the final prediction. However, it could be supposed
that an instance is classified into a class whenever there is a total agreement between the base classifiers, which can be con-
sidered in systems requiring a high confidence in the decision. In this scenario it will help us showing the difficult classes
problem in OVO. Finally, the last assumption deals with the fact that the TPRs obtained in each base classifier by a difficult
class are always lower or equal than the corresponding TPRs over the easier classes, being also a classifier in which this rela-
tion is strict (the TPR over the difficult class is lower).

Problem description.
Given an instance fx; yg (where x represents the input attribute values and y ¼ Ci with i 2 f1; . . . ;mg), the probability of

being correctly classified, denoted as PðhovoðxÞ ¼ yÞ (where hovo stands for the OVO classifier), following Assumptions 1 and 2,
is given by the TPR of each one of the base classifiers that used instances from this class to be trained (that is, TPRi

ij for all
j ¼ 1; . . . ;m with i – j):
PðhovoðxÞ ¼ yÞ ¼
Y

16j–i6m

TPRi
ij: ð6Þ
Therefore, we can consider an instance fx1; y1g (belonging to one of the easier classes, i.e., y1 ¼ Ci) and an instance fx2; y2g
(belonging to one of the difficult classes, i.e., y2 ¼ Cj) to be classified, whose probabilities of being correctly classified are gi-
ven by Eq. (6). Following Assumption 3, we have that
Pðhovoðx1Þ ¼ y1Þ ¼
Y

16k–i6m

TPRi
ik >

Y
16t–j6m

TPRj
jt ¼ Pðhovoðx2Þ ¼ y2Þ; ð7Þ
showing that the probability of correctly classifying the instance from the difficult class will always be lower than that of
correctly classifying the instance from the easier class due to the differences in the TPRs of the base classifiers. In order
to understand how these differences can affect this probability, in Table 2 we show the probability of correctly classifying
an instance with increasing number of classes considering different TPRs in the base classifiers dealing with the correct class
of the instance (for the sake of simplicity we assume that for the class i;TPRi

ij ¼ TPRi
ik for all j; k ¼ 1; . . . ;m; j – i and k – i). It

can be observed that the probability of correctly classifying a class having low TPRs in the base classifiers decreases much
more rapidly than that of a class having greater TPRs.

How can this problem be solved or at least alleviated?

1. The improvement of the TPRi
ij for each difficult class i ðj ¼ 1; . . . ;m; j – iÞ.



Table 2
Probability of correctly classifying an instance of a class with a specific TPR in all each base classifiers and increasing number of classes.

Classes TPR TPR TPR TPR TPR TPR TPR TPR TPR TPR TPR
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

2 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0
3 0.250 0.303 0.360 0.423 0.490 0.563 0.640 0.723 0.810 0.903 1.0
4 0.125 0.166 0.216 0.275 0.343 0.422 0.512 0.614 0.729 0.857 1.0
5 0.063 0.092 0.130 0.179 0.240 0.316 0.410 0.522 0.656 0.815 1.0
6 0.031 0.050 0.078 0.116 0.168 0.237 0.328 0.444 0.591 0.774 1.0
7 0.016 0.028 0.047 0.075 0.118 0.178 0.262 0.377 0.531 0.735 1.0
8 0.008 0.015 0.028 0.049 0.082 0.134 0.210 0.321 0.478 0.698 1.0
9 0.004 0.008 0.017 0.032 0.058 0.100 0.168 0.273 0.431 0.663 1.0

10 0.002 0.005 0.010 0.021 0.040 0.075 0.134 0.232 0.387 0.630 1.0
11 0.001 0.003 0.006 0.014 0.028 0.056 0.107 0.197 0.349 0.599 1.0
12 0.0005 0.001 0.004 0.009 0.020 0.042 0.086 0.167 0.314 0.569 1.0
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2. The usage of aggregations taking into account the difficult classes problem, without needing to alter the underlying base
classifiers.

The former is the straightforward solution, but the enhancement of the TPRs is not easy to accomplish. Moreover, we have
shown in the example (Fig. 1) that even though all the pair of classes in the same base classifiers have the same TPRs, the
difficult classes problem can be present and hence, the learning of the base classifier should be biased toward the difficult
classes (improving the TPR over the difficult class at the expenses of the other class). The problem is that when the learning is
going to be carried out the presence of the difficult classes might be unknown and therefore altering the learning of the clas-
sifiers would require the difficult classes to be detected a priori (which is not trivial), acting in consequence. Besides, in the
case of a base classifier dealing with two difficult classes, the biasing would be even more difficult. For these reasons, we
focus on the latter case, which could also be combined with the enhancement of the base classifiers. This approach does
not alter the underlying base classifiers, but use them differently. Hence, it could be used with any classifier, since it is inde-
pendent of the base classifier.

Our aim is to modify the classification of the instances by making those belonging to the difficult classes easier to predict.
To do so, we favor the difficult classes in the aggregation by a flexible (parametrized) similarity-based aggregation. As a con-
sequence, the aggregation should identify and empower the difficult classes depending upon the results obtained in the
training set. This method can be understood as a post-processing, where the votes of the classifiers are modified depending
on the difficulty of classifying each class. One of the advantages of this method is that it performs a global optimization with
all the classifiers at the same time, which is not considered by standard OVO combinations. In this manner, the outputs of the
classifiers which were independently learned can be analyzed together, and these outputs can be modified in such a way that
globally better solutions can be obtained. The global process allows us to reach solutions which could be overlooked when
locally seeking for optimal base classifiers configurations.

We believe that there is enough information within the score-matrices of OVO strategy as to obtain significantly different
results over the difficult classes only changing the aggregation. For this reason, we fix the score-matrices used in the exper-
iments of this paper (which vary depending on the base classifier), and we aim to learn from the errors committed by each
classifier so that we can adjust the aggregation to empower the classification of the difficult classes. Therefore, all the dif-
ferences shown in this paper are only due to the aggregation and have nothing to do with the base classifiers, which is of
great importance in order to properly evaluate the performance of the proposed methodology.

3. Similarity-based aggregation for OVO strategy

In this section, we put forward the new aggregation method for OVO scheme based on similarity measures to account for
the difficult classes problem. To do so, we first recall several preliminary concepts in SubSection 3.1 that are needed to
understand the origin of the aggregation presented in SubSection 3.2.

3.1. Restricted equivalence functions and similarity measures

We need to recall some concepts and operations before showing the similarity measures considered in our aggregation. A
negation models the concept of opposite:

Definition 1. A mapping n : ½0;1� ! ½0;1� with nð0Þ ¼ 1;nð1Þ ¼ 0, strictly decreasing, and continuous is called strict negation.
Moreover, if n is involutive, i.e., if nðnðaÞÞ ¼ a for all a 2 ½0;1�, then n is called a strong negation.

Restricted equivalence functions (REFs) [10,11] measure the degree of closeness (equivalence) between two points; in their
definition the concept of negation is used.
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Definition 2. [10,11] A function REF : ½0;1�2 ! ½0;1� is called restricted equivalence function associated with the strong
negation n, if it satisfies the following conditions
1. REFða; bÞ ¼ REFðb; aÞ for all a; b 2 ½0;1�;
2. REFða; bÞ ¼ 1 if and only if a ¼ b;
3. REFða; bÞ ¼ 0 if and only if a ¼ 1 and b ¼ 0 or a ¼ 0 and b ¼ 1;
4. REFða; bÞ ¼ REFðnðaÞ;nðbÞÞ for all a; b 2 ½0;1�;
5. For all a; b; c 2 ½0;1�, if a 6 b 6 c, then REFða; bÞP REFða; cÞ and REFðb; cÞP REFða; cÞ.

In this paper, the interest of this closeness measure resides in the possibility of its parameterization by means of auto-
morphisms as follows (other construction methods can be found in [10,12]).

Definition 3. A continuous, strictly increasing function u : ½a; b� ! ½a; b� such that uðaÞ ¼ a and uðbÞ ¼ b is called
automorphism of the interval ½a; b� � R.

Proposition 1 [10]. Let u1; u2 be two automorphisms of the interval ½0;1�. Then REFða; bÞ ¼ u�1
1 ð1� j u2ðaÞ �u2ðbÞ jÞ is a

restricted equivalence function associated with the strong negation nðaÞ ¼ u�1
2 ð1�u2ðaÞÞ.
√

√

Fig. 3. Influence of the automorphisms in the construction of a REF.
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An easy way of constructing automorphisms is by means of a parameter k 2 ð0;1Þ : uðaÞ ¼ ak, and hence, u�1ðaÞ ¼ a1=k.
In Fig. 3, several examples of REFs are shown, which illustrate the effect of changing the pair of automorphisms used in the
construction of REFs. This parameterization allow us to alter the confidences of the base classifiers, changing the automor-
phisms associated with each confidence position in the score-matrix.

Similarity measures are an extension of the concept of closeness to compare tuples ða ¼ ða1; . . . ; aNÞ 2 ½0;1�NÞ instead of
single points.

Definition 4. [10] A function SM : ½0;1�N � ½0;1�N ! ½0;1� is called a similarity measure with respect to the strong negation n
if it satisfies the following properties:

(i) SMða;bÞ ¼ SMðb; aÞ;
(ii) SMða;WðaÞÞ ¼ 0 if and only if ai ¼ 0 or ai ¼ 1 for all i 2 f1; . . . ;Ng, where WðaÞ ¼ ðnða1Þ; . . . ;nðaNÞÞ;

(iii) SMða;bÞ ¼ 1 if and only if ai ¼ bi for all i 2 f1; . . . ;Ng;
(iv) If a 6 b 6 c, then SMða;bÞP SMða; cÞ and SMðc;bÞP SMðc; aÞ;
(v) SMðWðaÞ;WðbÞÞ ¼ SMða;bÞ.

These similarity measures satisfy similar properties to those of REFs. This fact allows one to construct them using REFs
and an aggregation function [8,27].

Definition 5. An aggregation function is a mapping M : ½0;1�N ! ½0;1� such that:

ðA1Þ Mða1; . . . ; aNÞ ¼ 0 if and only if a1 ¼ . . . ¼ aN ¼ 0;
ðA2Þ Mða1; . . . ; aNÞ ¼ 1 if and only if a1 ¼ . . . ¼ aN ¼ 1;
ðA3Þ M is nondecreasing.
Proposition 2 [10]. Let M : ½0;1�N ! ½0;1� be an aggregation function and let REF : ½0;1�2 ! ½0;1� be a restricted equivalence
function associated with the strong negation n. Then
SMða;bÞ ¼ MðREFða0; b0Þ; . . . ;REFðaN ; bNÞÞ
is a similarity measure associated with the strong negation n.
The most commonly used aggregation function, also considered in this paper, is the arithmetic mean. Hence, the similar-

ity measures considered along this paper are as follows (using Propositions 1 and 2, with u1ðxÞ ¼ xk1 and u2ðxÞ ¼ xk2 ):
SMða;bÞ ¼ 1
N

XN

i¼1

REFðai; biÞ ¼
1
N

XN

i¼1

u�1
1 ð1� j u2ðaiÞ �u2ðbiÞ jÞ ¼

1
N

XN

i¼1

ð1� j ðaiÞk2 � ðbiÞk2 jÞ
1=k1 ð8Þ
3.2. Generalizing the weighted voting method: an aggregation based on similarity measures

Our similarity-based aggregation generalizes the well-known Weighted Voting strategy (WV), whose robustness has been
both theoretically [35] and empirically [24] proven. In WV, the confidences of the base classifiers are used as weights to vote
for the classes and the class with the largest total confidence is given as final output class:
Class ¼ arg max
i¼1;...;m

X
16j–i6m

rij ð9Þ
In our case, instead of summing up the confidences of the classifiers in each row, we compare these confidences to the
certain vote (i.e., 1.0), since it is the case in which the highest vote should be given. Hence, the more similar the confidence
rij to 1.0 is, the more importance the vote has. In order to compare both values, we make use of REFs; therefore, instead of
voting using rij, we consider the weight of the vote given by REFðrij;1Þ, which indicates how close is rij to the certain vote.
Recalling the construction of REFs from Proposition 1, the operations and parameters needed for the comparison can be sim-
plified as follows:
REFða;1Þ ¼ ð1� j ak2 � 1k2 jÞ1=k1 ¼ ak2=k1 ¼ ak ð10Þ
Therefore, both parameters of the REF ðk1; k2Þ are reduced to a single equivalent one (k). Fig. 4 depicts the influence of k when
comparing a single value to 1 using REFs. Notice that k ¼ 1 does not modify the vote of the classifier, whereas values below
one (k < 1) empowers the weights and the contrary occurs with k > 1. We should notice that using different construction of
REFs (with other automorphisms) different behaviors could be achieved. Anyway, from our point of view, the proposed one is
the most appropriate, in the sense that it is the most suitable to model the empowering of the difficult classes and the
weakening of the easier ones.



Fig. 4. Influence of the parameter k in REFðx;1Þ.
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Remark 1. Hence, looking at Fig. 4, one can observe that the outputs in favor of the difficult classes should use a REF with a
low k, whereas those of the easier classes might consider a higher value of k in order to seek for a balance between their
predictions. The estimation of these parameters is not trivial, since their values directly affect the final predictions; for this
reason, Section 4 is devoted to their adjustment, which is carried out globally considering all the base classifiers predictions
at the same time.

We have outlined how the confidences given by the base classifiers are empowered or weakened; then, similarly to WV,
these confidences are aggregated in each row; formally, the similarity measure between the confidences in each row and the
tuple 1 ¼ ð1;1; . . . ;1Þ is maximized:
Class ¼ arg max
i¼1;...;m

SMiðri;1Þ ¼ arg max
i¼1;...;m

1
m� 1

X
16j–i6m

REFijðrij;1Þ ¼ arg max
i¼1;...;m

1
m� 1

X
16j–i6m

ðrijÞkij ð11Þ
where ri corresponds to the ith row of the score matrix and kij is the corresponding parameter used in REFijðrij;1Þ. We denote
SMiðri;1Þ and REFijðrij;1Þ to indicate that each similarity measure for each class, and each REF within each similarity measure
can use different values in their parameter setting. Finally, notice that WV method is recovered when kij ¼ 1 for all
i; j ¼ 1; . . . ;m and i – j (see Proposition 2 in [10]). As we will show in Section 4, we will consider a single parameter for each
base classifier (that is, we have as many parameters as degrees of freedom in the score-matrix) and hence, each parameter kij

is related to the corresponding kji as follows: kji ¼ 1
kij

for all i; j ¼ 1; . . . ;m and i < j.

4. Adapting the similarity-based aggregation to enhance the classification of difficult classes in One-vs-One strategy

In the previous section we have presented the aggregation that will allow us to deal with the difficult classes problem in
OVO strategy. Nevertheless, the aggregation does not solve the problem by itself, it needs to be adjusted depending upon the
difficulty of classifying each class in each problem. This difficulty is analyzed depending on the outputs encoded in the score-
matrices given by the base classifiers for each training instance. In this post-processing stage, any optimization algorithm
maximizing the objective function established could be used; in our case, we consider a GA [30], and more specifically,
the real-coded CHC algorithm [16] (similarly to other works [57]).

It is important to emphasize that such a mechanism is required due to the complex global adjustment that is carried out.
Recall that the global adjustment is needed because locally adjusting each base classifier without taking into account the rest
of the classifiers need not translate in a global improvement. Otherwise, adjusting the classifiers globally allows the search
algorithm to observe the interactions between the base classifiers, leading to a better global adjustment. Moreover, there are
cases in which small changes in a parameter of a base classifier could imply a change in the predicted class, but also the con-
trary might occur (there are base classifiers which do not have influence in the classification of some instances).

Once the importance of the adjustment has been stated, the rest of the section is organized as follows: in SubSection 4.1,
we present the most important part of the optimization procedure, i.e., the fitness function, which is maximized aiming to
benefit the difficult classes. Then, in SubSection 4.2, we recall the operations of the CHC algorithm and we introduce the
representation considered to codify the parameters of the similarity measures. Finally, in SubSection 4.3, we discuss the
computational complexity of the optimization procedure.

4.1. Objective function

The key factor of the parameter tuning is the fitness function to be optimized, since depending upon this function
different aggregations are obtained. Notice that the standard accuracy rate must not be further optimized, as it is usually
done [18,57], because it does not account for the difficult classes. For this reason, we consider other measures based on those
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presented in Section 2.2 in order to determine the quality of the system obtained with a given set of parameters
k ¼ k1; k2; . . . ; kmðm�1Þ

2

� �
(a parameter is encoded for each base classifier in the score-matrix, according to its degrees of free-

dom). We propose the usage of the following fitness function (Eq. (12)) to perform the evaluation.
FitnessðkÞ ¼MarginðkÞ þ GMðkÞ þ AvgAccðkÞ
2

; ð12Þ
where the Margin quantifies how well is the real class of an instance separated from the second class with the highest sim-
ilarity, that is, the margin of separation, a similar concept to that of SVMs [60]. The concept of margin can be defined for each
instance, but the value used in the objective function must comprise all the instances. Thus, the global margin is computed as
follows.

1. For each correctly classified instance fx; yg (with y ¼ Ci) the margin is computed as
MarginðxÞ ¼ SMiðri;1Þ � SMjðrj;1Þ
nTr �m

; ð13Þ
where Cj is the second class with the largest similarity value. Since Ci is the correctly predicted class, it is the one with the
largest similarity, and therefore, the margin is always positive. The margin is normalized by the number of classes and train-
ing instances (nTr) to reduce its influence in the fitness function with respect to the other factors.
2. Among all the margins computed, we take the minimum one, since it is the value better representing how well separated

are the most conflictive (difficult) classes
Margin ¼ min
k¼1;...;nc

MarginðxkÞ; ð14Þ
where nc is the number of correctly classified instances.

The most important part of the fitness function, and our main objective, is the GM, since it is the measure which better
balances the accuracy over all classes. Nevertheless, the other factors are needed according to the following facts:

1. AvgAcc has a priori the same weight, but even though its value is higher, its variations depending upon the correctly clas-
sified instances are generally lower, and hence, it has less influence when comparing different evaluations of the fitness
function. However, it is a very important factor in cases where GM value is low, since it serves as guide for the search
(being a class with initial TPR ¼ 0, GM ¼ 0). In these cases, AvgAcc helps in improving the classification over the rest
of the classes, which eventually can lead to correctly classify an instance of the class with a low TPR.

2. Margin has a low weight in the fitness function (due to its normalization), but it is a key component serving as a stabil-
ization process once the best GM and AvgAcc combination has been found. At this point, increasing the minimum margin
of separation is useful to properly establish the separation boundaries between classes, and hence, it is an over-fitting
prevention mechanism.

We should emphasize the importance of the margin in the fitness function, since we are developing a global adjustment
aiming to increase the GM and AvgAcc the system can easily overfit using the training set in this procedure. This way of
avoiding overfitting is more effective than considering an additional data partition for validation. As we are dealing with
multi-class problems, there are many cases where there are a few number of examples from some classes and hence, further
partitioning the data will lead to use not enough number of examples to learn the base classifiers, which will directly com-
promise the performance of the system (the performance decrease in the base classifiers due to the use of a separate vali-
dation partition cannot be recovered by the methodology proposed). For this reason, the same training set used to train the
OVO system is used in this optimization procedure.

This objective function can be related to an asymmetric loss case [51,65]. In our case, the instances of each class contrib-
ute differently to the function depending upon the difficultly of classifying the corresponding class. This way, the proposed
method allow one to empirically determine the skew (costs) and hence, the asymmetric loss ratios from the data itself,
avoiding the biggest problem of cost-sensitive classification, the definition of the costs.

4.2. CHC algorithm and representation of the parameters

The objective function defined (Eq. (12)) can be optimized with any optimization method capable of handling such a com-
plex search space. The real-coded CHC algorithm [16] was selected for this purpose due to its successful application in sim-
ilar tuning approaches [18,57]. CHC holds a good balance between exploration (looking into the whole search space) and
exploitation (finding an accurate solution), being an appropriate meta-heuristic for complex search spaces.

In this GA, all the M chromosomes in the population (encoded solutions) and their offsprings (which are found by the
crossover operator over the chromosomes in the population) are put together; then, the M best individuals (in terms of
the fitness function, i.e., Eq. (12)) make up the next population. Instead of using a mutation operator as most of the
GAs do, an incest prevention mechanism combined with a re-initialization of the population is used to promote diversity
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(as explained hereafter). The necessary components to design the whole process are: representation of the solutions
(how the parameters are encoded within a chromosome, which is a key factor), initialization of the initial population,
crossover operator, incest prevention and restarting mechanisms.

1. Representation of the parameters: the set of parameters (k) to be optimized are real parameters, so they are the elements
(called genes) of a chromosome. Recall that the value of k ranges from 0 to1, which cannot be directly encoded within a
chromosome. Therefore, we use the following chromosome ðUðkÞÞ to encode k:
UðkÞ ¼ /ðk1Þ;/ðk2Þ; . . . ;/ kmðm�1Þ
2

� �� �
¼ ck1 ; ck2 ; . . . ; ckmðm�1Þ

2

� �
ð15Þ
where each gene cki
2 ð0;1Þ; i ¼ 1; . . . ;mðm�1Þ

2 . Since the values of the genes are in ð0;1Þ, they need to be translated to the
values of the parameters in order to evaluate the fitness function, which is done as follows
ki ¼ /�1ðcki
Þ ¼

ð2 � cki
Þ2 if cki

6 0:5
1

ð2�ð1�cki
ÞÞ2

otherwise:

8<
: ð16Þ
In this manner, the square operation allows us to homogeneously explore the whole search space (Fig. 4). That is, 0.5 in the
gene value (cki

) is equal to 1 in the parameter value (ki); the upper part of the expression corresponds to the upper part of the
parameter values in Fig. 4 and the same occurs with the lower part of the expression and that of Fig. 4, respectively.
2. Initialization: All the chromosomes are randomly initialized in (0,1) except for the first individual, which is initialized with

0.5 in all each genes. This way, the search is started with an individual (solution) representing the original WV, that is, the
proposed aggregation with k ¼ 1 (following Eq. (16)).

3. Crossover operator: This operator allows one to combine two chromosomes of the population to generate their offspring.
We use the Parent Centric BLX operator [43], which works as follows. Let a ¼ ðaa; . . . ; aNÞ and b ¼ ðb1; . . . ; bNÞ
(a;b 2 ½0;1�N , being N) be two real-coded chromosomes of length N. Their crossover generates two offspring.
(a) o1 ¼ ðo11; . . . ; o1NÞ, where o1i is randomly (uniformly) chosen number from the interval l1

i ;u
1
i

h i
, with

l1
i ¼maxf0; ai � Iig; u1

i ¼minf1; ai þ Iig, and Ii ¼j ai � bi j.
(b) o2 ¼ ðo21; . . . ; o2NÞ, where o2i is randomly (uniformly) chosen number from the interval l2

i ;u
2
i

h i
, with

l2
i ¼maxf0; bi � Iig and u2

i ¼ minf1; bi þ Iig.
4. Incest prevention: It promotes diversity among solutions (which is important to properly search the whole search space).

This mechanism prevents the crossover of parents if their Hamming distance (divided by two) is below a threshold value
L (i.e., they are too similar). Since we consider real-coded chromosomes, they need to be transformed in order to compute
the distance. A Gray Code using #BITS bits per gene is used with this purpose. The initial value of the threshold is
computed as L ¼ ð#Genes �#BITSÞ=4:0, where #Genes stands for the number of genes (in our case, mðm� 1Þ=2). As in
the original CHC algorithm, L is decreased by one (in this case, by #BITS), when no new individuals (offspring) are created
(no parents have been crossed due to this mechanism).

5. Restarting mechanism: In the CHC algorithm, the mutation operator is replaced by this mechanism in order to avoid local
optima (improve the exploration). When the threshold value L is lower than zero, all the chromosomes in the population
are randomly regenerated in the (0,1) interval. Besides, the current best solution is included in the population.

There are two stopping criteria to finish the optimization process: the number of evaluations and the number of restarting
procedures without improvements. Their set-up is detailed in SubSection 5.1. Finally, recall that the optimization procedure
is carried out over the whole training set.
4.3. Computational complexity

Regarding the computational complexity, we should note that logically, our proposal is computationally more expensive
than standard OVO aggregations, since an optimization phase using a GA is introduced, which depends on the number of
classes and instances. However, as well as in any other post-processing technique, the training time is just taken into account
once per data-set, being the testing time of the proposed aggregation equivalent to those of the other methods. Hence, its
application in classification problems that do not require on-line training might not be compromised, offering the possibility
of increasing the classification over the difficult classes, as we show in Section 6.

More specifically, the computational complexity of the method is bounded by the maximum number of evaluations al-
lowed (which we set to 1000 �m2, see Table 3). In each evaluation all the instances are classified following Eq. (11). But notice
that since this is a post-processing method, the base classifiers are only trained once before starting the process, and hence,
the cost of each evaluation is no more than that of the aggregation. Therefore the computational complexity of the optimi-
zation process is ofOðn �m2Þ. In Section 6, we will report the execution time of the method with each base classifier, showing
that effectively, the number of classes is the most important factor when considering the computational complexity,
whereas increasing number of instances does not imply a severe increase in the execution time.



Table 3
Parameter specification.

Algorithm Parameters

3NN k ¼ 3, Distance metric = Heterogeneous Value Difference Metric (HVDM)
C4.5 Prune = True, Confidence level = 0.25, Minimum number of item-sets per leaf = 2
SVMPoly C = 1.0, Tolerance = 0.001, Epsilon = 1.0E�12, Kernel = Polynomial

Polynomial Degree = 1, Fit Logistic Model = True
SVMPuk C = 100.0, Tolerance = 0.001, Epsilon = 1.0E�12, Kernel = Puk

PukKernel x ¼ 1:0, PukKernel r ¼ 1:0, Fit Logistic Model = True
CHC Population size ðMÞ ¼ 50 individuals, Evaluations = 1000 �m2

#BITS ¼ 30, Restarting procedures without improvement = 3
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5. Experimental framework

In this section, the set-up of the experimental framework used to carry out the empirical analysis in Section 6 is
presented. First in SubSection 5.1, the base classifiers and their parameter setting are described. Next, in SubSection 5.2,
we recall the best aggregations for each base classifier found in [24], which are the base for the comparisons. Then in Sub-
Section 5.3, we show the real-world problems tested in the experimentation. Finally, we present the performance measures
considered in the evaluation and the statistical tests applied in SubSection 5.4.
5.1. Base classifiers and parameter configuration

In order to show the problem of OVO with difficult classes and to test our proposed solution, we have selected several
well-known Machine Learning algorithms as base learners. We should mention that the whole experimental set-up is similar
to that in [24], where the state-of-the-art on aggregations for the OVO strategy were compared. The algorithms used in the
comparison are the following ones:

� kNN - k-Nearest Neighbors [1].
� C4.5 – decision tree [53].
� SVM – Support Vector Machine [60,48].

These learning algorithms were selected due to their good performance in a large number of real problems, being all in-
cluded in the top ten Data Mining algorithms [63]. Moreover, in case of SVM there is not an established multi-class extension
yet, although there are several attempts [33].

Most of the aggregation methods for OVO classification make use of the confidences given by the base classifiers, which
are obtained as follows:

� kNN: Confidence ¼
Pk

l¼1

el
dlPk

l¼1
1
dl

where dl is the distance between the input pattern and the lth neighbor and el ¼ 1 if the neighbor

l is from the class and 0 otherwise. When k > 1, the probability estimate depends on the distance from the neighbors,
hence the estimation is not restricted to a few values. This approach can also be considered as weighted k-Nearest
Neighbors [15].
� C4.5: The confidence is obtained from the accuracy of the leaf making the prediction, that is, the percentage of correctly

classified training instances reaching the leaf (preliminary experiments considering Laplace smoothing [50] produced
similar results).
� SVM: The probability estimates from the SVM logistic model [49] are used as confidence degrees.

There are aggregations where ties could occur, in those cases, as usual, the majority class is predicted, if the tie continues,
the class is randomly selected.

The configuration parameters considered to train the base classifiers are shown in Table 3, along with the parameters
used in the CHC algorithm. These values are common for all problems, and they were selected according to the recommen-
dation of the corresponding authors, which is the default parameter setting included in KEEL software [3,2] used to develop
our experiments. In the case of SVMs, we considered two configurations, varying the parameter C and the kernel function, to
study the behavior of the aggregations with different set-ups, which addresses for the robustness of the proposal (in the
sense that in spite of the fine-tuning of the base classifiers, its behavior is maintained). At last, we treat nominal attributes
in SVM as scalars to fit the data into the systems using a polynomial kernel.

Even though tuning the parameters of each method on each particular problem could lead to better results (mainly in
SVM), we prefer to maintain a baseline performance of each method as the basis for comparison. We are not comparing base
classifiers among them; hence, our hypothesis is that the methods winning on average on all problems would also perform
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better if a more optimal setting would be performed. Moreover, in a framework where no method is tuned, the best methods
tend to correspond to the most robust ones, which is also a desirable characteristic.
5.2. Aggregations considered

We use a different aggregation depending upon the base classifier used to analyze their results with respect to the new
aggregation methodology. We follow the findings in our previous work [24], where a representative aggregation was se-
lected for each base classifier (the best one). The unique exception is the case of SVMs, where the best performer aggregation
was Nesting OVO [39], but without showing significant differences with respect to the rest of the aggregations. Furthermore,
despite constructing several OVO ensembles one inside the other recursively, this strategy does not perform better than
other simpler methods such as the probability estimates method by Wu et al. [62], which use is much more extended.
For this reason, being the latter method equivalent but also simpler, we use it as a representative; this way, we are also able
to compare all methods using exactly the same score-matrices in all aggregations, only focusing the comparison on the
differences between the aggregations themselves. The following aggregations are considered:

� kNN – ND (Non-Dominance criterion [17]).
� C4.5 – WV (Weighted Voting strategy).
� SVM – PE (Wu et al. Probability Estimates [62]).

For the sake of brevity, we do not recall the operating procedure of PE and ND; their description can be found in their
original source papers, but also an extensive and detailed description is available in [23].
5.3. Data-sets

We have used twenty-eight data-sets from KEEL [2] and UCI [5] data-set repositories. Data-sets with a large representa-
tion of different number of classes and attributes have been considered. Table 4 summarizes the properties of these data-
sets: the number of examples (#Ex.), the number of attributes (#Atts.), the number of numerical (#Num.) and nominal
(#Nom.) attributes, and the number of classes (#Cl.) are shown. Some of the largest data-sets (nursery, page-blocks, pen-
based, satimage and shuttle) were stratified sampled at 10% in order to reduce the computational time required for training
the base classifiers (reduced data-set properties are shown). In the case of missing values (autos, cleveland and dermatol-
ogy), we removed those instances from the data-set before doing the partitions. The information of the data-sets is
Table 4
Summary description of data-sets.

Data-set #Ex. #Atts. #Num. #Nom. #Cl.

Balance 625 4 4 0 3
Contraceptive 1473 9 9 0 3
Hayes-roth 132 4 4 0 3
Iris 150 4 4 0 3
NewThyroid 215 5 5 0 3
Splice 319 60 0 60 3
Tae 151 5 5 0 3
Thyroid 720 21 21 0 3
Wine 178 13 13 0 3
Car 1728 6 0 6 4
Lymphography 148 18 3 15 4
Vehicle 846 18 18 0 4
Cleveland 297 13 13 0 5
Nursery 1296 8 0 8 5
Page-blocks 548 10 10 0 5
Shuttle 2175 9 9 0 5
Autos 159 25 15 10 6
Dermatology 358 34 1 33 6
Flare 1066 11 0 11 6
Glass 214 9 9 0 7
Satimage 643 36 36 0 7
Segment 2310 19 19 0 7
Zoo 101 16 0 16 7
Ecoli 336 7 7 0 8
Led7digit 500 7 0 7 10
Penbased 1100 16 16 0 10
Yeast 1484 8 8 0 10
Vowel 990 13 13 0 11



Table 5
Number of instances per class in each data-set.

Data-set #Ex. #Cl. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Balance 625 3 288 49 288
Contraceptive 1473 3 629 333 511
Hayes-roth 132 3 51 51 30
Iris 150 3 50 50 50
NewThyroid 215 3 30 35 150
Splice 319 3 77 77 165
Tae 151 3 49 50 52
Thyroid 720 3 17 37 666
Wine 178 3 59 71 48
Car 1728 4 1210 384 65 69
Lymphography 148 4 2 81 61 4
Vehicle 846 4 199 217 218 212
Cleveland 297 5 160 54 35 35 13
Nursery 1296 5 1 32 405 426 432
Pageblocks 548 5 492 33 8 12 3
Shuttle 2175 5 1706 2 6 338 123
Autos 159 6 3 20 48 46 29 13
Dermatology 358 6 111 60 71 48 48 20
Flare 1066 6 331 239 211 147 95 43
Glass 214 7 70 76 17 0 13 9 29
Satimage 643 7 154 70 136 62 71 0 150
Segment 2310 7 330 330 330 330 330 330 330
Zoo 101 7 41 20 5 13 4 8 10
Ecoli 336 8 143 77 2 2 35 20 5 52
Led7digit 500 10 45 37 51 57 52 52 47 57 53 49
Penbased 1100 10 115 114 114 106 114 106 105 115 105 106
Yeast 1484 10 244 429 463 44 51 163 35 30 20 5
Vowel 990 11 90 90 90 90 90 90 90 90 90 90 90
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completed with the number of instances per class in each data-set (Table 5). As it can be observed, they comprise a number
of situations, from totally balanced data-sets to highly imbalanced ones, besides the different number of classes.

The performance of the classifiers was estimated by means of a stratified 5-fold cross-validation. The data partitions used
in this paper can be found in KEEL-dataset repository [2] and in the website associated with our previous work [24] (http://
sci2s.ugr.es/ovo-ova/), which makes the experimental study to be easily reproducible.

5.4. Performance measures and statistical tests

As we have previously stated, we consider the accuracy rate, GM and AvgAcc, as performance measures to evaluate the
results. These measures allow us to show that the benefit of OVO in terms of accuracy comes from the easier classes and to
properly analyze the performance over all classes (mainly, the GM as we have previously explained, but the AvgAcc serves as
a complementary analysis).

The comparison of the performance of the classifiers must be done using the proper statistical analysis to find whether
significant differences exist or not among them. In order to carry out this process appropriately non-parametric tests should
be considered, according to the recommendations made in [13,28]. These tests are needed because the conditions guaran-
teeing the reliability of the parametric tests may not be satisfied, losing the credibility of the statistical analysis [13]. Any
interested reader can find additional information on the thematic website http://sci2s.ugr.es/sicidm/, where software for
the application of the statistical tests is provided.

In this paper, we consider the Wilcoxon paired signed-rank test [61] as a non-parametric statistical procedure to perform
comparisons between two algorithms, since we carry out the comparisons in a pairwise manner (comparing our methodol-
ogy in each base classifier against the best state-of-the-art aggregation).
6. Experimental study

Hereafter, we carry out the experiments using different base learners with a twofold objective:

1. To show the weakness of OVO to classify the difficult classes, that is, to analyze how the significant differences that are
usually found when accuracy measure is used [24] vanishes when measures accounting for the difficult classes problem
are considered. Hence, we compare OVO strategy (with classic aggregations) to the baseline classifier (without decompo-
sition) using accuracy, GM and AvgAcc. We will show that the significant differences obtained with accuracy disappear
when the other measures are considered.

http://sci2s.ugr.es/ovo-ova/
http://sci2s.ugr.es/ovo-ova/
http://sci2s.ugr.es/sicidm/
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2. To study the validity of our aggregation proposal based on similarity measures to enhance the classification of the difficult
classes in OVO strategy. Therefore, we compare our methodology based on the similarity measure (from this point
denoted as SM) with OVO using the previous aggregation and with the baseline classifier, considering the same three
performance measures.

In order to develop this study, this section is divided into three subsections (one for each base classifier) from which the
main conclusions extracted will be discussed in Section 7. In addition, we include another subsection showing the execution
times of the methodology. Within each one of the first three subsections, the structure is defined as follows: first, we address
the former point and then we tackle the latter point. We should recall that all the differences shown among the methods
using OVO are only due to the aggregation phase, since the same score-matrices are used in each base classifier.

6.1. 3NN as base classifier

In Table 6, we show the test results for each method and performance measure considered using 3NN as base classifier
(note that, accuracy and AvgAcc are presented as percentages, as usual). Base refers to the baseline classifier without using
OVO, whereas ND and SM correspond to OVO strategy using ND and SM aggregations, respectively. OVO methods achieve the
highest accuracy values (SM does not hinder the accuracy results, despite focusing on difficult classes). In terms of GM, the
differences of ND with respect to the baseline 3NN decrease. Otherwise, SM is able to increase the performance of ND,
achieving the highest result. Lastly, AvgAcc shows that SM outstands among the three methods, but ND also excels with
respect to the baseline 3NN. Anyway, these facts must be contrasted with the proper statistical tests in order to extract
meaningful conclusions. Hence, we carry out the Wilcoxon tests, whose results are shown in Table 7.

Table 7 is divided into two parts. The first one compares the previous OVO aggregation with the baseline classifier,
whereas the second one is devoted to the comparison of our methodology with the other two methods. In the former com-
parison, only significant differences are found in case of AvgAcc (with a ¼ 0:1), which was not expected, but can be explained
as follows: OVO allows one to improve the classification over the easier classes, when this improvement is large enough,
their influence in the AvgAcc can also be significant if the accuracy over the difficult classes is not hindered (which does
not usually occur). That is, AvgAcc does not properly account for difficult classes problem, as previously stated, since low
rates in some classes can be unnoticed due to high TPRs in others. In other respects, the ranks in terms of accuracy rate
are in favor of ND, but the p-value is not low enough to reject the null hypothesis of equivalence. Moreover, when
Table 6
Results using 3NN as base classifier.

Data-set Accuracy GM AvgAcc

Base OVO Base OVO Base OVO

ND SM ND SM ND SM

Autos 71.05 79.23 72.94 .5741 .3821 .4021 61.33 72.24 68.15
Balance 83.52 82.72 80.48 .0000 .0000 .0868 60.43 59.83 58.77
Car 96.07 93.11 92.13 .9050 .8390 .9264 93.21 90.11 92.72
Cleveland 54.55 57.25 51.53 .0663 .0657 .1600 26.93 33.70 36.49
Contraceptive 46.16 48.27 46.98 .4175 .4203 .4718 43.12 46.69 47.54
Dermatology 96.38 90.24 89.96 .9593 .8265 .8232 95.65 85.19 84.92
Ecoli 79.77 79.77 79.79 .1556 .1319 .1609 68.64 68.50 70.83
Flare 72.23 72.42 71.29 .5089 .3962 .5405 59.32 60.65 63.40
Glass 71.03 72.44 66.37 .5551 .5625 .5553 64.75 65.67 69.55
Hayes-Roth 31.03 74.96 77.24 .3829 .7631 .7769 35.09 73.35 79.29
Iris 95.33 94.67 93.33 .9240 .9378 .9275 95.33 94.67 93.33
Led7digit 42.60 72.00 70.60 .0000 .2274 .6834 41.18 72.05 70.75
Lymphography 85.08 83.72 82.39 .7087 .5223 .5084 74.94 74.31 73.52
NewThyroid 96.28 95.35 95.81 .9484 .9423 .9423 91.59 90.25 94.60
Nursery 92.36 92.52 93.13 .6992 .6492 .7359 83.50 84.28 88.89
Pageblocks 94.52 94.88 95.07 .3111 .4800 .6405 67.18 73.18 82.25
Penbased 96.91 96.64 96.36 .9681 .9692 .9624 96.90 96.66 96.37
Satimage 86.16 86.16 86.78 .8248 .8223 .8463 82.00 82.30 85.39
Segment 96.10 96.62 96.75 .9662 .9712 .9668 96.10 96.62 96.75
Shuttle 99.54 99.63 99.63 .5657 .7665 .3665 73.65 76.23 80.21
Splice 89.65 91.24 94.05 .8723 .9095 .9406 91.51 93.46 94.15
Tae 35.74 37.08 39.81 .3829 .3786 .3622 35.58 37.04 40.03
Thyroid 93.61 94.58 92.92 .3003 .4813 .6288 50.21 57.42 69.52
Vehicle 70.69 71.40 69.62 .6515 .6460 .6505 70.99 71.71 69.98
Vowel 95.86 96.06 95.35 .9894 .9915 .9504 95.86 96.06 95.35
Wine 96.05 97.17 98.87 .9760 .9708 .9882 96.76 97.68 98.86
Yeast 55.33 54.18 52.02 .2916 .1721 .0925 53.29 52.01 50.87
Zoo 93.05 90.14 93.10 .3782 .3484 .3782 85.24 79.84 84.05

Average 79.17 81.94 81.23 .5815 .5919 .6241 71.08 74.35 76.30



Table 7
Wilcoxon tests for 3NN as base classifier.

Comparison Measure Rþ R� Hypothesis p-Value

ND vs. base Accuracy 256.0 150.0 Not rejected 0.227476
GM 188.5 217.5 Not rejected 0.754794
AvgAcc 289.0 117.0 Rejected for ND at 90% 0.050182

SM vs. ND Accuracy 145.5 260.5 Not rejected 0.186360
GM 300.0 106.0 Rejected for SM at 95% 0.027187
AvgAcc 315.0 91.0 Rejected for SM at 95% 0.010760

vs. Base Accuracy 188.0 218.0 Not rejected 0.732674
GM 251.5 154.5 Not rejected 0.279642
AvgAcc 329.0 77.0 Rejected for SM at 95% 0.004115

Rþ are ranks in favor of the first algorithm in the comparison and R� in favor of the second one.
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considering the GM, the weakness of OVO shows up, in spite of being no differences, the sum of ranks turns in favor of the
baseline classifier.

The latter comparison shows the influence of our methodology. SM statistically outperforms the previous OVO aggrega-
tion in terms of GM and AvgAcc (both with a ¼ 0:05), being not at the expenses of losing accuracy (which comparison shows
that are almost equivalent). Hence, it has accomplished its objectives. However, in comparison with the baseline 3NN, its
behavior is similar to that of ND, accuracy and GM tests are not rejected, but in this case, the ranks of GM are in favor of
SM on the contrary to the case of ND. Besides, AvgAcc is now rejected at (a ¼ 0:05), showing that SM has further improved
ND.

6.2. C4.5 as base classifier

The test results with C4.5 as base learner are presented in Table 8. The largest accuracy is achieved by WV, whereas SM
reaches the highest GM and AvgAcc values with a large advantage, which was the expected behavior. These results are con-
trasted using the appropriate statistical analysis in Table 9, where the results of the Wilcoxon tests are shown.
Table 8
Results using C4.5 as base classifier.

Data-set Accuracy GM AvgAcc

Base OVO Base OVO Base OVO

WV SM WV SM WV SM

Autos 76.73 81.17 81.19 .6048 .6514 .6671 75.55 79.22 80.05
Balance 77.28 80.00 70.56 .0000 .0000 .5012 55.92 57.88 58.50
Car 90.80 93.00 93.58 .7871 .9197 .9402 80.21 92.20 94.19
Cleveland 51.82 51.53 49.82 .0000 .0000 .0000 28.14 26.39 24.87
Contraceptive 51.93 52.48 52.07 .4962 .4976 .5108 50.34 50.51 51.33
Dermatology 92.46 96.37 96.08 .8922 .9541 .9450 90.29 95.70 94.87
Ecoli 78.28 79.47 77.68 .1605 .1564 .1564 63.94 65.89 63.10
Flare 74.48 74.20 69.79 .1014 .0000 .4376 60.51 58.08 63.01
Glass 68.73 70.53 68.22 .5174 .5073 .6258 66.85 67.50 67.20
Hayes-Roth 83.30 83.30 83.30 .8379 .8379 .8379 85.45 85.45 85.45
Iris 93.33 93.33 93.33 .9289 .9289 .9289 93.33 93.33 93.33
Led7digit 70.60 72.20 71.20 .6783 .6939 .6869 70.72 72.22 71.20
Lymphography 75.01 73.63 67.63 .6638 .4689 .4716 74.22 67.59 69.63
NewThyroid 91.16 93.95 93.49 .8835 .9130 .9109 89.30 91.68 91.46
Nursery 89.04 89.04 83.57 .3909 .0000 .6907 69.29 65.76 84.01
Pageblocks 95.07 95.61 91.78 .3168 .4932 .6515 72.47 78.52 80.80
Penbased 89.36 90.64 90.27 .8903 .9032 .9008 89.31 90.63 90.31
Satimage 80.09 81.65 81.34 .7499 .7594 .7556 77.12 78.07 77.70
Segment 96.32 97.06 96.93 .9622 .9700 .9687 96.32 97.06 96.93
Shuttle 99.54 99.72 99.72 .0000 .5997 .5997 68.87 91.85 91.85
Splice 79.31 89.02 89.02 .7235 .8726 .8726 75.61 87.60 87.60
Tae 57.66 51.08 49.05 .5638 .4943 .4356 57.46 51.25 49.00
Thyroid 98.75 98.33 98.33 .9682 .8887 .8887 97.03 90.92 90.92
Vehicle 71.87 71.39 72.93 .6776 .6285 .6946 72.09 71.65 73.20
Vowel 79.49 80.00 80.91 .7852 .7891 .7993 79.49 80.00 80.91
Wine 94.90 92.13 92.13 .9479 .9158 .9158 94.85 91.98 91.98
Yeast 55.80 59.91 55.53 .0000 .0000 .1057 54.06 57.06 55.55
Zoo 94.10 93.10 92.10 .3782 .3782 .3782 85.48 85.12 85.12

Average 80.62 81.57 80.06 .5681 .5793 .6528 74.08 75.75 76.57



Table 9
Wilcoxon tests for C4.5 as base classifier.

Comparison Measure Rþ R� Hypothesis p-Value

WV vs. base Accuracy 297.5 108.5 Rejected for WV at 95% 0.028026
GM 224.5 181.5 Not rejected 0.757760
AvgAcc 259.5 146.5 Not rejected 0.218023

SM vs. WV Accuracy 64.5 341.5 Rejected for WV at 95% 0.001729
GM 284.5 121.5 Rejected for SM at 95% 0.017583
AvgAcc 219.0 187.0 Not rejected 0.497915

vs. Base Accuracy 182.5 223.5 Not rejected 0.602590
GM 322.0 84.0 Rejected for SM at 95% 0.009322
AvgAcc 290.5 115.5 Rejected for SM at 90% 0.055168

Rþ are ranks in favor of the first algorithm in the comparison and R� in favor of the second one.
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In this case, the difficult classes problem in OVO is clearly shown. WV statistically outperforms C4.5 in terms of accuracy,
but this difference vanishes when GM and AvgAcc are tested. In the comparison of the proposed method against WV and the
baseline C4.5, the outstanding behavior of SM in terms of GM (our main objective) excels, statistically outperforming both
methods with very low p-values. In terms of AvgAcc, the hypothesis of equivalence in the comparison with C4.5 is also re-
jected (which WV was not able to achieve), whereas the same does not occur when comparing with WV. Finally, accuracy
has not suffer a large decrease with respect to C4.5 (being equivalent), but WV outperforms SM considering this measure.
This means that the benefit in terms of GM has come along with a loss of accuracy due to the large GM enhancement.
6.3. SVM as base classifier

Finally, in the case of SVM as base classifier, since there is not an established extension to multi-class problems, we study
the benefit of applying our methodology with respect to the commonly used aggregation (PE). To do so, we consider two
different configurations as explained in SubSection 5.1. The results obtained with SVMPoly as base classifier are shown in Ta-
ble 10, whereas their corresponding statistical analysis is presented in Table 11.
Table 10
Results using SVMPoly as base classifier.

Data-set Accuracy GM AvgAcc
OVO OVO OVO

PE SM PE SM PE SM

Autos 74.80 75.38 .5479 .5624 72.69 71.99
Balance 90.40 91.68 .8310 .9156 85.35 91.79
Car 92.71 93.34 .8651 .9364 87.18 93.71
Cleveland 58.25 51.16 .0000 .0756 30.88 34.52
Contraceptive 49.83 50.71 .4604 .5102 47.34 51.54
Dermatology 94.13 93.85 .9408 .9362 94.58 94.30
Ecoli 77.69 76.49 .1544 .1517 68.18 67.77
Flare 74.67 72.79 .4517 .5914 61.02 65.54
Glass 61.26 59.81 .2045 .4596 55.40 61.78
Hayes-Roth 52.22 71.14 .4985 .7069 55.05 72.30
Iris 96.00 96.00 .9580 .9583 96.00 96.00
Led7digit 73.00 71.80 .7110 .7014 73.01 71.90
Lymphography 81.68 83.77 .3348 .3325 64.87 73.13
NewThyroid 97.21 95.81 .9599 .9621 96.16 96.38
Nursery 91.90 91.43 .6529 .6990 82.22 85.39
Pageblocks 94.70 86.49 .3042 .6658 68.23 78.89
Penbased 95.27 95.64 .9513 .9554 95.29 95.66
Satimage 84.14 83.67 .7703 .8015 79.55 81.36
Segment 92.55 93.85 .9197 .9359 92.55 93.85
Shuttle 96.37 96.92 .3477 .3631 80.67 83.30
Splice 79.59 80.22 .8325 .8374 84.29 84.69
Tae 51.72 55.72 .4869 .5407 51.91 55.57
Thyroid 95.69 96.94 .4445 .8817 67.88 89.29
Vehicle 72.46 73.05 .6970 .6892 72.82 73.49
Vowel 69.90 72.22 .6822 .7050 69.90 72.22
Wine 97.16 97.16 .9684 .9684 96.99 96.99
Yeast 59.10 54.58 .0000 .4088 56.74 56.69
Zoo 95.05 95.05 .0000 .0000 85.24 85.24

Average 80.34 80.60 .5706 .6519 74.00 77.69



Table 11
Wilcoxon tests for SVMPoly as base classifier.

Comparison Measure Rþ R� Hypothesis p-Value

SM vs. PE Accuracy 219.0 187.0 Not rejected 0.756995
GM 364.5 41.5 Rejected for SM at 95% 0.000220
AvgAcc 361.0 45.0 Rejected for SM at 95% 0.000266

Rþ are ranks in favor of SM and R� in favor of PE.
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Using this configuration SM achieves the highest values in the three measures. In the case of accuracy, the difference is
low, but in the other two are remarkable, mainly in GM, which is highly enhanced. Similar conclusions are drawn from the
statistical tests. Both methods achieve equivalent accuracies, but SM behavior in terms of GM and AvgAcc is superb, rejecting
the null hypotheses of equivalence with very low p-values.

Regarding the second configuration, SVMPuk, the results (shown in Table 12) are similar, but not so large differences are
shown at first glance. In this case, SM continues achieving the highest values in the three measures, maintaining its excellent
performance in terms of GM and AvgAcc. These results are contrasted with the proper statistical analysis in Table 13. The
superiority of SM is remarkable as shown by the results of the tests. Whereas the accuracy remains similar, both GM and
AvgAcc are improved, rejecting the null hypotheses of equivalence with low p-values. The different behaviors between both
Table 13
Wilcoxon tests for SVMPuk as base classifier.

Comparison Measure Rþ R� Hypothesis p-Value

SM vs. PE Accuracy 220.0 186.0 Not rejected 0.710304
GM 336.5 69.5 Rejected for SM at 95% 0.003502
AvgAcc 307.0 99.0 Rejected for SM at 95% 0.022264

Rþ are ranks in favor of SM and R� in favor of PE.

Table 12
Results using SVMPuk as base classifier.

Data-set Accuracy GM AvgAcc
OVO OVO OVO

PE SM PE SM PE SM

Autos 68.53 61.51 .2544 .2156 65.06 59.78
Balance 88.00 87.84 .8660 .8497 86.93 85.71
Car 63.60 71.18 .7452 .7763 77.58 80.37
Cleveland 45.09 44.75 .0000 .0000 29.78 29.41
Contraceptive 48.41 45.01 .4406 .4555 45.70 46.31
Dermatology 96.09 95.26 .9574 .9478 96.03 95.29
Ecoli 75.31 75.01 .1381 .1550 67.35 67.64
Flare 69.42 64.35 .3277 .5188 59.43 60.10
Glass 70.60 70.61 .5372 .5533 68.04 68.59
Hayes-Roth 79.54 81.05 .8072 .8163 82.30 83.58
Iris 94.00 94.67 .9375 .9442 94.00 94.67
Led7digit 70.20 70.80 .6840 .6928 70.32 71.01
Lymphography 80.34 81.01 .1557 .3374 54.98 61.65
NewThyroid 97.67 97.67 .9811 .9811 98.16 98.16
Nursery 81.33 83.33 .6793 .6902 82.28 83.72
Pageblocks 94.16 93.43 .2757 .2666 67.40 65.41
Penbased 97.82 97.82 .9781 .9781 97.85 97.85
Satimage 84.92 85.23 .8315 .8434 84.16 85.08
Segment 97.10 97.23 .9704 .9717 97.10 97.23
Shuttle 99.72 99.22 .7650 .9648 93.14 97.17
Splice 64.56 72.10 .3787 .7575 51.44 78.68
Tae 56.30 57.63 .5513 .5649 56.24 57.51
Thyroid 92.64 92.50 .4971 .5364 62.44 66.66
Vehicle 80.49 80.61 .7873 .7887 80.71 80.83
Vowel 99.39 99.39 .9936 .9936 99.39 99.39
Wine 98.30 98.30 .9857 .9857 98.60 98.60
Yeast 56.54 54.18 .0000 .0954 55.37 55.14
Zoo 84.19 93.05 .0000 .2000 64.05 80.00

Average 79.80 80.17 .5902 .6386 74.49 76.63



Table 14
Executions times in seconds of the proposed methodology for each base classifier and data-set.

Data-set #Ex. #Cl. 3NN C45 SVMPoly SVMPuk

Autos 159 6 6.0 16.8 34.6 43.6
Balance 625 3 4.2 3.6 3.8 3.6
Car 1728 4 14.2 6.2 52.4 15.2
Cleveland 297 5 19.4 22.8 34.0 22.6
Contraceptive 1473 3 8.8 8.2 8.4 10.4
Dermatology 358 6 3.6 14.0 60.8 86.2
Ecoli 336 8 23.8 128.4 233.6 262.0
Flare 1066 6 39.4 128.0 206.0 243.8
Glass 214 7 31.6 22.6 67.8 80.8
Hayes-roth 132 3 1.2 0.6 1.2 1.4
Iris 150 3 1.0 0.8 1.0 1.4
Led7digit 500 10 414.4 713.8 887.4 947.6
Lymphography 148 4 1.6 4.2 5.4 8.0
Newthyroid 215 3 1.4 1.2 1.4 2.0
Nursery 1296 5 7.8 72.4 99.0 85.4
Pageblocks 548 5 14.8 10.6 54.6 55.0
Penbased 1100 10 142.0 626.2 1 676.0 102.6
Satimage 643 7 31.6 92.0 198.6 86.8
Segment 2310 7 49.2 241.0 795.8 64.8
Shuttle 2175 5 15.6 32.2 188.4 158.4
Splice 319 3 2.0 1.0 2.0 2.6
Tae 151 3 1.6 1.2 1.2 1.6
Thyroid 720 3 2.6 1.4 4.2 4.4
Vehicle 846 4 11.4 18.0 37.8 3.0
Vowel 990 11 236.8 787.0 2 505.8 114.4
Wine 178 3 1.2 0.8 0.8 1.0
Yeast 1484 10 1 093.6 1 599.2 2 706.8 2 595.2
Zoo 101 7 2.2 1.2 42.0 43.6
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configurations of SVMs can be explained by the confidences produced by each configuration. In the case of SVMPuk, the value
of C considered makes it to produce too extreme confidence values, which do not allow for greater improvements.

6.4. Analyzing the computational complexity

The execution times (in s) of the proposed methodology2 are shown in Table 14 for each base classifier and data-set. These
running times are the average times needed to train a partition from the stratified 5-fold cross-validation for each data-set. It
can be observed that the method is not computationally very expensive, requiring few seconds to learn the parameters when
the number of classes is low (despite the number of examples in the data-set, e.g., Car data-set). Otherwise, the computational
cost increases with the number of classes but the executions are maintained in reasonable times. Moreover, it is interesting to
note that, in each data-set, the better the confidences are, the greater the time needed to be executed is, since the adjustment
has to deal with smoother confidence values, which require more training time (e.g., SVMPoly).

7. Discussion and future research lines

We have empirically studied the weakness of OVO strategy to deal with difficult classes and tested our proposal to alle-
viate this problem enhancing their classification. In this section, we aim to first discuss the main conclusions extracted from
this analysis (SubSection 7.1). Then, we put forward the future research lines that have come out from this work, both con-
sidering the same framework with decomposition strategies (SubSection 7.2) and considering the difficult classes problem
from a different perspective (SubSection 7.3).

7.1. Discussion

From the experimental analysis carried out, the following points are highlighted:

1. The difficult classes problem has been pointed out showing that the statistical differences that are usually found between
OVO and the baseline classifiers vanish when GM is considered.

2. AvgAcc is not an appropriate measure to account for difficult classes problem on its own. It can be biased by easy classes
achieving high TPRs, unnoticing low TPRs in the most difficult ones.
2 Experiments were carried out in a Intel Core i7 930 with 4 GB RAM.
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3. The proposed methodology is able to properly learn the parameters for the similarity-based aggregation, statistically
outperforming the corresponding OVO version of the classifier in terms of GM, which was our main objective. Recall that
the differences shown between OVO methods are only due to the aggregation, since the score-matrices are the same.
Besides, this methodology is generic, in the sense that it can be used with any base classifier.

4. The proposed fitness function allows us to carry out a global adjustment of the base classifiers considering the GM, the
AvgAcc and the concept of margin. This last component is important in order to prevent the search algorithm from
overfitting, which could occur due to the usage of the same training set.

5. The GM improvement with respect to the previous OVO aggregation has not been at the expenses of accuracy. Hence, we
have shown that the base classifiers can be managed in such a way that different objectives can be obtained, without
altering them.

6. It has been shown that there is much margin for improvement in terms of GM and AvgAcc, which could be more
important than accuracy in many applications.

7. The classifiers giving the best confidence degrees (such as SVMPoly) have more margin for improvement, since they can
provide more information to the classification process. Other confidence estimations, such as those of C4.5 based on
the number of instances in the predictions, are not so useful, since in many cases a finite number of values are given.
The case of SMVPuk is different, because the configuration (parameter C) used produces too borderline (close to 0 or 1)
values, which are not as useful as those given by SVMPoly.

7.2. Future research lines under this framework

After these considerations, some future research lines in the same working direction can be pointed out:

1. The hybridization of this method with others accounting for difficult classes problem, and more specifically for class
imbalance problem. It should be studied whether this hybridization could provide further improvements.

2. The presence of the difficult classes problem in other decomposition strategies should be analyzed, i.e., in the ECOC
framework, looking at the cases such as OVO, which are more prone to suffer from it, or analyzing which codifications
could avoid it.

3. Different aggregations aside from the proposed one should be studied in order to favor difficult classes. Besides, different
ways of parametrization of the REFs could be considered.

4. The fitness function and the GA used could be improved in order to further enhance the results obtained, e.g., different
optimization techniques should be analyzed.

5. Non-competent classifiers [29,26] are another weak point of OVO strategy. The combination strategies dealing with this
problem should be analyzed in the context of difficult classes, and the combination with the proposed solution could be
implemented. Similarly, hierarchical models [45] could help in reducing the number of non-competent classifiers and the
computational time required for testing in large scale problems.

7.3. Additional future research lines on difficult classes

In addition to the future lines emerged in the framework of decomposition strategies, from our point of view, the difficult
classes problem should also be analyzed from a different perspective.

1. New measures accounting for difficult classes should be studied, since a proper performance evaluation of the classifiers
is of great importance. In this sense, this problem might be related with quantification [21] and calibration [38,20] prob-
lems, which would help to understand the problem.

2. The detection of difficult classes prior to the classifier learning would be helpful for the learning of the classifiers. It would
allow one to provide the classifiers with additional information in order to increase the TPRs over the difficult classes. As
we have shown, difficult classes are strongly related with data characteristics and hence, its presence could be studied
using data-complexity metrics [7].

3. The problem of difficult classes may be strongly related with data-set shift problem (when the training data and the test
data do not follow the same distribution) [54,46] in some cases. Hence, difficult classes could be analyzed from this dif-
ferent viewpoint.

These future research lines would clarify the problem of difficult classes and would help in developing new methods to
deal with it. Anyway, in this paper all this issues cannot be covered and are out of its scope, but they could serve other re-
searches in new developments in the field.
8. Concluding remarks

In this paper we have dealt with a weak point of OVO strategy, that was not addressed before, which we have identified as
the difficult classes problem. We have shown that the improvements usually attributed to OVO are mainly due to its
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classification enhancement over the easier classes, whereas difficult ones are not empowered as well. The justification of this
work was based on the usage of different performance measures taking into account the individual TPR of each class.

We have proposed a new aggregation methodology based on similarity measures, which generalizes the well-known
weighted voting strategy, as a possible solution. This aggregation considers a set of parameters which are able to alter
the decision rules from the score matrices. In order to find the optimal values for these parameters, we have proposed a fit-
ness function considering the concepts of margin, GM and AvgAcc which, on a whole, allows one to improve the behavior of
OVO scheme from the point of view of the difficult classes. In particular, our new methodology has shown its effectiveness,
statistically outperforming the previous aggregations in terms of GM, and in most of the cases without hindering the
accuracy.

Finally, we have carried out a thorough discussion on the results obtained for a better understanding of the problem and
the solution presented, and we have introduced several research lines for future work in this framework but also in the more
generic scenario of difficult classes as an interesting problem in machine learning.
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