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In recent years, many nearest neighbor algorithms based on fuzzy sets theory have been
developed. These methods form a field, known as fuzzy nearest neighbor classification,
which is the source of many proposals for the enhancement of the k nearest neighbor clas-
sifier. Fuzzy sets theory and several extensions, including fuzzy rough sets, intuitionistic
fuzzy sets, type-2 fuzzy sets and possibilistic theory are the foundations of these hybrid
techniques, designed to tackle some of the drawbacks of the nearest neighbor rule.

In this paper the most relevant approaches to fuzzy nearest neighbor classification are
reviewed, as are applications and theoretical works. Several descriptive properties are
defined to build a full taxonomy, which should be useful as a future reference for new
developments. An experimental framework, including implementations of the methods,
datasets, and a suggestion of a statistical methodology for results assessment is provided.
A case of study is included, featuring a comparison of the best techniques with several state
of the art crisp nearest neighbor classifiers. The work concludes with the suggestion of
some open challenges and ways to improve fuzzy nearest neighbor classification as a
machine learning technique.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The nearest neighbor (NN) rule is a nonparametric method for pattern classification [44] based on instances [1]. Intro-
duced by Fix and Hodges in 1951 [28], the NN rule gained considerable popularity after 1967, when some of its formal prop-
erties were described by Cover and Hart [23]. Cover’s work was a milestone in a subject which has since become a lively
research field for many researchers in pattern recognition and machine learning [4,100] and the study and development
of one of the top ten algorithms in data mining [101].

Although the NN rule has been introduced in many research problems, its foremost application belongs to supervised
classification, in which patterns contained in a test set TS are classified using the patterns included in a training set TR as
reference. Here, a pattern x follows the usual definition x ¼ x1; x2; . . . ; xd;xf g, where d is the number of attributes that de-
scribe the data and x is its assigned class.

The general definition of the NN rule in supervised classification, the k nearest neighbors classifier (k-NN), considers the
use of the most similar (nearest) k patterns in TR to derive the class of a test pattern. More formally, let xi be a training
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pattern from TR;1 6 i 6 N (where N is the number of patterns in TR) and xj be a test pattern from TS;1 6 j 6 M (where M is
the number of patterns in TS). During the training process, the k-NN classifier simply stores the true class x of each training
pattern xi. In test phase, the decision rule predicts a class x̂ for the test pattern xj, according to the true class x of the major-
ity of its k nearest neighbors (its most similar patterns from TR). In the case of a tie, x̂ is given by the closest nearest neighbor
that belongs to one of the tied classes.

Despite its simplicity, the k-NN classifier has been widely studied from many perspectives, pursuing the improvement
of its classification accuracy or mitigating some of its well-known shortcomings. The most critical of its shortcomings are
the necessity of storing the full training set when performing the classification task (in contrast to most machine learning
procedures, which only require a model to be stored); the relatively low efficiency of the computation of the decision rule
(due to the necessity of computing the similarity of the test pattern with every pattern of TR); the low tolerance to noise
of the classifier (especially when k is set to k ¼ 1) and the fact that the k-NN classifier relies exclusively on the existing
data, assuming that the training set defines the decision boundaries among the classes perfectly, which is not always the
case.

The aforementioned drawbacks have been analyzed extensively by the research community. As a result, many ap-
proaches have been proposed regarding, for example, the computation of similarity measures [16], the optimum choice of
the k parameter [60], the definition of weighting schemes for patterns and attributes [96,51], the adaptation of the algorithm
to data [43], the development of fast and approximate versions of the NN rule, devised to quicken the computation of the
nearest neighbors [37,74,5,70], and the reduction of the training data [31,91,22,26].

Fuzzy Sets Theory (FST) [107] has been the basis of a remarkable number of these approaches. In the context of nearest
neighbor classification, FST allows imprecise knowledge (such as the membership of outliers to any of the classes of the
problem) to be represented and fuzzy measures to be introduced, which provide, for example, an enhanced way of describing
the similarities between the instances that represent a problem.

These components, managed in a crisp way by the original k-NN classifier, are usually the focus of the extensions pro-
posed by fuzzy nearest neighbor algorithms (together with the automatic set up of the k parameter and the definition of
new ways of combining the votes of the nearest neighbors). In the literature, their study has been tackled considering
FST, various extensions and related approaches including fuzzy rough sets [24], intuitionistic fuzzy sets [7], possibilistic the-
ory [108] and type-2 fuzzy sets [58].

Supported by the former approaches, the development of the field has heightened since 1983 and 1985, with the first
works in the area published by Jóźwik [56] and Keller et al. [59]. New approaches regarding both improvements of the k-
NN model and applications to real-world problems have been proposed, drawing the attention of many researchers and
practitioners.

All these approaches have been proposed with a clear objective: improving the accuracy of the NN rule. By introducing
soft memberships (to represent those instances which are not typical prototypes of each class), improved similarity mea-
sures (to adapt the way in which distances are computed to the fuzzy memberships), new decision rules (to incorporate both
the memberships and the distances to the final classification of the test instances), the precision of the classifier is expected
to be enhanced over that of the original NN rule. Also, some fuzzy nearest neighbor algorithms exhibit other interesting
capabilities such as not requiring a special set-up of the k parameter.

In this work we present a study of the current status of fuzzy nearest neighbor classification. A survey of methods is pro-
vided, focused on the ways in which the NN rule has been extended and modified throughout these years. A full taxonomy is
proposed, considering the different techniques involved in the development and description of the new proposals. This tax-
onomy is founded on several distinctive traits identified among the most relevant methods.

Moreover, a full experimental framework, including a set of well-known publicly accessible and representative super-
vised classification problems, is offered. This framework offers implementations of the essential methods for reference,
and suggests a statistical methodology based on nonparametric procedures, which should be sufficient to provide a rigorous
confirmation of the differences reported in most cases. The framework’s description is concluded with a case study compar-
ing fuzzy NN based methods with a set of representative crisp NN based approaches. After the analysis of results (including a
further analysis of the relative performance of the methods as the number of instances, attributes and classes of the prob-
lems grow), the paper concludes with the suggestion of several interesting research trends that remain open within the
topic.

We also have developed a website with complementary material to the paper http://sci2s.ugr.es/fuzzyKNN/survey.php
including detailed descriptions of the algorithms analyzed and all of the material used in our case study (implementations,
data sets and partitions). Full results of the experimental study can also be found there.

The rest of this work is organized as follows: Section 2 presents a survey of the existing literature, reviewing the
most interesting proposals published based on the fuzzy NN rule. Fuzzy nearest neighbor algorithms are then char-
acterized, with respect to several distinctive traits. Section 3 shows the taxonomy proposed, based on common char-
acteristics shared among the methods. Section 4 describes our experimental framework, including data sets,
algorithms and statistical procedures. Section 5 shows the experimental study performed. Section 6 discusses sev-
eral open problems as a way of suggesting the future development of the field. Finally, Section 7 concludes the
paper.

http://sci2s.ugr.es/fuzzyKNN/survey.php
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2. Fuzzy nearest neighbor algorithms

Many proposals have been presented since the publication of the first works in the field. These proposals focus not only
on improvements to the classical model, but also other topics such as the use of different extensions of fuzzy sets, the addi-
tion of a preprocessing mechanism based on data reduction, or the development of real-world applications, describing in-
stances of problems tackled successfully by fuzzy nearest neighbor techniques.

This section is devoted to surveying relevant works in these directions, describing the key elements of each approach. A
more detailed description of the methods can be found at http://sci2s.ugr.es/fuzzyKNN/survey.php.

After the survey, several common properties of the methods are identified and described. These properties are used to
characterize the main approaches surveyed, providing with an insight into the existing differences in the design of the
methods.

2.1. A survey on fuzzy nearest neighbor classification

Since the presentation of the very first proposals, fuzzy nearest neighbor classification has become a distinctive area with-
in the field of nearest neighbor classification and instance based learning. The addition of FST based mechanisms to the tra-
ditional approaches has enabled very accurate and flexible classification models to be defined, with outstanding results
when applied to supervised learning problems.

Through this section, both classical approaches and new extensions will be surveyed, including proposals based on pos-
sibilistic theory, intuitionistic sets, fuzzy rough sets and data preprocessing. A description of other interesting proposals
using both nearest neighbor classification and fuzzy sets is also included. The survey is finished with several remarkable
examples of applications of fuzzy nearest neighbor classification to real-world scenarios.

2.1.1. Nearest neighbor algorithms based on fuzzy sets theory
The first proposal of a fuzzy nearest neighbor classifier was presented by Jóẃik [56] in 1983. This classifier, JFKNN, is an

improved version of the standard k-NN. It is based on a learning scheme of class memberships, providing each training in-
stance with membership array which defines its fuzzy membership to each class. After the learning process, the final clas-
sification is performed similarly to k-NN, but every neighbor uses its membership array for the voting rule, instead of just
giving one vote as in the crisp k-NN.

Two years later, Keller et al. [59] proposed what has since become the major reference in this field (with currently more
than 450 citations in the ISI Web of Science). FuzzyKNN, the classifier described in this work, has been the baseline of many
advanced methods hybridizing FST and k-NN classifiers. Furthermore, there are plenty of applications in many fields of re-
search based on this model, mainly due to its good behavior when tackling supervised learning problems.

FuzzyKNN introduced two modifications to the original k-NN rule:

� A preliminary training phase is introduced. In this phase, class memberships are derived for each training instance,
obtaining a value in [0, 1] for each instance and class. Although Keller proposed three different methods for computing
these memberships1 the best performing method requires for each instance xi to compute the kInit nearest neighbors in
the training data.2 Then, memberships are assigned following Eq. (1)
1 One
2 kIni
3 1.0
4 0.51
ucðxiÞ ¼
0:51þ ðvc=kInitÞ � 0:49 if c ¼ x
ðvc=kInitÞ � 0:49 otherwise:

�
ð1Þ
where vc are the number of neighbors found belonging to class c, and x is the class of xi in the original data.
The effect of Eq. (1) is that instances close to the center of the classes kept their original crisp memberships3 but instances
close to the boundaries between classes spread half of their membership among the neighbors’ classes. However, it is interest-
ing to note that the 0.51 and 0.49 coefficients still ensure that the largest membership will be assigned to the x class, regardless
of the neighboring instances.4 Also, the sum of the memberships to all classes will always be 1.
� A modified voting rule in which each neighboring instance votes for every class, using the memberships learned during

the training phase. These votes are weighted according to the inverse of the distance to the instance to be classified, and
finally all votes are added. The final class, x̂, is obtained as the class with the greatest combined vote.

In addition to FuzzyKNN, Keller’s work also presented FuzzyNPC, which is a prototypical version of FuzzyKNN. It works by
using only one prototype per class (which is obtained as the mean of every instance of the class in the training data), obtain-
ing x̂ using the inverse of the distances computed to each prototype. Hence, this classifier becomes a faster (but less accu-
rate) version of FuzzyKNN.
of them is the ‘crisp’ one: to assign a membership of 1 to the class of the instance in the original data, and 0 to the rest of the classes.
t is usually set to a value between (3, 10).
to their original class x and 0.0 to the rest.

or more to their original class x and 0.49 or less to the rest.

http://sci2s.ugr.es/fuzzyKNN/survey.php
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Another classical way of designing fuzzy nearest neighbor classifiers is the use of clustering algorithms to estimate the
membership values of each training instance. In [8], Bedzek and Chuah proposed a fuzzy version of ISODATA to perform this
task for the k-NN classifier. Later, in [9], the Fuzzy C-Means clustering algorithm was introduced to obtain the memberships.
Béreau and Dubuisson [11] also presented a clustering algorithm for this task, but aiming to minimize the entropy between
classes, instead of maximizing the accuracy of the underlying k-NN classifier.

All of these classical approaches are reviewed by Yang and Chen [103], whose work also includes a theoretical proof that
the FuzzyKNN rule is bounded above by twice the Bayes risk, extending the results of Cover and Hart for the k-NN rule [23].
The convergence properties of this error are also studied in [104], extending the original review.

Considering as a starting point these classic approaches, many extensions were developed introducing new schemes of
computation of the weights, new ways of calculating the distances, and other ways of improving the nearest neighbor clas-
sifiers by using fuzzy sets.

The most common approach is the modification of the way in which membership weights are computed. In [40], the
VWFKNN classifier sets weights according to the standard deviation of the neighbors’ class membership values. In this
way, weights can model a discriminant function identifying the different classes of the classification problem. Another exam-
ple is [81], in which Pham designed a method based on a kriging system to obtain the membership weights.

Another trend of research is focused on the modification of the computation of distances. In [62] the distances between the
instances are modified depending on its typicalness. Using expert knowledge (expert council interviewing for a medical prob-
lem, in this case) fuzzy decision rules are derived in order to obtain an accurate nearest neighbor classifier. Fuzzy distances,
represented by fuzzy numbers, are also considered in [75]. In this second case, the introduction of fuzzy distances allows
Mitchell and Schaefer method to adapt automatically the value of k according to the local density of the training instances.

Other extensions are focused in the enhancement of the FuzzyKNN by the optimization of the kInit and m parameters. For
example, GAFuzzyKNN [46] employs a genetic algorithm to optimize both values. A parallel implementation of a genetic
algorithm designed for this task is also presented in [85].

2.1.2. Interval type-2 fuzzy sets based approach
Type-2 fuzzy sets have been the basis of a fuzzy nearest neighbor approach, presented in [20]. In that work, the IT2FKNN

classifier is proposed as an alternative way of discarding the necessity of setting up the parameter kInit in the original def-
inition of FuzzyKNN. This is achieved by introducing interval type-2 fuzzy sets to represent the memberships computed by
considering distinct choices of the parameter kInit. Type-2 fuzzy sets are built considering all the different memberships
computed, and then a type reduction operation is performed to obtain a final, combined value, representative of all the
choices initially considered. The rest of the phases of the algorithm are similar to the original definition of FuzzyKNN.

2.1.3. Possibilistic k-NN methods
Possibilistic classification extends fuzzy classification in the sense that the set of memberships assigned to every instance

is not constrained; that is, in most of the fuzzy classification approaches the sum of the membership degree to every class of
each instance must be 1 (see, for example, Eq. (1) for FuzzyKNN). This property does not hold in possibilistic classification,
which means that non-canonical situations can be represented using this paradigm: Using a possibilistic model an instance
could belong to two classes simultaneously (that is, it might have a degree of membership of 1 in more than one class), or
could not be a clear representative of any class (having a sum of memberships much lower than 1).

D-SKNN [25] is the first example implementing this model. It is a k-NN classifier based on the Dempster–Shafer theory,
and incorporates mechanisms to manage uncertainty and reject unclear instances. Another related model has recently been
proposed in [27], incorporating lower previsions as generic models for uncertainty management.

Possibilistic instance based learning is also analyzed in [49]. The paper is focused on the development of a theoretical pos-
sibilistic framework, linking its properties with those of nearest neighbor classification and analyzing advanced concepts
concerning uncertainty in nearest neighbor classification, similarity measures, noise and outliers detection, and incomplete
information management. It also presents a classifier based on these concepts, PosIBL, which does not need the specification
of the k parameter of the classic k-NN rule.

2.1.4. Intuitionistic k-NN methods
Intuitionistic fuzzy sets have also been used to develop fuzzy nearest neighbor classifiers. By incorporating the concept of

nonmembership, it is possible to model some additional situations in an effort to characterize the classification problems as
accurately as possible.

In [38] the IFSKNN classifier was proposed. In this algorithm, a value of membership is computed for each instance, as the
distance to the mean of the class. Then, the nonmembership value is computed in a similar way, as the distance to the near-
est mean of the rest of the classes. This enables typical instances to be represented with a high degree of membership,
whereas noisy instances will be assigned with a high degree of non-membership.5 The classification is completed using mem-
berships and nonmemberships to modify the distances computed by a k-NN classifier.
5 Note that with this representation, outliers – instances which are far from all the classes – will be represented with very low degrees of membership and
nonmembership, thus the degree of indeterminateness can be used as a way of representing outliers in the training data.
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A second approach using intuitionistic fuzzy sets was presented in [63]. IF-KNN considers the nonmembership degree to
be the opposite of the membership of each instance to the class, and employs both values to determine the contribution of
each neighbor’s vote to the final classification.

Finally, in [39] the IFV-NP classifier was proposed. It is a prototypical version of IFSKNN, in which, after obtaining the pro-
totypes, a procedure is carried out to adjust the degrees of membership and nonmembership in accordance with the dis-
tances to the center of the classes.

2.1.5. Preprocessing approaches via data reduction
Preprocessing methods have become an effective way of enhancing the performance of general nearest neighbor classi-

fiers. Among them, prototype selection [31] and prototype generation [91] fields have inspired the first preprocessing meth-
ods for fuzzy nearest neighbor classifiers.

Regarding prototype selection, the FENN classifier [105] is based on Wilson’s editing rule for k-NN [98]: All instances in
the training set are checked and those whose classification by the FuzzyKNN rule does not agree with its original class are
removed. CFKNN [109] is also inspired by a classic method, Hart’s condensing rule [41], although it uses the sample fuzzy
entropy to determine whether an instance is finally removed or kept. Another representative example is the PFKNN method
[6], which first builds a set of prototypes representing the border points of different clusters in the data and then adds to this
reference set those instances which could be misclassified. The algorithm concludes with a pruning phase in which non-rel-
evant prototypes are discarded.

Finally, it is also possible to find prototype generation methods such as, for example, the Gayar et al. method [35], which
describes the use of Fuzzy C-Means to obtain the membership weights of prototypes generated in an iterative way.

2.1.6. Fuzzy rough sets based approaches
Recently, several approaches to nearest neighbor classification based on fuzzy rough sets have been proposed. Most of

them aim to improve the quality of the classification performed with the combined support of the rough sets and fuzzy sets
theories.

A first proposal, FRNNA, was presented in [12]. This classifier incorporates the lower and upper approximations of the
memberships to the decision rule, in an effort to deal with both fuzzy uncertainties and rough uncertainties. A second pro-
posal – FRNN [86] – develops this aspect further, associating fuzzy uncertainties with the existing overlapping between clas-
ses and rough uncertainties with the lack of a proper number of features to describe the data. Another main feature of this
method is that it does not require a fixed k value for the classification rule.

Fuzzy-rough nearest neighbor classification is developed in [53]. In these works, the FRNN-FRS and FRNN-VQRS classifiers
are described. They employ fuzzy rough sets and vaguely quantified rough sets, respectively. The first classifier is presented
as an improvement of FRNN, whereas in the second one vaguely quantified rough sets are introduced to reduce the sensi-
tivity of the classifier to noise. Finally, a further step in fuzzy-rough nearest neighbor classification is presented in [82],
where Qu et al. presents an approach to hybridizing kernel-based classification with fuzzy rough sets.

2.1.7. Further extensions
In addition to the wide range of proposals that have appeared in the literature, presenting a rich variety of fuzzy nearest

neighbor classifiers, the joint use of fuzzy sets and the nearest neighbor classifier has further enhanced work in this area.
Several of such works have focused either on the application of fuzzy nearest neighbor rules to tackle different problems
(other than classification) or on other ways of combining FST and k-NN. This subsection surveys some of the most interesting
approaches:

� The success of FuzzyKNN and other fuzzy nearest neighbor classifiers has inspired similar techniques used in incremental
data problems [89] (when the full training set is not available at the training phase), outliers detection in temporal series
[78], regression [84], semi-supervised learning for monitoring evolving systems [42], multi-label text categorization [54]
or low quality data problems [71].
� FST has become an interesting tool for the enhancement of the classic k-NN classifier throughout data preprocessing

approaches. Some notable examples include [50,76] in which an evolutionary instance selection method is presented
and extended. The method is enhanced through the transformation of the instances into circular-conic fuzzy rules, which
are finally used to train the classifiers. Instance selection is also the focus of [52,57], in which two different instance selec-
tion methods based on fuzzy rough sets are described.
In addition to preprocessing approaches, several works have also investigated further ways of extending the nearest
neighbor classifiers. For example, in [102], a theoretical description of a lineal programming method is provided. This
method is aimed at the design of ordered weighted average operators for the decision rule of k-NN. A different approach
is presented in [66], which includes an approximated nearest neighbor classifier [5] as a fast classification model, based
on fuzzy rough sets.
� Finally, FuzzyKNN has also been considered as a part of larger and more complex classification algorithms such as [106],

in which a boosting approach including FuzzyKNN, evolutionary feature selection and decision trees is presented. Another
example is [36], in which a genetic algorithm is used to optimize a one-versus-all ensemble of FuzzyKNN classifiers. In
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[19], Chua and Tan proposed an hybrid algorithm including a genetic fuzzy system, FuzzyKNN and a weighting scheme for
the distance function of the classifier. Also, in [14], a model integrating FuzzyKNN and several multi layer neural networks
as the core of a Mamdani type fuzzy inference system was proposed.

2.1.8. Applications
Fuzzy nearest neighbor classifiers have been selected by many practitioners in very different fields of science and indus-

try. Among them, FuzzyKNN stands out as the preferred choice from among a remarkable number of applications. The
amount of proposals describing very specific modifications of the original classifiers, designed to tackle the difficulties that
arise in each problem, is also worthy of note.

The first application was presented by Cabello et al. [13] in which the Fuzzy C-Means clustering algorithm and FuzzyKNN
are used together to tackle a problem of arrhythmia detection. Other recent applications are [17], in which diabetes diseases
are diagnosed by incorporating FuzzyKNN into a full artificial immune recognition system, and [73], in which the joint use of
particle swarm optimization, principal component analysis and FuzzyKNN is proposed for a thyroid disease diagnosis
problem.

Other medical technologies have also benefited from the use of fuzzy nearest neighbor classifiers: Liao et al. [67–69] pre-
sented several approaches to classifying radiographic images, including the use of feature extraction, Fuzzy C-Means clus-
tering and FuzzyKNN. Another notable example is [65], in which Leszczynski et al. analyze the performance of FuzzyKNN
with different classic distance measures (euclidean, mahalanobis, etc.) in a framework of decision making in radiotherapy.

Another major field of application is bioinformatics. Many approaches to protein identification and prediction includes
FuzzyKNN [48,93,45], some of which incorporate additional mechanisms, such as [61], in which a parallel implementation
of FuzzyKNN is suggested.

Outside of the medical and bioinformatics fields there are also plenty of applications selecting FuzzyKNN as a suitable
classifier (for example, [83] developing a wine classification system, [47] in which FuzzyKNN is used to classify web docu-
ments, and [92] in which a computer vision approach to duck meat color classification is presented).

Moreover, it is also easy to find other applications in which FuzzyKNN is combined with preprocessing techniques (for
example, [55] using Fuzzy C-Means for preprocessing data describing a cellular manufacturing system, or [64] which in-
cludes principal component analysis to reduce the dimensionality of data in a mold detection problem) or with other general
methods (such as the recent proposals of [15] for bankruptcy prediction incorporating FuzzyKNN in a particle swarm opti-
mization scheme, or [18] combining the output of several FuzzyKNN classifiers in a human action recognition problem.

Finally, there are not many applications including advanced fuzzy nearest neighbor classifiers, although [110,80] are
among the most remarkable. In the former work, Zhu and Basir presented a classifier inspired by D-SKNN, incorporating
a fast implementation scheme, and applied it to image classification problems. In the latter, Petridis and Kaburlasos designed
a k-NN method based on fuzzy interval numbers for the prediction of sugar production throughout different years.

2.2. Common properties of fuzzy nearest neighbor algorithms

Many different characteristics govern the behavior of the different fuzzy nearest neighbor algorithms that have appeared
in the literature. However, there are several common traits of major importance, from the point of view of nearest neighbor
based classification, which are worthy of analysis:

� Membership degree to a class: In the crisp definition of the NN rule, training patterns are restricted to belonging to a sin-
gle class, regardless of their spatial properties. Allowing fuzzy memberships (i.e. replacing x with a membership function
representing the pattern’s assignment to two or more classes) can be very useful for modeling many difficult (but com-
mon) situations in supervised classification, such as uncertain knowledge about the true class of a pattern (e.g. due to the
presence of noise).
� Similarity measure: The usage of similarities between patterns as a way of fuzzyfying the contribution of each neighbor to

the decision process may allow an enhancement of the discriminative power of the training data, thus improving the clas-
sification performance.
� Decision rule: In the k-NN classifier, the final decision about the x̂ class of a test pattern is given by a single majority

voting process. Other decision rules may be derived to combine the votes of the nearest neighbors, providing the classifier
with new ways of assigning the x̂ class of the test pattern.

These traits can be categorized into 3 groups: Membership, Distance and Voting. Each of the techniques analyzed will only
show one trait of each category. A last category, Others, includes additional traits that may belong or not to any technique. A
description of each category and trait is given as follows:

� Membership: This category refers to the way in which the instance’s memberships to each class of the problem is repre-
sented. Four different schemes are considered:
– Crisp scheme: Classical crisp memberships are used; that is, instance’s memberships are considered to be 1 in the par-

ticular class to which the instance belongs, and 0 in the rest.
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– Fuzzy scheme: A fuzzy set defines the instance membership to each class. In this case, the sum of the memberships of
an instance to all the classes of the problem will always be 1. No other restrictions are imposed, although it is very
common for methods using this scheme to assign a higher membership degree to the class to which the instance
belongs in the initial training data.

– Possibilistic scheme: In this extension of the fuzzy scheme, the requirement of having the sum of all memberships
equal to 1 is removed. Usually, class membership degrees remain normalized in the [0,1] interval, but here there is
no objection to representing an instance with full membership to several classes or without belonging to any class
at all.

– Intuitionistic scheme: When intuitionistic sets are used, two values (in [0,1]) are used to represent each instance
membership (membership and non-membership). Both values are simultaneously managed by the algorithm decision
rule during the classification process.

� Distance: This category refers to the way in which the distances computed between the instance to be classified and each
training instance are considered:
– Inverse weight: The most common approach is to use the inverse of the similarity value computed (usually the Euclid-

ean distance between the test and the training instance) as a weight to increase the strength of the neighbor vote in
the decision rule.

– Distance modulation: Different schemes can be applied to incorporate the distances computed to the decision rule,
modifiying its effect through the use of additional procedures such as kernels or exponential relations.

– Not used: Some of the techniques analyzed do not consider the absolute value of similarity computed in the decision
rule. Although they use distances to find the nearest neighbors of the test instance, these values are disregarded as
soon as the neighbors have been found.

� Voting: The definition of the voting rule used by the classifier. Typically, an additive scheme is chosen, which means that
votes emitted by each neighboring instance (possibly weighted by its relative distance to the test instance) are added to
create the final output of the classifier. However, different voting schemes may be selected:
– Classical: An additive scheme is used to combine the neighbors’ votes.
– Global: Every instance in the training set is considered in the voting process (instead of just the neighboring instances).
– Best neighbor: Only the best neighbor found among the k nearest ones (not necessarily the nearest) is used to deter-

mine the output of the classifier.
� Others: In this category, other relevant traits of nearest neighbor classifiers are included:

– Independence of k: The method does not require a value of k to be set for the decision rule.
– Preprocessing: In addition to the classification process, this technique also performs some form of data preprocessing.

Thus, as a side effect, the original training data is usually reduced (for example, by means of a prototype selection or
generation technique). Note, however, that the main objective of the method remains the classification task.

– Center based: The classification is oriented to relating test instances with the class whose center is nearest. This effect
– desirable for many classification problems, although it may be harmful in certain cases – is typical of those tech-
niques which rely on a clustering procedure to analyze the training data.

Table 1 displays a summary of such characteristics, highlighting which fuzzy nearest neighbor algorithms share them.
In each row, a check mark (U) is shown for each specific capability possessed by the respective algorithm. Algorithms are

denoted either by their acronym6 or by their author’s name. The algorithm’s main reference is also provided.

3. Taxonomy

By considering the traits described in the former section, it is possible to detail a general categorization of the fuzzy near-
est neighbor algorithms. Fig. 1 proposes a taxonomy founded both on the general field on which each technique is based and
on some of the traits analyzed previously.

The first level of the taxonomy is devoted to describing each technique depending on its main category: Fuzzy sets, type-2
fuzzy sets, possibilistic methods, intuitionistic fuzzy sets, fuzzy rough sets and preprocessing approaches via data reduction.
Among these categories, a second and a third level is introduced to discriminate between methods belonging to the same
field:

� For fuzzy sets based approaches, the main differential characteristics are independence from the k value and the usage of
distances to weight the computation of the votes in the decision rule.
� Possibilistic methods are also categorized depending on whether they are dependent to the set up of the k value or not.
� Similarly to the latter, intuitionistic fuzzy sets based methods are also categorized by their dependence on the set up of

the k value. Intuitionistic methods dependent on k can be further characterized as center based methods, focused on
determining the center of each of the classes of the problem and adapting their classification scheme to the centers found.
6 These algorithms are part of the experimental framework that will be presented below; their full name will be provided in Table 3.



Table 1
Common characteristics of fuzzy nearest neighbor algorithms.

Acronym/
name

Ref. Member. Distance Voting Others

Crisp Fuzzy Posibilistic Intuitionistic Inverse
weight

Distance
modulation

Not
used

Classical Global Best
neighbor

Independence of
k

Preprocessing Center
based

JFKNN [56] U U U U

FuzzyKNN [59] U U U

FuzzyNPC [59] U U U U U U

FCMKNN [9] U U U U

Kissiov et al. [62] U U U

D-SKNN [25] U U U

IFSKNN [38] U U U U

IF-KNN [63] U U U

FENN [105] U U U U

VWFuzzyKNN [40] U U U

IFV-NP [39] U U U U U U

Mitchell et al. [75] U U U U

IT2FKNN [20] U U U

PosIBL [49] U U U U

FRKNNA [12] U U U

Pham et al. [81] U U U

Gayar et al. [35] U U U U U U

GAFuzzyKNN [46] U U U

FRNN [86] U U U U

PFKNN [6] U U U U

CFKNN [109] U U U U

FRNN-FRS [53] U U U

FRNN-VQRS [53] U U U

Qu et al. [82] U U U

Desterke et al. [27] U U U
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Fig. 1. Proposed taxonomy of fuzzy nearest neighbor classifiers. Each method is to be categorized into one of the six major classes: Fuzzy sets, type-2 fuzzy
sets possibilistic methods, intuitionistic fuzzy sets, fuzzy rough sets or preprocessing approaches via data reduction. These classes are further divided
according to some key properties of the classifiers, including dependence on the k parameter, the use of distances to weight the votes and other relevant
traits.
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� Fuzzy rough sets based methods can be characterized according to the scheme used to represent the membership of the
training instances to the classes of the problem: They can use either fuzzy weights, possibilistic weights or crisp weights.
� The natural way of classifying preprocessing based approaches is to refer to the preprocessing field on which they are

based (prototype selection or prototype generation). In addition, some prototype generation based techniques can be cat-
egorized as center based methods.

The properties displayed in this taxonomy may be very helpful in understanding how an specific algorithm works, also
enabling the inclusion of new algorithms developed in the future. Although different schemes could have been chosen here,
the different levels established ensure that any technique (already analyzed or new) can easily be placed in one of the major
categories, using the second and the rest of levels to refine its categorization as much as necessary.
4. Experimental framework for fuzzy nearest neighbor classifiers

A critical step in the analysis of computational intelligence methods is the testing of their behavior in a controlled envi-
ronment. In the context of supervised classification, this requires the consideration of several elements including problems
instances, comparison methods and evaluation tools.

In this section, we present the experimental framework developed in order to analyze the most representative fuzzy near-
est neighbor classifiers of the state of the art. It will provide useful material for characterizing the current status of the field,
facilitating the experimental comparisons required in future developments.

The elements included in the framework are the following:



Table 2
Data sets included in the framework.

Data set #Ins. #At. #Cl. Data set #Ins. #At. #Cl.

Appendicitis 106 7 2 Penbased 10992 16 10
Balance 625 4 3 Phoneme 5404 5 2
Banana 5300 2 2 Pima 768 8 2
Bands 539 19 2 Ring 7400 20 2
Bupa 345 6 2 Satimage 6435 36 7
Cleveland 297 13 5 Segment 2310 19 7
Dermatology 358 34 6 Sonar 208 60 2
Ecoli 336 7 8 Spambase 4597 57 2
Glass 214 9 7 Spectfheart 267 44 2
Haberman 306 3 2 Tae 151 5 3
Hayes–Roth 160 4 3 Texture 5500 40 11
Heart 270 13 2 Thyroid 7200 21 3
Hepatitis 80 19 2 Titanic 2201 3 2
Ionosphere 351 33 2 Twonorm 7400 20 2
Iris 150 4 3 Vehicle 946 18 4
Led7Digit 500 7 10 Vowel 990 13 11
Mammographic 830 5 2 Wdbc 569 30 2
Marketing 6876 13 9 Wine 178 13 3
Monk-2 432 6 2 Winequality-red 1599 11 11
Movement 360 90 15 Winequality-white 4898 11 11
New Thyroid 215 5 3 Wisconsin 683 9 2
Page-blocks 5472 10 5 Yeast 1484 8 10
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� Data sets: A large set of 44 well-known supervised classification data sets is provided, and their main characteristics are
described.
� Fuzzy nearest neighbor classifiers: The framework features a library including the most relevant fuzzy nearest neighbor

classifiers in the state of the art.
� Comparison algorithms: A collection of several representative crisp nearest neighbor classifiers is presented. They will be

considered in order to test the behavior of the best performing fuzzy nearest neighbor classifiers in a more general
scenario.
� Parameters configuration: The guidelines followed to configure the parameter of each method are described. Also, the set

up considered for the k parameter is discussed in depth, given its importance with respect to most of the methods.
� Performance measures: Several performance measures have been considered for use in analyzing the behavior of the

methods. Their characteristics are described, as well as the motivations for including them in the experimental study.
� Statistical procedures: Several hypothesis testing procedures are considered to determine whether the differences found in

the experimental study between the performance of multiple algorithms are significant or not.

All of the contents of this framework are publicly available in http://sci2s.ugr.es/fuzzyKNN/framework.php. They are de-
scribed in depth throughout the rest of this section.

4.1. Data sets

The framework includes 44 supervised classification data sets. This is a compilation of well-known problems in the area,
taken from the KEEL-dataset repository7 [2] and the UCI repository [29].

Table 2 summarizes the main characteristics of the data sets. For each one, the table provides its number of instances
(#Ins.), attributes (#At.) and classes (#Cl.).

The data sets considered are partitioned following a ten folds cross-validation procedure, and their values are normalized
in the interval [0,1] to equalize the influence of attributes with different range domains.

By using the ten folds cross-validation procedure [90], each data set is randomly partitioned into ten subsets, preserving
the same size (the same number of instances) and the same class distribution between partitions. When running the clas-
sifier, an iterative process is followed where one partition is selected as the test set and the training set is composed of the
rest. This process is continued until every partition has served as the test set once. Then, the final results per dataset are ob-
tained by averaging the results obtained over the ten partitions.

Note that no data set includes nominal values, and instances with missing values have been discarded. As will be dis-
cussed later, this is a limitation of the methods in the current state of the art: Nominal and missing values are often neglected
by most of the existing fuzzy nearest neighbor classifiers.
7 http://www.keel.es/datasets.php.

http://sci2s.ugr.es/fuzzyKNN/framework.php
http://www.keel.es/datasets.php
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4.2. Fuzzy nearest neighbor classifiers

The library of fuzzy nearest neighbor classifiers features 19 different methods. All of them have been coded in Java, under
the guidelines of the KEEL project [3]. They have been coded considering all the instructions provided by the authors in their
respective papers.

Table 3 lists the methods included. For each one we provide its acronym, name, year of publication, and the main ref-
erence (Ref.) describing the work. We consider that this selection properly represents the current state of the art in the area.
Note that we have not considered those approaches whose description in their original work was incomplete, or whose use
requires additional resources (such as [62], in which expert human knowledge is required prior to running the algorithm).

4.3. Comparison algorithms

In addition to the full library of fuzzy nearest neighbor classifiers, we have added a set of representative crisp nearest
neighbor classifiers to our study. Its inclusion in the study will allow the behavior of the fuzzy nearest neighbor classifiers
to be tested in a more general environment, considering a wider range of methods. The crisp nearest neighbor classifiers cho-
sen are described as follows:

� k-NN classifier (k-NN): The performance of the k-NN classifier will be studied as a reference for the rest of methods [23].
� Edited Nearest Neighbors (ENN): A prototype selection algorithm based on the edition of noisy instances. Instances whose

class do not match their nearest neighbors’ class are removed from the training set. After the edition process, the k-NN
classifier is used to obtain the final classification [98].
� Integrated Decremental Instance-Based Learning algorithm (IDIBL): An integrated model featuring instance selection, selec-

tion of kernel function for the voting process, and automatic determination of the k value and other related parameters
[99].
� Adaptive k nearest neighbors classifier (KNNAdaptive): A modification of the distance measure of the NN rule. Distances in

this method are divided by the distance of the reference prototype to its nearest enemy (the nearest prototype from a
different class) [95].
� k Symmetrical nearest neighbors classifier (KSNN): A modification of the voting rule of the NN classifier, where votes are

considered for those instances in which the test instance would be one of its k nearest neighbors [77].
Table 3
List of methods included in the framework.

Acronym Name Year Ref.

JFKNN Jóźwik Fuzzy k-Nearest Neighbor algorithm 1983 [56]
FuzzyKNN Fuzzy k-Nearest-Nearest Neighbors classifier 1985 [59]
FuzzyNPC Fuzzy Nearest Prototype classifier 1985 [59]
FCMKNN Fuzzy C-Means 1986 [9]

k-Nearest Neighbors classifier
D-SKNN Dempster–Shafer theory based 1995 [25]

k-Nearest Neighbors classifier
IFSKNN Intuitionistic Fuzzy Sets 1995 [38]

k-Nearest Neighbors classifier
IF-KNN Intuitionistic Fuzzy 1995 [63]

k-Nearest Neighbors classifier
FENN Fuzzy Edited Nearest Neighbor classifier 1998 [105]
VWFuzzyKNN Variance Weighted Fuzzy 1999 [40]

k-Nearest Neighbors classifier
IFV-NP Intuitionistic Fuzzy Version of 2000 [39]

k-Nearest Neighbors classifier
IT2FKNN Interval Type-2 Fuzzy 2003 [20]

k-Nearest Neighbors classifier
PosIBL Possibilistic Instance Based Learning 2003 [49]
FRKNNA Fuzzy Rough k-Nearest Neighbors Approach 2003 [12]
GAFuzzyKNN Genetic Algorithm for 2005 [46]

Fuzzy k-Nearest Neighbors classifier
FRNN Fuzzy-Rough Nearest Neighbor algorithm 2007 [86]
PFKNN Pruned Fuzzy k-Nearest Neighbors classifier 2010 [6]
FRNN-FRS Fuzzy-Rough Nearest Neighbor classifier – 2011 [53]

Fuzzy Rough Sets
FRNN-VQRS Fuzzy-Rough Nearest Neighbor classifier – 2011 [53]

Vaguely Quantified Rough Sets
CFKNN Condensed Fuzzy 2011 [109]

k-Nearest Neighbors classifier
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� Nearest Subclass Classifier (NSC): An application of the minimum variance clustering method to the generation of proto-
types for the NN rule [94].
� Prototype Weighting algorithm (PW): A gradient descent based algorithm developed for computing prototype weights to

minimize the leave one out error of the NN rule over the training set [79].

4.4. Parameter configuration

An essential factor in the set up of the experimental study is the configuration of the different parameters that governs
the behavior of each method. In the majority of cases, the experiments focus their attention on the k parameter, highlighting
the best value for each method or testing different values. In this study, given the wide range of approaches considered and
the variability between author’s recommendations in each work, we have chosen to take a representative set of fixed values
for the k parameter, k 2 f3;5;7;9g.

Accordingly, k ¼ 1 is excluded since, as with most of classical nearest neighbor approaches, the majority of fuzzy nearest
neighbor algorithms become the 1-NN rule when a single neighbor is considered, regardless of the additional fuzzy-based
mechanisms incorporated. In addition, no further values of k beyond k ¼ 9 are considered. This is due to the smoothing nat-
ure of the k parameter, which, if increased by too much, may render the discriminative capabilities of most of the nearest
neighbor classification algorithms powerless, degenerating into a majority classifier. In fact, most of the experimental studies
in nearest neighbor classification follow this rationale, sticking to some of the k values defined above.

The rest of the configuration parameters are fixed to the values recommended by the respective authors (the similarity
function considered is the Euclidean one). For the sake of fairness, in those cases where k does not need to be chosen (either
because it is determined automatically or because it is not necessary to choose a value), a similar number of configurations
has been considered, tuning other specific parameters according to the author’s recommendations.

All the methods included in the experiments, both fuzzy and crisp nearest neighbor classifiers, will follow these param-
eter configuration rules.

4.5. Performance measures

Several performance measures can be considered in the analysis of the different algorithms of the study. In this case,
accuracy and kappa are considered as precision measures, whereas running time is chosen to measure the efficiency of
the methods in general terms.

Accuracy is defined as the number of successful hits relative to the total number of classifications. It has been by far the
most commonly used metric for assessing the performance of classifiers for years [100,4]. Cohen’s kappa [21] is an alterna-
tive to the accuracy rate, a method, known for decades, that compensates for random hits in the same way as the AUC mea-
sure [10]. Kappa can be computed using the following expression:
kappa ¼ N
Pc

i¼1xii �
Pc

i¼1xi:x:i
N2 �

Pc
i¼1xi:x:i

ð2Þ
where xii is the cell count in the main diagonal of the classification confusion matrix, N is the number of examples, c is the
number of class values, and x:i; xi: are the columns’ and rows’ total counts, respectively. Kappa ranges from�1 (total disagree-
ment) through 0 (random classification) to 1 (perfect agreement). For multi-class problems, it is a very useful, yet simple,
metric for measuring the accuracy of the classifier while compensating for random successes.

Finally, average running time per partition is considered as a way of measuring the differences between methods with
respect to computational cost. Its usage will allow us to determine which methods require a greater amount of time to com-
plete the classification tasks.

In our study, the running time will measure the time spent from the point at which the training and test sets have been
loaded into memory and preprocessed, to the point at which the output file reporting the class assigned to each instance is
obtained. That is, it includes the model’s construction (if necessary), any other additional operations to adjust the classifier,
and classification of the test partition.

4.6. Statistical procedures

Once an experimental study has been carried out and its main results have been gathered, researchers can start to analyze
the performance of the methods considered. For the sake of correctness, these kinds of analysis often require the use of sta-
tistical procedures to provide a proper statistical support.

When using this framework, we recommend the consideration of the use of nonparametric statistical tests [88]. Their use
is preferred over parametric ones when the initial conditions that guarantee the reliability of the parametric tests (indepen-
dence, normality and homocedasticity) may not be satisfied, which is a common issue in many machine learning experimen-
tal set-ups [33,32].

Several nonparametric procedures are suitable for the aforementioned cases. Specifically, for multiple comparisons
involving several procedures, we will consider the use of the Friedman test, together with a post hoc procedure for analyzing
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families of interrelated hypotheses, namely the Shaffer post hoc procedure. This set of statistical methods will allow us to
contrast and confirm the results obtained in the experimental studies carried out [34].

The Friedman test [30] can be used to test the hypothesis of equality of medians between the results of the algorithms. It
works by converting the original results to ranks as follows:

1. Gather observed results for each pair algorithm/data set.
2. For each data set i, rank values from 1 (best algorithm) to k (worst algorithm). Denote these ranks as rj

i (1 6 j 6 k).
3. For each algorithm j, average the ranks obtained in all data sets to obtain the final rank Rj ¼ 1

n

P
ir

j
i.

Ranks are then used to compute the test statistic F
Ff ¼
12n

kðkþ 1Þ RjR
2
j �

kðkþ 1Þ2

4

" #
ð3Þ
which determines whether the hypothesis of equality will be rejected or not.
If the Friedman test’s hypothesis of equality is rejected (that is, a low p-value is obtained through the adjustment of F),

then it is assumed that there are significant differences among the different algorithms of the experiment.
These differences can then be assessed by using a post hoc method. In our case, the Shaffer procedure [87] allows pairwise

comparisons to be safely defined, computing a second p-value related to the equality hypothesis between two specific
algorithms.

In summary, the joint use of Friedman’s and Shaffer’s procedures will provide a first p-value (Friedman’s test output)
determining the degree at which significant differences are present among the algorithms of the experiment, and a set of
p-values (Shaffer’s procedure output, one per each pair of algorithms) which represent which pairs of algorithms have a sig-
nificantly different performance. Naturally, the p-value associated with the Friedman test can be expected to be much lower
than Shaffer’s ones, since the existence of general differences is a necessary condition before finding significant differences
between a specific pair of algorithms.

More information about these tests and other statistical procedures specifically designed for use in the field of machine
learning can be found at the SCI2S thematic public website on Statistical Inference in Computational Intelligence and Data
Mining (http://sci2s.ugr.es/sicidm).

5. A case study: experimental comparison between fuzzy and crisp nearest neighbor classifiers

In this section a case study analyzing the behavior of fuzzy nearest neighbor classifiers is conducted, based on the exper-
imental framework already described. The experimental study is divided into three stages:

� A first stage (Section 5.1) testing the performance of the fuzzy nearest neighbor classifiers over the full collection of data
sets included in the framework.
� A second stage (Section 5.2) featuring a comparison of the best performing fuzzy nearest neighbor classifiers with a selec-

tion of state of the art crisp nearest neighbor classifiers.
� A third stage (Section 5.3) analyzing the relative improvement in performance of the best fuzzy nearest neighbor classi-

fiers with respect to k-NN, from the point of view of the number of instances, attributes and classes of the data sets.

The purpose of this study is threefold: Firstly, it provides some insights into the current state of fuzzy nearest neighbor
classification, when standard supervised problems are considered. Secondly, the behavior of the best performing methods is
characterized in a general nearest neighbor classification scenario. And finally, it serves as an example of the experimental
framework proposed in this work, demonstrating how to make the most of its main features.

An extended version of the definitions and results obtained in this experimental study is publicly available at http://sci2-
s.ugr.es/fuzzyKNN/study.php. This version includes training accuracy, test accuracy (Fixed K and Best), training kappa, test
kappa (Fixed K and Best) and running time detailed results per each algorithm and data set.

5.1. First stage: comparison of fuzzy nearest neighbor classifiers

In this first stage of the study, we have considered all the fuzzy nearest neighbors classifiers implemented in the library
(excepting JFKNN, as it is unable to tackle the largest data sets in a reasonable running time). Average accuracy and kappa
results have been collected in two different ways:

� Firstly, a fixed value of k has been selected for each classifier, according to the average accuracy/kappa obtained with each
different set-up (k 2 f3;5;7;9g, as noted in Section 4.4). The results obtained using this fixed value of k (the best among
the four possibilities) have been termed Accuracy/Kappa (Fixed k) results.
� Secondly, the best average accuracy/kappa value per data set has been chosen (considering k 2 f3;5;7;9g again). The

average results obtained using the best value of k for each data set have been termed Accuracy/Kappa Best) results.

http://sci2s.ugr.es/sicidm
http://sci2s.ugr.es/fuzzyKNN/study.php
http://sci2s.ugr.es/fuzzyKNN/study.php
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Table 4 shows the results obtained, sorted from best performing (lowest value in running time column, greatest value
otherwise) to worst. For each algorithm and performance measure (accuracy and kappa considering Fixed k and Best k val-
ues, and running time) an average value is reported. For fixed k performance measures, the value of k chosen is also shown. A
⁄ symbol is used for those methods which do not require the value of k to be fixed. In this case, the results refer to their best
configuration (as noted in Section 4.4) and their best configuration per data set.

Note that the results have been obtained through gathering every single result obtained by each algorithm, data set and
cross validation partition. For the sake of simplicity, these results have been averaged to obtain a single value per algorithm
and data set (as is usually recommended in supervised classification experimental studies).

These results can be contrasted by using the Friedman statistical test. After analyzing the average results obtained regard-
ing accuracy (with a fixed k value), the test reports a p-value of 1.38 � 10�10, which means that significant differences are
found among the algorithms. Using the Shaffer post hoc procedure, 66 differences (out of 153 pairwise comparisons) are
found to be significant at a a ¼ 0:1 level. Table 5 summarizes the results of both tests, including for each algorithm the rank
obtained in the Friedman test and the number of methods for which it is statistically better (+) or equal or better (±) at two
different significance levels (a ¼ 0:1 and a ¼ 0:01, considering the adjusted p-values computed by the Shaffer test).

The results shown in both tables can be analyzed as follows:

� Considering accuracy results with a fixed value of k, the best algorithms are IT2FKNN, GAFuzzyKNN and FuzzyKNN. If the
algorithms are compared considering their respective categories in the taxonomy, the best performing algorithms are
FuzzyKNN (Fuzzy Sets), IT2FKNN (Type-2 Fuzzy Sets), D-SKNN (Possibilistic methods), IF-KNN (Intuitionistic Fuzzy Sets),
FRNN-FRS (Fuzzy Rough Sets) and FENN (Preprocessing Methods via Data Reduction). It is also noticeable that low values
for the k parameter (3 and 5) produce better results for most of the methods, excepting IT2FKNN and PFKNN.
� Considering accuracy results with the best value of k, most of the former conclusions hold. However, in this case GAF-

uzzyKNN achieves the best accuracy result and the differences between D-SKNN and the top 3 algorithms are lower.
In general, all methods benefit if the best value of k is chosen for each particular data set, although D-SKNN, IFSKNN
and IFV-NP are the methods which obtain a greater benefit (more than 0.01 additional accuracy, on average).
� Considering the kappa performance measure with a fixed value of k, the best algorithms remain IT2FKNN, GAFuzzyKNN

and FuzzyKNN. However, in this case GAFuzzyKNN is highlighted as the best method of the Fuzzy Sets family. Other
noticeable differences are the relative improvement achieved by FRNN-FRS and FRNN-VQRS, and the performance drop
suffered by FENN and PFKNN. Regarding the value of the k parameter, in this case medium values (5 and 7) are generally
preferred by the best performing algorithms, with the exception of IF-KNN and FRNN-FRS.
� Considering the best value of k in the analysis with the kappa measure, D-SKNN can also be considered to be the best

algorithm (together with IT2FKNN, GAFuzzyKNN and FuzzyKNN). FENN achieves a better relative result and the relative
performance of FRNN-VQRS is diminished. Again, all methods benefit if the best value of k is chosen for each particular
data set, but the greater improvement is obtained by D-SKNN (more than 0.02 additional kappa, on average).
� Finally, when running time is considered, the most noticeable result is the high computational cost of the GAFuzzyKNN

and PFKNN methods (due to their wrapped based nature). The rest of the methods are relatively cheap, computationally
speaking, and PosIBL, FRNN-VQRS and FRNN-FRS, and D-SKNN obtain better results in this category. FuzzyNPC is, by far,
the most efficient method. However, this contrasts with its poor results in all precision measures.
Table 4
Summary results obtained in the first stage: fuzzy nearest neighbor classifiers.

Accuracy (Fixed k) k Accuracy (Best) Kappa (Fixed k) k Kappa (Best) Running time (s)

GAFuzzyKNN 0.8130 5 GAFuzzyKNN 0.8204 GAFuzzyKNN 0.6415 5 GAFuzzyKNN 0.6558 FuzzyNPC 0.0409
IT2FKNN 0.8111 7 FuzzyKNN 0.8190 IT2FKNN 0.6354 7 FuzzyKNN 0.6524 PosIBL 2.7363
FuzzyKNN 0.8110 5 IT2FKNN 0.8181 FuzzyKNN 0.6366 7 IT2FKNN 0.6484 FRNN-VQRS 2.9070
D-SKNN 0.7985 5 D-SKNN 0.8136 D-SKNN 0.6167 5 D-SKNN 0.6468 FRNN-FRS 3.0145
IF-KNN 0.7972 3 IF-KNN 0.8062 IF-KNN 0.6157 3 IF-KNN 0.6321 D-SKNN 3.0955
FENN 0.7926 5 FENN 0.8009 FRNN-FRS 0.6130 3 FENN 0.6150 FCMKNN 4.0568
PosIBL 0.7883 ⁄ PFKNN 0.7961 PosIBL 0.6071 ⁄ FRNN-FRS 0.6138 VWFuzzyKNN 5.6256
PFKNN 0.7877 9 PosIBL 0.7913 FRNN-VQRS 0.6061 5 PosIBL 0.6134 IFSKNN 6.4927
FRNN-FRS 0.7875 3 FRNN-FRS 0.7880 FENN 0.5993 5 PFKNN 0.6130 FuzzyKNN 6.5322
FRNN-VQRS 0.7799 5 VWFuzzyKNN 0.7869 PFKNN 0.5992 7 FRNN-VQRS 0.6104 CFKNN 6.7276
VWFuzzyKNN 0.7775 3 FRNN-VQRS 0.7825 VWFuzzyKNN 0.5793 3 VWFuzzyKNN 0.5936 FENN 6.9731
FRKNNA 0.7640 3 FRKNNA 0.7738 IFSKNN 0.5705 3 IFSKNN 0.5890 FRKNNA 7.2246
IFSKNN 0.7585 5 IFSKNN 0.7713 FRKNNA 0.5612 3 FRKNNA 0.5779 IF-KNN 7.9749
FRNN 0.7408 ⁄ FRNN 0.7408 FuzzyNPC 0.5079 ⁄ FuzzyNPC 0.5079 IFV-NP 11.1111
FuzzyNPC 0.6975 ⁄ FuzzyNPC 0.6975 CFKNN 0.4925 3 CFKNN 0.5000 IT2FKNN 13.1984
CFKNN 0.6885 3 CFKNN 0.6931 FRNN 0.4403 ⁄ FCMKNN 0.4497 FRNN 28.5193
FCMKNN 0.6397 5 FCMKNN 0.6469 FCMKNN 0.4390 3 FRNN 0.4403 PFKNN 725.8243
IFV-NP 0.6085 ⁄ IFV-NP 0.6337 IFV-NP 0.4153 ⁄ IFV-NP 0.4299 GAFuzzyKNN 1275.4415



Table 5
Summary results of Friedman and Shaffer tests for accuracy (fixed k, Stage 1).

a ¼ 0:1 a ¼ 0:01

Algorithm Rank + � + �

IT2FKNN 4.9659 10 18 9 18
FuzzyKNN 5.3409 10 18 8 18
GAFuzzyKNN 5.3523 10 18 8 18
D-SKNN 6.6818 6 18 5 18
IF-KNN 7.0909 6 18 5 18
FENN 7.2614 5 18 5 18
PFKNN 7.9318 5 18 4 18
PosIBL 8.6023 4 18 3 18
FRNN-FRS 9.2386 3 15 2 18
VWFuzzyKNN 9.7386 2 15 2 17
FRNN-VQRS 9.9091 2 15 2 15
IFSKNN 10.1591 2 15 1 15
FRNN 10.8977 1 13 0 15
FuzzyNPC 12.1250 0 12 0 12
FRKNNA 12.8409 0 11 0 11
CFKNN 13.2841 0 9 0 10
FCMKNN 14.5114 0 6 0 7
IFV-NP 15.0682 0 5 0 6
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The analysis performed by the Friedman and Shaffer tests considering accuracy confirms these results: The ranks ob-
tained by the Friedman test are very similar to the relative position of each algorithm regarding accuracy with fixed k.
Regarding the pairwise comparisons (those analyzed by the Shaffer test) IT2FKNN, GAFuzzyKNN and FuzzyKNN are the best
algorithms of the study, showing significant differences with 10 out of the rest of the methods at a a ¼ 0:1 significance level
(8–9 at a a ¼ 0:01 significance level). Moreover, all of the methods highlighted as the best performing of each category of the
taxonomy are equal to or better than the rest (± = 18) except FRNN-FRS (for which ± = 15).

The results obtained enable us to make several suggestions and recommendations regarding the use of these fuzzy near-
est neighbors classifiers, depending on the performance desired for a specific task:

� If very high accuracy is required, then GAFuzzyKNN, IT2FKNN or FuzzyKNN should be selected given their outstanding
overall performance by this measure. However, the high computational cost of GAFuzzyKNN should also be considered
if this technique is chosen. Other suitable options for high accuracy without a large running time are IF-KNN and D-SKNN.
FENN could also be chosen as an accurate method with the added feature of the removal of noisy instances from the train-
ing set, which should also help in reducing the running time in the final classification phase.
� There are very few differences if kappa is considered instead of accuracy. FRNN-FRS shows a small improvement in its

results, which suggests that it keeps a better balance (when compared with other methods with similar performances)
over the classes of the problems, without bias towards the majority classes. Apart from that, the lack of differences
between accuracy and kappa suggest that the best performing algorithms are not biased toward obtaining a good preci-
sion in the majority classes of the problems, thus balancing their efforts over all the classes of the domains considered.
� D-SKNN should be the technique to select if a good performance is required without consuming too many computational

resources. It is one of the fastest methods analyzed in the study and is not outperformed by any other fuzzy nearest neigh-
bor method, thus becoming a fast and reliable choice in these kinds of situations. A second recommendation would be
FRNN-FRS, which is slightly faster than D-SKNN while maintaining good precision rates.

5.2. Second stage: comparison with crisp nearest neighbor approaches

In the second stage of the study, a comparison including the best performing fuzzy nearest neighbor classifiers and sev-
eral crisp nearest neighbor classifiers will be carried out. The 7 fuzzy nearest neighbor classifiers selected are the best per-
forming methods of each category of the taxonomy; that is, FuzzyKNN and GAFuzzyKNN (Fuzzy Sets), IT2FKNN (Type-2
Fuzzy Sets), D-SKNN (Possibilistic methods), IF-KNN (Intuitionistic Fuzzy Sets), FRNN-FRS (Fuzzy Rough Sets) and FENN (Pre-
processing Methods via Data Reduction). As crisp nearest neighbor classifiers, the 7 methods described in Section 4.3 are
considered.

Table 6 shows the results obtained in this second stage, following the same experimental conditions as in the first stage.
These results are also contrasted by using the Friedman statistical test. After analyzing the average results obtained

regarding accuracy (with a fixed k value), the test reports a p-value of 1.17 � 10�6, which means that significant differences
are found among the algorithms. Using the Shaffer post hoc procedure, 10 differences (out of 91 pairwise comparisons) are
found to be significant at a a ¼ 0:1 level. Table 7 summarizes the results of both tests, including the rank obtained by each
algorithm in the Friedman test and the number of methods for which it is statistically better (+) or equal or better (±) at two
different significance levels (a ¼ 0:1 and a ¼ 0:01, considering the adjusted p-values computed by the Shaffer test).



Table 6
Summary results obtained in the second stage: fuzzy and crisp nearest neighbor classifiers.

Accuracy (Fixed k) k Accuracy (Best) Kappa (Fixed k) k Kappa (Best) Running time (s)

GAFuzzyKNN 0.8130 5 GAFuzzyKNN 0.8204 GAFuzzyKNN 0.6415 5 GAFuzzyKNN 0.6558 FRNN-FRS 3.0145
IT2FKNN 0.8111 7 FuzzyKNN 0.8190 FuzzyKNN 0.6366 7 FuzzyKNN 0.6524 D-SKNN 3.0955
FuzzyKNN 0.8110 5 IT2FKNN 0.8181 IT2FKNN 0.6354 7 IT2FKNN 0.6484 KNN 3.3452
D-SKNN 0.7985 5 D-SKNN 0.8136 D-SKNN 0.6167 5 D-SKNN 0.6468 NSC 4.8859
IF-KNN 0.7972 3 KSNN 0.8098 KSNN 0.6160 3 NSC 0.6379 ENN 5.0116
KSNN 0.7970 5 IF-KNN 0.8062 IF-KNN 0.6157 3 KSNN 0.6359 KNNAdaptive 6.1195
FENN 0.7926 5 NSC 0.8020 FRNN-FRS 0.6130 3 IF-KNN 0.6321 KSNN 6.2721
IDIBL 0.7902 ⁄ FENN 0.8009 KNN 0.6028 7 FENN 0.6150 FuzzyKNN 6.5322
FRNN-FRS 0.7875 3 KNN 0.7933 FENN 0.5993 5 KNN 0.6143 FENN 6.9731
KNNAdaptive 0.7856 3 KNNAdaptive 0.7927 PW 0.5955 ⁄ FRNN-FRS 0.6138 IF-KNN 7.9749
KNN 0.7815 7 IDIBL 0.7902 NSC 0.5814 ⁄ KNNAdaptive 0.6131 IT2FKNN 13.1984
NSC 0.7801 ⁄ ENN 0.7901 IDIBL 0.5807 ⁄ PW 0.6042 PW 22.7235
PW 0.7793 ⁄ FRNN-FRS 0.7880 ENN 0.5740 3 IDIBL 0.5946 IDIBL 409.3493
ENN 0.7784 5 PW 0.7828 KNNAdaptive 0.5697 3 ENN 0.5936 GAFuzzyKNN 1275.4415

Table 7
Summary results of Friedman and Shaffer tests for accuracy (fixed k, Stage 2).

a ¼ 0:1 a ¼ 0:01

Algorithm Rank + � + �

IT2FKNN 5.5795 4 18 2 18
GAFuzzyKNN 5.8295 3 18 1 18
FuzzyKNN 5.8864 3 18 1 18
KSNN 6.5455 0 18 0 18
KNNAdaptive 6.5682 0 18 0 18
D-SKNN 7.3977 0 18 0 18
IF-KNN 7.4318 0 18 0 18
KNN 7.6591 0 18 0 18
FENN 7.8409 0 18 0 18
IDIBL 8.3295 0 18 0 18
PW 8.5455 0 17 0 18
ENN 8.9659 0 15 0 18
FRNN-FRS 9.1023 0 15 0 17
NSC 9.3182 0 15 0 15
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The results shown in both tables can be analyzed as follows:

� If accuracy with a fixed value of k is considered, the five best positions are achieved by fuzzy nearest neighbor classifiers
(GAFuzzyKNN, IT2FKNN, FuzzyKNN, D-SKNN and IF-KNN). None of the 7 fuzzy nearest neighbor classifiers included
shows a performance lower than the original k-NN rule. It is also interesting to note the improvement achieved by Fuzz-
yKNN and FENN over their direct crisp counterparts, KNN and ENN (an improvement of 0.0295 and 0.0142, respectively).
� The former results hold, in general, if the best value of k is considered individually. Also, in this case, the crisp methods

KSNN and NSC shows a performance comparable with some of the best fuzzy nearest neighbor classifiers. FRNN-FRS is the
only fuzzy nearest neighbor classifiers whose performance drops below KNN under these conditions.
� The results obtained using the kappa performance measure with a fixed value of k continue to highlight GAFuzzyKNN,

IT2FKNN and FuzzyKNN as the better algorithms. KSNN and FRNN-FRS show an improvement, being comparable to D-
SKNN and IF-KNN in this category. In this case, only FENN’s kappa falls below KNN’s.
� Considering the best value of k with the kappa measure, the differences among methods are more tight. Most of the for-

mer results are the same, with the most noticeable differences being the improvement achieved by NSC and the relative
drop in the position of FRNN-FRS (which makes almost no improvement by allowing the best value of k to be set in each
data set).
� Finally, there are not many differences between crisp and fuzzy methods with respect to running time. Both families have

very fast methods (FRNN-FRS, D-SKNN, KNN, NSC and ENN) and slower ones (IDIBL and GAFuzzyKNN), which shows that
there is not an additional computational cost when fuzzy mechanisms are introduced to improve the nearest neighbor
rule, in comparison with crisp based mechanisms.

The analysis performed by the Friedman and Shaffer tests considering accuracy confirms the superiority of GAFuzzyKNN,
IT2FKNN and FuzzyKNN in terms of accuracy, as they are the only methods able to improve statistically some of the rest of
the classifiers of the comparison, both at a a ¼ 0:1 and at a a ¼ 0:01 significance level. PW, ENN, FRNN-FRS and NSC are the
methods improved by the former ones, in this sense.



Fig. 2. Relative accuracy improvement between k-NN and the 7 best fuzzy nearest neighbor algorithms of the study. Data sets are ordered with respect to
the number of instances.
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In general, this second study has shown that fuzzy nearest neighbor classifiers can demonstrate a positive performance if
considered within the state of the art in nearest neighbor classification: Several methods offer better precision (accuracy and
kappa rates) and they are neither particularly slower or faster than the crisp approaches. Hence, they are a suitable option for
standard supervised learning tasks, in which high accuracy at a relatively lower computational cost is required.

5.3. Third stage: analysis of performance with respect to the number of instances, attributes and classes

The last stage of the study is devoted to analyzing the behavior of the fuzzy nearest neighbor classifiers, as the number of
instances, attributes and classes changes.

Specifically, we have selected the 7 best performing fuzzy nearest nearest neighbor methods (the same that were chosen
in Section 5.2) and we have considered their accuracy results (with a fixed k value). Then, we have computed their relative
accuracy improvement with respect to k-NN, for each of the 44 data sets included in the experimental framework.

Fig. 2 shows a graphic representation of the accuracy of the methods as the number of instances rises. Results have been
sorted according to the number of instances of each data set (shown on the X-axis of the figure). Relative accuracy improve-
ment over k-NN is represented on the Y-axis. Also, Figs. 3 and 4 show similar graphics where results have been ordered with
respect to attibutes and classes, respectively.

The main conclusions that can be drawn from these figures are as follows:

� Instances: The differences between the fuzzy nearest neighbor methods and k-NN tend to narrow down as the number of
instances increases, in general. This suggests that fuzzy nearest neighbor algorithms can be useful in those cases in which
the amount of data available is not enough to represent the classification problem properly. As the available data
increases, the impact of this property appears to dimish.



Fig. 3. Relative accuracy improvement between k-NN and the 7 best fuzzy nearest neighbor algorithms of the study. Data sets are ordered with respect to
the number of attributes.
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� Features: In this case, it is possible to draw similar conclusions to the above, although it is important to note that there is a
substantial improvement in the high dimensional data sets of the study (those with more than 50 attributes). This last
result suggests that these methods (except FENN) may be useful when trying to enhance the behavior of the NN rule
in high dimensional problems.
� Classes: When the number of classes is considered, it can be shown that the relative differences rise as this number grows.

Fuzzy nearest neighbor methods perform similarly to k-NN in two-class problems, but differences increase in muti-class
problems. The most clear differences are obtained with 10 or more classes. This result is the consequence of one of the
general strengths of fuzzy nearest neighbor algorithms: The capability of managing different degrees of memberships to
the classes per each instance. This capability allows the classifiers to refine their output in those problems whose diffi-
culty increases due to the presence of many classes.

To summarize, fuzzy nearest neighbor methods can be very competitive when compared with the k-NN classifier, show-
ing a similar or better performance with respect to accuracy. The differences found are greater if the available data is not
enough for k-NN to fully characterize the domain of the problem, in high dimensional problems and, particularly, when
problems with multiple classes are considered.
6. Future prospects

The experimental study performed has shown the general capabilities of fuzzy nearest neighbor classifiers. The methods
have been compared, and have also been tested against a set of general nearest neighbor classifiers, revealing that they
achieve a promising performance in general supervised classification problems.

The conclusions drawn throughout the survey can be used to suggest some unaddressed challenges which could be very
valuable to the further development of the field:



Fig. 4. Relative accuracy improvement between k-NN and the 7 best fuzzy nearest neighbor algorithms of the study. Data sets are ordered with respect to
the number of classes.
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� Most of the techniques reviewed are not able to dealt properly with nominal (categorical) attributes and missing values,
or do not directly describe a method for managing them. Although some solutions can be incorporated from the classical
classification field (such as advanced similarity measures for tackling nominal attributes [97] or imputation techniques
for handling missing data [72]), there remains the necessity of a specific solution which will enable fuzzy nearest neigh-
bor classifiers to handle these kinds of data with ease.
� A key aspect in the performance of the fuzzy nearest neighbor algorithms is the way in which the membership values to

the classes are computed. It is true that there is a wide variety of ways in which these values may be represented. How-
ever, most of them are based on the concept of locality (that is, membership is assigned in accordance with the nearest
instances in the training data). Other schemes of analysis, based on different concepts such as the global characteristics of
the data, could be incorporated to develop new membership assignation schemes, likely to further improve the general-
ization capabilities of the algorithms. The development of a new class of preprocessing techniques could also be helpful
here, if they are to be applied as a way of refining an initial configuration of memberships for a data set.
� Using the theoretical developments shown in [102] as a starting point, new voting schemes could be designed (probably

in an automatic way), far from the traditional majority rules or the search for a best single instance. The definition of ad
hoc voting rules, specific to the current problem tackled by the classifier, would enable a specialized treatment of the
intrinsic characteristics of the data. These rules would allow the classifier to be fitted to the problem addressed, further
enhancing its classification performance.

7. Conclusions

In this work we have presented a survey of fuzzy nearest neighbor classifiers. The application of FST and some of its
extensions to the development of enhanced nearest neighbor algorithms have been reviewed, from the very first proposals
to the most recent approaches. Several discriminating traits of the techniques has been described as the building blocks of a
multi-level taxonomy, devised to accommodate present and future proposals with ease.
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An experimental framework is provided, incorporating implementations of the most relevant algorithms in the state of
the art. A case study is then conducted, testing the performance of the fuzzy nearest neighbor classifiers. The experiment
also includes a further comparison with several state of the art crisp nearest neighbor classifiers. The conclusions of the study
reveal which are the most desirable fuzzy nearest neighbor classifiers according to several performance measures, and note
the competitiveness of these techniques in comparison to the classical nearest neighbor based approaches.

As a final remark, we would like to note that there is a dedicated website providing all the complementary material to the
paper (algorithms and data sets of the experimental framework, and extended results and statistical analysis conducted in
the case study). These contents can be retrieved at http://sci2s.ugr.es/fuzzyKNN.
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