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Deterministic or analytical methods for computing the global optima of a functional have been exten-
sively applied in a wide range of engineering applications. Nevertheless, it is wellknown they usually lack
of effectiveness when dealing with complex nonlinear optimization problems. In particular, such a short-
comings have been addressed by using approximate approaches, named metaheuristics. Among them all,
those methods using a population-based scheme, e.g. the evolutionary algorithms, have been the most
successful optimization strategies. Recently, innovative population-based algorithms such as ABC, BBO,
and HS have arisen as promising optimization methods due to they provide a good tradeoff between
design and performance when compared to other more elaborated methods. In this work, we aim to first
introduce the particular design of these three cutting edge algorithms, and additionally analyse their per-
formance when tackling a challenging real-world optimization problem. In particular, our case study of
numerical optimization tackles a computer vision problem named 3D range image registration for 3D
modeling tasks. Computational experiments have been conducted comparing the performance of ABC,
HS, and BBO against other contributions in the state-of-the-art of 3D image registration.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Optimization problems are often complex situations to cope
with in several areas of knowledge such as engineering. The
objective function may have many local optima and in many cases
finding the best solution (named global optimum) is so time-con-
suming that goes beyond the admissible in practical applications.
Those problems cannot be handled by classical methods (e.g. gra-
dient-based algorithms) which are likely to compute local optima.
Thus, there remains a need for efficient and effective numerical
optimization methods for tackling challenging real-world engi-
neering problems. In the last few decades, approximate algorithms,
named metaheuristics (MHs) (Glover & Kochenberger, 2003; Luke,
2009), have demonstrated their good performance in these kinds of
problems, where the guarantee of finding the optimal solution is
relaxed in order to obtain high quality solutions in a much more
reduced time interval.

There are different kinds of MHs. Among them all, population-
based techniques work on a population of solutions based on anal-
ogies with natural phenomena. This approach has been applied to a
large amount of engineering optimization problems and it has
being proved to be effective in solving well-known challenging
problems. Within population-based techniques, we can find
classical techniques such as genetic algorithms (GAs) (Goldberg,
1989; Michalewicz, 1996), particle swarm optimization (PSO)
(Clerc, 2006; Kennedy & Eberhart, 2001) and ant colony optimiza-
tion (ACO) (Dorigo & Di Caro, 1999; Dorigo & Stützle, 2004; Farha-
ana et al., 2012; Zhou & Wang, 2012). Recently, many new
population-based approaches have been arised: artificial bee
colony (ABC) (Karaboga & Basturk, 2007a, 2007b), differential
evolution (DE) (Price, 1999; Storn, 1997), harmony search (HS)
(Geem, Kim, & Loganathan, 2001), cats swarming (CS) (Chu & Tsai,
2007), and biography-based optimization (BBO) (Simon, 2008),
among others.

Testing these new population-based approaches and carrying
out a comparison with other state of the art methods may serve
the field to analyse both their shortcomings and googness in
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performance, thus allowing the field to propose more advanced
variants, e.g. addressing hybrid strategies. In this work, we aim at
analysing the performance of three cutting edge algorithms: ABC,
BBO, and HS. To do so, we have considered a case study of numer-
ical optimization within the field of computer vision, known as the
image registration (IR) problem (Zitová & Flusser, 2003). In partic-
ular, we addressed several IR problem instances for 3D modeling
by using laser range scanners (Santamaría, Cordón, & Damas,
2011). Moreover, these results were compared to those provided
by other state-of-the-art population-based algorithms in the field
of IR.

The structure of this contribution is as follows. In Section II, a
description of the optimization design of the population-based
algorithms ABC, BBO, and HS. Then, in Section III, we are introduc-
ing the basics of the real-world problem tackled which is known as
range image registration (RIR) (Bernardini & Rushmeier, 2002). A
revision of IR methods using population-based approaches will
also be followed in this section. the mos relevant conclusions will
be shown in section IV. Finally, Section V collects some concluding
remarks as well as possible works for the near future.
1 The fitness or objective function is one of the most important components o
heuristic methods whose design affects dramatically to the performance of the
implemented method.
2. Recent advancements on population-based algorithms

2.1. Background

Numerical optimization problems are encountered in many
domains, e.g. science, engineering, management, and business.
Formally, they may be defined as a couple P ¼ ðX; FÞ where X is
named as search space and it represents the set of feasible problem
solutions X ¼ x1; . . . ; xjXj

� �
. Each of the latter d-dimensional vec-

tors, x 2 X, consists of a set of design variables, x ¼ ðx1; . . . ; xdÞ, each
one ranging to a particular continuous domain xj 2 ½LBj;UBj�
(1 < j < d). A function F : X ! IRþ, so-called the objective function
which assigns a real value to every solution x 2 X indicating its
quality.

The main challenge in solving an optimization problem is to
find the global optimal solution. However, computing optimal
solutions in many real-world applications would be so time-con-
suming that go beyond the admissible, basically due to the high
dimension of the factible solutions space. In the last decades,
MHs have emerged as a new kind of approximate search and opti-
mization algorithms (Glover & Kochenberger, 2003; Luke, 2009).
They combine basic heuristic methods in order to explore efficient
and effectively the search space which will provide acceptable
solutions in a reasonable time.

One of the main advantages of MHs is that they make use of a
general purpose optimization framework requiring relatively few
modifications to be applied to a specific problem. The MHs family
include methods as Simulated Annealing (SA), tabu search (TS),
multi-start local search (MS), iterated local search (ILS), variable
neighborhood search (VNS), and greedy randomized adaptative
search procedures (GRASP). These are usually termed as trajec-
tory-based MHs. On the other hand, population-based MHs, e.g.
evolutionary algorithms (EAs) (Bäck, Fogel, & Michalewicz, 1997;
Fogel, 2005), consider populations of candidate problem solutions
instead.

In particular, GAs are probably the most extended population-
based algorithm in the literature to face real-world optimization
problems. GAs are theoretical and empirically found to provide
global near-optimal solutions for several problems of complex
optimization. The search space represented in GAs is a collection
of individuals (problem solutions) or chromosomes conforming a
population, each of them operating simultaneously on several
points of the search space. An initial set/population of solutions
is randomly generated. Then, a pool of parents is randomly
selected for reproduction on the basis of the fitness function,1 which
measures how good is each candidate solution and guides the search
space exploration strategy.

The reproduction procedure, which is based on crossover and
mutation operators is iteratively performed at every generation
(iteration) in order to generate the offspring population. Crossover
operators systematically/randomly mix parts (block of genes) of
two individuals of the previous population, and additionally every
new combined individual is subjected to random changes by using
mutation operators. The next generation is produced using a
replacement mechanism which selects individuals from the pool
composed of the parents and the new offspring generated.

Regardless the approach (trajectory-based vs. population-based),
MHs constitute a very interesting choice to achieve a good quality
solution in a reasonable time. Specifically, optimization algorithms,
already based on the evolution of populations of solutions, have ob-
tained a remarkable success. The next section will be devoted to
introduce the description of three innovative population-based
MHs recently proposed in the literature, namely ABC, BBO, and HS.

2.2. Artificial bee colony

Swarm intelligence has become an interesting research nowa-
days (Bonabeau, Dorigo, & Theraulaz, 1999; Cui, Zeng, & Sun,
2006) been applied to solve optimization problems (Zhou & Wang,
2012). The ABC algorithm is a new swarming variant inspired in
the population-based approach proposed by Karaboga and Basturk
(2007a, 2007b) which is based on the intelligent behavior of hon-
eybee swarms.

In the ABC algorithm, the colony of artificial bees is divided into
the three following categories (Karaboga & Basturk, 2008):

� Employed: They take nectar from the food source to the hive
and share information with onlookers about their location.
� Onlookers: Those specialized bees tend to select a food source

(the most profitable one) according to their quality, which is
given by shared information provided by employed bees in
the hive.
� Scouts: They are employed bees whose food source has been

abandoned. They start to search a new food source randomly.

The algorithm works just by including a common area in the hive
so-called the dancing area, where bees share and exchange infor-
mation about food sources. Bees identify the quality of food source
by means of the duration of dancing which is determined by the
nectar contained in the food source being exploited and its dis-
tance to the hive. From the optimization viewpoint, each food
source represents a possible solution to the problem, where scouts
perform exploration and employed and onlooker bees are focused
on the exploitation of search space.

Specifically, the ABC algorithm is sketched in Fig. 1. It starts by
associating all the employed bees to randomly generated food
sources. Each food source xi ði ¼ 1;2; . . . ;NÞ is a d-dimensional vec-
tor where d is the number of optimization parameters. Next, each
iteration is done as follows. Every employed bee determines a food
source within the neighborhood of its current source when using
the expression

v j
i ¼ xj

i þUj
iðx

j
i � xj

kÞ ð1Þ

where k different to i 2 1;2; . . . N and j 2 1;2; . . . ;d are randomly
chosen indexes, and Uj

i is a random number between [�1,1] which
f



Fig. 1. Pseudo-code of the ABC algorithm.
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controls the production of a neighbor food source around xj
i. When

applying a greedy selection process, if the nectar amount of new
food (objective function value) is better than the current one for
the employed bee, the bee is moving to this new food, leaving its
current one. Then, nectar information is shared with onlookers
and the onlooker bees will select a food source according to a prob-
ability pi determined using the expression:

pi ¼
FðxiÞPN
j¼1FðxjÞ

ð2Þ

where FðxiÞ is the objective function value of the solution repre-
sented by the food source i and N is the total number of food sources.
Next, a food source which is not improved in a predetermined
number of trials is abandoned and replaced by scouts with a new
food source using:

xj
i ¼ LBj þ U½0;1�ðUBj � LBjÞ ð3Þ

where LBj and UBj are the lower and upper bounds for the variable j.
Finally, the best solution found so far is stored. ABC assumes that
only one employed bee is needed for every food source making
the number of food sources is equal to the number of employed
bees.

In the last few years, ABC has been applied to solve several opti-
mization problems such as multi-dimensional numeric optimiza-
tion functions (Karaboga, 2009; Karaboga & Akay, 2009; Karaboga
& Basturk, 2007b), numerical benchmark functions which are used
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in engineering problems with high dimensionality (Karaboga & Bas-
turk, 2008; Alvarado-Iniesta, García-Alcaraz, Rodríguez-Borbón, &
Maldonado, 2013), digital filters (Karaboga, 2009) and to the leaf-
constrained minimum spanning tree (LCMST) problem (Singh,
2009), among others. Further information can be found in the ABC’s
homepage (Karaboga, 2013).
Fig. 2. Linear model of migration (Simon, 2008; MacArthur & Wilson, 1967).
2.3. Biography based optimization

Biography based optimization (BBO) (Simon, 2008) is a new
population-based algorithm aimed to tackle optimization prob-
lems. This innovative approach is based on mathematical models
of biography describing natural ways of distributing species, i.e.,
how species migrate, how they arise and become extinct. Next,
we review the biography model components and their correspon-
dence with the BBO algorithm from an optimization viewpoint
(Simon, 2008):

� Habitat (H): It represents a solution inside the search space of a
d-dimensional numerical optimization problem.
� Habitat Suitability Index (HSI): In a biography model, geo-

graphical areas, that is well suited as residences for biological
species are said to have a high HSI. Thus, HSI corresponds to
the objective function from an optimization viewpoint.
� Suitability Index Variables (SIV): The computation of the HSI

value is influenced by additional factors such as rainfall, diver-
sity of vegetation, land area, and temperature. All of them are
called the SIVs.
� Ecosystem: It refers to a group of N habitats. From a population-

based optimization viewpoint, it corresponds to the population
of solutions. The size N is usually constant but the use of vari-
able-sized ecosystems is being studied (Simon, 2008).
� Immigration Rate: The control parameter k is devoted to con-

trol habitat immigration. The maximum immigration rate in a
single habitat (I) is reached when species are not in the habitat.
As the number of species increases, it will become crowded and
immigration will decrease due to fewer species would be able to
survive in that crowd.
� Emigration Rate: In this case, the l parameter controls habitat

emigration. If there are no species, emigration is null. As the
number of species increases, species are capable to leave their
habitat in order to explore other residences. Maximum emigra-
tion rate (E) is reached in a single habitat when containing the
maximum number of species it can support.
� Migration model: According to different mathematical models

of biogeography, various migration curves can be applied (Ma,
2010; MacArthur & Wilson, 1967). In Fig. 2, a linear model is
illustrated where S0 is the equilibrium number of species
(Simon, 2008), which denotes that the immigration and emigra-
tion rates are equal. I is the maximum possible immigration
rate, E is the maximum possible emigration rate, and Smax is
the largest possible number of species that the habitat can
support.

The BBO algorithm has two main operators: habitat modification
(X) and mutation (M). The former is an Hn�!H probabilistic oper-
ator that adjusts an habitat Hi based on the ecosystem Hn accord-
ing to its immigration rate ki and to the emigration rate lj taking Hj

as the source of the modification. The second one is an H�!H, a
probabilistic operator that randomly modifies the SIV factors of
an habitat Hi according to a probability pi based on both the ki

and li parameters (Simon, 2008). Both operators let BBO imple-
ment elitism for the best b habitats (b is a user-selected elitism
parameter) setting ki ¼ 0 in the habitat modification operator
and pi ¼ 0 in the mutation operator.
As it is shown in Fig. 3, BBO starts initializing the search with a
set of random habitats and the HSI is computed from each of them.
Next, the habitat modification (X) and mutation (M) operators are
subsequently applied on each non-elite habitat (N � b worst habi-
tats) while the stopping criterion is not satisfied.

Recently, BBO has been applied in several optimization prob-
lems, for instance: the Traveling Salesman Problem (TSP) (Song,
Liu, & Wang, 2010), the optimization of a set of standard multi-var-
iable benchmark functions (Simon, 2008), the tuning of neuro-fuz-
zy system parameters for diagnosis of cardiac diseases (Ovreiu &
Simon, 2010), a sensor selection problem for aircraft engine health
estimation (Simon, 2008), economic emission load dispatch prob-
lems (Bhattacharya & Chattopadhyay, 2011) and the power flow
problem in analysis of circuits (Rarick, Simon, Villaseca, & Vyakara-
nam, 2009). Further information can be found in the BBO’s home-
page (Simon, 2013).

2.4. Harmony search

The last population-based algorithm, which was analyzed in
this study, is based on analogies with the natural phenomena of
the musical process. It is focused on searching the perfect state
of harmony, an analogy to the optimization process, and it is called
the harmony search (HS) algorithm (Geem et al., 2001). As the
optimization procedure tries to find a global solution which is
determined by an objective function, a musical performance (e.g.,
rhythms played on a set of instruments in jazz) seeks to find pleas-
ing harmony determined by an aesthetic standard. The possible
values of each variable may be identified in the pitches of the dif-
ferent instruments in HS, where each iteration would be a practice
and the global optimum can be considered as finding a Fantastic
Harmony.

Furthermore, while each variable of the solution vector is taking
value within a range of possible values, the same occurs to HS
when each player sounds with a musical note within a candidate
range, and all together build an harmony. If the harmony is good,
the experience is stored in each player’s memory and, next time,
te occurrence to achive a more harmonius chord is increased.
Basically, HS consists of the following components (Lee & Geem,
2005):

� Initialization: The harmony memory (HM) matrix is filled with
HMS random vectors which are sorted according to the values of
the objective function FðxÞ:



Fig. 3. Pseudo-code of the BBO algorithm.
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HM ¼

x1
1 x2

1 x3
1 . . . xd

1
x1

2 x2
2 x3

2 . . . xd
2

x1
3 x2

3 x3
3 . . . xd

3

..

.
. . .

x1
HMS x2

HMS x3
HMS . . . xd

HMS

2
666664

3
777775 ð4Þ
where HMS is the harmony memory size. The parameters
harmony memory considering rate (HMCR) and the pitch adjusting
rate (PAR) are also initialized. HMCR refers to the probability of
choosing random notes. On the other hand, PAR mimics the
adjustment of each instrument by shifting to neighboring values
(Lee & Geem, 2005) according to:
xj0 ¼ xj � r � bw; 1 6 j 6 d ð5Þ
where r � U½0;1� and bw is an arbitrary distance bandwidth for
the continuous design variable.
� Harmony Improvisation: A new harmony vector,

xi ¼< x1
i ; x

2
i ; . . . ; xd

i > is generated considering HCMR and PAR.
For each instrument xj

ið1 6 j 6 dÞ, the value is selected as
follows:
xj
i  

xj
i 2 HM; if U½0;1� <¼ HMCR

xj
i 2 ½LBj;UBj�; if U½0;1� > HMCR

( )
ð6Þ
where LBj and UBj are the lower and upper bounds of each
variable.
� Update of HM: If the quality of the new harmony x0i is better
than the current best in HM, the new harmony is included in
HM by replacing the worst one in HM.

As the previous methods, HS has been recently applied in optimi-
zation problems as the TSP (Geem et al., 2001), the minimization of
multi-variable functions (Geem et al., 2001; Omran & Mahdavi,
2008), the design of a pipeline network for water supply (Geem
et al., 2001), various engineering optimization problems (Lee &
Geem, 2005), the addressing of sudoku puzzles (Geem, 2007), the
spread spectrum radar polyphase codes design problem
(Gil-López et al., 2012) and the sum-of-ratios optimization prob-
lem applied in economy and engineering (Jaberipour & Khorram,
2010). Further information can be found in the HS’s homepage
(Geem, 2013).

3. Range image registration in 3D modeling: a case study

IR (Zitová & Flusser, 2003) is a fundamental task in computer vi-
sion and computer graphics fields used to find either a spatial
transformation (e.g., rotation, translation, etc.) or a correspondence
(matching of similar image features) among two or more images
acquired under different conditions: with different times, by using
different sensors, by taking different viewpoints, or with a combi-
nation of them. IR aims to achieve the best possible overlapping, by
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transforming those independent images into a common one. Over
the years, IR has been applied to tackle with many real-world prob-
lems ranging from remote sensing to medical imaging, artificial vi-
sion, and computer-aided design (CAD).

The optimization process applied by traditional IR methods like
the classical iterative closest point (ICP) algorithm (Besl & McKay,
1992; Chen & Medioni, 1992) is likely to provide incorrect registra-
tion transformation estimations due to the fact that these methods
are usually prone to be trapped in local minima (Liu, 2004; Masu-
da, 2002; Rusinkiewicz & Levoy, 2001; Sharp, Lee, & Wehe, 2002)
since they assume a rough prealignment of the images. (See Fig. 4).

In the last few years, there has been an increasing interest in
adopting MHs as the optimization technique for IR methods (San-
tamaría et al., 2011). In particular, evolutionary algorithms (EAs)
(Bäck, 1996; Bäck et al., 1997) have been successfully applied to
tackle with IR problems without requiring a good initial estimation
of the image alignment.

The first attempts to face the IR problem using EC can be found
in the eighties (Fitzpatrick, Grefenstette, & Gucht, 1984), where a
GA (Michalewicz, 1996) was developed for tackling rigid IR of 2D
angiographic images. Since then, evolutionary IR has become a
very active area due to the successful results and several well-
known EAs which have been considered to tackle with the IR opti-
mization process (Damas, Cordón, & Santamaría, 2011; Santamaría
et al., 2011) where a two-stage IR approach is usually considered: a
first coarser stage, named as prealignment, and a refinement step
usually applying ICP-based IR algorithms.
3.1. Problem definition

The key idea of the IR process is to achieve the transformation
that places different 2D/3D images in a common coordinate sys-
tem. There is not an universal design for a hypothetical IR method
that could be applicable to all registration tasks due to the partic-
ular application items that must be taken into account in every real
world application (Zitová & Flusser, 2003). However, IR methods
usually require the four following components:
Fig. 4. Pseudo-code of the HS algorithm.
� Two input Images named as scene Is ¼ ~p1;~p2; . . . ;~pnf g and model

Im ¼ ~p01;~p
0
2; . . . ;~p0m

� �
, with ~pi and ~p0j being image points.

� A Registration transformation f, relating the two images. Typ-
ically, it is a parametric function.
f : R2=R3�!R2=R3 ð7Þ
based on geometric transformations such as translation, rota-
tion, scale, etc.
� A Similarity metric function F. It aims to measure a qualitative

value of closeness or degree of fitting between the transformed
scene image, noted by f 0ðIsÞ, and the model image.
FðIe; Im; f Þ ¼j f ðIeÞ � Im j ð8Þ
� An Optimizer. It is a method that seeks the optimal solution f�
which optimizes F
f � ¼ arg min=max
f

FðIe; Im; f Þ s:t:

f �ðIeÞ ¼ Im ð9Þ
An iterative process is often followed (see Fig. 5) which usually
finishes when convergence is achieved, i.e., when the similarity
metric is bellow a given tolerance threshold.
3.2. Range image registration

In order to provide a more specific description of the problem,
we focused our attention on the particular application we are con-
sidering in our experiments: the pair-wise IR of range images (i.e.
RIR) for 3D modeling of real objects (Campbell & Flynn, 2001; God-
in, Hebert, Masuda, & Taubin, 2009; Rodrigues, Fisher, & Liu, 2002;
Salvi, Matabosch, Fofi, & Forest, 2007).

Range scanners are able to capture 3D images, named range
images, of the surface of the sensed object. Every range image
is acquired from a particular viewpoint and it partially models
the geometry of the scanned object. Thus, it is mandatory to con-
sider a reconstruction technique to perform the accurate integra-
tion of the images in order to achieve a complete and reliable
model of the physical object. This framework is usually called
3D modeling (see Fig. 6) and it is based on applying IR techniques
to achieve the integration of the range images (Salvi et al., 2007;
Campbell & Flynn, 2001; Rodrigues et al., 2002; Godin et al.,
2009).

The 3D model reconstruction procedure involves several pair-
wise alignments of two adjacent range images in order to obtain
the final 3D model of the physical object. Therefore, every pair-
wise IR method aims to find the Euclidean motion that brings
the scene view (Is) into the best possible alignment with the model
view (Im). An Euclidean motion is usually considered based on a 3D
rigid transformation (f) determined by seven real-coded parame-
ters, that is: a rotation R ¼ ðh;Axisx;Axisy;AxiszÞ, with h and ~Axis
being the angle and axis of rotation, and a translation
~t ¼ ðtx; ty; tzÞ, respectively. Then, the transformed points of the
scene view are denoted by

f ð~piÞ ¼ Rð~piÞ þ~t; i ¼ 1 	 	 	NIs ð10Þ

Hence, the pair-wise IR task can be formulated as an optimization
problem developed to search for the Euclidean transformation f �

achieving the best alignment of both images according to the con-
sidered Similarity metric F:

f � ¼ arg minf FðIs; Im; f Þ s:t: : f �ðIsÞ ffi Im ð11Þ

The median square error (MedSE) is usually considered the Similar-
ity metric in 3D modeling (Rodrigues et al., 2002; Santamaría,
Cordón, Damas, García-Torres, & Quirin, 2009):



Fig. 5. The IR optimization process

Fig. 6. The 3D modeling procedure of forensic objects
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FðIs; Im; f Þ ¼ MedSEðdiÞ; 8i 2 1; . . . ;NIsf g ð12Þ

where MedSEðÞ corresponds to the median di value. We define
di ¼ kf ð~piÞ �~qclk2 as the squared Euclidean distance between the
transformed scene point, f ð~piÞ, and its corresponding closest point,
~qcl, in the model view Im. In order to speed up the computation of
the closest point qcl of Im, indexing structures as kd-trees (Zhang,
1994) or the grid closest point (GCP) transform proposed in (Yama-
ny, Ahmed, & Farag, 1999) are often used.
4. Experiments and analysis of results

This section is aimed at presenting a number of experiments to
be studied for the performance of the three analyzed population-
based algorithms according to accuracy and robustness.
Specifically, we considered a benchmark suite of several problem
instances of the well-known IR problem by using range images.
The obtained results will be benchmarked against those obtained
by four state-of-the-art evolutionary IR methods, i.e.:
� Santamaria et al.’s proposal (StEvO) (Santamaría, Damas, Gar-
cía-Torres, & Cordón, 2012), a recent contribution based on a
automatic or self-adaptive tuning of the EA control parameters.
� de Falco et al.’s method (deFalco08) (de Falco, Della Cioppa,

Maisto, & Tarantino, 2008), which makes use of a basic imple-
mentation of the differential evolution (DE) algorithm (Storn,
1997).
� Silva et al.’s contribution (Silva05) (Silva, Bellon, & Boyer, 2005),

in which a steady-state variant of GAs (Goldberg, 1989) is
developed.
� Yamany et al.’s proposal (Yamany99) (Yamany et al., 1999),

where the authors considered a binary representation of the
transformation parameters and a canonical implementation of
GAs.

Both these three analyzed and the latter four algorithms were
implemented in C++ and compiled with the GNU/g++ tool. We
adapted all the tested methods by using the same representation
of the rigid transformation (f) and objective function (see Eq. (12)
in Section 3.2) in order to accomplish a fair comparison. The simi-
larity metric considered will depend on the particular real-world
application being faced.
4.1. Range image datasets and problem scenarios

In order to ease the comparison with the reported results in
other contributions in the field (Salvi et al., 2007; Silva et al.,
2005), our results correspond to a number of pair-wise RIR prob-
lem instances using different range datasets obtained from the
well-known public repository of the Signal Analysis and Machine
Perception Lab (SAMPL, http://sampl.ece.ohio-state.edu/data/3DDB/
RID/index.htm). Specifically, Fig. 7 shows the six range datasets con-
sidered, named as in previous contributions (Silva et al., 2005):
‘‘Frog’’, ‘‘Bird’’, ‘‘Tele’’, ‘‘Lobster’’, ‘‘Angel’’, and ‘‘Buddha’’. Each data-
set ranges from 8 K to 15 K of size.

The second group of datasets is the specific ones, acquired using
a Konica-Minolta� VI-910 laser scanner, named ‘‘Skull’’ and
‘‘Tooth’’ (see Fig. 8). Each dataset ranges from 30 K to 70 K of size.

http://sampl.ece.ohio-state.edu/data/3DDB/RID/index.htm
http://sampl.ece.ohio-state.edu/data/3DDB/RID/index.htm


Fig. 7. Range image datasets available at the SAMPL repository. From left to right: ‘‘Frog’’, ‘‘Bird’’, ‘‘Tele’’, ‘‘Lobster’’, ‘‘Angel’’, and ‘‘Buddha’’ images.

Fig. 8. Specific range image datasets. From left to right: ‘‘Skull’’ and ‘‘Tooth’’ images.

Table 1
Original size of the range images for the considered datasets.

Dataset Original size (number of points)

Frog 9584
Bird 9051
Tele 6810
Lobster 11683
Angel 14009
Buddha 14801
Skull 76794
Tooth 59033

Table 2
Best performing values of the control parameters of the ABC, BBO, and HS algorithms
tackling the RIR problem.

ABC BBO HS

PopSize 100
Elitism size 2

Colony size (CS) 20 Habitat modification prob. 1 PopSize 50
Limit 150 Immigration prob. bounds [0,1] HMCR 0.9
no;ne 50% of CS Step size 1 PAR 0.2
ns 1 Maximum immigration rate 1 Step size 0.1

Maximum emigration rate 1
Mutation prob. 0.05

Table 3
RIR results of the 20 degrees of overlapping problem scenario.

Dataset Algorithm Minimum Maximum Mean Std. dev.

Angel ABC 0.2470 0.5289 0.3319 0.1007
BBO 0.2576 0.9554 0.4975 0.2692
HS 0.2494 0.9535 0.4412 0.2724
StEvO 0.2448 0.5268 0.2947 0.0886

DeFalco08 0.2493 0.9462 0.6732 0.2209
Silva05 0.2495 0.9555 0.4179 0.2560
Yamany99 0.2553 0.9531 0.5818 0.2792

Bird ABC 0.1167 0.9009 0.3107 0.2451
BBO 0.1263 0.9301 0.4347 0.2759
HS 0.1170 0.9188 0.4671 0.3603
StEvO 0.1125 0.5977 0.1814 0.1569

DeFalco08 0.1245 0.8429 0.4793 0.2157
Silva05 0.1152 0.9178 0.3506 0.3112
Yamany99 0.1199 0.9180 0.4465 0.2725

Frog ABC 0.1226 0.7733 0.2437 0.1798
BBO 0.1649 0.8690 0.5396 0.2023
HS 0.1260 0.8751 0.3476 0.2749
StEvO 0.1193 0.5308 0.1792 0.1337

DeFalco08 0.1322 0.7345 0.4374 0.1615
Silva05 0.1249 0.8555 0.4329 0.2415
Yamany99 0.1234 0.8311 0.5119 0.2162

Tele ABC 0.0752 0.8691 0.1501 0.1817
BBO 0.0829 0.8699 0.251 0.2292
HS 0.0754 0.8721 0.2350 0.2963
StEvO 0.0735 0.8647 0.1044 0.1414

DeFalco08 0.0755 0.6578 0.3193 0.1819
Silva05 0.0750 0.9234 0.3728 0.3366
Yamany99 0.0791 0.8958 0.3159 0.2531
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Overall, eight different datasets of range images have thus been
considered.

Besides, we have defined several pair-wise RIR problem scenar-
ios by using different overlapping degrees between pairs of
adjacent images. Specifically, four and six RIR problem instances
were considered using pairs of range images of the SAMPL’s data-
sets at 20 and 40 rotation degrees of misalignment between the
adjacent views, and another two more complex instances of pairs
of images at 45 and 60 degrees were also considered using the
‘‘Skull’’ and the ‘‘Tooth’’ specific datasets, respectively. Then, we
designed four different RIR problem scenarios regarding the rota-
tion degree (20, 40, 45, and 60) from which twelve different prob-
lem instances have been generated. Each of those scenarios will be
faced by every RIR algorithm.

Moreover, we used a subsampled version of each range image
(original sizes are shown in Table 1) in order to speed-up the
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computation of the objective function (see Eq. (12) in Section 3.2).
In particular, five thousand points have been randomly chosen by
using a uniform distribution. Feature-based approaches (Gal &
Cohen-Or, 2006; Zitová & Flusser, 2003) can also be adopted to
achieve a reduced and a characteristic subset of image points, even
providing improved IR results (Santamaría et al., 2011). Neverthe-
less, the latter usually needs the intervention of expert users to
obtain high quality features.

4.2. Parameter settings

All the tested algorithms are run on a PC with an Intel Pentium
IV 2.6 MHz processor and 2 GB RAM. We maintained the values of
the control parameter of each of the four state-of-the-art algo-
rithms (StEvO, deFalco08, Yamany99, and Silva05) as those used
in their original contribution facing the IR problem. Regarding
the three analyzed algorithms (ABC, BBO, and HS), we carried out
some preliminary experiments to carefully tune their control
parameters facing the RIR problem. The parameter values, which
are finally selected, are given in Table 2.

In order to avoid execution dependence, thirty different runs
have been performed for each of the seven tested RIR algorithms
when facing each of the four problem scenarios, i.e. considering
Table 4
RIR results of the 40 degrees of overlapping problem scenario.

Dataset Algorithm Minimum

Angel ABC 0.3542
BBO 0.3690
HS 0.3553
StEvO 0.3493
DeFalco08 0.3694
Silva05 0.3527
Yamany99 0.3623

Bird ABC 0.2124
BBO 0.2426
HS 0.2165
StEvO 0.2041
DeFalco08 0.2955
Silva05 0.2159
Yamany99 0.2776

Frog ABC 0.2717
BBO 0.4794
HS 0.4026
StEvO 0.2517
DeFalco08 0.3997
Silva05 0.2735
Yamany99 0.2809

Tele ABC 0.1082
BBO 0.1198
HS 0.1095
StEvO 0.1054
DeFalco08 0.1240
Silva05 0.1077
Yamany99 0.1104

Buddha ABC 0.4473
BBO 0.6258
HS 0.5526
StEvO 0.3996
DeFalco08 0.6705
Silva05 0.5075
Yamany99 0.6080

Lobster ABC 0.2745
BBO 0.3249
HS 0.2665
StEvO 0.2522
DeFalco08 0.3392
Silva05 0.2665
Yamany99 0.3010
20,40,45, and 60 degrees of image overlapping. Moreover, all the
tested algorithms start from a initial population of random solu-
tions. Each run concerns applying a rigid transformation, randomly
generated using an uniform distribution, to the scene image frðIsÞ.
In each case, the RIR method will search for this optimal transfor-
mation f � between the proposed image frðIsÞ and the model image
Im. Every rigid transformation is randomly generated as follows:
each of the three rotation axis parameters will be in the range
½�1;1�; the rotation angle will range in ½0�;360��; and the range
of three translation parameters is ½�40 mm;40 mm�.

In order to perform a fair comparison among the methods in-
cluded in this study, we considered CPU time as the stop criterion.
Different time limits were tested and 20 s was determined as a
good threshold just allowing all the methods to achieve accurate
solutions.

4.3. Analysis of results

Tables 3–5 show statistical results regarding the thirty different
runs carried out by each of the seven RIR algorithms when facing
the four RIR problem scenarios (i.e. 20,40,45, and 60 degrees of
overlapping). In particular, each column of these tables refer to
the range dataset, the algorithm, and the minimum, maximum,
Maximum Mean Std. dev.

0.9098 0.5265 0.2210
0.9674 0.6975 0.2435
0.9567 0.6460 0.2665
0.9436 0.4990 0.2175

0.9599 0.7954 0.1499
0.9711 0.6790 0.2640
0.9687 0.7776 0.2057

0.9308 0.5072 0.2829
0.9419 0.7633 0.2189
0.9430 0.6151 0.3058
0.9168 0.3741 0.2655

0.9350 0.7358 0.1852
0.9425 0.5795 0.3158
0.9407 0.7547 0.2070

0.8410 0.5512 0.2015
0.9191 0.7691 0.0823
0.9005 0.7403 0.1161
0.7717 0.3941 0.1856

0.8000 0.6937 0.0876
0.9474 0.6923 0.1750
0.8964 0.7490 0.1220

0.8607 0.2700 0.2222
0.8837 0.4648 0.2300
0.9222 0.4129 0.3072
0.4708 0.1682 0.1226

0.7722 0.4785 0.1520
0.8950 0.5354 0.2929
0.9230 0.4689 0.2686

0.9446 0.6690 0.1220
0.9481 0.7798 0.0978
0.9285 0.7147 0.1044
0.6873 0.5730 0.1103

0.9335 0.8105 0.0812
0.9506 0.7146 0.1126
0.9259 0.7704 0.0889

0.8220 0.6249 0.1530
0.9406 0.6735 0.1555
0.9257 0.5890 0.1964
0.8013 0.3816 0.1916

0.7917 0.6642 0.1020
0.9201 0.5727 0.2089
0.8846 0.6530 0.1756



Table 5
RIR results of both the 45 (‘‘Skull’’) and the 60 (‘‘Tooth’’) degrees of overlapping problem scenarios.

Dataset Algorithm Minimum Maximum Mean Std. dev.

Skull ABC 0.2423 0.8897 0.6526 0.1578
BBO 0.2401 0.9288 0.6648 0.2215
HS 0.2388 0.9911 0.6499 0.2200
StEvO 0.2251 0.7719 0.3783 0.2025

DeFalco08 0.2311 0.8465 0.6677 0.1831
Silva05 0.2395 0.8451 0.6691 0.1859
Yamany99 0.2525 0.9416 0.6710 0.2143

Tooth ABC 0.0433 0.7066 0.3141 0.1975
BBO 0.1105 0.8824 0.5590 0.2057
HS 0.0426 0.7851 0.4202 0.2351
StEvO 0.0396 0.6231 0.2674 0.1752

DeFalco08 0.0454 0.7237 0.4936 0.1922
Silva05 0.0473 0.7511 0.3958 0.2147
Yamany99 0.0568 0.8549 0.5488 0.1943

Fig. 9. Bar-graphs comparing the accuracy (according to the minimum value in Tables 3 to 5) of all the tested algorithms on each of the four RIR problem scenarios.

J.M. García-Torres et al. / Expert Systems with Applications 41 (2014) 1750–1762 1759
mean and standard deviation values of the F function (see Eq. (12))
in those thirty runs. The unit length is always in squared millime-
ters. Two different algorithm families are distinguished, the one of
the three new methods analyzed (ABC, BBO and HS) and that of the
four state-of-the-art evolutionary RIR methods. The algorithm with
the best (lowest) minimum and mean results in each family is
highlighted according to the boldface as well as the overall best
value for each dataset is underlined.

Besides, Figs. 9–11 summarize and graphically highlight the
latter tabulated data, regarding accuracy (according to minimum
values of F) and robustness (according to mean and median values
of F), respectively.

In view of the latter data, we can see how ABC is the most accu-
rate and robust algorithm out of the three new RIR methods which
are being analyzed, i.e. BBO and HS. Specifically, ABC achieves the
most accurate results in all the instances of the 20 degrees RIR
problem scenario and within five out of the six instances of the
40 degrees RIR problem scenario. Nevertheless, it does not behave
in that way in the two instances of the 45 and 60 degrees RIR prob-
lem scenarios where HS offers a slightly better performance in
some cases. In addition, ABC obtains improved outcomes regarding
robustness in all the instances of the first scenario, five out of the
six instances of the second scenario, and one out of the two in-
stances of the third and fourth scenarios. This fact can also be
viewed in Fig. 11, where median values for the thirty different runs
are analyzed and ABC achieves the best values in three instances of
the 20 degrees problem scenario and five instances of the 40, 45
and 60 degrees scenarios. Overall, it is proven that the ABC algo-
rithm achieves a more suitable trade-off between exploration/
exploitation search phases.

Regarding to BBO and HS, we can see how the latter result ob-
tains more accurate outcomes than the former one in all of the
twelve addressed RIR problem instances. According to robustness,
HS also achieves a better performance than BBO in all the scenarios
except in two of the four instances of the 20 degrees RIR problem
scenario, i.e. the ‘‘Bird’’ and the ‘‘Frog’’ instances. Thus, the three
analyzed algorithms can be ranked in a decreasing order according
to both accuracy and robustness as follows: ABC, HS, and BBO.

When benchmarking ABC results with those of the baseline
evolutionary methods from the specific problem being tackled,
we can see how the former one obtains a lower performance than
the best algorithm in that group, i.e. StEvO, according accuracy and
robustness. Nevertheless, we should highlight that ABC achieves
outstanding results due to the basic design it proposes compared
to the very complex and specific one used by StEvO, which makes
use of a more elaborated optimization scheme. However, in com-
parison to the deFalco08, Silva05, and Yamany99 state-of-the-art
evolutionary RIR methods, ABC provided improved outcomes in
eleven out of the twelve addressed instances (except in the ‘‘Lob-
ster’’ dataset of the 40 degrees problem scenario). Regarding BBO



Fig. 10. Bar-graphs comparing the robustness (according to the mean value in Tables 3 to 5) of all the tested algorithms on each of the four RIR problem scenarios.

Fig. 11. Bar-graphs comparing the robustness (according to the median value) of ABC, BBO, HS and StEvO on each of the four RIR problem scenarios.

Fig. 12. From left to right: Some of the most accurate RIR results (according to the minimum values in Tables 3–5) obtained by ABC and StEvO shown in the first and the
second columns, respectively.
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and HS, despite their low performance against ABC and StEvO, the
former two algorithms achieve better results than deFalco08, Sil-
va05, and Yamany99 in many of the addressed RIR problem scenar-
ios according to both accuracy and robustness criteria. According
to individual accuracy, Fig. 12 shows how ABC, BBO, and HS
achieve similar RIR results compared to one of the best evolution-
ary RIR approaches in the literature, StEvO.

Finally, Table 6 shows the results of the Mann–Whitney U test,
also known as Wilcoxon ranksum test, used for a deeper statistical
study of the results. This is motivated by those situations in which



Table 6
Mann–Whitney U paired-test results (10% significance level) comparing all the
evolutionary RIR methods in the twelve problem instances.

ABC BBO HS StEvO DeFalco08 Silva05 Yamany09

ABC s + + � + + +
BBO � s � � = = =
HS � + s � + = +
StEvO + + + s + + +
DeFalco08 � = � � s � =
Silva05 � = = � + s +
Yamany09 � = � � = � s
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simply by using the visual inspection procedure does not provide
good insights of the real performance of the algorithms, e.g. the
outcomes shown in Fig. 12. Unlike the commonly used t-test, the
Wilcoxon test does not assume normality of the samples, which
would be unrealistic for the data in our real-world application
(Lehmann, 1975). The significant results are comprised by three
symbols:‘+’ meaning the significance is favorable to the method
in the row; ‘�’ stands for the significance favorable to the method
in the column; and ‘=’ is used when there is not significance favor-
able (not relevant) to any of the couple of methods which are being
compared. As reported above, the three tested algorithms (ABC,
BBO, and HS) achieve competitive RIR outcomes compared to the
state-of-the-art methods. Specifically, remarkable significant re-
sults are drawn by ABC, which is only outperformed by the best
method, StEvO.
5. Concluding remarks

In this work we performed a first step in the analysis of some
cutting edge population-based optimization algorithms tackling
continuous optimization problems. In particular, the ABC, BBO,
and HS algorithms have been considered in this study due to their
innovative designs. A computational analysis of their performance
has been carried out facing IR, a challenging and well-known NP-
hard problem within the computer vision field.

A benchmark suite composed by several instances of the pair-
wise IR problem using range images has been considered to testing
the ABC, BBO, and HS algorithms and benchmarking their results
with several state-of-the-art evolutionary IR methods proposed
to date as well. Promising results have been obtained by these
three recent population-based approaches when tackling complex
IR problem instances of range images. Specifically, ABC achieved
the best outcomes according to accuracy and robustness regarding
BBO and HS, which is motivated by the good trade-off between
exploration and exploitation of the search, also promoted by the
former algorithm. Regarding the latter two methods, it has been
shown how HS improves BBO according to accuracy in all the prob-
lem instances addressed, as well as it also outperforms BBO in
terms of robustness in most of the problem instances. Then, these
algorithms can be ranked in a decreasing order according to their
performance, tackling the IR problem as follows: ABC, HS, BBO.
This seems to suggest there is a relationship between the design
complexity level of these approaches and their performance. As it
has been recently proven in the literature, those approaches based
on easy-to-implement schemes usually provide competitive out-
comes compared to the most elaborated ones, e.g. ABC vs. StEvO,
despite the best results of the latter method are due to its specific
design considered to this particular real-world application. More-
over, it can be shown how ABC outperforms the performance ob-
tained by several of the state-of-the-art IR algorithms.

Finally, we conclude that there is room for improvement for all
the three analyzed algorithms from different points of view. In par-
ticular, the synergy between global and local search strategies
(Santamaría et al., 2009) will promote the achievement of more
accurate results, as it has been proven in memetic algorithms
(Moscato & Norman, 1992; Krasnogor & Smith, 2005; Santamaría
et al., 2009). Besides, hybridizations between the ABC, BBO, and
HS algorithms with other MHs (Glover & Kochenberger, 2003;
Luke, 2009) would be another promising alternative to the
improvement of any of the former innovative optimization
approaches.
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