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This paper introduces a flexible extension of rough set theory: multi-adjoint fuzzy rough
sets, in which a family of adjoint pairs are considered to compute the lower and upper
approximations. This new setting increases the number of applications in which rough set
theory can be used. An important feature of the presented framework is that the user
may represent explicit preferences among the objects in a decision system, by associating
a particular adjoint triple with any pair of objects.
Moreover, we verify mathematical properties of the model, study its relationships to multi-
adjoint property-oriented concept lattices and discuss attribute selection in this framework.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Pawlak proposed rough set theory [23] in the 1980s as a formal tool for modeling and processing incomplete information
in information systems.

On the other hand, formal concept analysis, introduced by Wille in the decade of 1980 [28], arose as another mathe-
matical theory for qualitative data analysis and, currently, has become an interesting research topic both with regard to its
mathematical foundations [16,25] and with regard to its multiple applications [5,6].

These mathematical theories have been related in several papers [7,8,14,15,18,19]. In particular, property-oriented con-
cept lattices [1,4,10] and object-oriented concept lattices [29] were introduced in order to extend formal concept lattices [9],
with constructs from rough set theory; notably, they invoke the lower and upper approximation operators, which are often
referred to in this research field as necessity and possibility operators, respectively.

More recently, multi-adjoint property-oriented and object-oriented concept lattices were studied [17,18], with the aim of
introducing adjoint triples of fuzzy logic operators (in particular, a conjunctor and its two residuated implications) to define
“soft” extensions of the necessity and possibility operators. This is similar to what happens in fuzzy rough set theory, where
a t-norm and fuzzy implication are used in order to extend the classical rough lower and upper approximation operators.
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However, the multi-adjoint paradigm goes much further in the sense that it allows us to use several adjoint triples, in order
to be able to express preferences among objects or properties.

In this paper, the latter characteristic of multi-adjoint property-oriented concept lattices is introduced into the frame-
work of fuzzy rough sets, that is to say, we propose a multi-adjoint fuzzy rough set model in which the lower and upper
approximation operators are constructed using several adjoint triples. This allows us to introduce explicit preferences among
the objects, by associating a particular adjoint triple with any pair of objects in a decision system.

We study various properties of the model and focus in particular on attribute selection. From the perspectives of both
concept lattices and rough sets, attribute selection is an important step in reducing the computational complexity. Recently,
Wang and Zhang related attribute selection in property-oriented and object-oriented concept lattices [27]. Moreover, in [22],
two kinds of reduction methods have been proposed and the relationship with attribute selection in rough set theory is
discussed in detail.

The remainder of this paper is structured as follows. In Section 2, we recall preliminaries from rough sets, fuzzy rough
sets and multi-adjoint property-oriented concept lattices. Next, in Section 3, we define multi-adjoint fuzzy rough sets and
investigate their main properties. We also define a general positive region to focus on the decision attribute and on the
attribute selection based on multivalued measures. In Section 4, the notions of L-valued measure, m, and fuzzy m-decision
reduct are included, and specific measures are studied based on the positive region notion and on a fuzzy discernibility
function which generalize the ones given in [3]. Moreover, we introduce a relation between them. Finally, in Section 5, we
conclude the paper.

2. Preliminaries

2.1. Rough set theory

In the framework of rough set theory, data is represented as an information system (X,A), where X = {x1, . . . , xn} and
A = {a1, . . . ,am} are finite, non-empty sets of objects and attributes, respectively. Each a in A corresponds to a mapping
ā : X → Va , where Va is the value set of a over X . For every subset B of A, the B-indiscernibility relation3 R B is defined as
the equivalence relation

R B = {
(x, y) ∈ X × X

∣∣ for all a ∈ B, ā(x) = ā(y)
}

(1)

Given A ⊆ X , its lower and upper approximation w.r.t. B are defined by

R B↓A = {
x ∈ X

∣∣ [x]R B ⊆ A
}

(2)

R B↑A = {
x ∈ X

∣∣ [x]R B ∩ A 	= ∅} (3)

A decision system (X,A ∪ {d}) is a special kind of information system, in which d /∈ A is called the decision attribute,
and its equivalence classes [x]Rd are called decision classes. Given B ⊆ A, the B-positive region, POSB , and the degree of
dependency of d on B , γB , are defined as

POSB =
⋃
x∈X

R B↓[x]Rd (4)

γB = |POSB |
|X | (5)

(X,A∪{d}) is called consistent if γA = 1. A subset B of A is called a decision reduct if it satisfies POSB = POSA and there
exists no proper subset B ′ of B such that POSB ′ = POSA .

A well-known approach to generate all reducts of a decision system is based on its discernibility matrix and function [26].
The discernibility matrix of (X,A∪ {d}) is the n × n matrix O , defined by, for i and j in {1, . . . ,n},

O ij =
{∅ if d(xi) = d(x j)

{a ∈A | ā(xi) 	= ā(x j)} otherwise (6)

The discernibility function of (X,A∪ {d}) is the map f : {0,1}m → {0,1}, defined by

f
(
a∗

1, . . . ,a∗
m

) =
∧{∨

O ∗
i j

∣∣∣ 1 � i < j � n and O ij 	= ∅
}

(7)

in which O ∗
i j = {a∗ | a ∈ O ij}. The boolean variables a∗

1, . . . ,a∗
m correspond to the attributes from A. It can be shown that

the prime implicants of f constitute exactly all decision reducts of (X,A∪ {d}).

3 When B = {a}, i.e., B is a singleton, we will write Ra instead of R{a} .
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2.2. Fuzzy rough set theory

In fuzzy rough set theory, a decision system (X,A∪{d}) is defined in the same way as in the crisp case. However, several
other notions need to be fuzzified.

To express the approximate equality between two objects w.r.t. a ∈A, a [0,1]-fuzzy tolerance relation is considered [3,
13], that is, a fuzzy relation Ra : X × X → [0,1] which is reflexive and symmetric. For any subset B = {am1 , . . . ,am|B| } of A,
the fuzzy B-indiscernibility relation is defined by, for x, y in X ,

R B(x, y) = T (
Ram1

(x, y), . . . , Ram|B| (x, y)
)

(8)

in which T represents a t-norm.
The lower and upper approximation of a fuzzy set A in X by means of R B is defined as in [24]: given a fuzzy implication4

I and a t-norm T , for all y in X ,

(R B↓A)(y) = inf
x∈X

I(R B(x, y), A(x)
)

(9)

(R B↑A)(y) = sup
x∈X

T (
R B(x, y), A(x)

)
(10)

Next, the fuzzy B-positive region is defined, for each y in X , as

POSB(y) =
(⋃

x∈X

R B↓Rdx

)
(y) (11)

where Rdx : X → [0,1] is defined as Rdx(y) = Rd(x, y).

2.3. Multi-adjoint property-oriented and object-oriented concept lattices

This section only recalls the definitions and main properties of multi-adjoint property-oriented concept lattice frame-
work, since the object-oriented one is introduced similarly. The details of both concept lattices are given in [17,18].

The basic operators in these environments are the adjoint triples [2], which are formed by three mappings: a possible
non-commutative conjunctor and two residuated implications [11], that satisfy the well-known adjoint property.

Definition 1. Let (P1,�1), (P2,�2), (P3,�3) be posets and & : P1 × P2 → P3, ↙ : P3 × P2 → P1, ↖ : P3 × P1 → P2 be
mappings, then (&,↙,↖) is an adjoint triple with respect to P1, P2, P3 if:

x �1 z ↙ y iff x & y �3 z iff y �2 z ↖ x

where x ∈ P1, y ∈ P2 and z ∈ P3.

The usual Gödel, product and Łukasiewicz t-norms together with their residuated implications are examples of adjoint
triples.

Example 1. The Gödel, product and Łukasiewicz adjoint triples are defined on [0,1] as:

x &G y = min{x, y} z ↖G x =
{

1 if x � z
z otherwise

x &P y = x · y z ↖P x = min{1, z/x}
x &L y = max{0, x + y − 1} z ↖L x = min{1,1 − x + z}

and ↙G =↖G , ↙P =↖P , ↙L =↖L , since &P , &G and &L are commutative.

In [21] more general examples of adjoint triples are given, in which & is not a t-norm and ↙ is different from ↖.
The following easily verified lemma enumerates some properties of the adjoint triples which will be used in the next

sections.

Lemma 1. Let (P1,�1) be a poset, (L2,�2) and (L3,�3) two complete lattices, and (&,↙,↖) an adjoint triple with respect to P1 ,
L2 , L3 , then & preserves the supremum in the second argument and ↖ preserves the infimum in the first argument, i.e., when I and J
are two index sets and x ∈ P1 , {yi | i ∈ I} ⊆ L2 and {z j | j ∈ J } ⊆ L3 , then

4 Note that a fuzzy implication I : [0,1] × [0,1] → [0,1] is an operator decreasing in the antecedent (in the left side) and increasing in the consequent
(in the right side) and satisfying the same boundary conditions as the classical implication.
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(1) x & (sup{yi | i ∈ I}) = sup{x & yi | i ∈ I}.
(2) (inf{z j | j ∈ J }) ↖ x = inf{z j ↖ x | j ∈ J }.

The basic structure, which allows the existence of several adjoint triples for a given triplet of a poset and two complete
lattices, is the multi-adjoint property-oriented frame.

Definition 2. Given a poset (P1,�1), two complete lattices (L2,�2) and (L3,�3) and adjoint triples with respect to
P1, L2, L3, (&i,↙i,↖i), for all i = 1, . . . ,n, a multi-adjoint property-oriented frame is the tuple

(P1, L2, L3,&1, . . . ,&n)

The definition of context is analogous to the one given in [20].

Definition 3. Given a multi-adjoint property-oriented frame (P1, L2, L3,&1, . . . ,&n), a context is a tuple (A, B, R, τ ) such
that A and B are non-empty sets (usually interpreted as attributes and objects, respectively), R is a P1-fuzzy relation
R : A × B → P1 and τ : A × B → {1, . . . ,n} is a mapping which associates any pair of elements in A × B with some particular
adjoint triple in the frame.

Note that R is a general P1-fuzzy relation, which in general does not need to be reflexive or symmetric when A = B is
assumed. From now on, we will fix a multi-adjoint property-oriented frame and context, denoted by (P1, L2, L3,&1, . . . ,&n)

and (A, B, R, τ ).
Now, given5 g ∈ LB

2 , and f ∈ L A
3 , we define the following mappings: ↑π : LB

2 → L A
3 , ↓N

: L A
3 → LB

2 :

g↑π (a) = sup
{

R(a,b)&τ (a,b) g(b)
∣∣ b ∈ B

}
(12)

f ↓N
(b) = inf

{
f (a) ↖τ (a,b) R(a,b)

∣∣ a ∈ A
}

(13)

Clearly, these definitions generalize the classical possibility and necessity operators [10] and the mappings presented in
Eqs. (9) and (10).

A concept, in this environment, is a pair of mappings 〈g, f 〉, with g ∈ LB
2 , f ∈ L A

3 , such that g↑π = f and f ↓N = g , which
will be called multi-adjoint property-oriented formal concept. The set of all these concepts will be denoted as Mπ N and,
together with the ordering �, defined by 〈g1, f1〉 � 〈g2, f2〉 if and only if g1 �2 g2 (or equivalently f1 �3 f2), is a complete
lattice [18], which is called multi-adjoint property-oriented concept lattice.

3. Multi-adjoint fuzzy rough sets

As seen in the previous section, multi-adjoint property-oriented concept lattices generalize property-oriented concept
lattices using several adjoint triples. In this framework, a context (A, B, R, τ ) is considered, in which the roles of B and the
relation R : A × B → P will be related to fuzzy rough set theory.

In fuzzy rough set theory we start from a decision system (X,A ∪ {d}) and, given B ⊆A, we define a B-indiscernibility
relation R B : X × X → P . In other words, rather than relating objects with properties as in property-oriented concept lattices,
in fuzzy rough set theory, R establishes a relation between the objects. As a consequence of this important difference, the
attribute selection in rough set theory is not the same thing as in the concept lattice setting.

This section introduces a generalization of fuzzy rough sets considering the multi-adjoint philosophy. As a consequence,
a more flexible environment is obtained: we can consider several adjoint triples, which allows us, for example, to assume
preference among the objects as it was shown in [18,20].

From now on, in the rest of the paper, a decision system (X,A ∪ {d}) a poset (P ,�) and a complete lattice (L,�) will
be fixed. We assume that the poset P has a top element �P and the bottom and top element of the lattice L are denoted
by ⊥L and �L respectively.

3.1. Definitions

We first introduce a P -fuzzy generalization of the B-indiscernibility relation6 associated with the decision system (X,

A ∪ {d}). For that, we need the notion of a P -fuzzy tolerance relation R : X × X → P , i.e., a P -fuzzy relation that satisfies
the reflexivity property, R(x, x) = �P , for all x ∈ X , and the symmetric property R(x, y) = R(y, x), for all x, y ∈ X .

5 Given two sets L and X , we use the shorthand L X to denote the set of mappings from X to L, that is, L X = {h : X → L}.
6 Note that B is considered to be a subset of attributes in this environment, following the usual notation in rough set theory.
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Definition 4. Given B ⊆ A and the P -fuzzy tolerance relations Ra : X × X → P , for all a ∈ A, a fuzzy B-indiscernibility
relation is a P -fuzzy relation R B : X × X → P , defined, for all x, y ∈ X , as

R B(x, y) = @
(
φ

x,y
B (a1), . . . , φ

x,y
B (am)

)
(14)

in which @ : Pm → P is an aggregation operator, that is, a monotonic operator on each argument satisfying that
@(�P , . . . ,�P ) = �P and, if P has a bottom element ⊥P , then @(⊥P , . . . ,⊥P ) = ⊥P , and φ

x,y
B :A → P is defined for

each a ∈A as

φ
x,y
B (a) =

{
Ra(x, y) if a ∈ B
�P otherwise

The monotonicity property is clear for this relation just like in the classical case, i.e. given B1 ⊆ B2, then R B2 � R B1 .
The algebraic structure assumed will be a multi-adjoint property-oriented frame (P , L, L,&1, . . . ,&n), and, from the de-

cision system and each B-indiscernibility relation, a context (X, X, R B , τ ) can be considered, on which the possibility and
necessity operators can be defined. In particular, given g ∈ L X , and f ∈ L X , the mappings: ↑π : L X → L X , ↓N

: L X → L X are
defined, for all x, y ∈ L as:

g↑π (x) = sup
{

R B(x, y)&τ (x,y) g(y)
∣∣ y ∈ X

}
(15)

f ↓N
(y) = inf

{
f (x) ↖τ (x,y) R B(x, y)

∣∣ x ∈ X
}

(16)

where g↑π can be interpreted as the upper approximation of g and f ↓N
the lower approximation of f . From now on, in order

to improve readability, we will write &xy , ↖xy instead of &τ (x,y) , ↖τ (x,y) .

Definition 5. Given a fuzzy subset h ∈ L X , the pair (h↓N
,h↑π ) is called a multi-adjoint fuzzy rough set.

Note that this pair is not necessarily a multi-adjoint property-oriented concept, since h↓N
may be different from h↑π ↓N

or equivalently, h↑π could be different from h↓N ↑π , as the following example illustrates.

Example 2. Consider the information system (X,A), where A= {a1,a2,a3,a4} is the set of attributes, X = {x1, x2, . . . , x7} is
the set of objects and ā : X → Va are the mappings given in Table 1.

Moreover, we assume P = L = [0,1]. The fuzzy tolerance relations Rai : X × X → [0,1] are defined as Rai (x, y) = 1 −
|R(ai, x) − R(ai, y)|, for all i ∈ {1, . . . ,4} and x, y ∈ X . The aggregation operator @ : [0,1]4 → [0,1] is given by

@(l1, l2, l3, l4) = 1

6

(
l1 + l2 + 2(l3 + l4)

)
for all l1, l2, l3, l4 ∈ [0,1]. This operator considers more important the relation w.r.t. the third and fourth attributes than w.r.t.
the first and second one.

In this example, we consider the fuzzy A-indiscernibility relation RA : X × X → [0,1], defined, for all x, y ∈ X , as

RA(x, y) = @
(

Ra1(x, y), . . . , Ra4(x, y)
)

(17)

and given in Table 2.

Table 1
The information system (X,A).

x1 x2 x3 x4 x5 x6 x7

a1 0.34 0.21 0.52 0.85 0.43 0.21 0.09
a2 0.13 0.09 0.36 0.17 0.1 0.04 0.06
a3 0.31 0.71 0.92 0.65 0.89 0.47 0.93
a4 0.75 0.5 1 1 0.5 0.25 0.25

Table 2
The A-indiscernibility relation RA .

R B x1 x2 x3 x4 x5 x6 x7

x1 1 0.755 0.645 0.712 0.703 0.743 0.573
x2 1 0.667 0.693 0.902 0.828 0.818
x3 1 0.823 0.765 0.495 0.625
x4 1 0.672 0.562 0.512
x5 1 0.73 0.84
x6 1 0.823
x7 1
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The algebraic structure assumed is the multi-adjoint property-oriented frame ([0,1], [0,1], [0,1],&1) with &1 = &G and
the context is (X, X, RA, τ ), where τ maps all pairs of elements in X × X to 1. Given the fuzzy subset h : X → [0,1], defined
as

h(x1) = 0.625, h(x2) = 0.25, h(x3) = 0.25, h(x4) = 0.375
h(x5) = 0.2, h(x6) = 0.4, h(x7) = 0.25

the corresponding multi-adjoint fuzzy rough set is the pair (h↓N
,h↑π ), where

h↓N
(x1) = 0.2, h↓N

(x2) = 0.2, h↓N
(x3) = 0.2, h↓N

(x4) = 0.2

h↓N
(x5) = 0.2, h↓N

(x6) = 0.2, h↓N
(x7) = 0.2

and

h↑π (x1) = 0.625, h↑π (x2) = 0.625, h↑π (x3) = 0.625, h↑π (x4) = 0.625
h↑π (x5) = 0.625, h↑π (x6) = 0.625, h↑π (x7) = 0.573

Moreover, the multi-adjoint fuzzy rough set is not a multi-adjoint property-oriented concept. For example, the concept
〈h↑π ↓N

,h↑π 〉 is given by the mapping h↑π computed above and h↑π ↓N
which is:

h↑π ↓N
(x1) = 0.625, h↑π ↓N

(x2) = 0.573, h↑π ↓N
(x3) = 0.573, h↑π ↓N

(x4) = 0.625

h↑π ↓N
(x5) = 0.573, h↑π ↓N

(x6) = 0.573, h↑π ↓N
(x7) = 0.573

An interesting property of the proposed framework is that we can consider several adjoint triples and, as a consequence,
different preferences among the objects can be assumed. For example, we can assume, in the previous example, that the
values with respect to the objects x5, x6, x7 are more trustworthy than the others. Therefore, we can associate x5, x6, x7
with the product adjoint triple instead of the Gödel one, because the Gödel implication results in lower values and has
more influence on the infimum in the lower approximation in Eq. (16).

Example 3. We consider the frame ([0,1], [0,1], [0,1],&1,&2), where &1 = &G and &2 = &P and the context (X, X, RA, τ ),
from Example 2, where τ (xi, x j) = 2 if both xi and x j are in {x5, x6, x7}, and τ (xi, x j) = 1 otherwise.

In this case, the values given by h↓N
for {x1, x2, x3, x4}, will be the same, since the Gödel implication is only considered.

However, the values for x5, x6, x7 can be different. E.g., h↓N
(x6) is given by:

h↓N
(x6) = inf

{
h(xi) ↖τ (xi ,x6) RA(xi, x6)

∣∣ xi ∈ X
}

= inf
{

inf
{

h(xi) ↖G RA(xi, x6)
∣∣ i ∈ {1,2,3,4}}, inf

{
h(xi) ↖P RA(xi, x6)

∣∣ i ∈ {5,6,7}}}
= inf{0.625,0.25,0.25,0.375,0.274,0.4,0.304} = 0.25

which is closer to h(x6) than 0.2 (the value obtained considering only the Gödel triple). The new fuzzy subset h↓N
is

h↓N
(x1) = 0.2, h↓N

(x2) = 0.2, h↓N
(x3) = 0.2, h↓N

(x4) = 0.2

h↓N
(x5) = 0.2, h↓N

(x6) = 0.25, h↓N
(x7) = 0.238

which is greater than the previous one. The fuzzy subset h↑π does not change, in this particular example.

This example shows that the use of different adjoint triples provides a more flexible language, considering cases that
could not be assumed in other frameworks.

3.2. Properties

In this section we evaluate which properties of the classical lower and upper approximations remain satisfied for multi-
adjoint fuzzy rough sets.

First, since the pair ↑π : L X → L X , ↓N
: L X → L X defined as in Eqs. (15) and (16) forms an isotone Galois connection [18],

the monotonicity of ↑π and ↓N
holds.

The following proposition shows the conditions which need to hold such that an L-fuzzy subset of X lies between its
lower and upper approximations.

Proposition 1. Given h ∈ L X , we have that

(1) If h(x) ↖xx �P � h(x), for all x ∈ X, then the inequality h↓N � h holds.
(2) If h(x) � �P &xx h(x), for all x ∈ X, then h � h↑π is verified.



Author's personal copy

418 C. Cornelis et al. / International Journal of Approximate Reasoning 55 (2014) 412–426

Proof. The first statement follows directly using the hypothesis in the next chain of inequalities:

h↓N
(y) = inf

{
h(x) ↖xy R B(x, y)

∣∣ x ∈ X
}

� h(y) ↖yy R B(y, y)

= h(y) ↖yy �P

� h(y)

Analogously, the second statement is obtained:

h(x) � �P &xx h(x)

= R B(x, x)&xx h(x)

� sup
{

R B(x, y)&xy h(y)
∣∣ y ∈ X

}
= h↑π (x) �

Corollary 1. If v ↖xx �P � v and u � �P &xx u, for all u, v ∈ L and x ∈ X, then h↓N � h � h↑π , for all h ∈ L X .

For example, the product, Gödel and Łukasiewicz t-norms, together with their residuated implication satisfy these con-
ditions. Indeed, any t-norm and its residuated implication satisfy the conditions given in the previous corollary.

Next, we study the interaction between the approximation operators and the union/intersection of a family of fuzzy sets.
We obtain similar results as in the standard rough set environment.

Proposition 2. Given {hi}i∈Λ , with hi : X → L for all i in the index set Λ, the following properties are verified:

(1) (inf{hi | i ∈ Λ})↓N = inf{h↓N

i | i ∈ Λ}.

(2) (inf{hi | i ∈ Λ})↑π � inf{h↑π

i | i ∈ Λ}.

(3) sup{h↓N

i | i ∈ Λ} � (sup{hi | i ∈ Λ})↓N
.

(4) (sup{hi | i ∈ Λ})↑π = sup{h↑π

i | i ∈ Λ}.

Proof. Statement (1) is obtained from the following chain of equalities.

(
inf{hi | i ∈ Λ})↓N

(y) = inf
{(

inf{hi | i ∈ Λ})(x) ↖xy R B(x, y)
∣∣ x ∈ X

}
(∗)= inf

{(
inf

{
hi(x) ↖xy R B(x, y)

∣∣ i ∈ Λ
}) ∣∣ x ∈ X

}
= inf

{(
inf

{
hi(x) ↖xy R B(x, y)

∣∣ x ∈ X
}) ∣∣ i ∈ Λ

}
= inf

{
h↓N

i (y)
∣∣ i ∈ Λ

}
where (∗) is given by Lemma 1(2).

Statement (2) holds directly. Since (inf{hi | i ∈ Λ}) � hi , for all i ∈ Λ, and, applying the monotonicity of ↑π , we obtain
(inf{hi | i ∈ Λ})↑π � h↑π

i . Therefore, applying the infimum property, we obtain

(
inf{hi | i ∈ Λ})↑π � inf

{
h↑π

i

∣∣ i ∈ Λ
}

Statements (3) and (4) follow similarly. �
Additional properties follow from the isotone Galois connection definition. Specifically, we have that h � h↑π ↓N

, for all
h ∈ L X , and that h↓N ↑π � h, for all h ∈ L X , which proves that the composition ↑π ↓N

is a closure operator and ↓N ↑π is an
interior operator.

Not all properties that hold for classical rough sets and fuzzy rough sets hold for multi-adjoint fuzzy rough sets. For
instance, for h ∈ L X , the following equations do not hold:

(
h↓N )↑π = (

h↓N )↓N = h↓N
(18)(

h↑π )↑π = (
h↑π )↓N = h↑π

(19)
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Table 3
The A-indiscernibility relation RA .

RA x1 x2 x3

x1 1 0.9 0.9
x2 1 0.9
x3 1

In the next example, we show that (h↓N
)↓N = h↓N

is not true in general. Note that, in fuzzy rough set theory, this
equality holds in the specific case R is a similarity relation7 and the implication is continuous. Therefore, we construct a
counterexample with continuous implications and with a similarity relation.

Example 4. Consider the class of implications ↖α
L defined by z ↖α

L x = α
√

min{1,1 + zα − xα} with α � 1, for all x, z in
[0,1]. We consider an information system (X,A) with three objects X = {x1, x2, x3} for which the similarity relation RA is
given in Table 3, and the fuzzy subset h:

h(x1) = 0.4, h(x2) = 0.1, h(x3) = 0.8

The flexibility of the multi-adjoint fuzzy rough model allows us to use different implications for different pairs of instances.
We use the following implications in our example:

↖x1x1 =↖1
L ↖x1x2 =↖2

L ↖x1x3 =↖5
L

↖x2x1 =↖5
L ↖x2x2 =↖1

L ↖x2x3 =↖1
L

↖x3x1 =↖1
L ↖x3x2 =↖5

L ↖x3x3 =↖1
L

Then the lower approximation of h is given by:

h↓N
(x1) = 0.4, h↓N

(x2) = 0.1, h↓N
(x3) = 0.2

while applying the lower approximation twice results in:

(
h↓N )↓N

(x1) = 0.3,
(
h↓N )↓N

(x2) = 0.1,
(
h↓N )↓N

(x3) = 0.2

Therefore, (h↓N
)↓N 	= h↓N

.

Another property in classical rough set theory is that the lower and upper approximations are dual, that is, co(R B↓A) =
R B↑co(A), where co represents set complement. This property is not maintained for multi-adjoint fuzzy rough sets.

Example 5. Given the implications ↖α
L from Example 4, the adjoint conjunctors &α

L are given by x &α
L y =

max{0, α
√

xα + yα − 1}. We also consider the complement co(h) of h ∈ X [0,1] , defined by (co(h))(x) = 1 − h(x), for all
x ∈ [0,1]. For the fuzzy subset h defined in Example 4, we have that (co(h))↓N 	= co(h↑π ), that is

(
co(h)

)↓N

(x) = inf
{(

co(h)
)
(xi) ↖xi ,x RA(xi, x)

∣∣ xi ∈ X
}

	= 1 − sup
{

RA(x, xi)&x,xi h(xi)
∣∣ xi ∈ X

}
= (

co
(
h↑π

))
(x)

for all x ∈ X .
This holds because, for example, (co(h))↓N

(x1) = 0.3 and, on the other hand, h↑π (x1) = 0.4, and so (co(h↑π ))(x1) = 0.6,
which shows that both mappings are not equal.

In conclusion, we can assert that many properties of classical rough set theory are satisfied in the general framework
of multi-adjoint fuzzy rough sets, such as monotonicity, inclusion, conjunction, disjunction, etc. Moreover, although the
previous examples show that some classical rough set properties are violated for multi-adjoint fuzzy rough sets, this does
not harm attribute selection as we will see in the remainder of the paper.

7 A similarity relation is a reflexive and symmetrical fuzzy relation R that also satisfies min{R(x, y), R(y, z)} � R(x, z), for all x, y, z ∈ X .
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3.3. Multi-adjoint fuzzy positive region

We use the necessity operator to define a generalization of the positive region to the multi-adjoint fuzzy rough set
framework. Analogously to (11), the multi-adjoint fuzzy B-positive region can be defined, for each y ∈ X , as

POSB(y) =
(⋃

x∈X

(Rdx)↓N
)

(y)

= sup
x∈X

inf
z∈X

Rd(x, z) ↖zy R B(z, y) (20)

where Rd : X × X → L is an L-fuzzy relation. In case d is crisp, Rd(x, y) takes two values, namely �L if d̄(x) = d̄(y) and ⊥L
else. In [3], the authors showed that when d is crisp, only the decision class that y belongs to needs to be inspected; we
therefore introduce a simpler variant of the fuzzy rough positive region as, for each y ∈ X ,

POS′
B(y) = (Rd y)↓N

(y) = inf
x∈X

Rd(y, x) ↖xy R B(x, y) (21)

Proposition 3. For y ∈ X, if Rd is a crisp relation, then

POSB(y) = (Rd y)↓N
(y) = POS′

B(y)

Proof. Given x ∈ X , such that x /∈ Rd y, we have that

inf
{

Rd(x, z) ↖zy R B(z, y)
∣∣ z ∈ X

}
� Rd(x, y) ↖yy R B(y, y)

(∗)= ⊥L ↖yy �P

= ⊥L

where (∗) is provided because R B is reflexive and x /∈ Rd y (and so Rd(x, y) = ⊥L ). Therefore, we obtain

sup
{

inf
{

Rd(x, z) ↖zy R B(z, y)
∣∣ x′ ∈ X

} ∣∣ x /∈ Rd y
} = ⊥L

This result is used in the following chain of equalities:

POSB(y) = sup
{

inf
{

Rd(x, z) ↖zy R B(z, y)
∣∣ z ∈ X

} ∣∣ x ∈ X
}

= sup
{

sup
{

inf
{

Rd(x, z) ↖zy R B(z, y)
∣∣ z ∈ X

} ∣∣ x ∈ Rd y
}
,

sup
{

inf
{

Rd(x, z) ↖zy R B(z, y)
∣∣ z ∈ X

} ∣∣ x /∈ Rd y
}}

(1)= sup
{

sup
{

inf
{

Rd(x, z) ↖zy R B(z, y)
∣∣ z ∈ X

} ∣∣ x ∈ Rd y
}
,⊥L

}
(2)= inf

{
Rd(y, z) ↖zy R B(z, y)

∣∣ z ∈ X
}

= (Rd y)↓N
(y)

where (1) is given by the previous comment and (2) follows from the equality Rd(x, z) = Rd(y, z), which is true when
x ∈ Rd y. �
4. Multi-adjoint fuzzy decision reducts

In this section, two approaches to obtain multi-adjoint fuzzy decision reducts are presented. One of them is based on
the multi-adjoint fuzzy rough positive region, the other one on a generalization of the fuzzy discernibility function. Finally,
a relation between them will be introduced.

4.1. Measures

First of all, the L-valued measure definition must be introduced. These operators will be used to evaluate subsets of A
w.r.t. their ability to maintain discernibility relative to the decision attribute.

Definition 6. A monotonic mapping m :P(A) → L is an L-valued measure associated with the decision system (X,A ∪ {d}) if
the condition

Rd(x, y) ↖xy R B(x, y) = Rd(x, y) ↖xy RA(x, y), for all x, y ∈ X (22)

implies m(B) = �L .
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Table 4
The decision system (X,A∪ {d}).

x1 x2 x3 x4 x5 x6 x7

a1 0.34 0.21 0.52 0.85 0.43 0.21 0.09
a2 0.13 0.09 0.36 0.17 0.1 0.04 0.06
a3 0.31 0.71 0.92 0.65 0.89 0.47 0.93
a4 0.75 0.5 1 1 0.5 0.25 0.25

d 0 1 0 1 0 1 0

Once such a measure is obtained, we can associate a notion of fuzzy decision reduct with it.

Definition 7 (Fuzzy m-decision reduct to degree α). Let m :P(A) → L be an L-valued measure associated with the decision
system (X,A ∪ {d}), B ⊆ A and α ∈ L, with α 	= ⊥L . The set B is called a fuzzy m-decision superreduct to degree α if
α � m(B).

It is called a fuzzy m-decision reduct to degree α if, moreover, for all B ′ ⊂ B , α � m(B ′).

4.2. Multi-adjoint fuzzy rough positive region based measures

Using the definitions of multi-adjoint fuzzy rough positive region in Eqs. (20) and (21), we can define increasing L-valued
measures to implement the corresponding notion of fuzzy decision reducts.

In [12], the authors use fuzzy implications and the fuzzy definition of cardinality to define the degree of dependency,
which is a concept that we want to use to define L-valued measures. Therefore, from now on we assume that L = [0,1].
The cardinality of a fuzzy set C : Y → [0,1] is defined as:

|C | =
∑
y∈Y

C(y) (23)

The most obvious way to define a [0,1]-valued measure is to introduce a normalized extension of the degree of depen-
dency, i.e., the mappings γ ′ :P(A) → [0,1] and γ :P(A) → [0,1] defined for all subsets B of A as

γ ′
B = I

( |POS′
A|

|X | ,
|POS′

B |
|X |

)

γB = I
( |POSA|

|X | ,
|POSB |

|X |
)

where I is a fuzzy implication.
These measures resemble the one introduced by Jensen and Shen in [12] and are illustrated in the following example.

Example 6. We expand the information system (X,A) from Example 2 with a decision attribute d as shown in Table 4. In
the same way as RA was obtained, the fuzzy indiscernibility relations R{a1,a2} , Ra1 and Ra2 are computed.

The algebraic structure assumed is the multi-adjoint property-oriented frame ([0,1], [0,1], [0,1],&1, &2,&3) with &1 =
&1

L , &2 = &3
L and &3 = &5

L , and the context is (X, X, RA, τ ), where τ is defined for all xi, x j ∈ X as follows:

τ (xi, x j) =
{

1 if i and j are even
2 if i and j are odd
3 otherwise

In this setting, the cardinalities of the fuzzy positive regions with respect to A, {a1,a2}, {a1} and {a2} are approximately:∣∣POS′
A
∣∣ = 6.25,

∣∣POS′{a1,a2}
∣∣ = 4.95,

∣∣POS′{a1}
∣∣ = 3.83,

∣∣POS′{a2}
∣∣ = 4.72

Therefore, using I =↖L , we approximately obtain:

γ ′
A = 1, γ ′{a1,a2} = 0.81, γ ′{a1} = 0.78, γ ′{a2} = 0.65

Consequently, we can assert for example that B = {a1,a2} is a fuzzy γ ′-decision reduct to degree 0.8, but not to degree 0.7
(because γ ′{a1} > 0.7) nor to degree 0.9.

Alternatively, the measures δ′ :P(A) → [0,1] and δ :P(A) → [0,1] are defined for each subset B of A as:

δ′
B = I

(
min
x∈X

POS′
A(x),min

x∈X
POS′

B(x)
)

δB = I
(

min
x∈X

POSA(x),min
x∈X

POSB(x)
)
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These measures are inspired by the fact that in standard rough set theory, the property of being a (super)reduct is also
determined by the worst object.

Example 7. Continuing Example 6, the minimal membership values to the corresponding positive regions are:

min
x∈X

POS′
A(x) = 0.83, min

x∈X
POS′{a1,a2}(x)′ = 0.65

min
x∈X

POS′{a1,a2}(x)′ = 0.63, min
x∈X

POS′{a1,a2}(x)′ = 0.38

and, therefore, the values with respect to the measure δ′ , using ↖L as the fuzzy implication, are:

δ′
A = 1, δ′{a1,a2} = 0.81, δ′{a1} = 0.79, δ′{a2} = 0.55

Thus, the subset B = {a1,a2} is a fuzzy δ′-decision reduct to degree 0.8, for example.

A general operator which generalizes both measures above is the OWA operator. This operator will only be introduced
considering POS′

B , the definition using POSB can be given similarly.
Let W = {w1, . . . , wn} be a list of weights such that wi ∈ [0,1] and

∑n
i wi = 1, and define two permutations ρ1 and ρ2

on {1, . . . ,n} such that for all i, j in {1, . . . ,n}:

ρ1(i) < ρ1( j)

if and only if

POS′
B(xρ1(i)) < POS′

B(xρ1( j))

or

POS′
B(xρ1(i)) = POS′

B(xρ1( j)) ∧ i < j

The permutation ρ2 is defined similarly with respect to POS′
A . The OWA [0,1]-valued measure is the operator

MOWA′
W :P(A) → [0,1], defined, for each subset B of A, as

MOWA′
W (B) = I

(
n∑

i=1

wi · POS′
A(xρ2(i)),

n∑
i=1

wi · POS′
B(xρ1(i))

)
(24)

where I is a fuzzy implication.
The mappings γ ′ and δ′ are particular cases of the [0,1]-valued measure MOWA′

W . The measure γ ′ is given considering
wi = 1/n, for all i ∈ {1, . . . ,n}, and δ′ considering w1 = 1 and wi = 0, for all i ∈ {2, . . . ,n}.

This operator is indeed a [0,1]-valued measure associated with the decision system (X,A ∪ {d}), by the properties of
the OWA operator, as shown in the next easily verified proposition.

Proposition 4. Given two subsets B1 , B2 of A, such that B1 ⊆ B2 , we obtain that MOWA′
W (B1) � MOWA′

W (B2). Moreover, if Eq. (22)
is satisfied for B ⊆A, then MOWA′

W (B) = MOWA′
W (A) = �L .

Proof. Straightforward. �
The following example defines a particular MOWA operator and obtains the measure for the subsets considered in

Example 6.

Example 8. Consider MOWA′
W :P(A) → [0,1], using ↖L as the fuzzy implication, and W = {0.3,0.25,0.2,0.15,0.1,0}, such

that it mimics δ′ definition.
Hence, in the setting of Example 6, the following values are obtained:

MOWA′
W

({a1,a2}
) = 0.79, MOWA′

W

({a1}
) = 0.77, MOWA′

W

({a2}
) = 0.56

Therefore, the subset B = {a1,a2} is a fuzzy MOWA′
W -decision reduct to degree 0.78, for example.
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4.3. Fuzzy discernibility function

In order to generalize the discernibility function (7) in a fuzzy environment, the idea in [3] will be used here. We
generalize the discernibility function using the fuzzy tolerance relations R B that represent objects’ approximate equality.
For each subset B of attributes, a value between the minimum and the maximum of the lattice will be obtained, indicating
how well these attributes maintain the discernibility, relative to the decision attribute, among all objects. Next, we use this
function to define an [0,1]-valued measure.

Eq. (7) can be rewritten as

f
(
a∗

1, . . . ,a∗
m

) =
∧{

m∨
k=1

a∗
k

[
d(xi) 	= d(x j) ⇒ ak(xi) 	= ak(x j)

] ∣∣∣ 1 � i < j � n

}

=
∧{

m∨
k=1

a∗
k

[
ak(xi) = ak(x j) ⇒ d(xi) = d(x j)

] ∣∣∣ 1 � i < j � n

}

=
∧{[ ∧

a∗
k =1

(
ak(xi) = ak(x j)

)] ⇒ d(xi) = d(x j)

∣∣∣ 1 � i < j � n

}
(25)

provided the decision system is consistent.8 Note that each series of boolean values a∗
1, . . . ,a∗

m corresponds to the subset
of features B that contains those features a for which a∗ = 1. We can extend the discernibility function to a mapping from
P(A) to L interpreting the infimum in Eq. (25) by an aggregation operator @, replacing the exact equalities by the respective
approximate equalities (fuzzy indiscernibility relations), and writing the expression∧

a∗
k =1

(
ak(xi) = ak(x j)

)
as the value R B(xi, x j), where R B is defined by Eq. (14). Hence, this general function is:

f@(B) = @
(

ci j(B)︸ ︷︷ ︸
1�i< j�n

)

= @
(
c12(B), . . . , c1n(B), c23(B), . . . , c(n−1)n(B)

)
(26)

with

ci j(B) = Rd(xi, x j) ↖xi x j R B(xi, x j) (27)

By the monotonicity properties of the implications ↖xi x j , the degree to which a subset B serves to distinguish between ob-
jects xi and x j increases as their approximate equality R B(xi, x j) w.r.t. B decreases, and their approximate equality Rd(xi, x j)

w.r.t. d increases. Therefore, f@(B), expresses the degree to which, for all object pairs, different values in attributes of B
correspond to different values of d.

The previous definition of discernibility function is a fuzzy generalization of the crisp one (25) and the fuzzy ones
introduced in [3], assuming consistency.

We now consider two particular cases of f@. First, we replace the aggregation operator @ by a t-norm T and define
fT :P(A) → [0,1] as:

fT (B) = T (
ci j(B)︸ ︷︷ ︸

1�i< j�n

)
(28)

Secondly, we replace the aggregation operator @ in Eq. (26) by the average, denoted by @av.

f@av(B) = @av
(

ci j(B)︸ ︷︷ ︸
1�i< j�n

)

= 2 ·∑1�i< j�n ci j(B)

n(n − 1)
(29)

8 Recall that if (X,A∪{d}) is inconsistent, there exist xi and x j such that, for all a ∈A,a(xi) = a(x j), yet d(xi) 	= d(x j). Such xi and x j are not considered
in Eq. (7), since O ij = ∅.
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A fuzzy discernibility function f@ can be used, together with a fuzzy implication I , to define the following evaluation
measure ε :P(A) → [0,1], defined, for all B ⊆A, as

ε@(B) = I( f@(A), f@(B)
)

(30)

As particular cases we have:

εT (B) = I( fT (A), fT (B)
)

ε@av(B) = I( f@av(A), f@av(B)
)

The following proposition shows that, given an aggregation operator @, fuzzy ε@-decision reducts can be considered, that
is, ε@ is a [0,1]-valued measure w.r.t. the decision system.

Proposition 5. For subsets B1 , B2 of A, if B1 ⊆ B2 , then ε@(B1) � ε@(B2). Moreover, if Eq. (22) is satisfied for B ⊆A, then ε@(B) =
ε@(A) = 1.

Proof. Straightforward. �
To conclude this section, an example of the ε-measures is introduced.

Example 9. In the environment of Example 6, considering the average @av, and the minimum t-norm &G we obtain:

ε&G

({a1,a2}
) = 0.90, ε&G

({a1}
) = 0.87, ε&G

({a2}
) = 0.78

ε@av

({a1,a2}
) = 0.92, ε@av

({a1}
) = 0.92, ε@av

({a2}
) = 0.90

In this case, B = {a1,a2} is a fuzzy ε&G -decision reduct to degree 0.89, for example. On the other hand, B is a fuzzy
ε@av -decision superreduct to degree 0.9, for example; however, it is not a ε@av -decision reduct for any value of α.

4.4. Relationships between fuzzy decision reducts

The particular cases of evaluation measures presented in the previous sections, γ , γ ′ , δ, δ′ , satisfy the same properties
as the corresponding ones introduced in [3]. That is δ′

B � γ ′
B � γB and δ′

B � δB � γB always hold, and γB = γ ′
B and δB = δ′

B
when the decision attribute is qualitative.

Moreover, a number of interesting relationships hold between the approaches based on the fuzzy positive region and
those based on the fuzzy discernibility function, which are summed up by the following propositions; assuming the same
aggregation operator and implication.

Proposition 6. If POS′
A = X, then εT (B) � δ′

B and γ ′
B � ε@av (B), for B ⊆A. Moreover, in case T is the minimum t-norm, εT (B) =

δ′
B , regardless of POS′

A = X.

The next proposition shows that a crisp ε@av -decision reduct is a crisp γ /γ ′-decision reduct, for consistent data.

Proposition 7. If POS′
A = X and ε@av (B) = 1, then γ ′

B = 1 and γB = 1, for any B ⊆A.

The proofs of both propositions are analogous to the ones given in [3]. These results show that εT and δ are essentially
built upon the same idea, with some variations due to the parameter choice, and also reveal the essential difference between
γ and ε@av : while the former looks at the lowest value of the formula Rd(x, y) ↖xy R B(x, y) for each y (reflecting to what
extent there exists an x that has similar values for all the attributes in B , but a different decision), and averages over these
values, the latter evaluates all pairwise evaluations of this formula.

In the general case, where the measures MOWA′
W and ε@ are assumed, we obtain that MOWA′

W is a particular case of
the measure ε@ based on the fuzzy discernibility function.

Theorem 1. Given MOWA′
W :P(A) → [0,1], defined by Eq. (24), ε@ :P(A) → [0,1], defined by Eq. (30), and

∑n
i=1 wi ·

POS′
A(xσ(i)) = 1, f@(A) = 1 are satisfied. For each B ⊆ A, there exists an aggregation operator @ such that, the following equal-

ity is obtained

MOWA′
W (B) = ε@(B)



Author's personal copy

C. Cornelis et al. / International Journal of Approximate Reasoning 55 (2014) 412–426 425

Proof. As
∑n

i=1 wi · POS′
A(xσ(i)) = 1, f@(A) = 1 and I is a fuzzy implication, the following chain of equalities can be

written:

MOWA′
W (B) =

n∑
i=1

wi · POS′
B(xτ (i))

=
n∑

i=1

wi · inf
{

Rd
(
xτ (i), x′) ↖x′xτ (i) R B

(
x′, xτ (i)

) ∣∣ x′ ∈ X
}

(1)=
n∑

i=1

wi · min
{

Rd
(
xτ (i), x′) ↖x′xτ (i) R B

(
x′, xτ (i)

) ∣∣ x′ ∈ X
}

(2)=
n∑

i=1

wi · (Rd(xτ (i), x jτ (i) ) ↖x′xτ (i) R B(x jτ (i) , xτ (i))
)

=
∑

1�i< j�n

w ′
i j · (Rd(xi, x j) ↖xi ,x j R B(xi, x j)

)
(3)= @B

(
c12(B), . . . , c1n(B), c23(B), . . . , c(n−1)n(B)

)
= ε@(B)

where (1) is given since the unit interval [0,1] is considered and X is finite; (2) is true if x jτ (i) is an element in which the
minimum element is obtained, for each τ (i); and w ′

i j is defined recursively, for each k ∈ {1, . . . ,n}, as follows:
If k = 1, then there exists i ∈ {1, . . . ,n} such that τ (i) = 1, and we need to consider two possible cases.

• If τ (i) = jτ (i) = 1, then Rd(xτ (i), x′) ↖x′xτ (i) R B(x′, xτ (i)) = 1, for all x′ ∈ X , and we define w ′
1 j as

w ′
1 j =

{
w1 if j = 2
0 otherwise

• If 1 = τ (i) < jτ (i) , then

w ′
1 j =

{
w1 if j = jτ (i)
0 otherwise

Now, if we have defined until wk−1, j , with 1 < k < n, then we define wkj .

• If k = τ (i) = jτ (i) , then

w ′
kj =

{
wk if j = k + 1
0 otherwise

• If k = τ (i) < jτ (i) , then

w ′
kj =

{
wk if j = jτ (i)
0 otherwise

• If k = τ (i) > jτ (i) , then wkj = 0, for all j ∈ {1, . . . ,n}, and the value w ′
jτ (i),τ (i) is rewritten as w ′

jτ (i),τ (i) = w ′
jτ (i),τ (i) + wk .

When k = n, two cases must be considered:

• If n = τ (i) = jτ (i) , then the value w ′
n−1,n is rewritten as w ′

n−1,n = w ′
n−1,n + wn .

• If n = τ (i) > jτ (i) , then the value w ′
jn,n is rewritten as w ′

jn,n = w ′
jn,n + wn .

Finally, (3) is obtained assuming @ as the weighted average obtained from the weights w ′
i j , which is a special case of an

aggregation operator. �
5. Conclusion

In this paper, we have introduced multi-adjoint fuzzy rough sets: an extension of the well-known implication/t-norm
based fuzzy rough set model based on a family of adjoint pairs to compute the lower and upper approximations. Our model
allows to represent explicit preferences among the objects in a decision system, by associating a particular adjoint triple
with any pair of objects. We have pointed out the relationships and differences of our model w.r.t. property-oriented concept
lattices, verified mathematical properties of the model, and discussed attribute selection in this framework.
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