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Abstract. Polygonal surface models are typically used in three dimensional (3D) visualizations and simulations. They are ob-
tained by laser scanners, computer vision systems or medical imaging devices to model highly detailed object surfaces. Surface 
mesh simplification aims to reduce the number of faces used in a 3D model while keeping the overall shape, boundaries and 
volume. In this work, we propose to deal with the 3D open model mesh simplification problem from an evolutionary multi-
objective viewpoint. The quality of a solution is defined by two conflicting objectives: the accuracy and the simplicity of the 
model. We adapted the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and the Multi-Objective Evolutionary Algo-
rithm Based on Decomposition (MOEA/D) to tackle the problem. We compare their performance with two classic approaches 
and two single-objective implementations. The comparison has been carried out using six different datasets from six corre-
sponding real-world objects. Experimental results have demonstrated that NSGA-II and MOEA/D performs similarly and ob-
tain the best solutions for the studied problem. 
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1.  Introduction 

Polygonal surface models are the representation of 
3D visualizations and simulations. They are obtained 
by laser scanners, computer vision systems or medi-
cal imaging devices to model highly detailed object 
surfaces. These surface models are used in many dif-
ferent areas such as computer vision, computer-aided 
design, medicine, and topography [34, 5, 55, 31, 2].  

Typically, a surface model consists of thousands 
of polygons. The size of the corresponding file usual-
ly causes long processing times [36]. Obtaining a 
reduced model with a smaller polygonal surface and 
a similar accuracy is a challenge in the area. Surface 

mesh simplification is the process that aims to reduce 
the number of polygons used in a surface while pre-
serving the overall shape, volume, and boundaries as 
much as possible [12].  

There are several techniques in order to simplify a 
mesh. Decimation [50], clustering [42], and energy 
function optimization [30] are the most popular and 
classic methods. Recently, some other proposals have 
been made considering alternative ways to simplify 
3D surfaces based on advanced optimization tech-
niques as evolutionary algorithms [18, 32, 62]. 

Regardless the approach followed, all the latter 
methods consider the mesh simplification problem as 
a single-objective optimization task, either in a direct 
or indirect way. Nevertheless, two main criteria can 
be identified measuring the quality of the reduced 3D 
model, namely its accuracy to approximate the origi-
nal mesh and its associated size, measured in terms 
of the number of polygons composing it. These two 
goals are clearly conflicting in nature as the more 
complex a mesh is, the more accurate it will be, and 
vice versa. 
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Hence, formulating mesh simplification as a multi-
objective optimization problem (MOP) [11, 13, 1] 
can arise as a promising and very novel alternative to 
tackle this complex 3D modeling task. In particular, 
multi-objective evolutionary algorithms (MOEAs) 
[13, 57] have largely demonstrated their capability to 
deal with many different kinds of MOPs in a very 
efficient way [11, 13, 15, 69]. This family of methods 
shows the important advantage of being able to pro-
vide the user with a Pareto set of non-dominated so-
lutions with different trade-offs on the satisfaction of 
the optimized objectives in a single run. In the mesh 
simplification framework, this would mean obtaining 
several and diverse alternative reduced 3D models 
with different compromises between their accuracy 
and their complexity (number of triangles), thus al-
lowing the user to select the most appropriate for 
his/her specific conditions. 

Thus, the formulation of mesh simplification as a 
MOP and the comparison with classic methods is an 
interesting research line which has been studied in 
this work. Up to our knowledge, this is the first study 
where mesh simplification is tackled from a multi-
objective viewpoint in the literature. 

Our methodology is thus based on the simplifica-

tion of a 3D open model by an evolutionary multi-
objective algorithm. An open model refers to a sur-
face with open ends. The problem is based on the 
location of a certain number of points in order to ap-
proximate a mesh as accurately as possible to the 
initial surface. It will consider two conflicting objec-
tives, the accuracy and the simplicity of a simplified 
mesh. In a previous research [8], we proposed the use 
of the computationally fast and extended non-
dominated sorting genetic algorithm (NSGA-II) [15] 
MOEA to tackle the mesh simplification problem as 
a proof of concept. In the current contribution, we 
aim to demonstrate the good performance of our 
methodology by: i) showing how any other MOEA 
can be considered, and ii) developing a deeper ex-
perimentation to validate it with respect to both some 
classical and single-objective evolutionary mesh 
simplification methods. To do so, we have used the 
multi-objective evolutionary algorithm based on de-
composition (MOEA/D) proposed in [66], which 
decomposes a MOP into a number of scalar optimi-
zation sub-problems and optimizes them simultane-
ously. Moreover, we also analyzed the method de-
veloped by Huang et al. in [32], that uses a single-
objective algorithm to simplify 3D facial meshes, as 
well as two classic approaches, edge collapse deci-
mation with a quadric error metric [27, 50, 20, 59], 
and vertex clustering with topology preserving [42].  

This work is structured as follows. Section 2 intro-
duces a short survey regarding classic techniques for 
mesh simplification and some others that consider 
evolutionary algorithms for that task. Section 3 de-
scribes all the components of the proposed approach. 
Section 4 presents the performed experiments and the 
results obtained. Section 5 concludes the whole work.  

2. State of the Art in Mesh Simplification 

Many different mesh simplification approaches 
have been proposed in the specialized literature [12, 
27]. They can be either local or global. The former 
methods simplify a mesh by the iterative use of some 
local operator. The latter are applied to the input 
mesh as a whole. The following two subsections re-
view local and global families of methods respective-
ly. Finally, subsection 2.3 presents the existing evo-
lutionary approaches to the problem.  

2.1. Incremental Methods Based on Local 

Updates 

The methods in this group run the simplification 
process as a sequence of local updates. Each update 
reduces the mesh size and decreases the surface ap-
proximation accuracy. 

The decimation method [50, 29, 23] can be classi-
fied into three different approaches according to the 
difference of the selected objects: removal of an edge, 
removal of a triangle, and removal of a vertex. The 
latter approach can be guided by a quadric error met-
ric algorithm [20, 59] based on the iterative contrac-
tion of vertex pairs. 

Another example of an iterative method is the en-
ergy function optimization approach [30, 46]. The 
mesh reduction is iteratively obtained by performing 
legal moves on mesh edges: collapsing, swapping, or 
splitting. The progressive meshes method [29] is an 
enhanced version of the splitting technique. 

Other methods based on surface signal [46] are 
used to simplify meshes by mainly using textures and 
colors. 

2.2. Non Incremental Global Methods 

The non incremental global methods simplify the 
mesh as a whole. Among them, the coplanar method 
[28] uses a named detecting plane to determine 
whether a vertex is near enough.  
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The re-tiling method [60] starts with a polygonal 
surface and creates a triangulation of it with a user-
specified number of vertices. The number of poly-
gons shared by any given edge is the main restriction.  

The clustering technique [42] is based on geomet-
ric closeness. It uses the cube or octree neighborhood 
structured to group nearby vertices into a cluster. For 
each cluster, the method generates a new representa-
tive vertex [22]. This method preserves the topology 
of the mesh.  

Besides, the algorithms based on wavelets [21, 26] 
and the simplification using envelopes [14] provide 
tight error bounds on arbitrary triangulated meshes 
while allowing topological changes during the sim-
plification. 

2.3. Mesh Simplification Approaches Based on 

Evolutionary Algorithms 

Computational intelligence techniques have dealt 
with a wide variety of problems ranging from opera-
tional cost optimization [51, 45, 4], engineering de-
sign [35, 40, 52, 10], to copyright protection and data 
authentication [58]. Evolutionary algorithms have 
been largely and successfully applied to many differ-
ent computer graphics, computer vision, and image 
processing tasks [9, 7, 64, 65, 53, 43, 44, 67, 47, 25]. 
In particular, there are a few studies based on apply-
ing evolutionary computation to deal with the mesh 
simplification problem [18, 32, 62]. 

In [18], Fujiwara and Sawai tackled the problem of 
approximating a human facial surface by construct-
ing a triangular mesh with a limited number of sam-
ple points. They developed a single-objective genetic 
algorithm that selects a given number of points from 
the whole dataset and considers a Delaunay triangu-
lation to build the simplified 3D model. 

Huang and Ho [32] proposed an evolutionary algo-
rithm as an extension of Fujiwara and Sawai’s pro-
posal. The improvement is based on using the or-
thogonal array crossover (OAX) (see Section 3.3).  

Finally, Xiandong et al. proposed a method of tri-
angular mesh reduction based on a new concept 
called super-face and the use of a genetic algorithm 
in [62].  

3. Evolutionary Mesh Simplification of 3D Open 

Models 

In this section, we formulate the 3D open model 
mesh simplification problem. We first detail a pro-

posal based on Huang and Ho’s method [32] and then 
describe our multi-objective approaches to tackle this 
complex problem. 

3.1. Problem Formulation 

Let M be a scanned 3D open model (Figure 1). It 
is possible to reduce this polygonal surface to a two 
dimensional problem. A 3D surface of this kind can 
be represented by the function: 

ℜ∈→ℜ∈ zyxf
2),(:  (1) 

We have defined the mesh simplification problem 
in the 2D space due to efficiency purposes. The algo-
rithm works with 2D models, which store fewer 
points than a 3D surface1.  

 

Figure 1. Surface representation in the standard Cartesian coordi-
nate system. 

Therefore, we need to locate n 2D points with n 
being less than N (the number of points of the origi-
nal mesh). The number of points to be located can be 
either fixed a priori or automatically chosen by the 
algorithm. Our experiments are based on the latter 
option, i.e., the algorithm attempts to solve the prob-
lem with few data.  

After locating the n points, a triangulation is per-
formed using the new number of points in order to 
generate an approximate polygonal (triangular) mesh 
surface. In particular, methods described in Section 
2.3 consider the Delaunay triangulation [3].  It is 
commonly used in problems such as the mesh gener-
ation process [63]. Given a set of points P in the 
plane, a Delaunay triangulation is a triangulation 

)(PD such that no point in P is on the circumscribed 

                                                           
1 Note that, in some concave surfaces or with high topological 

homotopy class, the 3D-2D mapping is restricted to some regions 
of the whole set [24]. However, this limitation is not present in our 
approach.  

 



4 

 

circle of any triangle of )(PD . Delaunay triangula-

tions maximize the minimum angle of all angles of 
the triangle. They tend to avoid skinny triangles.  

Let nP be an initial set of points in 2ℜ , its corre-

sponding Delaunay triangulation is denoted 
by )( nPD . In our problem, a chromosome encodes a 

configuration nP of n points in the 2D space. The 

genotype space consists of those 2D configurations 
while the phenotype space includes the correspond-
ing 3D models obtained using )( nPD . 

Let us have a population of Npop individuals, each 
individual representing a certain mesh configuration. 
An individual is a simplified mesh, i.e., a mesh with 
fewer points than the reference model.  

The members of the population share a global vec-
tor with the original mesh coordinates (original mod-
el). Each position of this structure stores the x, y and 
z coordinates. Every individual is defined by a binary 
chromosome with n genes (the number of points 

which will be located on the new simplified mesh). A 
one value in the ith position of the chromosome vec-
tor means that the ith vertex of the original model 
remains in the simplified mesh represented by such 
chromosome. On the contrary, a zero means that 
there is not a point on the grid plane for this position. 
A graphical representation of the problem structures 
is shown in Figure 2. 

 

Figure 2. Problem structures scheme. 

The four points of the mesh corners are included in 
every chromosome. This avoids an abnormal bounda-
ry shape thanks to the maintenance of the rectangular 
shape as a whole [18, 32]. 

The algorithm performs the following simplifica-
tion process. First, it converts the original 3D model 

of N points )( NP into a 2D model with the same 

number of points. Then, it carries out the simplifica-

tion and obtains a new 2D mesh with n points )( nP , 

where n < N. 
It applies Delaunay triangulation to the new 2D 

mesh getting )( nPD . This 2D triangulated final 

mesh )( nPD is converted into 3D and thus a final 3D 

open model with n points and its corresponding 
number of triangles is obtained. The algorithm se-
lects the model that best approximates the original 
one, i.e. the lowest error mesh. Figure 3 presents the 
scheme to obtain a simplified mesh from an original 
3D open model by means of a binary-coded genetic 
algorithm. 

 

Figure 3. Brief scheme of the implemented method for mesh sim-
plification. 

3.2. Objectives to Be Optimized 

We have considered two objectives to be jointly 
maximized, accuracy and simplicity. For a better 
formulation, the former is guided by the minimiza-
tion of an error metric. The latter is given by the min-
imization of the number of triangles that compose the 
mesh (the lower the number of triangles is, the higher 
the model simplicity is). Therefore, we aim to mini-
mize two objectives, the error and the number of tri-
angles. 

We have followed the same procedure presented 
by Huang et al. in [32] to calculate the approximation 
error, i.e., the error between the original and the ap-
proximated meshes. Each Delaunay triangle 

)( ni PDT ∈ contains a certain number of mesh points 

(x, y). The distance pd at each sample point p is de-

fined as follows: 

ppp zzd ~−=  , (2) 



5 

 

where pz is the height value of the surface at the 

point p and pz~ is the linearly interpolated value of 

height at p determined by the triplet of heights for the 
three vertices of triangle iT .  

 The error ie  for iT  is the sum of these distances 

over all the sample points p inside iT  where: 

∑=
∈ iTp

pi de  (3) 

 The total approximation error e , defined by Eq. (4), 
is the sum of the errors ie of all triangles that form the 

simplified mesh.  

∑
∈

=
)( ni PDT

iee  (4) 

3.3. Recombination 

Recombination is the process in which a new indi-
vidual solution is created from the information con-
tained within two (or more) parent solutions. It is one 
of the most important operators in genetic algorithms. 
Recombination is randomly applied according to a 
crossover ranges in rate cp , which typically ranges in 

[0.5, 1]. To apply recombination, two parents are 
selected and a random value u is generated uniformly. 
If u is lower than cp , two offspring are created via 

recombination of the two parents. Otherwise, they are 
created by directly copying the parents [17]. 

We have used two variants for the crossover in our 
MOEAs: the classic uniform crossover [56] and the 
OAX recombination [41]. 

The uniform crossover [56] is based on dividing 
the parents into a number of sections of contiguous 
genes and reassembling them to produce offspring. It 
works by treating each gene independently and mak-
ing a random choice as to which parent it should be 
inherited from. This is implemented by generating a 
string of L random variables from a uniform distribu-
tion over [0, 1]. In each position, if the value is below 
a parameter p (usually 0.5), the gene is inherited from 
the first parent; otherwise from the second. The se-
cond offspring is created using the inverse mapping. 

The OAX recombination technique performed in 
[32] has also been considered in order to improve the 
performance of crossover. An efficient way to study 
the effect of several factors simultaneously is to use 
an orthogonal experimental design (OED) with or-
thogonal arrays (OAs) and factor analysis (FA). This 

kind of design is considered to provide the treatment 
settings at which one conducts the “all-factors-at-
one” statistical experiments [41]. The orthogonal 
design defines some combinations for each experi-
ment by using factor levels.  

An OA is a matrix of numbers arranged in rows 
and columns where each row represents the levels of 
factors in each run and each column represents a spe-
cific factor. In the context of experimental matrices, 
orthogonal means statistically independent. FA can 
evaluate the effects of factors and determine the best 
level for each factor such that the evaluation is opti-
mized. Using OAX the offspring chromosomes are 
formed from an intelligent combination of the good 
genes from their parents rather than the conventional 
random combination. The best of the two genes in 
the two parents is chosen by evaluating the contribu-
tion of individual genes to the fitness function based 
on OED.  

Let there be α factors with two levels for each fac-
tor. The total number of experiments is 2α for the 
popular “one-factor-at-a-time” study. The columns of 
two factors are orthogonal when the four pairs (1,1), 
(1,2), (2,1) and (2,2) occur equally frequently over all 
experiments. Generally, levels 1 and 2 of a factor 
represent selected genes from parents 1 and 2, re-
spectively. To establish an OA of α factors with two 
levels, we obtain an integer [ ]2 )1(2log += αβ , build an 

orthogonal array )2( 1−β
βL  with ß rows and ß-1 col-

umns, use the first α columns, and ignore the other ß-
α-1columns. The algorithm for constructing OAs can 
be found in [39]. An OED can reduce the number of 
experiments for FA. The number of OA experiments 
required to analyze all individual factors is only ß 
where α+1 ≤ ß ≤ 2α. 

After proper tabulation of experimental results, the 
summarized data are analyzed using FA to determine 
the relative effects of levels of various factors. Let fet 
denote a fitness value, in our case fet is the total ap-
proximation error determined by Eq. (4), of the com-
bination corresponding to the experiment t, where t= 
1,…,ß. It defines the main effect of factor j with level 
k as Sjk where j=1, …, α and k=1, 2: 

∑
=

=
β

1

,
t

ttjk FfeS                                              (5) 

where Ft= 1 if the level of factor j of experiment t is 
k; otherwise, Ft=0. In a minimization problem, the 
level 1 of factor j makes a better contribution to the 
fitness function than the level 2 of factor j does when 
Sj1 < Sj2 (the opposite situation occurs in maximiza-
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tion problems). The most effective factor j has the 
largest main effect different (MED) | Sj1 - Sj2|. 

3.4. NSGA-II 

NSGA-II [15] is one of the most efficient and ef-
fective MOEAs following the elitist approach. Its 
particular fitness assignment scheme consists of sort-
ing the population in different fronts with a non-
domination order relation. Then, the algorithm com-
bines the current population and its offspring gener-
ated with the standard bimodal crossover and poly-
nomial operators to form the next generation. Finally, 
the best individuals according to non-dominance and 
diversity are chosen. This new version of NSGA [54] 
is characterized by a low computational complexity: 
O(NlogN), where N is the population size. The pseu-
do-code of the NSGA-II method [15] is outlined in 
the Appendix C of the supplementary information 
available at [73]. 

3.5. MOEA/D 

A MOP can be stated as follows: 

minimize T

m xfxfxF ))(),...,(()( 1= , 

subject to Ω∈x ,                                                    (6) 

where Ω is the decision space, m
RF →Ω: con-

sists of m real-valued objective functions, and mR is 
called the objective space. 

MOEA/D [66] is a recent proposal of a MOEA 
based on explicitly decomposing the MOP showed in 
Eq.(6) into N scalar optimization sub-problems.  

The algorithm solves these sub-problems simulta-
neously by evolving a population of solutions. At 
each generation, the population is comprised by the 
best solution found so far (i.e. since the start of the 
run of the algorithm) for each sub-problem. The 
neighborhood relations among these sub-problems 
are defined based on the distances between their ag-
gregation coefficient vectors. The optimal solutions 
to two neighboring sub-problems should be very sim-
ilar. Each sub-problem (i.e. scalar aggregation func-
tion) is optimized in MOEA/D by using information 
only from its neighboring sub-problems. 

There are several approaches for converting the 
problem of approximation of a Pareto front into a 
number of scalar optimization problems. In the fol-
lowing, we introduce the Tchebycheff approach, 
which has been used in our experimental study due to 
the good results in terms of feasibility and efficiency 
obtained in [66]. 

Let W

m ),...,( 1 λλλ = be a weight vector, and m 

be the number of sub-problems, i.e., 0≥iλ for all 

i=1,…,m and ∑ =
=

m

i i1
1λ .The Tchebycheff ap-

proach considers a scalar optimization problem in the 
form: 

minimize })({min),/( *

1

*
iii

mi

te
zxfzxg −=

≤≤
λλ  

subject to Ω∈x ,                                                    (7) 

where W

mzzz ),...,( **
1

* = is the reference point. It is 

initialized as the lowest value of the objective func-

tion if found in the initial population. 

For each Pareto optimal point *
x there exists a 

weight vector λ such that *
x is the optimal solution 

of Eq. (7) and each optimal solution of Eq. (7) is a 
Pareto optimal solution of the objective function. 
Therefore, the designer is able to obtain different 
Pareto optimal solutions by altering the weight vector. 

3.6. Design of a Single-Objective Genetic 

Algorithm for Multi-Objective 3D Open Model 

Mesh Simplification 

As a first approximation to the multi-objective 
problem, we will extend Huang and Ho’s proposal 
[32] in order to compare it with our Pareto-based 
evolutionary approach. 

This algorithm consists of several components 
such as population initialization, selection scheme, 
genetic operations, and termination criterion. As al-
ready introduced, each chromosome encodes a selec-

tion of 2D points nP , having a phenotype given by its 

Delaunay triangulation )( nPD . The fitness function 

to be minimized has been adapted in order to consid-
er the two objectives introduced in Section 3.2: 

),()1()()( mTwmwEmF −+=  (8) 

where m is the simplified mesh encoded in the chro-
mosome, D(Pn); w ∈ [0, 1] is a weight, E(m) is the 
error determined by Eq. (4) to be minimized, and 
T(m) is the total number of triangles of m. The exten-
sion of the original method to tackle the fitness func-
tion in Eq. (8) is based on an evaluation function 
combining several objectives using a weighted sum 
[11, 13]. This method generates a set of Pareto opti-
mal solutions by giving different weights to the func-
tion and running repeatedly the algorithm. The pseu-
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do-code of the extended single-objective method is 
explained as follows: 

Population initialization: The population is initial-
ized by randomly locating n points to each individual. 
The four points of the 2D mesh corners are fixed to 
maintain the boundaries. 

Selection scheme: It uses an elitist selection model 
in such a way that the individual with better fitness is 
always kept in the new population. It ranks N indi-
viduals according to this fitness given by Eq. (4). 
Then, it applies tournament selection [6]. 

Mutation: Each located point, coded at a gene in 
each individual, is randomly moved to one of the 
nearest neighbors on the vector with a probability 

mp called the mutation rate. It makes mutation in 

each gene with a mutation rate equal to 
1/chromosome_length. 

Crossover: From two randomly chosen parents, we 
generate two offspring using two possible crossover 
operators, OAX [41] or uniform crossover [56] (see 
Section 3.3).  

Termination criterion: To reach a maximum num-
ber of generations. 

3.7. The NSGA-II Proposal 

As said, two conflicting objectives are considered: 
accuracy and simplicity. Therefore, the two objec-
tives to minimize are the error and the number of 
triangles of the mesh [8]. 

Given a mesh m for the multi-objective method, 
the fitness function is as follows: 

min )()(1
mEmFM =  (9) 

min )()(2
mTmFM =  

The method scheme is detailed below: 
Population initialization: This procedure is the 

same than in the single-objective algorithm popula-
tion initialization. 

Selection scheme: The algorithm combines the cur-
rent population with the obtained offspring using 
recombination in order to generate the next genera-
tion. The best individuals according to non-
dominance and diversity are selected to be repro-
duced regarding the non-dominated fronts of NSGA-
II (see Section 3.4). 

Mutation: Each located point, coded at a gene in 
each individual, is randomly moved to one of the 
nearest neighbors on the vector with a probability 

mp called the mutation rate. It makes mutation in 

each gene with a mutation rate equal to 
1/chromosome_length. 

Crossover: From two randomly chosen parents, we 
generate two offspring using two possible crossover 
operators, OAX [41] or uniform crossover [56]. 

Termination criterion: To reach a maximum num-
ber of generations. 

3.8. The MOEA/D Proposal 

We use the fitness function defined by Eq. (7). The 
pseudo-code of the method [66] is outlined as fol-
lows: 
      Initialization: Randomly generate W weight vec-
tors .λ Compute the Euclidean distances between any 
two weight vectors and then work out the W closest 
weight vectors to each weight vector. For each 

Ni ,...,2,1= set },,...,{)( 1 WiiiB = where 

Wii λλ ,...,1 are the W closest weight vectors to iλ . 

Generate an initial population Nxx ,...,1 randomly. 

Set )( ii xFFV = . 

Initialize W

mzzz ),...,( 1=  by a problem-specific 

method. In our case, we have m=2 objectives to min-
imize, so m=2 sub-problems are to be minimized. 
     Update: 

For Ni ,...,1= do 

     Reproduction: Randomly select two indexes k, l 
from )(iB , and then generate a new solution y from 

k
x   and l

x by using genetic operators: The mutation 
is the same than in the NSGA-II proposal. The cross-
over consists of generating two offspring from two 
randomly chosen parents using uniform crossover 
[46]. 
     Update of z: For each ,,...,1 mj = if 

)'(yfz jj < , then set )'(yfz jj = . 

     Update of Neighboring Solutions: For each index 

),(iBj ∈ if ),,(),'( zxgzyg
jjtejte λλ ≤ then 

set 'yx j = and ).'(yFFV j =  

Termination criterion: Stop if a maximum number 
of generations have been performed. Otherwise, go to 
Update. 
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4. Experiments 

Six datasets have been considered to accomplish 
all the mesh simplification experiments. Three of 
those files correspond to synthetic meshes, 
Laurana.ply, Cheff.ply and Ramses.ply2. These mod-
els are provided courtesy of the AIM@SHAPE 
Shape Repository3 . The rest of the datasets corre-
spond to real-world models we are dealing with in 
some research projects within the forensic sciences 
area [49, 33]: two human skulls’ meshes (Skull1.ply 
and Skull2.ply), given by the Physical Anthropology 
Laboratory of the University of Granada, Spain; and 
the mesh of the scanned Spanish historical monument 
face, the lady of Elche (FaceLadyElche.ply), kindly 
provided by the ITMA Materials Technology Centre 
in Asturias, Spain.  All of them are 3D open models 
(see Figure 4). 

 
 

Figure 4. Problem meshes. (a) M1 dataset (Laurana.ply) 922 verti-
ces, 1667 triangles. (b) M2 dataset (Cheff.ply) 2622 vertices, 4864 
triangles. (c) M3 dataset (Ramses.ply) 1420 vertices, 2734 trian-
gles. (d) M4 dataset (Skull.ply) 1055 vertices, 2004 triangles. (e) 
M5 dataset (Skull2.ply) 5196 vertices, 10000 triangles. (f) M6 
dataset (FaceLadyElche.ply) 1777 vertices, 3254 triangles. 

                                                           
2 The ply format is the polygon file format. It describes an ob-

ject as a collection of vertices, faces and other elements, along 
with properties such as color and normal direction that can be 
attached to these elements.  

3 http://shapes.aim-at-shape.net/ 

4.1. Experimental Setup 

The single-objective algorithm, NSGA-II, and 
MOEA/D have been implemented in C/C++ and all 
the experiments have been performed on an Intel 
Core 2 Quad CPU Q8400 2.66 GHz, with 4 GB 
RAM, running Windows 7 Professional. 

We have distinguished two variants per dataset for 
the single-objective algorithm and NSGA-II. Variant 
1 (v1) uses uniform crossover because it tends to 
produce more diversity than 2-point crossover, and 
variant 2 (v2) uses OAX with L4 matrix (based on 
Taguchi matrices proposed in [41]). The main reason 
why we selected OAX with a L4 matrix and not L8 
or L12 is efficiency, as L4 took around 25 minutes 
per trial, so L8 and L12 are not tractable in terms of 
run times in practice. Respect to MOEA/D we have 
directly chosen the uniform crossover because it has 
a simple design and obtained better results than the 
OAX. 

The used parameter values for the single-objective 
algorithms, NSGA-II and MOEA/D, have been the 
following: the population is set to be 100, 50 genera-
tions, crossover probability of 0.8, and mutation 
probability of 1/chromosome_length.  

NSGA-II and MOEA/D have been run 10 times 
with different seeds. The initial populations are gen-
erated by uniformly randomly sampling from the 
feasible search space. 

iz in MOEA/D is initialized as the lowest value of 

if found in the initial population and the setting  of 

weight vectors λ  is the same as in [66]. W is set to 
be 20. 

The previous parameters were selected after ana-
lyzing the performance of the algorithm proposals 
[15, 66], and some detailed sensitivity studies of ge-
netic algorithm parameters [13, 16]. Both algorithms 
present a robust design that implies results less sensi-
tive to parameter variation. Hence, this parameter 
setting could be used with other 3D inputs. 

Regarding the single-objective algorithm, we con-
sidered different weight vectors. The weight of the 
first objective function, the total approximation error 
(Eq.(4)), ranges from 1 to 0 (step 0.1), and the sim-
plicity (number of triangles) weights from 0 to 1 in 
the same step size. The algorithm has been run for 
each of the 11 weighted vectors so obtained. 
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4.2. The Classic Methods 

We have also performed the mesh simplification 
process using two classic algorithms of different fam-
ilies of methods (incremental and non-incremental) 
in order to compare their results with our evolution-
ary proposals. The two chosen methods are edge col-
lapse decimation based on quadric error metric [27, 
50, 20, 59] and vertex clustering with topology pre-
serving [42]. They are representative techniques 
among various surface based algorithms [68]. The 
edge collapse decimation has been selected because it 
leads to higher defined meshes and provides reasona-
ble efficiency, while the vertex clustering is usually 
very robust and can be fast [27]. 

We developed the experiments by using the 
Meshlab software [72], which provides some tools 
and filters to apply both simplification techniques.  

We have carried out the following procedure in 
order to run the classic methods: let us have an origi-
nal mesh to be simplified using the quadric edge col-
lapse decimation and the vertex clustering techniques. 
Ten different simplifications are performed changing 
the reduction percentage, i.e., from 5% to 50% of 
reduction with a step size of 5%. A specific reduction 
percentage value means that the algorithm reduces 
the mesh into a certain number of faces or triangles. 
After obtaining the simplified mesh with a specified 
number of triangles, we calculated the error between 
the new mesh and the original one in the way de-
scribed in Section 3.2. Therefore, we will have ten 
solutions per algorithm that will be compared with 
those obtained by the single-objective algorithm, 
NSGA-II, and MOEA/D. 

 

4.3. Performance Comparison: Pareto Fronts 

The true Pareto-optimal front is usually considered 
to compare the performance among multi-objective 
algorithms. However, this front cannot be calculated 
in reasonable time in many real-world problems. 
That is the case of this study. 

Hence, we have considered an approximation to 
the true Pareto front approximation (called pseudo-
optimal Pareto front), which is obtained from the 
aggregation of the set of solutions P produced by 
every method in all the runs performed. 

We calculated the Pareto front approximation of 
the single-objective algorithm as follows: we first 
merged the 11 solutions obtained by each weighted 
vector. Repeated solutions are removed. We finally 

produced the Pareto front approximation by perform-
ing a later domination check according to the Pareto 
dominance definition (the interested reader is re-
ferred to a brief review on MOP in Appendix A of 
the supplementary information available at [73]). 

The Pareto front approximations for NSGA-II and 
MOEA/D have been calculated by merging the solu-
tions obtained in the ten runs. Then, the repeated so-
lutions are removed and the Pareto dominance is ap-
plied in order to get the final Pareto front approxima-
tion. 

Finally, in the case of the two classic methods, the 
Pareto front approximation is calculated joining the 
ten calculated solutions in the way shown in Section 
4.2. 

4.4. Metrics of Performance: Quality Indicators 

Multi-objective quality indicators represent a 
means to measure quality differences between Pareto 
front approximations on the basis of additional pref-
erence information. It is possible to check whether an 
algorithm provides significantly better approximation 
sets than another with respect to the preferences rep-
resented by the considered indicator [70, 37, 38]. 

We have used three of the most extended multi-
objective performance indicators: the unary 
hypervolume indicator (HVR) [70], the binary epsi-
lon indicator (Iε) [71], and the binary coverage met-
ric (C) [70] (see Appendix B of the supplementary 
information at [73] for their detailed formulation). In 
addition, the cardinality of the Pareto set approxima-
tions obtained, i.e., the number of solutions compos-
ing them, will also be reported and analyzed. 

4.5. Analysis of the Results 

We have performed experiments using the six 
mentioned datasets. Figures 5 and 6 show the aggre-
gated Pareto front approximations (see Section 4.3) 
for two of those datasets, M1 and M2, for illustration 
purposes (the Pareto front approximations of the rest 
of the datasets are available at [73]). 

The Pareto front approximations of the classic ap-
proaches are not shown because they obtain higher 
errors than the rest of the methods. Their Pareto front 
approximations are far from the other five algorithms 
in the graphical representation. 

The said figures show that the multi-objective 
methods have a better convergence than the single-
objective ones. The NSGA-II proposals obtain solu-
tions covering the whole space and achieve a greater 
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diversity. In general, MOEA/D and NSGA-II obtain 
solutions that dominate those achieved by the re-
maining methods in every dataset. 

The single-objective techniques just tend to find 
solutions in a specific region of the search space. 
That is a typical behavior for weighted combination-
based algorithms where specific weight vectors bias 
the search directions in different runs avoiding the 
obtaining of well spread Pareto fronts [13]. 

Table 1 presents the mean values for the C indica-
tor of the two best algorithms, NSGA-II v1 and 
MOEA/D. This table reveals that in terms of the cov-
erage metric, the final solutions achieved by NSGA-
II v1 are better than MOEA/D for the M1, M3, and 
M5 datasets. Otherwise, MOEA/D outperforms 
NSGA-II for the M2, M4, and M6 instances. 

Table 2 compares NSGA-II with MOEA/D by us-
ing the mean and the standard deviation values for 
the epsilon metric. In this case, NSGA-II v1 is better 
than MOEA/D for all the datasets but M2, although 
slight differences are always found. This shows the 
similar performance of both methods. 

Figure 7 shows the mean values for the HVR met-
ric of all the considered algorithms in the studied 
datasets. The figure reveals that NSGA-II v1 and 
MOEA/D outperform the rest of the methods in all 
datasets but M1. 

Figure 8 presents the evolution of the cardinality 
of all the algorithms in the problem instances. 
NSGA-II achieves more diversity than MOEA/D in 
this study, being useful to find good compromises or 
trade-offs within the search space of our problem.  

The single-objective algorithms can only detect 
one optimal solution (in our case, pseudo-optimal 
solution) in a single run while the multi-objective 
algorithms obtain a whole set of optimal (pseudo-
optimal) solutions. So, multiple single-objective 
method runs are needed to achieve the same level of 
information that can be obtained from a single multi-
objective method run, thus showing the capabilities 
of our proposal for the 3D open model mesh simpli-
fication problem solving. 

The classic approaches obtain the highest errors in 
this study. The edge collapse decimation strategy 
achieves a good approximation and preserves the 
topology of the original mesh but at the cost of using 
a high number of triangles. The effect of the decima-
tion is small and highly localized, so it tends to sim-
plify the mesh by regions. A similar behavior corre-
sponds to vertex clustering with topology preserving.  
We would need many simplifications of the original 
mesh to achieve a good relationship between accura-
cy and complexity in comparison with evolutionary 

algorithms. Hence, the higher the number of simplifi-
cations in the original mesh will be, the higher the 
total approximation error will be. 

From the above results, we can conclude that both 
NSGA-II v1 and MOEA/D outperform the rest of the 
methods in the studied datasets, i.e., they achieve a 
better trade-off between the complexity and the accu-
racy of the resulting meshes. 

Regarding the run time, all methods show a similar 
behavior but MOEA/D. The latter method needs less 
CPU time than the others. It spends between 6 and 8 
minutes per run. The rest of the evolutionary algo-
rithms take around 10-15 minutes per run for variant 
1, a similar run time than the classic methods, and 20 
minutes per run in variant 2. The interested reader is 
referred to a brief review on computational costs be-
tween NSGA-II and MOEA/D at [66]. 

 

Figure 5. Pareto front approximations of the evolutionary algo-
rithms for the M1 dataset. 

 

Figure 6. Pareto front approximations of the evolutionary algo-
rithms for the M2 dataset. 
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Table 1 

Mean values for the binary C indicator (Significant bold values 
treated as best result) 

Dataset C(NSGA-II v1,MOEA/D) C(MOEA/D,NSGA-II v1) 

M1 0.57 0.34 

M2 0.38 0.50 

M3 0.59 0.21 

M4 0.42 0.48 

M5 0.28 0.16 

M6 0.37 0.56 

 

Table 2 

Mean and standard deviation for the binary Epsilon indicator (Sig-
nificant bold values treated as best result) 

 

Dataset NSGA-II v1 MOEA/D 

M1 1.016 (0.0714) 1.019 (0.0108) 

M2 1.045 (0.0459) 0.991 (0.0010) 

M3 1.061 (0.0122) 1.104 (0.0298) 

M4 1.039 (0.0032) 1.256 (0.0376) 

M5 1.041 (0.0098) 1.051 (0.0218) 

M6 1.031 (0.0126) 1.053 (0.,0105) 

 

 

Figure 7. Evolution of the mean values of the HVR indicator in all 
the algorithms for all the datasets. 

 

Figure 8. Evolution of the cardinality in all the algorithms for all 
the datasets. 

4.6. The Wilcoxon Test 

We have performed a Wilcoxon signed-rank test 
[61] to analyze the significance of the results in the 
comparison of the quality of the Pareto front approx-
imations obtained by the single-, multi-objective, and 
classic algorithms by means of the previously ex-
plained unary and binary indicators. This is done in 
order to avoid the fact that one exceptionally good 
result in any of the compared algorithms produces a 
wrong analysis. Unlike the commonly used t-test, the 
Wilcoxon test does not assume normality of the sam-
ples and it has already demonstrated to be helpful 
analyzing the behavior of evolutionary algorithms 
[19]. Nevertheless, we should remark the fact that 
there is not any reference methodology to apply a 
statistical test to a binary indicator in multi-objective 
optimization. Thus, we have decided to follow the 
procedure described in [48]. The significance level 
considered in the performed test is p=0.05 for the 

εI indicator. For the C metric we chose a threshold 

of 0.75. 
In view of this statistical study, available at [73], 

we can draw the conclusion that the multi-objective 
algorithms are significantly better in behavior than 
the rest of the methods. On the contrary, the two 
classic approaches perform significantly worse than 
the evolutionary ones with the applied significance 
level. 

Specifically, the analysis reveals that NSGA-II v1 
and MOEA/D are significantly better, in terms of 
accuracy and complexity, than the rest of the tech-
niques for the C and epsilon indicators. Meanwhile, 
the results reveal that there are no differences among 
the solutions obtained by NSGA-II v1 and MOEA/D 
with the considered significance level. 

Regarding the single-objective methods, the solu-
tions achieved by variant 2 have a better tradeoff than 
the results obtained by variant 1 in the two metrics. 
Finally, the test does not obtain significant differ-
ences between the performances of the two classic 
algorithms. 

4.7. Analysis and Comparison of Some Selected 

Solutions 

We have selected three different solutions from 
each Pareto set approximation in order to evaluate 
the quality of the solutions obtained. Namely, the one 
with the best value in the first objective (minimum 
error solution), the one with the best value in the se-
cond objective (minimum number of triangles solu-
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tion), and a compromise solution with the best trade-
off value (best trade-off solution). The trade-off solu-
tion is selected as follows. We compute 1000 random 
weights ∈w [0, 1] and take the average value of the 
aggregation function of both objectives Obj1 (error) 
and Obj2 (number of triangles): 

1000

)(2)1()(1

)(

1000
∑ −+

=
= ji

ijij

i

sObjwsObjw

sF       (9) 

Due to the fact that the objectives Obj1 and Obj2 

are not normalized we need to apply a factor in order 
to scale them: 

,
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∑

=α             (10)             

where aPA  is the cardinality of the Pareto front ap-

proximation and is is a solution of this Pareto front. 

The final aggregation formula to compute the av-
erage value is the following: 
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      (11) 

The solution with the lowest aggregated value is 
selected. For each of the three chosen solutions, we 
present the values of the two objectives, error and 
number of triangles. 

Figure 9 contains the representations of the three 
best solutions obtained by the evolutionary methods 
for the proposed models. We have excluded the clas-
sic approaches because their representations are far 
from the rest of the algorithms in the graphics.  

Comparing the solutions obtained by each algo-
rithm in the M1 dataset, MOEA/D, NSGA-II v2, and 
NSGA-II v1 achieve the best results. MOEA/D ob-
tains the best minimum error solution followed by 
NSGA-II v2.  MOEA/D and NSGA-II v1 perform the 
best tradeoff solution, and the best minimum number 
of triangles solution corresponds to NSGA-II v2. 

Regarding the M2 dataset, NSGA-II v1 achieves 
the best results, although MOEA/D also obtains a 
good set of solutions. 

Related to the M3 dataset, NSGA-II v1 performs 
the best minimum error solution. The latter algorithm 
and MOEA/D achieve similar results for the mini-
mum number of triangles and the best trade-off solu-
tions. 

NSGA-II v1 and MOEA/D lead the three best so-
lutions in the M4 and M6 datasets. We emphasize 
that NSGA-II v1, v2, and MOEA/D have a better 
performance than the other techniques for the M5 
dataset. 

For illustration purposes, figure 10 presents the 
best simplified 3D models achieved by NSGA-II v2 
and MOEA/D tackling the M1 dataset. NSGA-II v2 
obtains very good results in its minimum error solu-
tion (Figure 10b, 10g). This 3D mesh rightly approx-
imates the contour of the face and other difficult re-
gions such as nose, mouth, lips, forehead and eyes, 
obtaining a high quality approach comparing to the 
original model (Figure 10a, 10f) and (Figure 10b, 
10g). However, the minimum number of triangles 
solution draws a worse shape of the face with respect 
to the original mesh, as expected (Figure 10a, 10c). 
Areas like the chin and right cheek have not been 
properly approximated (Figure 10c). The approxima-
tion of the forehead and the mouth is worse than the 
previously obtained solution as can be seen in Figure 
10c, 10h. 

Regarding the results of MOEA/D, the algorithm 
obtains a good contour of the face in the right side for 
both solutions (Figure 10d, 10e). The minimum error 
solution rightly approximates the mouth, nose, and 
eyes (Figure 10d, 10i). The accuracy of the simpli-
fied mesh showing the minimum number of triangles 
is good, but it approximates the nose worse than the 
previous solution (Figure 10e, 10j). 

In general, NSGA-II and MOEA/D achieve some 
similar results (Figure 10b-e, 10g-j). They mainly 
differ in the approximation of the face contour (Fig-
ure 10b, 10d). 

We have also analyzed the best solutions of the 
NSGA-II v1 and the clustering approach tackling the 
M6 dataset in [73] as supplementary information. 
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Figure 9. The best three selected solutions for each evolutionary algorithm in the analyzed datasets. 

Figure 10. First row. M1 Dataset original model and solutions for NSGA-II v2 (b and c) and MOEA/D (d and e) algorithms, frontal views. (a) 
Original model, 1667 triangles. (b) Min. error solution, error=3829.92, triangles=387. (c) Min. number of triangles solution, error=4061.76, 
triangles=276. (d) Min. error MOEA/D solution, error=3808, triangles=401. (e) Min. number of triangles MOEA/D solution, error=4033, 
triangles=297. Second row. M1 Dataset original model and solutions for NSGA-II v2 (g and h) and MOEA/D (i and j) algorithms, lateral 
views. (f) Original model, 1667 triangles. (g) Min. error solution, error=3829.92, triangles=387. (h) Min. number of triangles solution, er-
ror=4061.76, triangles=276. (i) Min. error MOEA/D solution, error=3808, triangles=401. (j) Min. number of triangles MOEA/D solution, 
error=4033, triangles=297. 
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5. Concluding Remarks 

We have proposed an evolutionary multi-objective 
framework to solve the 3D open model mesh simpli-
fication problem. The multi-objective approach has 
been implemented by using two specific MOEAs, 
NSGA-II and MOEA/D. They both have allowed us 
to find a set of solutions with different trade-offs be-
tween the accuracy and the simplicity of the simpli-
fied 3D open models. 

In order to compare the performance of our pro-
posals, we have considered three benchmarking 
methods, a single-objective evolutionary algorithm 
and two classic techniques. The experiments devel-
oped have been based on three publicly available 
datasets and three real-world 3D open models, one of 
them being a mesh of a scanned Spanish historical 
monument and the other two being human skull 
models from a forensic science research project. A 
Wilcoxon rank sum test has also been accomplished 
to analyze the significance of the obtained results. 

From the analysis of those results, we can con-
clude that both the first NSGA-II variant proposed 
and MOEA/D obtain solutions that dominate those 
achieved by the rest of the methods. Their resulting 
meshes are more accurate, have a fewer number of 
triangles, and present a better trade-off between the 
two tackled objectives. 

On the opposite, the classic approaches have ob-
tained the highest modeling errors. They showed a 
particular behavior in the studied datasets. Many 
simplifications of the original mesh were required to 
achieve a good relationship between accuracy and 
complexity, in contrast to the considered evolution-
ary algorithms. Besides, the classic methods may 
excessively simplify a certain region, leaving other 
parts, which are expected to be simplified, untouched. 
Hence, the higher the number of simplifications in 
the original mesh is, the higher the total approxima-
tion error will be. Despite achieving a good precision 
in other studies [20, 42, 59, 68], this has not been our 
case. The reason could be that we considered meshes 
with open boundaries, where it is possible that large 
errors are generated in correspondence with the mesh 
boundary [12]. Nevertheless, both classic algorithms 
present reasonable processing times (similar to 
NSGA-II v1 and the single-objective v1, although 
larger than MOEA/D ones), an easier implementation 
design, and a good stability and robustness. 

Besides the performance improvement, we should 
again remark that the multi-objective proposal al-

lowed us to obtain a set of trade-off solutions in a 
single run of the algorithm. In this way, the decision 
maker can choose the most suitable solution (e.g. the 
most accurate, the simplest, or the one with the de-
sired trade-off between both objectives) depending 
on the context the simplified 3D models will be used. 
This is a clear advantage over single-objective meth-
ods which try to find the “best” solution in a single 
run of the algorithm. Hence, more runs of the algo-
rithm are needed to obtain a similar level of infor-
mation to that achieved by the multi-objective algo-
rithm, which implies a significantly higher computa-
tional effort. 

Finally, as future works, it could be interesting to 
extend the MOEAs framework in order to tackle 
complete 3D surface approximations. 
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