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Group decision making problems aim to manage situations in which two or more experts need to achieve a
common solution to a decision problem. Different rules and processes can be applied to solve such prob-
lems (e.g. majority rule, consensus reaching, and so on), and several models have been proposed to deal
with them. Some difficulties may arise in group decisions, being most of them caused by the presence
of disagreement positions amongst experts. Given that group decision making problems have classically
focused on a few number of experts, such difficulties have been relatively manageable by means of sup-
porting tools based on textual or numerical information. However, such tools are not adequate when a
large number of experts take part in the problem, therefore an alternate tool that provides decision makers
with more easily interpretable information about the status of the problem becomes necessary. This paper
proposes a graphical monitoring tool based on Self-Organizing Maps so-called MENTOR, that provides a 2-
D graphical interface whose information is related to experts’ preferences and their evolution during
group decision making problems, and facilitates the analysis of information about large-scale problems.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Decision Making is a common process in daily life. In Group
Decision Making (GDM) problems, two or more individuals or ex-
perts, with their own attitudes and opinions, need to achieve a
common solution to a decision problem consisting of several alter-
natives [1–3]. GDM problems are present in diverse application
areas that require the participation of multiple experts, such as
management and engineering and politics [4–6].

GDM problems can be solved by applying different processes,
ranging from the use of classical decision rules (such as the major-
ity or minority rule [7]), to the application of a consensus reaching
process, which is a process of negotiation between experts, aimed
to achieve a high level of agreement in the group before making a
decision [8]. Consensus reaching processes are increasingly neces-
sary in nowadays group decisions [9].

A large number of theoretical models and approaches to
facilitate the resolution of GDM problems have been proposed in
the literature [3,10–14]. Moreover, several authors have developed
some computer-based Group Decision Support Systems (GDSS), to
give groups further assistance in such problems [3,15]. Some of
these GDSS make use of the Internet to allow groups to solve
GDM problems ubiquitously [16,17].

Classically, GDM problems have been solved by a few number of
experts. In these cases, when typical difficulties in group decisions
arise (such as the presence of disagreement positions), they can be
managed with the aid of GDSS and supporting tools that provide
numerical or textual information about preferences of experts in
the group [2,15,16]. Such tools could be often utilized with analyt-
ical purposes by a person who is responsible for making the final
decision or decision maker. They can also be utilized by the moder-
ator of a consensus reaching process [7,8].

However, new paradigms and ways of making group decisions,
such as social networks [18] and e-democracy [5], have caused that
decisions made by a larger number of experts become more fre-
quent in recent years, therefore large-scale GDM problems are
attaining greater importance. The resolution of large-scale GDM
problems implies new challenges and requirements in terms of
the higher cost and time invested to make the decision, and the
increasing complexity of the problem. Additionally, in large-scale
GDM problems, a considerable amount of information related to
the preferences of experts must be managed, therefore a higher
complexity appears in those analysis tasks that would be much
more manageable in the case of dealing with small groups, for
instance: (i) detecting conflicts amongst experts, (ii) determining
the closeness between experts’ opinions, (iii) identifying the
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number and identity of experts that agree/disagree with each
other, and (iv) finding coalitions or subgroups of interest in the
group, etc. Most existing GDSS focus on GDM problems with few
experts, in which numerical information about the status of the
problem can be easily analyzed by a decision maker interested in
it. However, in large-scale GDM problems the amount of informa-
tion available may become much larger and, consequently, much
more complicated to understand.

Different solutions can be proposed to support the previous
analysis tasks [16]. In large-scale GDM, it would be particularly
interesting to increase knowledge about the problem and make it
more accessible to the decision maker interested in it, by means
of a graphical 2-D tool that visualizes information about the whole
group. In this sense, Self-Organizing Maps (SOMs) [19,20] have
previously proved to be an effective means to visualize high
dimensional data in a low-dimensional space [21,22]. Therefore,
a graphical tool based on two-dimensional SOMs would facilitate
the analysis and interpretation of diverse aspects of interest in
large-scale GDM problems.

In this paper, we present a SOM-based graphical monitoring
tool so-called MENTOR, that supports decision makers in the anal-
ysis of information about the status of large-scale GDM problems
during their resolution. Such a tool facilitates the obtaining of
important information about diverse features in these problems,
such as the detection of agreement/disagreement positions within
the group, the evolution of experts’ preferences, or the level of
closeness between experts’ opinions achieved during consensus
reaching processes in the cases they are carried out. MENTOR is
also presented as a tool that can be integrated with different GDSS
proposed in the literature, therefore it implies a important step to-
wards the design of new, highly-interpretable GDSS.

The paper is structured as follows: in Section 2, some prelimi-
naries about GDM and SOMs are reviewed. Section 3 presents
MENTOR, the graphical monitoring tool based on SOMs, by
explaining how it works and describing its main features for anal-
ysis and interpretation of graphical information about the GDM
problem. Section 4 shows an example of application of MENTOR
in a large-scale GDM problem. Finally, some concluding remarks
are exposed in Section 5.
2. Preliminaries

Given the paper proposal of a SOM-based graphical monitoring
tool to support large-scale GDM problems, in this section we re-
view GDM problems, paying special attention to consensus reach-
ing processes as a means for smoothing group conflicts and finding
agreed solutions. Eventually, it is revised some elementary con-
cepts about SOMs, which are the basis for graphical representation
of information in the proposed tool.
2.1. Group decision making problems

The need for making decisions in which multiple experts with
different viewpoints are involved, is frequent in many complex
real-life decision situations and organizational structures. GDM
problems, where a group of experts must make a common decision
together, are normally utilized in such situations [2,3]. Some exam-
ples of application of GDM problems are: political and democrati-
cal systems, engineering, management, etc. [4–6].

Formally, GDM problems can be defined as decision situations
characterized by the participation of two or more experts, with
their own knowledge and attitudes, in a decision problem consist-
ing of a set of alternatives or possible solutions to such a problem
[1,3]. The following elements are found in any GDM problem:
� A set X = {x1, . . . ,xn}, (n P 2) of alternatives.
� A set E = {e1, . . . ,em}, (m P 2) of experts, who express their judge-

ments on the alternatives in X.

Each expert ei, i 2 {1, . . . ,m}, provides his/her opinions over
alternatives in X by means of a preference structure. Some types
of preference structures commonly utilized in GDM are: preference
relations [23], utility vectors [24] and preference orderings [25].
Preference relations have been specially utilized in many models
of GDM under uncertainty. They are defined as follows:

Definition 1 ([23,26]). A preference relation Pi associated to expert
ei, i 2 {1, . . . ,m}, on a set of alternatives X is a fuzzy set on X � X,
represented by a n � n matrix of assessments plk

i ¼ lPi
ðxl; xkÞ as

follows:
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where each assessment, plk
i ¼ lPi

ðxl; xkÞ, represents the preference
degree of alternative xl over xk according to ei. Assessments
pll

i ; l 2 f1; . . . ;ng, situated in the diagonal of the matrix, are not de-
fined, since an alternative xl is not assessed with respect to itself.

Experts’ assessments are expressed in a specific information do-
main. Some information domains widely used in GDM are: numer-
ical, interval-valued and linguistic [11].

The solution to a GDM problem is obtained by using either a di-
rect approach, where the solution is directly obtained from experts’
preferences, or an indirect approach, in which a collective opinion is
computed before determining the chosen alternative/s [27]. In
both approaches, the selection process to solve GDM problems
consists of two phases [28]: (i) an aggregation phase, where individ-
ual preferences are combined and (ii) an exploitation phase, where
an alternative or subset of alternatives are obtained as the solution
to the problem.

Despite different classic guiding rules, such as the majority rule
and minority rule, have been suggested to carry out the selection
process in GDM [7], they do not guarantee a high level of agree-
ment amongst experts regarding the decision made: it is possible
that some of them may not accept the solution chosen, because
they might consider that their opinions have not been considered
sufficiently [8]. In such cases that a more agreed decision is neces-
sary, a negotiation phase should be introduced as part of the GDM
problem resolution process to achieve a high degree of agreement
among experts before making a decision. A variety of formal nego-
tiation models based on different theoretical backgrounds can be
found in the literature [29,30]. Nevertheless, in the research field
of GDM we move in, it is usually applied a consensus reaching pro-
cess to achieve a collective agreement before making a group deci-
sion [8]. Consensus has attained a great importance to reach more
appreciated solutions in GDM problems, and it has become a major
research topic in the last decades [14–17,31,32].

The process to reach a consensus is a dynamic and iterative dis-
cussion process, frequently coordinated by a human figure known
as moderator [7,8]. A general scheme of consensus reaching pro-
cess is shown Fig. 1. Its phases are briefly described below:

1. Gathering preferences: Each expert provides his/her preferences
to the moderator.

2. Computing the level of agreement: The moderator determines the
level of agreement in the group.

3. Consensus control: If the level of agreement is enough, the group
moves onto the selection process, otherwise more discussion is
required.



Fig. 1. General consensus reaching scheme in GDM.
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4. Feedback generation: The moderator gives experts some feed-
back, suggesting them how to modify their preferences and
make them closer to each other, to increase the level of agree-
ment in the group.

In consensus-driven GDM problems, some crucial aspects that
should be monitored during the consensus reaching process are
the status of experts’ preferences across the time, and the evolu-
tion of the level of agreement achieved in the group. Besides, in
large-scale GDM problems, it is usual that some experts or sub-
groups of them disagree with each other on their opinions, they
do not cooperate to reach a consensus or they try to deviate the
collective opinion. A graphical tool that monitors these features
both in GDM problems and in consensus reaching processes be-
comes then necessary, in order to analyze the positions of experts’
preferences with respect to the group. The tool proposed in this pa-
per is based on SOMs [19], therefore some basic concepts about
this visualization technique will be reviewed in the following
subsection.
Fig. 2. Update of the BMU and its neighbors upon x (taken from [22]).
2.2. Basic concepts on Self-Organizing Maps (SOMs)

Self-organizing Maps (SOMs) are a non-supervised learning
technique used in exploratory data mining, introduced by Kohonen
[19] and based on neural networks [33]. It is one of the best known
methods for the construction of topographic maps, i.e. low-dimen-
sional (usually 2D or 3D) visualizations of high dimensional data
[21,22,34].

The SOM algorithm can be regarded as a ‘‘nonparametric
regression’’ method, whose goal is fitting a number of discrete ref-
erence vectors to a distribution of vectorial input data samples
[20]. The reference vectors define the nodes of a kind of elastic neu-
ral network, where a topologically ordered mapping is formed
from the input space onto the neural network, thus obtaining a fea-
ture map. This adaptive process is biologically inspired by the orga-
nizations found in brain structures. If the network is a regular two-
dimensional lattice, the feature map can be used to project and
visualize high-dimensional data on it.

In the following, the basic SOM algorithm in the euclidean space
is briefly reviewed [19,20]. Assume a two-dimensional regular
(hexagonal or rectangular) lattice in which the array of nodes (neu-
rons) are situated. Each node has associated a reference vector mi of
dimension n, which is defined by mi ¼ ½li1 . . .lin�

T 2 Rn, being
i 2 R2 the position in the lattice of the node associated to mi.
Weights lij 2 R are initialized either randomly or by means of an
initializing technique. On the other hand, a training input vector
x of dimension n is defined as x ¼ ½n1 . . . nn�T 2 Rn.

At each iteration of the algorithm, an input data sample x is
compared with all the mi, and the location c of the best matching
unit (BMU), i.e. the reference vector mc whose weights are closest
to values of x, is determined. x is then mapped onto this location.
The BMU, denoted by mc, accomplishes:

kx�mck ¼min
i
fkx�mikg ð1Þ

which is equivalent, in terms of the BMU location c, to:

c ¼ arg min
i
fkx�mikg ð2Þ

During learning, those nodes topographically close to the BMU
(neighbor nodes), activate each other to learn something from input
x. This process causes a smoothing effect on weights of nodes situ-
ated within this neighborhood. Fig. 2 illustrates this process [22].
Solid and dashed lines represent the situation before and after
updating weights of nodes upon x, respectively.

Given an iteration t of the algorithm, t = 0, 1, 2, . . . , weights in
reference vector mi are updated as follows:

miðt þ 1Þ ¼ miðtÞ þ hciðtÞ½xðtÞ �miðtÞ� ð3Þ

where hciðtÞ ¼ hðkrc � rik; tÞ is the so-called neighborhood func-
tion defined over the lattice nodes. hciðtÞ ! 0 when t ?1, thus
ensuring convergence. rc; ri 2 R2 are the locations of vectors mc, mi

in the lattice. When krc � rik increases, hciðtÞ ! 0. Let Nc(t) be a



1 A sample version of the Java application to generate preference data-sets upon a
set of preferences is available at our website: http://sinbad2.ujaen.es/cod/mentor.
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neighborhood set of lattice nodes around c. Then, the neighborhood
function can be defined as follows:

hciðtÞ ¼ aðtÞ if i 2 Nc;

hciðtÞ ¼ 0 otherwise ð4Þ

being a(t) 2 (0,1) a learning rate that decreases over time (a value
commonly taken is aðtÞ ¼ 0:9ð1� t

100Þ). The radius of Nc(t) also de-
creases over time, thus reducing the neighborhood set of c progres-
sively. Another possible, smoother neighborhood function in terms
of the Gaussian function, is:

hci ¼ aðtÞ ¼ exp �krc � rik2

2r2ðtÞ

 !
ð5Þ

As a result of applying the above mentioned steps iteratively
with a set of input data samples, reference vectors tend to approx-
imate them in an orderly fashion, and the lattice becomes ordered,
in the sense that reference vectors in neighboring nodes have sim-
ilar weights. The training process ends when a sufficient number of
input vectors have been processed and the iterative process given
by Eq. (3) converges towards stationary values.

Variants of the basic SOM algorithm include the so-called ‘‘Dot-
Product’’ SOM, which involves the use of a more biological match-
ing criterion, based on dot product operations [19]. In this case, the
BMU is determined by:

xTðtÞ �mcðtÞ ¼max
i
fxTðtÞ �miðtÞg ð6Þ

Once the SOM has been constructed, we can proceed to locate
on the map projections of those data samples that must be inter-
preted and visually analyzed. There are multiple SOM-based meth-
ods to visualize data, such as distance matrices, similarity coloring,
data histograms and PCA projections [21,22].

SOMs have been successfully utilized in different descriptive
data mining applications, such as full-text and financial data anal-
ysis, cluster analysis, and vector quantization and projection
[21,34].

3. MENTOR: SOM-based graphical monitoring tool of
preferences to support group decision making

As stated in the introduction, large-scale GDM problems are
increasingly common in multiple real-life contexts. In these prob-
lems, classical tools and GDSS based on numerical or textual infor-
mation that have been proposed to support GDM problems with
small groups, may not be appropriate for a decision maker, when
he/she needs to analyze the large amount of information related
to experts’ preferences to have a deeper knowledge about the cur-
rent status of the problem.

For these reasons, in this section we present a graphical moni-
toring tool based on SOMs, so-called MENTOR, that supports deci-
sion makers by providing them with easy interpretable
information about the status of large-scale GDM problems during
their resolution, thus facilitating the analysis of diverse crucial as-
pects that are common in these problems, such as:

� The closeness between experts’ preferences.
� Detection of conflicts amongst experts.
� Identification of subgroups of experts that disagree with the

rest of the group.

Firstly, we will show a detailed scheme of the tool operation
during the resolution process of GDM problems. We will then de-
scribe some examples of GDM situations in which the tool can be
utilized to overcome the difficulties stated above.
Fig. 3 shows the architecture of MENTOR. The tool has been
conceived as a local application that receives a set of experts’ pref-
erences about a GDM problem and generates a 2-D graphical inter-
face with their representation. Although the use of MENTOR is
currently proposed as a self-contained tool that is directly used
by decision groups, it is also suggested its integration with new
or already existing GDSS, to make them more interpretable for
decision makers and support them in the overall decision analysis
process. Further detail on the use of the technologies used in MEN-
TOR (Java, MATLAB and SOM Toolbox), is given in the following
subsection.

3.1. Scheme of the monitoring tool

A scheme of operation of MENTOR is shown in Fig. 4. The pro-
cedure it follows to generate a graphical representation about the
status of the GDM problem consists of three phases, which are de-
scribed below:

(1) Gathering Information about the GDM problem: Information
about the status of the GDM problem that will be graphically
represented, is gathered in this phase. Such information usu-
ally consists in preferences of all experts in the group. Some-
times it would be also interesting to gather additional
information, for example the collective preference of the
group.
MENTOR deals with opinions expressed numerically. More
specifically, we consider the use of fuzzy preference rela-
tions (in which assessments plk

i 2 ½0;1�), to generate graphi-
cal representation of them (as will be shown with more
detail in the following phase). Nevertheless, the tool also
allows the management of different preference structures
[35]. To do so, it is proposed the use of existing approaches
to unify them into fuzzy preference relations. For instance,
in [35] it is shown the relationship between different repre-
sentation formats (preference orderings, utility values, mul-
tiplicative and fuzzy preference relations), and a set of
transformation functions are defined to obtain a fuzzy pref-
erence relation from preferences expressed under each of
these representation formats.
Regarding preferences expressed under different informa-
tion domains (such as intervals or linguistic values), some
approaches to conduct them into a common information
domain can be also found in the literature. For example, in
[11] some transformation functions are proposed to unify
numerical, interval-valued and linguistic assessments into
fuzzy preference relations.
Taking into account the above mentioned approaches, it is
shown that MENTOR can be utilized in large-scale GDM
problems in which experts can use different preference
structures or information domains to express their opinions.
Consequently, its integration with existing GDSS that incor-
porate such approaches is also possible.

(2) Transforming Information to SOM-based format: Once infor-
mation to be visualized has been gathered, it must be trans-
formed into a suitable format for its treatment by MENTOR.
Since the tool is based on SOMs, it is necessary to represent
preferences as input data samples (vectors) that can be man-
aged by SOM algorithms (see Section 2.2). To do so, a prefer-
ence data-set is generated upon preferences.
The software that generates preference data-sets upon the
set of experts’ preferences has been implemented with Java1

http://sinbad2.ujaen.es/cod/mentor


Fig. 3. Architecture of MENTOR.

Fig. 4. General scheme of MENTOR.
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(see Fig. 3). Preference data-sets are generated as files with
extension .data. The structure of the preference data-set is
as follows: the first row contains an integer value indicating
the dimension of data samples, which is equal to the number
of assessments each preference consists of. From the second
row onwards, each row represents a data sample, correspond-
ing to the preference of a single expert. The input preference
format required to build the data-set is a numerical prefer-
ence relation (e.g. a fuzzy preference relation, whose assess-
ments are values in the unit interval [23]). Therefore, given
a GDM problem with n alternatives, the dimension of data
obtained from preferences must be equal to n(n � 1) (assess-
ments of the type pll

i ; ei 2 E; xl 2 X, are not considered, as sta-
ted in Section 2.1). Assessments are separated by blanks.
Data samples can be optionally tagged with informative pur-
poses, by placing an alphanumerical tag at the end of the cor-
responding row. Tagging may provide additional information
about a specific preference (for example, the name or role of
its corresponding expert). Tags are not processed by the
underlying SOM algorithm of MENTOR, but their content can
be visualized together with the corresponding preference to
provide additional knowledge about the problem.
Fig. 5 shows an extract of a preference data-set structure, in
which two preferences have been tagged.
The following example illustrates the transformation of an
expert’s preference relation into an element of the preference
data-set:
Example 1. Let Pi be the following fuzzy preference relation pro-
vided by an expert ei, about a GDM problem consisting of n = 4
alternatives:
Pi ¼

� 1 0:5 0:9

0 � 0:15 0:4

0:5 0:85 � 1

0:1 0:6 0 �

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Then, its corresponding data sample in the preference data-set
obtained, is represented as follows:



Fig. 5. Example of preference data-set with tags.
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1 0:5 0:9 0 0:15 0:4 0:5 0:85 1 0:1 0:6 0

Although data samples in the data-set must be built upon
numerical preference relations, some existing GDM models and ap-
proaches allow the unification into such format from experts’ pref-
erences expressed by means of different structures [35] or
heterogeneous information [11], as aforementioned in the previous
phase. Similarly, incomplete preferences [13] and preferences ex-
pressed in different scales [36] could be also considered, because
the underlying SOM algorithm (which is applied in the following
phase) can deal with incomplete data, and it also implicitly nor-
malizes data values expressed in different numerical scales.

(3) Visualizing the problem status: The preference data-set is
used as an input to apply a SOM-based technique that gen-
erates a 2-D graphical projection of data contained in it. Such
a projection may be utilized by a group member (e.g. a deci-
sion maker who coordinates the whole group) for analyzing
aspects of interest about the GDM problem.
The application to visualize preferences has been imple-
mented by means of the software suite MATLAB2 (see Fig. 3),
which facilitates the management of data-sets and their graph-
ical representation. MATLAB also offers possibilities to inte-
grate its user-developed applications with a variety of widely
used technologies, such as, Java, C++, and .NET, thus offering
the possibility to communicate MENTOR with other systems.
Preference data-sets with extension .data obtained previously,
are directly read by MATLAB, without the need for any further
processing. Then, a SOM algorithm must be invoked to create
the map on which data will be visualized. To do so, we have uti-
lized the implemented SOM algorithms provided by a third-
party MATLAB library so-called SOM Toolbox,3 which was
developed by Vesanto et al. [22] and constitutes a powerful
research-oriented library with numerous functions and possi-
bilities for managing SOMs and analyzing/visualizing data with
them. By using this library, MENTOR offers the flexibility to
apply different SOM algorithms defined by several settings,
including: (i) the choice of the map size and shape (rectangular
or hexagonal lattice), (ii) a matching criterion (see Eqs. (1) and
(6) for instance), (iii) the neighborhood function, hci(t), or (iv)
the learning rate, a(t), amongst others.
Once constructed the map, each preference in the data-set is
projected into it. The visualization method considered to show
this task is a two-dimensional PCA projection of preferences
[21]. Functions to generate and plot a graphical interface tho
show PCA projections are also provided by MATLAB and SOM
Toolbox.
It is noteworthy that in this phase, instead of obtaining a single
graphical projection of experts’ preferences solely, it would be
sometimes useful to provide further detailed graphical infor-
mation. For example, visualizing preferences at different levels
of detail can be particularly interesting in GDM problems based
2 We are currently working on obtaining the necessary MATLAB license to release a
sample version of the visualizing application in our website. Meanwhile, readers
interested in obtaining a visualization of their preferences can follow the instructions
found in: http://sinbad2.ujaen.es/cod/mentor.

3 http://www.cis.hut.fi/somtoolbox/.
on preference relations [26], because it would be sometimes
convenient to view experts’ opinions on each specific alterna-
tive (for purposes of disagreement detection, for instance).
Then, a visual projection can be generated for each alternative
xl 2 X separately.
Tagging data might also be useful for several visualization pur-
poses, some of which are:

� Viewing the collective preference of the group, by
including and tagging it in the preference data-set.
� In some cases, it can be interesting to provide each

expert with a visual representation of his/her own
position with respect to the group. This can be done
by generating a personalized graphical projection for
each expert, in which his/her own preference is tagged.

Fig. 6 shows the graphical visualization corresponding to the
complete data-set whose extract was shown in Fig. 5, in
which the expert’s self preference and the collective prefer-
ence have been tagged.
In group decisions under consensus, the graphical visualiza-
tion of the GDM problem status across the discussion process
would be particularly convenient. Given that such processes
consist of several rounds in which experts modify their opin-
ions to increase agreement in the group (see Section 2.1),
MENTOR can be iteratively used in consensus-based GDM
problems, so that graphical information of the problem sta-
tus is generated at each consensus round (as will be shown
in the application example in Section 4). Visualizing the evo-
lution of experts’ preferences across the time may provide a
better insight on the overall performance of this kind of
problems and even a foresight of the future status of such
problems in upcoming consensus rounds.
3.2. On the use of MENTOR in large-scale GDM

In the following, we illustrate how the graphical information
provided by MENTOR can be used to facilitate the analysis of some
important aspects and difficulties found in GDM problems, which
are especially frequent in large-scale GDM. Such aspects and diffi-
culties, and the way in which MENTOR facilitates their detection
and analysis, are enumerated below:
Fig. 6. Example of preferences visualization with tags.

http://sinbad2.ujaen.es/cod/mentor
http://www.cis.hut.fi/somtoolbox/


Fig. 7. Graphical representation of the group’s preferences.
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� Detecting conflicting opinions amongst experts: Analyzing numer-
ical or textual information about experts’ preferences to identify
conflicting opinions can be an affordable task if dealing with
small groups, but not so adequate when the group size is large.
The 2-D representation of preferences generated by MENTOR
can provide a visual insight on conflicting opinions (if any) in
these cases, because such preferences are visually represented
as data points that are allocated far from each other.
� Identifying disagreing experts: When conflicting opinions are

detected (see above), it would be interesting for the decision
maker to view the identity of experts or subgroups of them
who disagree with each other. This can be done by tagging
the preferences of such experts, so that their names or identifi-
ers can be also represented graphically.
� Determining the closeness and agreement cardinality graphically:

Although most consensus models to support consensus reach-
ing processes compute a global degree of agreement in the
group analytically (usually as a numerical value in the unit
interval) [1,14,15], such computations are frequently based on
compensative consensus measures, in which case the collective
agreement level computed might sometimes not reflect possi-
ble disagreement positions between some experts faithfully.
In such cases, preferences visualization may help the decision
maker to view the closeness between experts’ opinions and
decide whether the agreement cardinality (i.e. the number of
experts who present a high agreement on the collective opinion
with respect to the total group size) is enough or not to make a
final decision, in situations of hesitancy.
� Detecting non-cooperative behaviors in consensus reaching: In

GDM problems that require consensus, experts may adopt dif-
ferent types of behavior during the discussion process, regard-
ing their predisposition to modify their initial opinions to
make them closer to the collective opinion. Some experts or
coalitions of experts with similar interests may not present a
cooperative behavior in these problems, in the sense that they
might move their preferences strategically trying to deviate
the collective opinion [37]. If the necessary mechanisms to
detect such behaviors analytically are utilized, then it is possi-
ble to tag experts involved in such behaviors and facilitate their
graphical detection as well. Additional information about the
relative size of the disagreeing subgroup with respect to the
total group size would also be useful.

The illustrative example presented in the following section
shows some of the above mentioned issues in practice.
4. Application example

In this section, an example of application of MENTOR to a real-
life GDM problem is presented to show some of the possibilities
such a tool offers, as well as its usefulness in practice. To do so,
firstly an example of large-scale GDM problem is proposed. Then,
the problem is solved by applying a simple GDM resolution
scheme, and preferences in the group are visualized and analyzed
by using MENTOR. Finally, a consensus reaching process is also ap-
plied to seek a higher degree of agreement, and MENTOR is used to
visualize the evolution of experts’ preferences across the process of
negotiation.
4 A large amount of information about preferences has been used in this example,
erefore it was omitted for the sake of space. A supplementary material document
at contains such preferences is also available at: http://sinbad2.ujaen.es/cod/
entor.
4.1. Definition of the large-scale GDM problem

The GDM problem is formulated as follows: the 2013 graduat-
ing class of Computer Science M.Sc. Degree, compound by 46 stu-
dents, E = {e1, . . . , e46}, needs to decide the destination for their
final year trip, amongst four possible choices, X = {x1: Mediterra-
nean cruise, x2: Tunisia tour, x3: Canary Islands, x4: Prague, Vienna
and Budapest}. During a lab session to which all 46 students at-
tended, each one was requested to provide a fuzzy preference rela-
tion over the four alternatives.4

4.2. Visualization of a simple GDM resolution process

The large-scale GDM problem defined above was solved by
applying a direct resolution scheme [27]. MENTOR was used to
gather and visualize all experts’ preferences and the collective
preference obtained in the aggregation phase [28], having the lat-
ter been tagged to facilitate its detection.

Fig. 7 shows the graphical projection of preferences generated
by MENTOR. The tag ‘‘P’’ indicates the position of the collective
preference. As can be seen, some useful information can be easily
obtained by analyzing the graphical representation generated:
there exist two significant subgroups of students with very similar
interests. However, such subgroups present a strong disagreement
with each other and with the rest of students, who have diverse
preferences that are situated far from the majority opinions.

The graphical representation of preferences provided by MEN-
TOR let us conclude, without the need for analyzing the large
amount of numerical information about experts’ preferences, that
the proposed solution to the GDM problem (given by the collective
preference) is supported by a minor number of experts only, there-
fore it would not be a well-accepted solution by the group.

4.3. Visualization during a consensus reaching process

Given the low level of students’ agreement on the initially ob-
tained solution, it would be convenient to apply a consensus reach-
ing process before carrying out the selection process. To do so, the
consensus model proposed in [17] has been used, by considering
the same initial preferences of students (see Fig. 7).

A total of five consensus rounds were carried out. At the end of
each round, MENTOR generated a graphical projection of prefer-
ences to facilitate an analysis of their evolution, as well as the
detection of possible disagreement positions and patterns of
behavior adopted by some students. Fig. 8 shows the projections
obtained from the second round onwards. Most students tended
to move their preferences closer to the agreement position, which
th
th
m
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Fig. 8. Graphical representation of preferences during the consensus reaching process.
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means they contributed positively to reach a consensus by apply-
ing changes suggested by the consensus model considered. How-
ever, MENTOR allowed us to notice that one of the two
aforementioned subgroups of interest presented a different behav-
ior, as students belonging to it did not move their preferences at
all, showing that they were not interested in achieving an agreed
decision, but rather in their own preferred options. This fact illus-
trates how MENTOR facilitates the detection of both disagreement
positions and undesired behavioral patterns of experts or coali-
tions of them.

Based on subgroup behaviors detected, different alternate ac-
tions or decisions could be carried out by a decision maker depend-
ing of each particular problem circumstances, for example:
informing experts involved that they are hindering the achieve-
ment of a consensus, moving onto the selection process to make
the final decision before such experts can deviate the group opin-
ion excessively, or penalizing experts who do not cooperate with
the rest of the group [37].

5. Concluding remarks

This paper has presented MENTOR, a graphical monitoring tool
based on Self-Organizing Maps to support large-scale Group Deci-
sion Making problems. The main goal of such a tool consists in
helping decision makers to obtain and analyze easy interpretable
information about the status of these problems during their reso-
lution, as well as letting them analyze visually how different indi-
viduals or subgroups of them behave during the problem. MENTOR
can also be used to detect and analyze visually a variety of aspects
that are especially frequent in large-scale group decisions, such as
the presence of subgroups of individuals with similar interests or
the existence of agreement or disagreement positions. Addition-
ally, it facilitates the monitoring of the problem status across the
time in the cases that a consensus reaching processes is carried
out. The visual analysis that MENTOR provides goes beyond the
numerical information that Group Decision Support Systems or
consensus models usually manage and provide: with MENTOR it
is possible to find out, in a more understandable way, what does
such numerical information mean, how do experts organize in sub-
groups, which experts do not contribute to achieve a consensus in
the group, etc.

Although the tool is rather oriented towards giving support to a
decision maker who is responsible for supervising the problem
(e.g. a moderator in a consensus reaching process or a system
administrator if the problem is solved with the aid of a Group Deci-
sion Support System), it has been shown that for some specific pur-
poses (such as visualizing an expert’s self position with respect of
the rest of the group) it would be also interesting to provide ex-
perts with personalized visual information about the current prob-
lem status.

An example of application of the monitoring tool has been also
presented, to solve a group decision making problem by applying
both a direct selection process and a consensus reaching process.
Such an example has illustrated how to analyze the behavior of ex-
perts through their preferences, as well as how to detect disagree-
ment positions easily.
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