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Abstract

The time and space assembly line balancing problem (TSALBP) is a re-
alistic multiobjective version of assembly line balancing industrial problems
involving the joint optimization of conflicting criteria such as the cycle time,
the number of stations, and the area of these stations. However, the exist-
ing problem formulation does not consider the industrial scenario where the
demand of a set of mixed products is variable and uncertain. In this work
we propose to introduce novel robustness functions to measure how robust
the line configuration is when the production plans demand changes. These
functions are based on the stations overload under future demand conditions
and are used as additional a posteriori information for the non-dominated so-
lutions found by any multiobjective optimization method. The values of the
robustness functions are put together with a novel graphical representation
to form a generic model that aims to offer a better picture of the robustness
of the set of Pareto-optimal solutions.

Real data from the assembly line and production planning of the Nissan
plant of Barcelona is considered for the experimentation. This information
is also employed to develop a new TSALBP instance generator (NTIGen)
that can generate problem instances having industrial real-like features. The
use of the robustness information model is illustrated in an experimentation
formed by a set of instances generated by NTIGen. Results show how the use
of this robustness information model is necessary for the decision maker as it
allows her/him to discriminate between different assembly line configurations
when future demand conditions vary.

Keywords: Robust Optimization, Visualization, Time and Space Assembly
Line Balancing, Mixed Products, Uncertain Demand, Problem Instance
Generator

1. Introduction

An assembly line is made up of a number of workstations, arranged either
in series or in parallel. Since the manufacturing of a production item is
divided into a set of tasks which require an operation time for their execution,
a usual and difficult problem, called assembly line balancing (ALB), is to
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determine how these tasks can be assigned to the stations fulfilling certain
restrictions such as precedence relations. The final aim of ALB is to get an
optimal assignment of subsets of tasks to the stations of the plant (Boysen
et al. 2007; 2008). An excellent review on ALB and the existing solving
methods for the different problems is given in Battäıa and Dolgui (2013).
Within ALB, a well-known family of problems is the simple assembly line
balancing problem (SALBP) (Baybars 1986, Scholl 1999, Scholl and Becker
2006). The SALBP only considers the assignment of each task to a single
station in such a way that all the precedence constraints are satisfied and no
station workload time is greater than the line cycle time.

As a result of the observation of the ALB operation in an automotive
Nissan plant from Barcelona (Spain), Bautista and Pereira (2007) recently
proposed a SALBP extension aiming to design a more realistic ALB model.
They considered an additional space constraint to get a simplified but closer
version to real-world situations, defining the time and space assembly line bal-
ancing problem (TSALBP). The TSALBP presents eight variants depending
on three optimization criteria: m (the number of stations), c (the cycle time),
and A (the area of the stations). In this paper we tackle the TSALBP-m/A
variant1 which tries to jointly minimize the number of stations and their area
for a given product cycle time, a complex and realistic multicriteria problem
in the automotive industry.

The multicriteria nature of the TSALBP-m/A (also known as TSALBP-
1/3) favoured the application of multiobjective meta-heuristics (MOMHs)
such as multiobjective ant colony optimization (MOACO) (Chica et al. 2010),
evolutionary multiobjective optimization (EMO) (Chica et al. 2011), and
memetic algorithms (MAs) (Chica et al. 2012). These MOMHs are able to
return a set of non-dominated solutions for a known demand of homoge-
neous products. However, assembly lines are generally balanced for produc-
ing mixed products and their demand is not usually fixed and certain. When
the assembly line is devoted to produce mixed products in a given sequence,
the operation times of the required tasks are obtained from the average value
of the different products and their demand. This is a problematic rough es-
timate of the actual operation times. If the demand changes, the operation
times also change and a re-balancing could be necessary for the configuration.

1Originally, this TSALBP variant is referred as TSALBP-1/3 Bautista and Pereira
(2007). This new notation is introduced in this work for a better understanding.
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This re-balancing causes production losses as workers, assigned to a worksta-
tion, will have to comply with new tasks within the station. These workers
must be trained in the development of the new tasks. This is normally a two
weeks learning process in the Nissan plant at Barcelona.

These difficulties and associated efficiency losses are common in the au-
tomotive industry. This fact has encouraged us to propose a model for eval-
uating and analysing the convenience of the solutions found by a multiobjec-
tive optimization (MOO) method when these future demand conditions have
changed. Normally, a set of production plans are used to define the demand
in future scenarios. Our proposed model is based on this set of real produc-
tion plans by introducing the concept of robustness of a solution linked to
the flexibility of an assembly line configuration to the demand changes.

Robustness can be applied to many components in an optimization pro-
cess: noise in constraints, objective function, or uncertainties in data vari-
ables (Roy 1998; 2010, Beyer and Sendhoff 2007). Real-world applications,
as ALB, normally involve uncertainties because of operating conditions or
manufacturing process (Miettinen et al. 2008). In our case, the interest lies
on measuring the robustness of a specific operating condition, i.e. the opera-
tion times originated by the mixed products demand. The goal is to identify
how much robust the non-dominated solutions for the TSALBP-m/A are in a
set of production plans. Three robustness functions are defined based on the
overloaded stations and the overloading production plans which occur when
the demand changes and the line configuration is set. The use of overloads
in assembly lines is not new in industrial production but, to our knowledge,
it is a novelty in robust balancing of assembly lines.

The latter robustness measures are used as additional a posteriori in-
formation associated to each non-dominated solution returned by the MOO
method. We followed this design for our model because these robustness func-
tions belong to a secondary importance level with respect to the TSALBP-
m/A objectives. Therefore, the model might be seen as a hierarchical decision
support system where the optimization objectives are the most important
criteria and the robustness is an additional assessment.

Meanwhile, practitioners are requiring better and easier ways to under-
stand the truly useful information to make their decisions. Visualizing the
results of a multi-criteria decision making (MCDM) process is gaining im-
portance and becoming a crucial part of a global framework: search, pref-
erence trade-offs, and interactive visualization (Bonissone et al. 2009). In
our case and to facilitate the understanding of the robustness information, a
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novel graphical representation is firstly introduced in this work. This general-
purpose representation both shows the objective values of the non-dominated
solutions found and embeds the information provided by the robustness func-
tions. Therefore, the robust assembly line configuration options for the prob-
lem are depicted at a glance.

A real-like Nissan TSALBP instance generator software (NTIGen) is
also described in order to validate the robustness model in a diverse set of
TSALBP instances and production plans. The design and implementation of
NTIGen is done by using the real data and industrial features of the Nissan
industry plant of Barcelona. The software is freely available on-line to be
used for future research works. A set of eight instances are used in our ex-
perimentation where the robustness function results and the novel graphical
representation are computed and shown for the non-dominated solutions re-
turned by a specific MOO method, the advanced TSALBP-NSGA-II (Chica
et al. 2011).

The rest of the paper is structured as follows. In Section 2, the TSALBP-
m/A formulation and the uncertain demand scenario modelled by production
plans are explained. The numerical robustness functions for assembly line
balancing are given in Section 3. The robustness information model and its
novel graphical representation are introduced in Section 4. The description
of the NTIGen software is shown in Section 5. The experimentation results
are discussed in Section 6. Finally, we present some concluding remarks in
Section 7.

2. Demand variation in the TSALBP-m/A for mixed product
products

We first introduce the TSALBP-m/A (Section 2.1) and then the real
scenario of having a mixed products with changing demand (Section 2.2).

2.1. Time and space assembly line balancing problem

The manufacturing of a production item is divided into a set J of n
tasks. Each task j requires an operation time for its execution tj > 0 that is
determined as a function of the manufacturing technologies and the employed
resources. Each station k (k = 1, 2, ...,m) is assigned to a subset of tasks
Sk (Sk ⊆ J), called workload. Each task j can only be assigned to a single
station k.

4



Each task j has a set of direct “preceding tasks” Pj which must be ac-
complished before starting it. These constraints are normally represented
by means of an acyclic precedence graph, whose vertices stand for the tasks
and where a directed arc (i, j) indicates that task i must be finished before
starting task j on the production line. Thus, task j cannot be assigned to
a station that is ordered before the one where task i was assigned. Each
station k also presents a station workload time t(Sk) that is equal to the sum
of the tasks’ processing time assigned to the station k. SALBP focuses on
grouping tasks in workstations by an efficient and coherent way.

In this simplistic model there is a need of introducing space constraints
in assembly lines’ design based on two main reasons: (a) the length of the
workstation is limited in the majority of the situations, and (b) the required
tools and components to be assembled should be distributed along the sides
of the line. Hence, an area constraint may be considered by associating a
required area aj to each task j and an available area Ak to each station k
that, for the sake of simplicity, we shall assume it to be identical for every
station and equal to A = maxk=1,2,...,mAk. Thus, each station k requires a
station area a(Sk) that is equal to the sum of areas required by the tasks
assigned to station k.

This leads us to a new family of problems called TSALBP (Bautista
and Pereira 2007). It may be stated as: given a set of n tasks with their
temporal tj and spatial aj attributes (1 ≤ j ≤ n) and a precedence graph,
each task must be assigned to a single station such that: (i) every precedence
constraint is satisfied, (ii) no station workload time (t(Sk)) is greater than
the cycle time (c), and (iii) no area required by any station (a(Sk)) is greater
than the available area per station (A).

TSALBP presents eight variants depending on three optimization criteria:
m (the number of stations), c (the cycle time) and A (the area of the stations).
Within these variants there are four multiobjective problems and we will
tackle one of them, the TSALBP-m/A. It consists of minimising the number
of stations m and the station area A, given a fixed value of the cycle time c,
mathematically formulated as follows:

f 0(x) = m =
UBm∑
k=1

max
j=1,2,...,n

xjk, (1)
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f 1(x) = A = max
k=1,2,...,UBm

n∑
j=1

ajxjk, (2)

where UBm is the upper bound for the number of stations m, aj is the area
information for task j, xjk is a decision variable taking value 1 if task j is
assigned to station k, and n is the number of tasks.

We chose this variant because it is realistic in the automotive industry
since the annual production of an industrial plant (and therefore, the cycle
time c) is usually set by some market objectives. For more information about
the problem we refer the interested reader to Chica et al. (2010; 2012).

2.2. Production plans for modelling changing demand

The latter TSALBP-m/A formulation assumes both a constant demand
and fixed operation times tj. However, real assembly lines are normally
employed to assemble more than one single product, and when the demand of
each product changes, the operation times of the tasks change in consequence.
The demand of a set of mixed products is defined by means of production
plans. In this work, the engine assembly line of the Nissan Spanish Industrial
Operations (NSIO) plant is the chosen uncertain environment to define the
different production plans.

Nine different engines are assembled in the main line of the NSIO plant,
m1, . . . ,m9, having different destinations and assembly characteristics. The
first three engine products are built for 4× 4 vehicles; products m4 and m5

are for VANs; and the remaining four products are used by medium tonnage
trucks. When demand is balanced (identical for the nine products) and the
cycle time is 3 minutes, the assembly line is divided into 21 workstations
having an average length Ak of 4 meters each.

In Bautista and Pereira (2007), authors grouped the primary operations of
this assembly line in the so called Nissan TSALBP instance having 140 tasks.
For each type of engine, operation times change. In Table 1 the operation
times of five tasks are listed for illustration. The average operation time
when having a balanced demand for the nine products is also shown in the
t-average column.

Of course, it is difficult to always have the same uniform demand for all the
engines within a global demand. Although the line is supposed to have a fixed
daily production of, for instance, 270 products, the line should be capable of
producing the required products for the specific product demand of a given
production plan. In other words, the production plan of the 270 engines is
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Table 1: Operation times and average time for five tasks belonging to the NSIO engine
assembly line.

task m1 m2 m3 m4 m5 m6 m7 m8 m9 t-average
1 64.8 61.2 60 54 58.8 55.2 63 66 57 60
3 18.4 18 20 19.6 19 21.6 21 20.4 22 20
5 19 19.6 18.4 20 21 20.4 18 21.6 22 20
8 9.8 9 10.5 10.8 9.5 11 9.2 10 10.2 10
9 20 19.6 19 18 20.4 18.4 21.6 21 22 20

not constant. Then, the goal is to have an assembly line configuration that
is robust enough for different production plans.

There are currently 23 production plans for the nine engines and one
working day at the NSIO. Each program corresponds to a set of operation
times biased by the demand of each of the nine products. We summarise
here the characteristics of each of the 23 production plans. We have grouped
them into seven categories according to the type of engine demand. One
representative production plan is selected for each category to be used in the
computational experimentation developed in Section 6. As said, the total
number of engines assembled in a working day is 270 in two shifts:

Cat-1 (plan #1): identical demand for each of the nine products (balanced
demand) (30 products per product).

Cat-2 (plan #2): identical demand for each of the three engine families: 4×4,
VAN, and trucks (90 per product family).

Cat-3 (plan #3): one of the engine families has low demand while the demand
of the other two families is high and identical.

Cat-4 (plan #6): one of the engine families has high demand while the de-
mand of the other two families is medium and identical.

Cat-5 (plan #9): one of the engine families has high demand while the de-
mand of the other two families is low and identical.

Cat-6 (plan #12): the demand of the engine families follows an arithmetic
progression.

Cat-7 (plan #18): the demand of the engine families follows a geometric
progression.
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The seven representative production plans, one per category, are shown in
Table 2. Definitely, the demand variation of the production plan for mixed
products conditions the average operation times of the 140 assembly line
tasks. In that case, a re-balancing of the assembly line could be necessary.
For example, task 1 has operation times of 64.8, 61.2, 60, 54, 58.8, 55.2, 63,
66, and 57 seconds for products m1 to m9, respectively. On the other hand,
production plan #12 has a demand of 24, 23, 23, 45, 45, 28, 28, 27, and 27
products for each of the engine products. Consequently, the average time for
task 1 in the latter plan is 59.44 seconds (= (64.8×24+61.2×23+ . . .+66×
27 + 57× 27)/270) in comparison with the 60 seconds needed by production
plan #1.

Table 2: Production units of the engine models for each production plan.

Production plans
Family Product # 1 #2 # 3 # 6 # 9 # 12 # 18
4 x 4 m1 30 30 10 50 70 24 60

m2 30 30 10 50 70 23 60
m3 30 30 10 50 70 23 60

VAN m4 30 45 60 30 15 45 30
m5 30 45 60 30 15 45 30

Trucks m6 30 23 30 15 8 28 8
m7 30 23 30 15 8 28 8
m8 30 22 30 15 7 27 7
m9 30 22 30 15 7 27 7

The selected representative production plans are used in this work to
present additional information to the decision maker (DM) about how robust
a new assembly line configuration is under demand changes, i.e. how good
it is with respect to those changes.

3. Robust solutions for assembly line balancing when demand is
uncertain

In Sections 3.1 and 3.2 we provide a brief review of the outstanding pro-
posals in generic robust optimization as well as for the specific application to
ALB. Then, in Section 3.3, we introduce two kinds of robustness functions
to be applied to the assembly line configurations in order to know how the
configuration behaves when demand changes.
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3.1. Robust optimization in EMO and production

The search for optimal robust designs often appears as a MCDM prob-
lem optimizing conditional expectation and variance. For example, one of
the proposals in this line is the multiobjective six sigma (DFMOSS) by Shi-
moyama et al. (2005). In Lim et al. (2006) a priori information is used
to specify the desired robustness of the final design through a multiobjec-
tive evolutionary algorithm with good nominal performance and maximal
robustness.

The work of Deb and Gupta (2006) is the first and one of the most im-
portant contributions in introducing robustness in EMO. The authors define
a robust solution as one which is less sensitive to the perturbation of the
decision variables in its neighbourhood. In MOO problems, this insensitivity
must be shown for the non-dominated solutions with respect to all the ob-
jectives and must be checked for all the Pareto-optimal solutions. Using this
concept, Deb and Gupta (2006) suggest two types of multiobjective robust
solutions: type I and type II. These two types can be seen as the two major
approaches when dealing with robustness (Ferreira et al. 2008): a) expecta-
tion measure, where the original objective function is replaced by a metric of
expectation and performance of the vicinity, and b) variance measure, where
an additional criterion is appended to the objective function to account for
the deviation of the latter around the vicinity of the design point.

There are also works in production and design problems where some of
the parameters of the problem are uncertain or depend on future actions
(Scheffermann et al. 2009, Tan et al. 2007, Ong et al. 2006). An example of
a robust optimization model for a multi-site production planning problem is
developed in Leung et al. (2007). In this work, the authors assume a future
economic scenario with an associated probability. An optimal production
plan less sensitive to the change in the noisy and uncertain data is given by
a stochastic non-linear programming model.

3.2. Robust optimization for assembly line balancing

The most related work to our problem is the robust optimization ap-
proach for ALB proposed by Xu and Xiao (2010; 2011). They deal with the
mixed ALB problem where the exact quantity of products to be manufac-
tured is unknown. The objective is to minimize the workload variance over
all the stations in the line. For that goal two ways of solving the problem
are provided: by using a min-max indicator which minimizes the maximum
workload variance among all the input data scenarios and by considering
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a α-worst approach. The authors claim to be the first ones to propose a
α-worst scenario-based robust criteria and to apply it for ALB. This crite-
ria can generate flexible robust solutions as there is a permitted tolerance
threshold for each solution. A basic genetic algorithm is presented where
the objective function to be minimized is either min-max or α-worst scenario
criterion. As we will explain later in Section 4, one of the main differences of
our contribution with the latter one is not to include the robustness criterion
within the search process.

Another way of considering uncertainty in ALB is by assuming that task
times are uncertain and not deterministic. In Gurevsky et al. (2012) au-
thors deal with the SALBP-E when having variable task processing times
and propose a way to find a compromise between minimizing the objective
function and a stability ratio for the solutions. A related stability study is
done in Gurevsky et al. (2013) but for the case of the GALBP (a problem
where each workstation is equipped with blocks).

In recent works, Dolgui and Kovalev (2012) propose an ALB model with
uncertain operation execution times. Operation execution times are uncer-
tain in the sense that their sets belong to a given set of scenarios. The
difference with the TSALBP formulation is that task time uncertainty is
modelled by upper and lower bounds associated to a specific station. Fol-
lowing this research line, Hazır and Dolgui (2013) have recently presented
two robust SALBP-2 models which present interval uncertainty for opera-
tion times. A decomposition based algorithm is developed and combined
with enhancement strategies to solve both problem models.

Finally, we should remark an existing genetic algorithm for a bi-criteria
ALB problem which considers flexible operation times (Hamta et al. 2011).
The used metaheuristic is single-objective and makes use of a weighted com-
bination for both objectives. The authors use the traditional SALBP formu-
lation and create ranges of tasks’ processing times by adding four units as
the upper bound value.

3.3. A proposal to evaluate the robustness of an assembly line configuration

Solving the TSALBP when the mixed products demand is uncertain be-
longs to the robust optimization case where the operating conditions change
after the optimal solution is found (Ferreira et al. 2008). In our case, the op-
erating conditions are the operation times originated by the different mixed
products demands represented by the production plans of Section 2.2. The
overall goal is to find a set of non-dominated solutions for the TSALBP-m/A
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and calculate their robustness for all the possible production plans. In the
next paragraphs we will present our proposal for evaluating this robustness.

Let E be the set of possible production plans based on the demand vari-
ation and ε0 a reference production plan, our evaluation proposal is based
on determining the workload of the set K of stations of an assembly line
configuration in the plans of E.

First, being S0
k the tasks assignment to the station k in ε0 (normally,

the balanced plan), the workload of this station k is obtained for all the
production plans ε ∈ E: t(S0

k , ε).
Then, the relative station overloads with respect to the available cycle

time c are calculated for all the existing production plans ε by applying
Equation 3.

ω(S0
k , ε) =

max{0, t(S0
k , ε)− c}

c
∀k ∈ K, ∀ε ∈ E. (3)

From these overload values, the average and maximum station overload
values are also calculated through Equations 4 and 5:

ω(S0
k) = ωk =

1

|E|

|E|∑
ε=1

ω(S0
k , ε) ∀k ∈ K, (4)

ωmax(S
0
k) = max

ε∈E
{ω(S0

k , ε)} ∀k ∈ K. (5)

Analogously, the average and maximum overloading values for each pro-
duction plan are obtained by applying Equations 6 and 7:

ω(ε) =
1

|K|

|K|∑
k=1

ω(S0
k , ε) ∀ε ∈ E, (6)

ωmax(ε) = max
k∈K

{ω(S0
k , ε)} ∀ε ∈ E. (7)

The latter values allow us to define and calculate the proposed robustness
functions. We can distinguish two types: a) based on the overload size (Sec-
tion 3.3.1) and b), based on the number of overloaded stations (Section 3.3.2).
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3.3.1. Robustness functions based on the overload size

The robustness of an assembly line configuration can be measured by the
overload size of the stations in the configuration in all the production plans.
Higher station overload sizes mean less robust configurations. We propose
two functions. The first one, R1, considers the average overload of all the
stations for all the production plans:

R1 = f(ω) =
1

|K|

|K|∑
k=1

ω(S0
k) =

1

|E|

|E|∑
ε=1

ω(ε). (8)

The second function, R2, reflects the maximum overload value in the
stations of the configuration and the defined production plans. It could be
seen as the worst possible scenario within the set of production plans:

R2 = f(ωmax) = max
k∈K,ε∈E

{ω(S0
k , ε)} = max{ωmax(S

0
k), ωmax(ε)}. (9)

3.3.2. Robustness functions based on the number of overloaded stations

Another way of determining the robustness of an assembly line configu-
ration is by counting the number of overloaded stations and/or the number
of overloading production plans. Given a station k ∈ K, a production plan
ε ∈ E, a configuration line (S0

1 , S
0
2 , ..., S

0
m) for a reference production plan ε0,

and a cycle time c, we can state that there is an overload in (k, S0
k , ε, c) iff:

t(S0
k , ε) > c ⇔ ω(S0

k , ε) > 0 ∀k ∈ K, ∀ε ∈ E. (10)

Associated to the concept of overload, the sets of overloaded stations for
a plan, overloading production plans, and total overloads are respectively
defined as follows:

D(ε) = {∀k ∈ K | ω(S0
k , ε) > 0} ∀ε ∈ E, (11)

D(S0
k) = {∀ε ∈ E | ω(S0

k , ε) > 0} ∀k ∈ K, (12)

D = {∀ε ∈ E ∧ ∀k ∈ K | ω(S0
k , ε) > 0}. (13)

Finally, taking into account sets D(ε), D(S0
k), and D, three functions are

defined as follows. The third one (Equation 16) will be the third robustness
function to be used in this study.
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� Overloaded stations rate:

δ(ε) =
|D(ε)|
|K|

∈ [0, 1] ∀ε ∈ E. (14)

� Overloading plans rate:

δ(S0
k) =

|D(S0
k)|

|E|
∈ [0, 1] ∀k ∈ K. (15)

� Total number of overloads rate:

R3 = δ =
|D|

|E||K|
∈ [0, 1] (16)

3.3.3. An illustrative example

Table 3 shows an example of five stations from an assembly line in four
different production plans. Average and maximum overload values, ω and
ωmax, are included in the table. It can be observed that all the production
plans overload at least one of the stations. The second station is more robust
than the rest since it is never overloaded. The first and second proposed
robustness functions, R1 and R2, which face the average and maximum over-
load values in all the stations and production plans, take value 1.17 and
4.2, respectively. Overloaded and overloading rates highlight how many sta-
tions and production plans are overloaded and overload this line, respectively.
The third robustness function is also computed from the values in the table:
R3 = δ = 9/20 = 0.45.

Table 3: Overload values using time units and robustness functions for five stations of a
configuration line when having four different production plans.

Stations
k1 k2 k3 k4 k5 ω(ε) ωmax(ε) δ(ε)

Plan #1 2 0 0 0 0 0.4 2 0.2
Plan #2 1 0 1.5 6.3 0 1.76 6.3 0.6
Plan #3 3 0 0 0 1.4 0.88 3 0.4
Plan #4 2 0 0 2 4.2 1.64 4.2 0.6

ω(S0
k) 2 0 0.375 2.075 1.4

ωmax(S0
k) 3 0 1.5 6.3 4.2

δ(S0
k) 0.4 0 0.25 0.5 0.5
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4. Visualization model to include robustness information for the
non-dominated solutions

In all the works reviewed in Section 3, robustness is always included as a
part of the search process. Unlike such previous works, the approach followed
in this study is not to embed this robustness information into the search but
to use it as a posteriori information when the MOO method has finished
its run and has found a set of non-dominated solutions. Our approach has
the advantage of not increasing the computational costs derived from the
solution neighbourhood calculation as well as its independence with respect
to the MOO method used.

4.1. Using the robustness information for the TSALBP-m/A

As the inclusion of the robustness information model is done a posteriori,
any of the existing MOMHs to solve the TSALBP-m/A (Chica et al. 2011;
2012) and even future methods can be used to illustrate the behaviour of
our proposal. The chosen MOMH is devoted to find and present a set of
non-dominated solutions to the DM. Robustness functions R1, R2, and R3

are calculated for all the non-dominated solutions, offering a ranking of the
most robust solutions for the problem among those included in the obtained
Pareto set approximation.

However, the set of non-dominated solutions is normally large and the
application of the robustness functions implies a list of numerical values for
R1, R2, and R3 which could be unmanageable. It is already known that
selecting a solution from a long list of objective vectors is complicated for
human beings (Larichev 1992, Benson and Sayin 1997). Generally in EMO,
attainment surfaces (Knowles 2005, López-Ibáñez et al. 2010) and even more
advanced graphical tools have been proposed to offer a better understanding
of the Pareto front quality assessment, sometimes more useful than numerical
values (Blasco et al. 2008, Lotov and Miettinen 2008, Obayashi and Sasaki
2003).

Besides a list of robustness function values, we propose the introduction of
the robustness information in the graphical representation of the Pareto front
approximation by means of robustness attainment surfaces. These robustness
attainment surfaces can represent more than just one function value. In the
case of the TSALBP-m/A, we have included R2 and R3 in the representation.
We did not additionally include R1 in order to avoid saturating the DM
with excessive information. Moreover, R1 is less discriminative than the
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others. Beyond the particular robustness functions considered, the goal of our
visualization model is not to include every possible robustness function but
only the real valuable information for the DM. The graph of Figure 1 shows
an example with a set of 14 non-dominated solutions and their robustness
information for a given problem instance.

Figure 1: Example of a robustness attainment surface where each non-dominated solution
is represented by a point. The robustness information is encoded by the diameter of the
point and its colour.

Each non-dominated solution is represented by a circle, whose diameter
is proportional to the robustness value given by R3, and the colour illustrates
the value of R2 (green: low overload value and good robustness; red: high
overload value and poor robustness). This way of using graphs associated to
valuable MCDM information is done in many fields as scientific information
analysis (Vargas-Quesada and de Moya-Anegón 2007) or description of gene
expression profiles in bioinformatics (Romero Zaliz et al. 2008).

We can thus see that such a graphical representation of robustness is
complementary to the list of R values. In fact, when the number of non-
dominated solutions increases, the graphical representation of the robustness
is more interpretable for the DM. In addition, it is also more informative as
spatial information can be analysed when using this kind of representation
since the DM is able to discover robust Pareto front regions where all the non-
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dominated solutions are robust, or non-robust regions where their solutions
are not (see the example in Figure 1).

4.2. Scalability issues of the model

Our proposed graphical representation model is generic and can be ap-
plied not just to the TSALBP but to any MOO problem in which presenting
the robustness of a set of non-dominated solutions is an added value for
the final decision of the DM. In that sense, there is a chance to design a
representation software package in which the user can customize her/his rep-
resentation.

Figure 2: Example of the scalability of a robustness attainment surface when having six
different robustness functions.

Concretely, the DM will be allowed to perform the following actions before
launching the MOMH for the specific problem in order to adjust the settings
of the final graphic:

� Selecting the desired robustness functions: From a set of available ro-
bustness functions, the DM is able to select the robustness measures
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to be integrated in the visualization model. This is the same operation
we performed in the current contribution. We just selected two of the
three available robustness functions.

� Representing more than two robustness functions: If the DM desires
to represent more than two robustness functions in the visualization
model the tool will provide a way to show as many as she/he likes. An
example of graph depicting six different robustness functions is shown
in Figure 2. In this graph, four functions (R1, R4, R5 and R6) are
horizontally represented in pairs below the X axis.

� Zooming in dense solution areas: In some problems, many solutions
with similar objective values might appear. The DM can zoom in the
area and inspect the solutions found by the MOMH. In addition, if
there are more than one unique solution for the same objective values
the user will be able to navigate through them.

5. NTIGen: a Nissan TSALBP instance generator software

5.1. Justification and basics of NTIGen

The main goal of the NTIGen software is to create real-like TSALBP
instances with different features to serve as a benchmark for showing our
robustness approach and for any future research work. Although there are
ALB instances available on-line and even a SALBP instance generator (Otto
et al. 2011), there is not any existing source where TSALBP instances can
be generated and referred.

Assembly lines in the automotive industry present a set of industrial
features which condition the task and graph distribution of the problem in-
stance. The user must be allowed to incorporate these industrial real-like
features to the generated instances and these instances should be similar
to the original Nissan instance context (Chica et al. 2012). Concretely, the
developed NTIGen software includes the following features, which are illus-
trated in Figure 3:

� Checkpoints: They are assembly line points in which workers test the
quality and completeness of a set of operations previously finished. If
we consider these checkpoints as new tasks, the representation of a
checkpoint in an assembly line graph is given by a task having a high
number of preceding tasks (for instance, task 11 in Figure 3).
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� Tasks without precedences: In real industrial scenarios, such tasks
are justified if there are operations unconditioned by other operations.
They are commonly found in the engine and trim lines of the car man-
ufacturing. In Figure 3, tasks 1, 3, 8, 7, and 10 have no precedences.

� Final tasks: Tasks in an assembly line which are associated to the most
external and final operations of the product. They are represented as
tasks with no successors in the precedence graph (tasks 12, 13 and 14
in Figure 3).

� Isolated tasks: They can be performed at any part of the assembly of
an item. An example of these kinds of tasks are those related with
additional parts of a product which can be incorporated to the global
product at any station. Task 4 in Figure 3 is an isolated task as it has
no precedence relations.

� Operations aggregation: This process comes up when some operations
need the same tools or are done by the same worker. In this case,
several tasks of the same stage are put together in just one task.

� Operations breaking up: If possible, it is used in the industrial con-
text to detail the implementation of an operation in different operating
tasks. It is useful for balancing an assembly line when the cycle time
is reduced.

� Chains of tasks: They appear when there are strongly linked opera-
tions, normally in the same station or stage. A chain of tasks represents
natural sequences of operations within the assembly process (see tasks
1, 2, 5, and 6 in Figure 3).

5.2. Tuneable parameters of the generator

The features introduced in the previous sub-section can be parametrized
by the NTIGen user to generate a customizable instance. NTIGen is also fed
by a set of stages with some initial tasks. By default, these stages and tasks
correspond to the original Nissan instance with 140 tasks and 21 worksta-
tions (Chica et al. 2012) although they can be modified by the user before
launching the application. The user can set all the desired features by chang-
ing the parameters of an XML file (see Figure 4). The most important input
parameters are the following:
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Figure 3: A precedence graph with 13 tasks showing examples of different kinds of tasks
in an industrial context: chains of tasks, initial and final tasks, isolated tasks, and check-
points.

Number of tasks (n). This is an important parameter of the instance that
enormously conditions its complexity. From the initial set of tasks, new
operating tasks are generated by breaking up them until reaching the user
needs. If we need less tasks than the original ones, they are merged at
random. The new generated tasks are required to belong to the same or
close stages than their original ones.

Processing times (tj) . The processing time of each task tj is randomly dis-
rupted by a normal distribution within a user-defined interval. When creating
or merging tasks, the processing times for the resulting tasks are reduced or
duplicated, respectively. This is done to maintain the original situation of
the Nissan instance.

Production plans. The production plans are always set to the NSIO original
plans, described in Section 2.2. The processing times of the tasks for the
different engine products are created by randomly modifying the original
processing time tj within the range [0.9tj, 1.1tj].

Cycle time (c). It is also disrupted independently from the processing times
of the tasks. As done with tj, the disruption is created within a user-defined
interval. In our case, the new cycle time is set to a value within [0.75c, 1.25c].

Required operation area (aj). Task areas are specified by two-dimensional
units, i.e. length (aj) and width (bj). The first dimension, aj, is the truly
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Figure 4: An XML configuration file to set the input parameters of the NTIGen software.

useful variable for the TSALBP optimization. In the original instance, bj is
always set to one distance unit. To generate a new instance, the squared
area of each task is always maintained by the generator but bj is randomly
changed to a set value. In our case, the set is given by {0.5, 0.75, ..., 2.25}.
This set of possible bj values can be modified by the user of the NTIGen
software. Therefore, the length of each task aj, used for the optimization, is
different for each generated TSALBP instance. As done with the processing
times, aj is reduced or duplicated when increasing or decreasing the number
of tasks to try to maintain the original Nissan situation.

Apart from the operating tasks and their corresponding processing times
and areas, NTIGen generates the precedence graph of the instance. These
precedence relations are created between tasks of the same stage (generating
chains) or different stages within a maximum window, set by the user, in
order to link tasks which are industrially close. The minimum and maximum
number of preceding tasks for a checkpoint in a problem instance can be
set prior the instance generation. The same definition can be done for the
number of initial, final, and isolated tasks.

NTIGen creates precedence relations until it reaches the required com-
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plexity of the graph which is another important feature of an ALB in-
stance (Bhattacharjee and Sahu 1990). This complexity of the precedence
graph is also a user parameter and it is measured by the order strength (OS)
of the graph (Dar-El 1975). The OS is calculated from the graph in transitive
closure. The transitive closure of a set of direct precedences E is given by
ET = {(i, j)|i ∈ V, j ∈ F T

i }, with V being the set of nodes and F T
i the set

of indirect successors of the task i. The OS represents the number of order-
ing relations of the graph in a transitive closure with respect to all possible
ordering relations (Equation 17).

OS =
|ET |
n(n−1)

2

. (17)

The OS varies between [0, 1]. If OS is equal to 0 the instance has no
precedence relations but if OS takes value 1, there is just one feasible sequence
of tasks.

The result after running the NTIGen software is a structured text file
describing the generated instance with the list of tasks, their operating times
and area, and their precedence relations. The precedence relations form
the transitive reduction of the graph in order to minimize computational
resources.

In addition, by changing the number of tasks, their processing time and
area we can generate instances having different time variability (TV) and
area variability (AV). Descriptors about the generated instance are listed
after its creation to show the complexity of the graph, TV, AV, and the
number of checkpoints, isolated, initial, and final tasks.

5.3. Description of the used TSALBP instances

By using the NTIGen software, a set of eight new TSALBP real-
like instances have been created to be used in this study. The fea-
tures of these real-like instances are shown in Table 4. The NTIGen
software and this set of TSALBP instances are publicly available at
http://www.prothius.com/TSALBP.

Notice that, the number of precedences in Table 4 have been calculated
from the transitive reduced graph. Besides, the random seed numbers for
the pseudo-random generator have been randomly obtained from the list of
the first 217 − 1 prime numbers in order to ensure that all instances are
reproducible.
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Table 4: Main characteristics of the generated TSALBP problem instances.

NTIGen instances
Features P1 P2d P3 P4 P5 P6 P7 P8
Random seed 24151 N/A 117017 21277 113683 56399 5869 73553
No. of tasks 100 140 190 220 280 320 376 420
Cycle time 199.97 180 207.07 222.42 221.62 169.552 186.65 137.751
OS 0.5 0.9 0.7 0.5 0.3 0.6 0.25 0.95
Precedences 156 293 314 304 407 435 548 608
Precs. window 5 N/A 5 1 2 1 3 2
TV 35.95 24 41.75 151.45 224.29 2742.28 901.34 1003.77
AV 500 513.86 266.67 300 400 200 300 133.33
Initial tasks 14 1 6 33 59 32 87 6
Final tasks 8 5 7 20 42 31 49 8
Isolated tasks 2 0 5 3 0 5 0 3
Checkpoints 3 N/A 0 6 7 1 12 0

dOriginal NISSAN instance.

6. Experiments and analysis of the robustness results

In this section we present the results of the experimentation and the
analysis of them. The goal is to show how robustness functions are used
a posteriori for providing an important additional information about the
convenience of selecting some non-dominated solutions for the TSALBP-m/A
instead of others according to their robustness.

To generate the non-dominated solutions considered in the experiments
we have selected the advanced TSALBP-NSGA-II (Chica et al. 2011) as
MOO method. The advanced TSALBP-NSGA-II will generate the non-
dominated solution sets for all the TSALBP instances described in Sec-
tion 5.3 and the production plans of Section 2.2 when demand changes.
The parameters of the algorithm are presented in Table 5. We would also
like to remark that the complete TSALBP framework is available on-line at
http://www.prothius.com/TSALBP for ensuring the reproducibility of the
experimentation.

The obtained results and the robustness attainment surfaces of the non-
dominated solutions are presented in Figures 5 to 10. The figures collect the
number of non-dominated solutions (cardinality), a table with the values of
R1, R2, and R3, which denote the robustness of each solution in the Nissan
production plans, and the robustness attainment surfaces.

In these robustness attainment surfaces, function R2 is symbolised by
the green-red colour map (a solution will have a red coloured point when
R2 is over 3% of the total cycle time although this value can be changed).

22



Table 5: Used parameter values for the advanced TSALBP-NSGA-II.

Parameter Value Parameter Value

Random seed 1212 Stopping criteria 300 s
Population size 100 Ishibuchi’s similarity 10

based mating γ, δ values
Crossover probability 0.8 Mutation probability 0.1
α values for
scramble mutation {0, 0.8}

R3 is represented by the diameter of each non-dominated solution. Then,
smaller and reddish points mean lower robustness. As explained in Section 4,
the graphical information of the model is complementary to the robustness
functions and they both constitute the proposed model. In this section we
will show how a valuable analysis can be derived from it.

The first instance tackled by the algorithm is P1 (Figure 5) where only
two non-dominated solutions are found. However, even when having small
non-dominated solution sets, the robustness information is important for the
DM. Solution #2 reports robustness values of R1 = 0.149, R2 = 3.33, and
R3 = 0.12. These values mean that, when demand varies, the assembly line
should support an average station overload of 0.149 time units (R1), 3.33 time
units in the most overloaded station (R2), and that a 12% of the stations are
overloaded (R3). Solution #2 is thus less robust than solution #1. Then, if
a DM can afford stations with an area of 5.4, solution #1 shall be the best
option.

P2 is the original Nissan instance having 140 tasks. The number of non-
dominated solutions obtained by the algorithm is five (see Figure 6). The
graphical points and the numerical values of R1, R2, and R3 allows us to
conclude that solutions #1 and #2, those with objective values (19, 5) and
(18, 6.09), respectively, are less robust than the remainder when demand
changes. The DM is able to rapidly infer from the attainment surface of
Figure 6 that, if the number of stations (and then, workers) is not restricted,
the best approach in terms of robustness is always choosing a solution with
more than 19 stations.

Instances P3 and P5 are the cases in which the most homogeneous and
robust solutions are found. In both instances, almost all the solutions seem
to be robust enough for the production plans. There are even some solutions
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Sols. R1 R2 R3

S1 0.022 2.30 0.01
S2 0.149 3.33 0.12

Figure 5: Robustness attainment surface (representing R2 and R3) and robustness values
for the non-dominated solutions when solving the NTIGen instance of 100 tasks (P1).

Sols. R1 R2 R3

S1 0.126 2.4 0.139
S2 0.103 1.98 0.149
S3 0.039 1.33 0.092
S4 0.044 1.05 0.083
S5 0.018 0.94 0.029

Figure 6: Robustness attainment surface (representing R2 and R3) and robustness values
for the non-dominated solutions when solving the original Nissan instance of 140 tasks
(P2).

with no station overload (R1 = R2 = R3 = 0). As these instances do not
provide any difference with respect to their robustness values, we have not
included their graphical representations in the section to focus our analysis
just on those instances presenting a higher robustness variability.

On the contrary, the rest of the problem instances present important
robustness differences among the solutions, thus showing the importance of
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our proposed model. For example, there are seven non-dominated solutions
for instance P4 (Figure 7). Among them, there are two solutions which are
less robust than the remainder. These are solutions #1 and #2 with 15 and
16 stations, respectively. In the latter pair of solutions, the 11% and 5.2% of
the stations are overloaded by different production plans (R3 function) and
the worst overloaded stations have an overload of 3.48 and 4.21 time units
(R2).

Sols. R1 R2 R3

S1 0.131 3.48 0.111
S2 0.137 4.21 0.052
S3 0.012 0.58 0.03
S4 0.035 1.59 0.046
S5 0.009 0.72 0.017
S6 0.023 1.33 0.033
S7 0.013 1.33 0.032

Figure 7: Robustness attainment surface (representing R2 and R3) and robustness values
for the non-dominated solutions when solving the NTIGen instance of 220 tasks (P4).

Problem instances P6, P7, and P8 are those having the highest number
of tasks (320, 376, and 420) and reflect more robustness differences. The
advanced TSALBP-NSGA-II has produced non-dominated sets with a high
number of solutions: 14 in P6 and 11 in P7-P8. The robustness attainment
surfaces are again complementary to numerical data. The graphical repre-
sentation is necessary to easily find the most robust solutions (Figures 8 to
10). In these instances it is also possible to discover different robust areas in
the Pareto front.

In view of the robustness function values for problem instances P6 and P7
(Figures 8 and 9) as well as the counterpart figures, the most robust solutions
for instance P6 are those having a number of stations between 25 and 29.
The least robust ones are those with less than 20 stations as well as those
between 21 and 23. Moreover, having the information that solutions #3 and
#4 with 20 and 21 stations are more robust than their closest solutions is
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valuable for the DM. In this case, if the number of stations (workers) is not
totally restricted, he/she can choose the most robust solution from the set
of all non-dominated ones.

Sols. R1 R2 R3

S1 0.231 2.63 0.185
S2 0.226 3.29 0.158
S3 0.095 2.79 0.075
S4 0.072 2.82 0.079
S5 0.093 4.04 0.083
S6 0.084 4.04 0.072
S7 0.066 2.85 0.055
S8 0 0 0
S9 0.019 1.93 0.019
S10 0.018 1.19 0.018
S11 0 0 0
S12 0.02 1.36 0.029
S13 0.029 2.74 0.017
S14 0.028 2.74 0.016

Figure 8: Robustness attainment surface (representing R2 and R3) and robustness values
for the non-dominated solutions when solving the NTIGen instance of 320 tasks (P6).

The least robust solutions of instance P7 are solutions #1, #2, and #6.
These solutions have high values (low robustness) with respect to the others.
Since the robust solutions are distributed along the entire surface of the
Pareto front, the DM could select an assembly line configuration without
taking into account these least robust options but always having more than
18 stations.

The last instance is P8 and we can find significant robustness differences
among the non-dominated solutions. Solutions #1, #3 and #4 have very
high R1, R2, and R3 values and then, they are not recommended if the DM is
looking for robust configuration lines for demand changes. If implementing
these solutions, there could be overloaded stations with more than 4 time
units each. If the number of stations (and then, workers) is restricted, the
DM can choose solution #2 having 24 stations which is more robust under an
uncertain environment. Apart from this solution, solutions with more than
31 stations (#9, #10, and #11) are the most robust in comparison with the
others.

In summary, there are important differences in terms of robustness in
all the instances but P3 and P5. In particular, the graphical representation
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Sols. R1 R2 R3

S1 0.211 4.15 0.157
S2 0.142 4.42 0.093
S3 0.021 0.86 0.035
S4 0.014 1.61 0.017
S5 0.005 0.54 0.024
S6 0.065 3.67 0.038
S7 0.04 2.02 0.022
S8 0 0 0
S9 0 0 0
S10 0.008 0.97 0.013
S11 0.008 0.97 0.012

Figure 9: Robustness attainment surface (representing R2 and R3) and robustness values
for the non-dominated solutions when solving the NTIGen instance of 376 tasks (P7).

Sols. R1 R2 R3

S1 0.193 4.02 0.145
S2 0.093 2.86 0.07
S3 0.199 3.97 0.127
S4 0.119 4.16 0.074
S5 0.068 2.76 0.047
S6 0.092 2.76 0.069
S7 0.081 2.76 0.055
S8 0.059 2.01 0.054
S9 0.028 2.01 0.026
S10 0.026 2.01 0.025
S11 0.025 2.01 0.024

Figure 10: Robustness attainment surface (representing R2 and R3) and robustness values
for the non-dominated solutions when solving the NTIGen instance of 420 tasks (P8).

by means of robustness attainment surfaces helped to find robust solutions
close to others which are not. Examples of this fact are instances P2, P5, P7,
and P8 where the DM can guide her/his decision to robust solutions with-
out a loss of optimized objective values and without the need of additional
computations within the MOO method run.
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7. Concluding remarks

The existing TSALBP formulation and previous ALB works do not cover
an important real scenario where the same assembly line is devoted to pro-
duce mixed products and their demand is not fixed. In this paper we have pre-
sented a new robustness model to add important information in the MCDM
process by evaluating the most robust assembly line configurations when fu-
ture demand conditions can vary. The model comprises robustness functions
and a graphical representation.

Three robustness functions, R1, R2, R3, are defined based on the num-
ber of overloaded stations and the size of these overloads. The graphical
representation of the robustness information makes use of the colour and
size of each non-dominated solution point to form the robustness attainment
surfaces of the Pareto fronts.

The proposed model was used to analyse the non-dominated solutions
provided by the state-of-the-art MOO method for the TSALBP-m/A, the
advanced TSALBP-NSGA-II, although the nature of the robustness model
allows the use of any other MOO method instead. The results of the ap-
plication of the robustness model are clear. There are some solutions which
are less robust than others when demand changes and the DM can take
advantage of this information before making her/his decision.

Furthermore, the inclusion of the robustness information within the
graphical representation of the Pareto front has shown a practical use as
it clearly presents which solutions are robust and robustness areas of inter-
est at a glance. The DM is now able to analyse the robustness information
and identify robust Pareto front regions and their assembly line configuration
alternatives.

In addition, the NTIGen software was presented to allow researchers to
create realistic TSALBP instances and production plans for future research.
The generated TSALBP instances contain many real-like industrial features,
e.g. checkpoints, isolated tasks, initial and final tasks, chains of tasks, or
stages, which make the NTIGen software a practical tool for simulating the
industrial conditions of an assembly line.

Some future works arise from this contribution: (i) to include the robust-
ness information within the search process of the MOO method, and (ii) to
design a global visualization framework also representing the assembly line
configurations and the relations between the different alternative solutions.
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Gurevsky, E., Battäıa, O., Dolgui, A., 2012. Balancing of simple assembly lines
under variations of task processing times. Annals of Operations Research 201,
265–286.
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