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Abstract—Since Zadeh’s proposal and Mamdani’s seminal
ideas, interpretability is acknowledged as one of the most
appreciated and valuable characteristics of fuzzy system iden-
tification methodologies. It represents the ability of fuzzy sys-
tems to formalize the behavior of a real system in a human
understandable way, by means of a set of linguistic variables
and rules with a high semantic expressivity close to natural
language. Interpretability analysis involves two main points of
view: readability of the knowledge base description (regarding
complexity of fuzzy partitions and rules) and comprehensibility
of the fuzzy system (regarding implicit and explicit semantics
embedded in fuzzy partitions and rules, as well as the fuzzy
reasoning method). Readability has been thoroughly treated by
many authors who have proposed several criteria and metrics.
Unfortunately, comprehensibility has usually been neglected be-
cause it involves some cognitive aspects related to the human
reasoning which are very hard to formalize and to deal with. This
paper proposes the creation of a new paradigm for fuzzy system
comprehensibility analysis based on fuzzy systems’ inference
maps, so-called fuzzy inference-grams (fingrams) by analogy
with scientograms used for visualizing the structure of science.
Fingrams show graphically the interaction between rules at the
inference level in terms of co-fired rules, i.e., rules fired at the
same time by a given input. The analysis of fingrams offers
many possibilities: measuring the comprehensibility of fuzzy
systems, detecting redundancies and/or inconsistencies among
fuzzy rules, identifying the most significant rules, etc. Some of
these capabilities are explored in this work for the case of fuzzy
models and classifiers.

Index Terms—Fuzzy Modeling, Interpretability-accuracy
Trade-off, Comprehensibility Analysis, Expert Analysis, Infor-
mation Visualization, Social Network Analysis.

I. I NTRODUCTION

Interpretability of a fuzzy system involves the skill or talent
of the specific end-user, i.e., the person who interprets its
linguistic description with the aim of inferring (conceiving)
the significance of the system behavior. In consequence, char-
acterizing and assessing interpretability is a very subjective
task which strongly depends on the background (experience,
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preferences, knowledge, etc.) of the person who makes the
evaluation [1].

Interpretability is a distinguishing capability of fuzzy sys-
tems that is really appreciated in most applications. Even more,
it becomes an essential requirement for those applications
that involve extensive interaction with human beings. Thus,
we will focus on the so-calledhumanistic systems, defined
by Zadeh [2] as those systems whose behavior is strongly
influenced by human judgment, perception or emotions. For
instance, decision support systems in medicine [3] must be
easily understandable, for both physicians and patients, with
the intention of being reliable, i.e., widely accepted and
successfully applicable.

Unfortunately, fuzzy systems are not interpretableper se,
they have to be designed carefully to fulfill that characteristic.
Of course, the use of linguistic variables [2] and rules [4],[5]
favors interpretability due to their high semantic expressivity
close to natural language. Nevertheless, there are many differ-
ent issues which must be taken into account in order to design
interpretable fuzzy systems. Firstly, several interpretability
constraints [6], [7] have to be imposed along the whole design
process with the aim of producing fuzzy systems with the
required interpretability level, i.e., systems capable ofbeing
understood, described or accounted for by a human being.
As a result of these constraints, interpretability is usually
achieved at the cost of penalizing accuracy. For this reason,
most fuzzy systems are built jeopardizing interpretability, only
paying attention to accuracy. Even in those cases, authors
usually claim their fuzzy systems are much more interpretable
than those systems based on black-box techniques, like neural
networks, because they are based on fuzzy logic. Those claims
are quite questionable and should be rejected because they are
deceptive. Obtaining interpretable fuzzy systems is a matter of
design which must be carefully considered. Unless this is done
neatly, produced fuzzy systems will be hardly interpretable,
becoming black-boxes in that interpretability sense.

The assessment of interpretability has to face two main
issues [1]: (1) readability (transparency) of the system descrip-
tion, related to the view of the model structure as a gray-box,
and (2) comprehensibility of the system explanation, which
is closer to cognitive aspects because it is always related to
human beings. Of course, the analysis has to take into account
all elements included in a fuzzy system, from the lowest (fuzzy
partitions) to the highest (fuzzy rules) abstraction levels [8].
Namely, the analysis must range from the design of each
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individual linguistic term (and its related fuzzy set) to the
analysis of the cooperation among several rules, what depends
on the fuzzy inference mechanism.

Most previous works [9], [10] only analyze the readability
of the designed fuzzy system. Moreover, the analysis of
readability is usually reduced to a basic analysis of complexity,
i.e., it consists of counting the number of elements included
in the fuzzy knowledge base (number of rules, premises, lin-
guistic terms, etc.). Other contributions also analyze structural
properties of fuzzy partitions [6] such as distinguishability,
coverage, and so on. Recently, a few authors have shown
the importance of extending the analysis of readability to
evaluate the implicit and explicit semantics embedded in
a fuzzy knowledge base [11], [12]. Of course, keeping a
small number of linguistic terms is appreciated due to the
limits of human processing capabilities [13]. Nevertheless,
not only the quantity but also the quality is very important.
Thus, the selection of the right linguistic terms is essential
to yield interpretable systems. Notice that, interpretable fuzzy
partitions must represent prototypes that are meaningful for
the interpreter.

Although there has been a huge effort for defining, charac-
terizing and assessing interpretability in the last decade, there
is still a lot of work to be done. Namely, the comprehensibility
analysis of the system explanation is almost negligible. Un-
derstanding the system behavior from its linguistic description
becomes a very hard task that involves the inference level
going beyond the simple assessment of the system structure
readability.

This work presents a novel methodology, firstly sketched
in [14], for analyzing the fuzzy inference layer of a fuzzy
rule-based system (FRBS) from the comprehensibility point
of view. It is mainly based on the adaptation of recent
analysis techniques from a completely different research field,
that of Scientometrics [15]. We will consider the use and
enrichment of existing techniques for visualizing scientific
information based on social network analysis [16], [17], called
scientograms or visual science maps [18], to the visual analysis
of the fuzzy systems’ inference process. As a consequence,
our new comprehensibility analysis tool will be called fuzzy
inference-grams (fingramsfrom now on).

FRBSs can be either designed from expert knowledge or
automatically generated from experimental data with a specific
learning technique. Anyway, the correspondence of generality
and specificity in between the extracted knowledge and the
available examples is not always straightforward. Moreover,
this fact may become a handicap. So for, a visual representa-
tion of the FRBS inference process allows us to find out how
rules cover examples and how rules are related among them,
because they interact to produce the overall behavior of the
system.

A first software package for generation and analysis of
fingrams has been implemented. It is freely downloadable
as open source software as part of the GUAJE tool1. All
application examples presented in this paper are conducted
using this software. Moreover, it includes an interactive guide

1http://www.softcomputing.es/guaje [19]

tutorial that allows the user to become familiar with the tool.
As a result, the interested reader can use GUAJE not only to
reproduce the illustrative examples presented in this paper, but
also to generate and analyze her/his own fingrams.

The rest of the contribution is organized as follows. Sec-
tion II presents some preliminaries including basic aspects
related to interpretability assessment, a brief overview on
existent methodologies for visual representation and analysis
of fuzzy systems, and a short introduction to the most widely
known techniques for social network analysis extending the
design and analysis of visual science maps. Section III in-
troduces the fingram generation process while Section IV
presents the possibilities fingram analysis offers. Section V
shows some illustrative application examples. Finally, some
conclusions and future works are pointed out in Section VI.

II. PRELIMINARIES

A. Assessing Interpretability of Fuzzy Rule-based Systems

There are universal indices commonly accepted for accuracy
assessment. For instance, the mean square error and the
number of misclassified patterns are widely used for regression
and classification problems, respectively. However, this is not
the case when dealing with interpretability evaluation, where
the definition of such indices remains an open hot topic.

There are lots of interpretability indices focusing on spe-
cific characteristics of FRBSs. Nevertheless, finding out a
universal index for interpretability seems to be an impossible
mission since the considered concept is strongly affected by
subjectivity. In fact, there is a need to look for two kinds
of complementary indices, objective and subjective ones. On
the one hand, objective metrics are needed to make feasible
fair comparisons among different fuzzy systems. On the other
hand, subjective measures are demanded when looking for
personalized fuzzy systems. Such systems require a flexible
index to be easily adaptable to the context of each problem as
well as to end-user’s preferences.

Interpretability indices can be grouped according to two
different criteria [20], the nature of the interpretability index
(structure vs. semantics) and the elements of the fuzzy knowl-
edge base that it considers (fuzzy partitions vs. rule base). The
four derived groups are: (Q1) structure at partition level,(Q2)
structure at rule base level, (Q3) semantics at partition level,
and (Q4) semantics at rule base level.

Fuzzy Partition Level Rule Base Level

Structural-based

Interpretability

Semantic-based

Interpretability

Number of rules

Number of conditions

Consistency of rules

Rules fired at the same time

Transparency of rule structure

Cointension

Number of membership functions

Number of features/variables

Completeness or coverage

Normalization

Distinguishability

Complementarity

Relative measures

Q2Q1

Q3 Q4

Fig. 1. Quadrant of interpretability indices [20].

Most well-known existing interpretability indices corre-
spond to groups Q1 and Q2, thus they focus on readability
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(in terms of complexity at structural level) of fuzzy systems.
In consequence, they are objective indices since they basically
count the number of elements (features/variables, membership
functions, rules, premises, etc.) existing in the FRBS.

Indices included in group Q3 usually measure the degree of
fulfillment of semantic constraints that should be overimposed
during the design process. In [6] Oliveira proposed some se-
mantic constraints (coverage, normalization, distinguishability,
etc.) required to have interpretable fuzzy partitions fromthe
semantical point of view. The use of strong fuzzy partitions
(SFP) [21] satisfies all these semantic constraints. Nonetheless,
notice that, breaking the SFP property can yield more accurate
systems. Therefore, there are proposals that ensure a good
interpretability at this level without considering SFP [11], [22],
[23].

Finally, group Q4 is the one that contains the lowest number
of works in the literature. These indices advocate for extending
the analysis of readability to evaluate the comprehensibility,
i.e., the implicit and explicit semantics embedded in fuzzy
systems [12]. There are also some papers dealing with the
consistency of fuzzy rule bases and with the number of co-fired
rules, i.e., rules simultaneously fired by a given input [24]–
[26].

B. Visual Description and Analysis of Fuzzy Rule Bases

There are not many papers tackling with visual analysis
of the fuzzy system inference process. Probably, this is due
to the well-known linguistic expressivity of fuzzy systems
what gives prominence to linguistic representations. However,
when dealing with complex real world problems, even when
the design is made carefully to maximize interpretability,
the number of rules can become huge because of the curse
of dimensionality characteristic of FRBSs. In those cases,
looking for a plausible linguistic explanation of the inferred
output, derived from the linguistic description of the fuzzy
knowledge base, is not straightforward. When many rules are
fired at the same time for a given input, explaining the inferred
output as an aggregation of all the involved rules can be very
complicated.

Some authors [27] have searched for understandable ways
of interpreting the system output in terms of describing the
inferred output possibility distribution by a set of previously
defined linguistic terms along with some linguistic modifiers
and connectives. As an alternative, other authors have made
a bet for searching visual explanations of the system out-
put [28]–[30]. In these papers, Ishibuchi et al. established a set
of design constraints with the aim of producing groups of rules
with only two antecedent conditions that can be representedin
a two-dimensional space. These works focus on providing a
visual representation able to explain the output of fuzzy rule-
based classifiers to human users. Nevertheless, considering
only two antecedents per rule is a strong limitation that may
penalize the accuracy of the system, especially when dealing
with complex and high dimensional problems.

A complete analysis of visualization requirements for fuzzy
systems is provided in [31]. That contribution gives an
overview on existing methodologies to yield 2D and 3D graph-

TABLE I
CHARACTERISTICS OF VISUALIZATION METHODS FOR

MULTI -DIMENSIONAL FUZZY RULES

[32] [33] [34], [35] [36]
Represent data samples X X X

Represent overlapping X X X

among rules at
descriptive level
Represent rule interaction
at inferential level

ical representations of fuzzy systems. It comprises visualiza-
tion of fuzzy data, fuzzy partitions, and fuzzy rules. Different
alternatives are available depending on the requirements of
the end-user (fuzzy designer, domain expert, etc.). More-
over, requirements may change according to the visualization
tasks to perform: interactive exploration; automatic computer-
supported exploration; receiving feedback from users; and
capturing users’ profiles and adaptation.

The most relevant works on the design of visual repre-
sentations for multi-dimensional fuzzy rules are those devel-
oped by Berthold et al. [32], [33]. They make a mapping
from high dimensional feature spaces onto two-dimensional
spaces which maintains the pairwise distances between rules.
The established mapping also displays an approximation of
each rule spread and overlapping. As a result, it is possible
to visualize and explore multi-dimensional FRBSs in a 2D
graphical representation. Authors claim such representation
yields a user friendly and interpretable exploratory analysis.
However, the complexity of the analysis grows exponentially
with the number of variables and rules to be displayed. In
consequence, in complex and high dimensional problems, the
interpretation of the resulting graph is not straightforward.

Evsukoff et al. [34], [35] propose the use of an interpretation
framework that helps understanding multidimensional fuzzy
rules. They assign a symbol to each rule, which is represented
by a Gaussian membership function. The model interpretation
is based on analysis of rule weights and on a 2D linear
principal component analysis projection to visualize the model.

On a different basis, Casillas et al. [36] present the so-called
“transition chromatic maps” for fuzzy rules generated from
uncertain data. These maps are generated as result of a visual
modeling process that represents the extracted knowledge in a
more understandable way, thus helping in the postprocessing,
interpretation stage of knowledge discovery in databases.They
allow us to see the relations among variables by observing the
chromatic evolution of the surfaces on the graph.

Table I summarizes the main characteristics of the most rel-
evant visualization methods for multidimensional fuzzy rules
previously introduced. All methods make a 2D representation
of fuzzy rules. Some of them represent data and some others
show the existing overlapping among rules at descriptive level,
but none of them represents rule interaction at inference level.
This brief review shows that there is a lack of methods
depicting the interaction among rules that, however, could
strongly help in the comprehension of the rule base behavior.
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C. Social Network Analysis

A social network is a social structure made up of individuals
called “nodes”, which are connected or tied by “edges” (also
called ties, links, or connections) corresponding to one ormore
specific types of interrelations, such as friendship, common
interest, or knowledge. Social network analysis (SNA) [16],
[17] views social relationships in terms of network theory
regarding nodes and edges. Nodes are the individual actors
within the networks, and ties are the relationships among the
actors. Research in a number of academic fields has shown
that social networks operate on many levels, from families up
to the level of nations. They play a critical role in determining
the way how problems are solved, organizations are run, and
individuals succeed in achieving their goals.

Given a network, the scaling algorithms have the goal to
take proximity information and to obtain structures revealing
the underlying organization. They use similarities, correlations,
or distances to prune a graph based on proximity among
pairs of nodes. The three predominant ways proposed in the
literature to perform this task are analyzed below [37].

The first option introduces a link weight threshold and it
only considers the links having weights above this thresh-
old [38]. This approach is straightforward and easy to imple-
ment. However, it does not take the intrinsic structure of the
underlying network into account, so the transformed network
may not preserve the essence of the original one. Furthermore,
the value of the threshold could be hard to adjust for the user.

The second option extracts a minimum spanning tree (MST)
from a network ofN vertices [39]. This approach guarantees
the number of links in the transformed network is alwaysN−
1. However, that does not always reflect the subjacent relevant
information.

The third option imposes constraints on paths and excludes
links that do not satisfy the constraints. One of the most known
methods, the Pathfinder algorithm [40], [41], is frequentlyused
due to its mathematical properties related to the preservation
of the triangular inequality. Those properties include the
conservation of links, the capability of modeling symmetrical
but also asymmetrical relationships, and the representation of
the mostsalientrelationships present in the data. The result of
applying Pathfinder to a network is a pruned network called
PFNET.

Once PFNETs or any other kind of pruned networks are
generated, there are many different methods for their automatic
visualization. Force-based or force-directed algorithmsare the
most widely used class of algorithms for drawing graphs in
the area of information science [42], [43]. Their purpose is
to locate the nodes of a graph in a two or three dimensional
space so that all the edges are approximately of equal length
and there are as few crossing edges as possible, trying to obtain
the most aesthetically pleasing view. This family of methods
has Kamada-Kawai [44] and Fruchterman-Reingold [45] as
their most representative methods.

Kamada-Kawai [44] is one of the most extended methods
for visualizing PFNETs. Starting from a circular position of
the nodes, it generates networks with aesthetic criteria such
as the maximum use of the available space, the minimum
number of crossed links, the forced separation of nodes, the

generation of balanced maps, etc. It assigns coordinates to
the nodes trying to adjust as much as possible the distances
existing among them with respect to actual network distances.

In the Fruchterman-Reingold Algorithm [45], the attraction
or repulsion among nodes determines in which direction a
node should move. Nodes move from an original layout step
by step. The step width of node movements decreases at each
iteration. Once nodes stop moving, the procedure ends.

The combination of SNA through the use of network scaling
algorithms and visualization methods has proved its capability
to get high quality, schematic visualizations of the resulting
networks in various fields: psychology (to represent the cog-
nitive structure of a subject [40], [41]), software development
(for debugging of multi-agent systems [46]), scientometrics
(for the analysis of large scientific domains [18], [47]), etc.

D. Scientogram Design and Analysis

The termscientogram, a particular case of social network,
is coined in the specialized literature to make reference to
visual science maps, i.e., visual representations of scientific
domains. Vargas-Quesada, Moya-Anegón et al. [18], [47], [48]
proposed a methodology to create scientograms with the aim
of illustrating interactions among authors and papers through
citations and co-citations. The basic idea turns up from the
notion of manuscript co-citation that represents the frequency
with which two documents are simultaneously cited by others.
It is possible to group them by author, journal, or thematic
category, for instance. Of course, depending on the kind of
grouping, the information that can be extracted from the
generated maps is different.

The standardized co-citation measure was originally defined
by Salton and Bergmark [49]:

MCN(ij) =
Cc(ij)

√

c(i) · c(j)
(1)

where Cc means co-citation,c stands for citation,i and j

represent two different entities (authors, documents, journals,
categories, institutions, countries, etc.).

As an illustrative example, Fig. 2 represents the scientogram
of the world production in 2002. It consists of 16 thematic
areas where the volume of the nodes is shown proportional to
the volume of produced documents. The links represent the
main connections among these areas.

Notice that, the combination of entities co-citation, PFNETs,
and Kamada-Kawai considered building this scientogram
makes the most important entities in the network (i.e., those
sharing more sources with the rest) tend to be placed toward
the center.

Finally, concerning the analysis of scientograms, according
to [18], [48], there are three main measures of centrality
that yield useful information with the aim of detecting and
identifying the most significant nodes in a PFNET:Centrality
Degree (regarding the number of direct links gathering in
a node),Closeness Centrality(measuring the shortest paths
among nodes, for which the inverse of the sum of the distance
of a node to all other nodes would indicate its importance), and
Intermediation Centralityor Betweenness(looking at nodes
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Fig. 2. Scientogram of the thematic areas of world science, 2002.

that act as links between other nodes contained in the shortest
path, for which the highest value would highlight the most
central node).

III. F INGRAM DESIGN

This paper proposes a new methodology for visual rep-
resentation and exploratory analysis of the fuzzy inference
process in FRBSs. In such systems, various rules can be fired
simultaneously by an input. Moreover, the usual behavior of
FRBSs is that, given a set of problem inputs, several fuzzy
rules are fired at the same time. In other words, the input space
is usually covered by rules with dense overlapping among
them.

In this proposal we take advantage of this characteristic
of FRBSs using a set of problem instances to uncover co-
fired rules. This co-firing information is used to create social
networks representing fuzzy systems’ inference maps, the so-
calledfingrams. In these kinds of social networks each fuzzy
rule is represented by a node, and the relations among rules are
represented by weighted edges whose value is computed using
a specific metric. Different metrics can be used to construct
a social network given a dataset of cases representing the
input-output relations existing in the problem tackled, a set
of fuzzy rules, and a fuzzy reasoning mechanism. As a result,
fingrams show graphically the interaction among fuzzy rules
at the inference level in terms of co-fired rules.

Due to the high overlapping among rules, the complete
fingram is usually quite dense and difficult to analyze even
for medium-size FRBSs. Fortunately, network scaling methods
can be used to simplify fingrams while maintaining their most
important relations.

As seen in Sec. II-C, social networks can be represented
by the use of drawing methods especially designed for that
purpose. Here, a specific graph representation is developedto
provide the relevant information of the FRBS under study.
Colors and sizes are also used to highlight distinguishing
characteristics of the system, allowing the end-user to do a
systematic analysis.

From a formal viewpoint, the proposed fingram definition
is as follows:

Definition A fingram is defined by a tuple
(R,P, I, E,m,NSM,NDM) in which:

R is the set of fuzzy rules (nodes), denotedRi, 1 ≤ i ≤ r,
with r being the number of rules.
P is the set of fuzzy partitions of input and output variables.
I is the fuzzy inference mechanism used.
E is the set of problem instances, denotedEk, 1 ≤ k ≤ d,
with d being the number of instances.
m is the metric used to createM , a square weight matrix
(r× r) that represents the firing interactions among fuzzy
rules. The entries of that matrix are the weights associated
with the links;mij is the weight of the link connectingRi

andRj .
NSM is the considered network scaling method.
NDM is the considered network drawing method.

The remaining of the section explains in detail the procedure
followed to create fingrams. The section finishes with an
illustrative example.

A. Fingram generation

The generation of a fingram from a FRBS, a fuzzy inference
mechanism, and a set of problem instances is made by means
of the following procedure:

Procedure FINGRAM(R,P,I,E,m,NSM,NDM)
begin

/* Generation of the social network defined by M using the set of fuzzy
rules R, the set of fuzzy partitions P, the fuzzy inference mechanism
I, the set of instances E, and the metric m. */

M ←− network generation (R, P, I, E,m)
begin

FRi, FRj ←− get number of fired rules (R, P, I, E);

SFRij ←− get number of co-fired rules (R, P, I, E,m);

M ←− compute Mij (FRi, FRj, SFRij);

/* Scaling of the social network defined by M through the use of the
network scaling method NSM. */

MS ←− network scaling (M,NSM)
begin

EE ←− evaluate values of edges (M,NSM);
MS ←− obtain the pruned network (M,EE);

/* Graphical representation of the resulting pruned social network MS

using the network drawing method NDM. */
MD ←− network drawing (MS,NDM)
begin

NI ←− compute information related to nodes (MS);
NP ←− compute the network layout (MS,NDM);
MD ←− paint edges(MS,NDM,NI,NP );

Notice that the rest of this section is devoted to explain each
of the steps of the procedure in detail.

1) Network generation:Starting from a set of fuzzy rules
R, a set of fuzzy partitionsP , a fuzzy inference mechanism
I, a set of problem instancesE, and a metricm, a social
network can be built, represented by a matrixM , which shows
the relations among rules.

A square matrixM (r × r) that contains all interactions
inside R is computed regarding the proportion of problem
instances co-firing the rules.

M =









0 m12 . . . m1r

m21 0 . . . m2r

. . . . . . . . . . . .

mr1 mr2 . . . 0









(2)

We propose the following metric, inspired by the co-citation
measure of scientograms (Eq. 1):

mij =

{

SFRij√
FRi·FRj

, if i 6= j

0 , if i = j
(3)
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SFRij corresponds to the number of instances for which rules
Ri and Rj are fired simultaneously, whileFRi and FRj

account respectively for the total number of data pairs for
which rulesRi or Rj are respectively fired, without taking
care if they are fired together or not. Notice that,mij is thus
normalized and the matrixM is symmetrical when using this
metric.

2) Network scaling: As usual in social network design,
the initial fingram is commonly quite dense and difficult
to analyze even for medium-size FRBSs. So for, a network
scaling method is required to simplify it while keeping the
most important relations. Three options have been considered:

• Prune the network to eliminate the least informative links
according to an expert. Contrary to what one may think
by intuition when confronting the problem of pruning the
graph, using a threshold to filter the graph is not worthy.
There exist a large number of links with high weights
that would imply the selection of a high threshold value,
so for, producing a disconnected network. Of course, the
latter does not help in the comprehension of the global
system, which is our ultimate goal in this contribution.

• Use a specific scaling algorithm that preserves the most
important links without producing isolated nodes, such as
Pathfinder2, previously introduced in Sec. II-C.

• Use a combination of the previously mentioned alterna-
tives. First, links are pruned and then Pathfinder scales
the resulting graph. As we will show later, this hybrid
option can be used to analyze classification problems.
In such case, potential inconsistencies among rules, i.e.
relations among rules pointing out different classes, have
to be treated carefully. So for, non-inconsistent links can
be pruned, keeping just inconsistent links. Finally, as the
resulting graph is still likely to be quite complicated,
Pathfinder is used to simplify it.

3) Network drawing:As previously outlined in Sec. II-C,
force-based algorithms are devoted to represent this kind
of information in an aesthetically pleasing way. In order to
visualize the pruned network in a 2D space, they assign coor-
dinates to the nodes obtaining a graph with the most important
elements placed toward the center of the image. Kamada-
Kawai, through Graphviz3 will be used in our approach
because it has been proved very effective in combination with
Pathfinder [18]. This solution is flexible enough to be adapted
to the particularities of new scenarios we have to deal with.

Nodes are represented by circles and labeled with useful
textual information (see Fig. 3):

1) The first line shows the rule identifier,Rk.
2) The second one provides therelative coverage of that

rule (cov), i.e. the number of covered instances divided
by the total number of instances. One problem instance
is covered by ruleRk when the rule firing degree for
that instance is greater than a predefined threshold (0.1

2MST-Pathfinder [50], a variant of Pathfinder that reduces thecomplexity
of the original algorithm, is the method considered in this work.

3http://www.graphviz.org/[51]

(a) Classification.

(b) Regression.

Fig. 3. Fingram’s interpretation.

in this contribution).

covRk
=

#instances covered byRk

# instances

3) The third line shows the goodness of the rule (G),
i.e. how the rule behaves with respect to the problem
instances available. This goodness measure reflects how
well the problem instances covered by a rule are classi-
fied or modeled. It is computed as the ratio between
the differences of cumulated firing degrees produced
by positive instances (properly issued) and negative
ones with respect to the total cumulated firing degrees
regarding all covered instances. Hence, it can take values
from -1 to 1, assigning -1 to rules with low number of
problem instances correctly issued and close to 1 when
the rule correctly handles most problem instances.

GRk
=

∑

FDPI for Rk −
∑

FDNI for Rk
∑

FDCI for Rk

where FDPI stands for firing degree of positive in-
stances; FDNI means firing degree of negative instances;
and FDCI is the firing degree regarding all covered
instances.

4) The fourth line of the nodes appears only in classifi-
cation problems. It reflects the relative coverage of the
rule output class, i.e., the number of problem instances
covered by ruleRk that belong to classn divided by
the total number of instances related to classn.

CRk
=

instances of classn covered byRk

# instances of classn

B. Additional fingram visualization capabilities

The proposed representation includes graphical information
of special interest for FRBSs. Hence, once the fingram is
pruned by Pathfinder and drawn by Kamada-Kawai, some
additional visualization capabilities are incorporated which are
specific for FRBS fuzzy inference analysis.
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In this context, nodes represent the fuzzy rules of a FRBS,
which are of the form:

Rx: IF Input 1 isLV1 AND Input 2 isLV2 AND . . .

. . . AND Input n isLVn THEN Output isCC

with (Input i is LVi) being the antecedents of the fuzzy rule,
andCC the output of the fuzzy rule.

The node size is established according to the number of
examples covered by the rule. The higher the amount of
covered examples, the bigger the node size is. For instance,
Fig. 3(a) shows an example of a network with two rules (Rk

andRh) where ruleRh covers more examples than ruleRk.
In addition, the border of the nodes indicates how complex
the antecedents of the rules are. Single-line border indicates
two premises; double-line border means three premises; and
so on. Thus, the rulesRk andRh depicted in Fig. 3(a) have
three and two antecedents, respectively.

Furthermore, edges (links) among nodes represent rule co-
firing information. Each link represents the relation between
a pair of fuzzy rules. The higher the degree of overlapping
existing over rules, the higher the edge weight and the thicker
the link width in the visual representation to clearly represent
this fact.

We deal with problems having either categorical or contin-
uous outputs. Therefore we distinguish between classification
and regression problems, providing particularities in their
representations.

• Classification:Rules yielding the same class are depicted
by the same color of nodes. The color of links gives
useful information as well. Links between rules of the
same class (output) are colored in green while potential
inconsistencies (links between co-fired rules pointing
out different classes) are remarked with red color (See
Fig. 3(a)).

• Regression:The output variable4 is ordered in its universe
of discourse. This order is used to assign grey tones to
nodes, from black to white. So for, the typical behavior
will relate nodes with similar grayness, and related nodes
showing quite different tones should be studied in detail.
In this case there is no difference among links, contrary
to what happens in classification problems with redun-
dancies and inconsistencies, and they just inform about
their weight (See Fig. 3(b)).

C. Illustrative example

In this section, a fuzzy rule-based classification system (FR-
BCS) created for the popular WINE dataset [52] is considered.
The dataset is made up of 178 examples and 13 attributes
(Alcohol, malic acid, ash, etc.) found in three types of wines.
The FRBCS has 24 rules with three different output classes,
corresponding to the three different wine kinds.

Several fingrams are built with the aim of illustrating the
effect of the different network scaling methods used. The
fingram plotted in Fig. 4(a), obtained without applying any
network scaling technique, clearly shows the previously men-
tioned scaling motivations. A quite dense set of relationships

4We will only consider multi-input-single-output (MISO) FRBSs.
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0.598
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0.611

R14
(cov=0.140)
(G=0.023)
(C2=0.310)

0.449

0.184

0.440

0.453

0.280

0.240

0.753

0.798

0.137

0.533

0.614

0.583

0.526

0.351

0.489

0.379

0.331 0.357

0.782

0.426

0.684

0.853

0.692

0.267

0.240

0.321

0.238

0.306
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0.125

0.590
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0.372

0.478
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0.587

0.524

0.426

0.185

0.481

0.436

0.824

0.729

0.875

0.781

0.634
0.504

0.457

0.540

0.478

0.232

0.265

0.893
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0.625

0.567

0.617

0.194
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0.484
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0.388
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0.354
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0.597
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(a) Complete fingram.
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(b) Fingram scaled using pruning
with threshold (∆ = 0.6).
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(c) Fingram scaled using Pathfinder.
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(d) Fingram scaled using a hybrid method: pruning + Pathfinder.

Fig. 4. Example of fingrams: complete, pruned, scaled with Pathfinder, and
with hybrid method.

among rules does not allow us to analyze easily the FRBCS
behavior.

Then, the three scaling methods previously described are
used to simplify the network. Fig. 4(b) shows the result of
using a user-defined threshold (∆ = 0.6) to prune edges.
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It can be seen how the network is still quite dense, some
groups of rules are isolated and the network is not visualized
in an aesthetic way, thus hindering the comprehension of
the whole set of rules. On the other hand, Fig. 4(c) shows
the result of applying Pathfinder, whose global close-to-tree
structure provides valuable information easy to interpret. As
an illustration of the hybrid scaling method, Fig. 4(d) is
created from the complete fingram of Fig. 4(a). There, non
potential inconsistencies are pruned first (once we deal with a
classification problem), while the resulting graph is simplified
with Pathfinder. It can be seen how this graph only relates
nodes of different color (rules with a different output class).

It is remarkable that, thanks to the combination of rule co-
firing, PFNETs, and Kamada-Kawai’s algorithm, information
related to the inference process of the FRBSs is displayed
in pretty nice scalable fingrams, as seen in Fig. 4(c). As a
side effect, the most relevant fuzzy rules, i.e., those more
often fired, tend to be located toward the center of the scaled
fingrams, while less salient ones (in this case, rules with the
lowest co-firing degrees) go to the periphery. Hence, the shape
of the fingram is quite informative.

Of course, fingrams must be carefully analyzed by an expert
since rules that are apparently not very relevant (like those
ones in the periphery) may be essential for handling properly
important cases that only happen from time to time. For
instance, not common cases dealing with failures in a system
controlling a nuclear reactor could be extremely important.

Moreover, it is important to highlight that our proposal is
not affected by the well-known curse of dimensionality that
implies the number of fuzzy rules grows exponentially with
the number of inputs. Firstly, nodes directly represent fuzzy
rules instead of premises, and secondly, PFNETs have been
successfully applied to the analysis of large scientific domains
with hundreds of co-cited entities (dual to our problem in-
stances), allowing to relate different thematic areas (dual to our
fuzzy rules in the FRBS), with the chance of also considering
hierarchical representations [18]. In consequence, fingrams are
able to display the interactions among a few hundreds of
rules in the form of highly interpretable trees. Even when
the number of rules is huge the scaled fingram can be still
comfortably viewed by an expert.

For comparison purposes, Fig. 5 shows the same FRBS
represented by the visualization method proposed by Berthold
et al. in [33]. As it can be seen, this representation is mainly
descriptive, placing rules in a 2D space through a multi-
dimensional scaling. So for, the distance among rules is
relevant. However, it does not provide information for rule
behavior at inference level. Moreover, the Delaunay triangu-
lation indicates direct neighbors for each rule. Unfortunately,
it relates rules far away in the 2D space. Of course, that fact
does not help in the comprehension of the system behavior.
For example, rules R1 and R13, which do not co-fire for any
problem instance (as it can be seen in Fig. 4(a)), are strongly
related in Fig. 5 because of their descriptive proximity.

IV. F INGRAM EXPERT ANALYSIS

Fingrams provide an enormous potential for the represen-
tation and comprehension of the FRBS inference process.

Fig. 5. Visualization of the fuzzy rule set constructed for the WINE problem
using the method proposed by Berthold et al. [33]. It shows possible overlaps
among rules along with rule connections in terms of closeness by Delaunay
triangulation.

They relate rules jointly fired by a given input vector, making
easy to uncover how the rules of a FRBS actually cover the
input space. Hence, fingrams can be viewed as a powerful
tool for dealing with FRBS comprehensibility analysis tasks
related to quadrant Q4 (semantics at rule base level) in Fig.1
(Sec. II-A), the least studied category in the existing fuzzy
system interpretability assessment literature.

The analysis of fingrams offers many different possibilities
thanks to the high amount of information this representation
gives about a FRBS and its related fuzzy inference process.
For instance, one can directly analyze its global structureby
the exploration of the number and location of the apparent
groups of rules (nodes), analyze the respective location ofthe
rules coding for different outputs, etc. As such, we would like
to highlight two exploratory tasks that provide a good base
to detect and analyze particularities or anomalies in a FRBS:
i) identifying the most significant rules in a FRBS from the
inference viewpoint, and ii) detecting potential inconsistencies
among rules in the particular case of FRBCSs.

On the one hand, it should be reminded that, because of
the specific way network scaling and drawing are done, the
most salient links and nodes are likely to be placed towards
the center of the graphical representation. Thus, those fuzzy
rules that correspond to nodes located in the periphery of
the fingram, especially those which are connected with a
high weight (the value of the associated link is large) to the
remaining graph nodes and show a low level of coverage (cov),
are good candidates to be further studied. These rules usually
cover the same space than others and do not change the final
output of the system, thus not affecting the accuracy of the
system. This could have an interesting collateral advantage
in classification problems since removing such rules is likely
to increase interpretability while keeping almost the same
accuracy. We will check that assumption in the Application
examples section (Sec. V).

Moreover, rules that are fired more frequently (represented
with bigger nodes) are usually placed in the center because
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they also tend to be co-fired with more rules. Those cases
where nodes covering a large number of examples are placed
in the periphery must be carefully analyzed. This can be due
to a fuzzy rule which covers a large part of the input space in
isolation.

The usual Centrality measures that are commonly consid-
ered in the analysis of scientograms [18], [48] (see Sec. II-D)
can also be successfully applied to uncover the most significant
rules within a FRBS. As a first approach, we advocate for the
use of the so-calledDegree of Centrality. This means that we
will point out those fuzzy rules corresponding to the nodes
that concentrate the larger number of links in a fingram as the
most salient ones.

On the other hand, the interaction among fuzzy rules at
inference level is very difficult to be appreciated by only
reading the linguistic description of FRBSs. It should be
remarked that this interaction depends on the rule description
but also on the fuzzy rule semantics (fuzzy partitions included
in the data base) and on the inference mechanism. Even when a
rule base is fully consistent at linguistic level, some possible
inconsistencies may arise at inference level because of the
FRBS semantics and fuzzy inference process. Such potential
conflicts are difficult to detect mainly because they are partially
hidden since they are typically produced by new unknown
situations that were not taken into account during the learning
stage (for example, data pairs not initially included when
considering a data-driven FRBS derivation). Of course, such
analysis is different depending on the kind of problem faced.
For instance, the meaning of overlapping rules is not the same
when considering either classification or regression problems.

In the former case, inconsistencies must be handled as
conflicts to be solved. For instance, it may happen that several
rules are jointly fired for a new given input vector and as a
consequence several outputs are activated with degrees higher
than zero. When two different classes are activated with very
similar degrees, the situation can be labeled as an ambiguous
case. Such situation is not desirable, no matter if the system
is (or not) able to yield the right output class, because a slight
modification in the input data may yield a wrong output. We
can conclude that a FRBCS producing many ambiguous cases
is not reliable and should be corrected. Fortunately, looking
at fingrams we can easily uncover potential inconsistencies
(when the co-fired rules yield different output classes). The
larger the degree of inconsistency among fuzzy classification
rules is, the higher the weight of the “inconsistent” links (co-
firing degree computed by Eq. 3) will become (red edges).
The interested reader is referred to [53] where a detailed
explanation of some possible inconsistency problems, along
with a methodology to detect and correct such inconsistencies,
is presented.

Opposite, when dealing with regression problems, the well-
known FRBS approximation capability is mainly based on the
interpolative reasoning carried out among overlapping rules.
Typically, two rules with similar premises may yield two
different wrong outputs but their aggregation may result inthe
right inferred interpolated output. Unfortunately, thesekinds
of situations are quite common but very difficult to identify. Of
course, from the comprehensibility point of view it would be

desirable to have only one rule that directly yields the right
inferred output. However, this may produce a huge number
of rules what is also undesirable. Fingrams allow the expert
to study and improve the system systematically as it will be
shown with an example in Sec. V-C.

V. A PPLICATION EXAMPLES

This section starts with an experimental setup subsection,
devoted to introduce the quality indices to be considered.
Then, two examples in the next two subsections display the
possibilities of considering fingrams in real-world problems.
The first illustrative classification example gives an idea about
how to deal with the co-firing among rules, along with the
inconsistencies and redundancies produced. The second ex-
ample displays a small-sized but complex real-life regression
application, where fingrams make easier the understanding of
the rules constructed.

A. Experimental setup

We will now describe the accuracy and interpretability
indices considered in this contribution.

Accuracy is computed as the percentage of misclassified
instances (MC) in classification problems, and as the mean
square error (MSE) in regression problems.

MC =
1

d

d
∑

i=1

erri; erri =

{

1, if Ci 6= Ĉi

0, otherwise
(4)

MSE =
1

d

d
∑

i=1

(yi − ŷi)
2 (5)

whered means the number of problem instances,Ci the class
of instancei, andĈi is the class inferred by the FRBCS given
the instancei in MC. For MSE, yi is the real output value
of instancei, and ŷi is the inferred output by the FRBS.

Of course, as it was pointed out in Sec. II-A, taking only one
index is not enough to evaluate interpretability. Therefore, we
have considered some of the interpretability indices commonly
used in the literature. Probably, the most popular index isNR

which stands for number of rules. As an alternative,TRL

(total rule length) represents the total number of linguistic
propositions into the whole rule base. Another simple indexis
ARL which stands for average rule length, computed asTRL

divided by NR. We will also report the average number of
fired rules with respect to problem instances (AFR). Notice
that, a rule is counted as fired by a given data instance only in
the case it is activated with a confidence firing degree greater
or equal than a predefined threshold (0.1 in this contribution).
In the case of classification problems we will additionally
compute the average confidence firing degree of winner rules
(AFD). It is measured as the average of the firing degree of
the winner rule for each data sample over the whole dataset.

Moreover, the proportion of co-fired rules can also be
considered to evaluate the FRBS comprehensibility. The as-
sumption is the following: the larger the number of simulta-
neously fired rules for a given input vector, the smaller the
comprehensibility of the FRBS.
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Thus, the Co-firing Based Comprehensibility Index
(COFCI) [54] can be used to evaluate the complexity of
understanding the inference process in terms of rules co-firing
information. Eq. 6 presents this index:

COFCI =

{

1−
√

CI
MaxThr

, if CI ≤ MaxThr

0, otherwise
(6)

CI =

r
∑

i=1

r
∑

j=1

[(Pi + Pj) ·mij ] (7)

wherer is the total number of rules in the fuzzy rule base,Pi

andPj count the number of premises (antecedent conditions)
in rules Ri and Rj , while mij is the measure of co-firing
(computed by Eq. 3) for the rulesRi andRj , andMaxThr is
a maximum value heuristically established to get a normalized
measure in the interval [0,1].

B. Generation of fingrams in a simple classification problem.
Analysis of inconsistencies.

As a first example we will analyze a simple classification
problem with two input variables, which can be represented in
two dimensions, where the co-firing relations among rules can
be easily understood. For that, the IRIS data set from UCI [52]
is considered.

IRIS is perhaps the best known database to be found in the
pattern recognition literature. The data set contains 3 classes
of 50 instances each, so it is perfectly balanced, where each
class refers to a type of iris plant. Class 1 is linearly separable
from the other two; the latter are not linearly separable from
each other. Notice that, only two of the four input variables
of IRIS (SEPAL LENGTH and SEPAL WIDTH) have been used
with the aim of allowing a 2D representation that facilitates
the understanding of fingram construction.

Fig. 6 shows graphically the distribution of examples, with
the selected variables SEPAL LENGTH and SEPAL WIDTH,
remarking the flower class (C1 = ©, C2 = +, andC3 = ×).
Each input is characterized by a uniform strong fuzzy partition
with three linguistic terms (LOW, AVERAGE, HIGH).

Low Average High

Low

Average

High

R1

R2

R3

R4

R5

R6

R7

R8

R9

Fig. 6. Classification example: Problem instances, fuzzy partitions, and set
of fuzzy rules used.

The rule base has been automatically extracted from the
whole data set following the HILK fuzzy modeling method-
ology which is aimed at producing highly interpretable fuzzy
systems [53], [55]. The rule base is generated by means of
the Fast Prototyping Algorithm5 [59]. It is made up of the
following nine linguistic rules:
R1: IF Sepal Length is Low AND Sepal Width is Low THEN Class is C2
R2: IF Sepal Length is Low AND Sepal Width is Average THEN Class is C1
R3: IF Sepal Length is Low AND Sepal Width is High THEN Class is C1
R4: IF Sepal Length is Average AND Sepal Width is Low THEN Class is C2
R5: IF Sepal Length is Average AND Sepal Width is Average THEN Class is C2
R6: IF Sepal Length is Average AND Sepal Width is High THEN Class is C1
R7: IF Sepal Length is High AND Sepal Width is Low THEN Class is C3
R8: IF Sepal Length is High AND Sepal Width is Average THEN Class is C3
R9: IF Sepal Length is High AND Sepal Width is High THEN Class is C3

It is possible to find more accurate FRBCSs for this problem
in the fuzzy literature, but the objective of this example isto
illustrate the creation and analysis of fingrams in classification
problems.

We will detail, step by step, the different phases involved in
the construction of fingrams, as they were described in Sec. III:

1) Network generation: With the problem instances, fuzzy
partitions, and fuzzy rules previously presented (all of
them illustrated in Fig. 6), we have generated a 9x9
matrix that represents the co-firing degrees. Fig. 7(a)
shows that matrix with inconsistencies remarked by (*).

2) Network scaling: We have checked different scaling
methods. First, Pathfinder is applied to the original
network, obtaining a pruned matrix. Second, a hybrid
scaling method is used to discover inconsistencies in
the FRBCS. For that, non-inconsistent links are firstly
thresholded in the original network and afterwards
Pathfinder is enforced.

3) Network drawing : Kamada-Kawai’s spring layout is
selected for plotting the previously generated and scaled
networks, considering the additional visualization capa-
bilities in Sec. III-B.

The first graph, the complete non-scaled fingram (Fig. 7(b)),
shows the relations among rules displayed in a perfect grid,
thanks to the dimensions and partitions considered.

A simple comparison between Figs. 6 and 7 makes easy to
appreciate the correspondence among the node sizes and how
populated the input space regions are. For example, ruleR5

covers the central region with the largest number of instances,
while ruleR9 covers the smallest amount of data samples.

In addition, the node layout perfectly reflects the relation
among co-fired rules, with a central fuzzy rule (R5) that highly
overlaps with the rest, thus producing non-inconsistencies
(green links) or potential inconsistencies (red links).

By carefully analyzing the dataset, a high volume of in-
stances can be appreciated in the regions of fuzzy rulesR4

andR5 (see Fig. 6). This can also be observed in the fingram
(Fig 7), which assigns a high value (0.794) to the connection
between these two rules. In addition, the highest link weight
(0.897) is related to rulesR3 and R6 as most instances
they cover are located close to the border between the input
space regions they handle. Notice that, a quick study of the

5We have used the implementation of FPA provided with the free software
tool GUAJE [19]. Of course, other fuzzy modeling methods can beused, as
[56]–[58].
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R1 R2 R3 R4 R5 R6 R7 R8 R9
R1 1.000 0.743(*) 0.000 0.715 0.562 0.000 0.000 0.000 0.000
R2 0.743(*) 1.000 0.597 0.531(*) 0.763(*)0.536 0.000 0.000 0.000
R3 0.000 0.597 1.000 0.000 0.461(*) 0.897 0.000 0.000 0.000
R4 0.715 0.531(*) 0.000 1.000 0.794 0.000 0.644(*) 0.542(*)0.000
R5 0.562 0.763(*) 0.461(*)0.794 1.000 0.517(*) 0.517(*) 0.603(*) 0.221(*)
R6 0.000 0.536 0.897 0.000 0.517(*) 1.000 0.000 0.168(*) 0.416(*)
R7 0.000 0.000 0.000 0.644(*) 0.517(*)0.000 1.000 0.842 0.000
R8 0.000 0.000 0.000 0.542(*) 0.603(*) 0.168(*)0.842 1.000 0.405
R9 0.000 0.000 0.000 0.000 0.221(*) 0.416(*)0.000 0.405 1.000

(a) Co-firing matrix.

R1
(cov=0.267)
(G= -0.112)
(C2=0.500)

R2
(cov=0.540)
(G=0.378)
(C1=0.980)

0.743
R4

(cov=0.533)
(G= -0.171)
(C2=0.840)

0.715

R5
(cov=0.953)
(G= -0.295)
(C2=0.980)

0.562

R3
(cov=0.200)
(G=0.000)
(C1=0.600)

0.597

0.531

0.763

R6
(cov=0.233)
(G=0.206)
(C1=0.600)

0.536
0.461

0.897

0.794

R7
(cov=0.193)
(G= -0.267)
(C3=0.420)

0.644

R8
(cov=0.340)
(G=0.130)
(C3=0.740)

0.542

0.517

0.517

0.603

R9
(cov=0.027)
(G=0.000)
(C3=0.080)

0.221

0.168

0.416

0.842

0.405

(b) Complete fingram.

Fig. 7. Classification example: Original social network.

input space can be done, even in multi-dimensional problems,
following the same sketched procedure.

The use of Pathfinder algorithm yields a pruned fingram
(Fig. 8) that keeps the most salient links of the original
network, what highlights those rules which are fired simul-
taneously a larger number of times. This fingram shows that
rule R2 is quite important due to the high interrelations with
others (producing inconsistencies with rulesR1 andR5, and
non-inconsistencies with ruleR3).

R1
(cov=0.267)
(G= -0.112)
(C2=0.500)

R2
(cov=0.540)
(G=0.378)
(C1=0.980)

0.743

R3
(cov=0.200)
(G=0.000)
(C1=0.600)

0.597

R5
(cov=0.953)
(G= -0.295)
(C2=0.980)

0.763

R6
(cov=0.233)
(G=0.206)
(C1=0.600)

0.897

R4
(cov=0.533)
(G= -0.171)
(C2=0.840)

0.794

R7
(cov=0.193)
(G= -0.267)
(C3=0.420)

0.644

R9
(cov=0.027)
(G=0.000)
(C3=0.080)

0.416

R8
(cov=0.340)
(G=0.130)
(C3=0.740)

0.842

Fig. 8. Classification example: Fingram scaled with Pathfinder.

The fingram in Fig. 9, scaled using the hybrid alternative
with the aim of only keeping inconsistencies, emphasizes the
main potential inconsistencies among rules, turning up those
regions that do not belong clearly to a single class. RuleR5

shows up as the main cause of conflicts. It is clear that this
central rule covers most of the problem instances, and so for, it
overlaps with most rules. Notice that, the input region covered
by R5 (as seen in Fig. 6) includes a large number of instances
of different classes what produces these inconsistencies.

R1
(cov=0.267)
(G= -0.112)
(C2=0.500)

R2
(cov=0.540)
(G=0.378)
(C1=0.980)

0.743

R5
(cov=0.953)
(G= -0.295)
(C2=0.980)

0.763

R3
(cov=0.200)
(G=0.000)
(C1=0.600)

0.461

R4
(cov=0.533)
(G= -0.171)
(C2=0.840)

R7
(cov=0.193)
(G= -0.267)
(C3=0.420)

0.644

R8
(cov=0.340)
(G=0.130)
(C3=0.740)

0.542

R6
(cov=0.233)
(G=0.206)
(C1=0.600)

0.517

0.603

R9
(cov=0.027)
(G=0.000)
(C3=0.080)

0.416

Fig. 9. Classification example: Fingram scaled with hybrid method (Thresh-
old + Pathfinder).

In addition, a linguistic simplification can be made from the
previous FRBCS, yielding a new FRBCS with less rules but
exactly the same accuracy:
R1: IF Sepal Length is Low AND Sepal Width is Low

THEN Class is C2
R23: IF Sepal Length is Low AND Sepal Width is NOT(Low)

THEN Class is C1
R45: IF Sepal Length is Average AND Sepal Width is NOT(High)

THEN Class is C2
R6: IF Sepal Length is Average AND Sepal Width is High

THEN Class is C1
R789: IF Sepal Length is High

THEN Class is C3

whereRXY represents the merge of originalRX andRY .
Fig. 10 shows the pruned fingram, created using Pathfinder,

of the simplified FRBCS. As expected, it can be seen that
the information associated to the new merged rules vary with
respect to the original FRBCS (Fig. 7) except for rulesR1

and R6 that keep unchanged. Nevertheless, it is remarkable
how the new fingram in Fig. 10 keeps almost the same global
shape of the original FRBCS (Fig. 8). The new ruleR23 gets
the central position previously taken by ruleR2 distributing
the remaining rules in three branches.

It can also be appreciated that rulesR23 andR45 cover all
the problem instances of their output classes (C1 = 1.000 in
R23 andC2 = 1.000 in R45). So for, it is interesting to test
the behavior of the system without the rest of rules of output
classes C1 and C2 (R6 andR1, respectively). With that aim,
several FRBCSs are created and tested without those rules
from the simplified FRBCS.

Table II summarizes the values for the quality indices in
Sec. V-A before and after the linguistic simplification, but
also after the elimination ofR1 and R6. We should again
remark that we are not focused on finding out the most
accurate FRBCS for the tackled problem, but on exploring
the opportunities fingrams offer.

As previously mentioned, the accuracy (look atMC in
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R1
(cov=0.267)
(G= -0.112)
(C2=0.500)

R23
(cov=0.547)
(G=0.417)
(C1=1.000)

0.739

R45
(cov=0.960)
(G= -0.164)
(C2=1.000)

0.756

R6
(cov=0.233)
(G=0.206)
(C1=0.600)

0.549

R789
(cov=0.340)
(G=0.282)
(C3=0.740)

0.601

Fig. 10. Classification example: Fingram scaled with Pathfinder after
linguistic simplification.

TABLE II
CLASSIFICATION EXAMPLE: QUALITY EVALUATION OF THE DIFFERENT

FRBCSS GENERATED

Quality Original Simplified R1 R6 R1 & R6

index FRBCS FRBCS removal removal removal
MC 0.32 0.32 0.313 0.34 0.333

NR 9 5 4 4 3
TRL 18 9 7 7 5
ARL 2 1.8 1.75 1.75 1.667
AFR 3.287 2.347 2.08 2.113 1.847
AFD 0.476 0.546 0.54 0.544 0.538

COFCI 0.643 0.782 0.818 0.815 0.86

Table II) keeps the same after applying the linguistic sim-
plification, but the interpretability indices improve withthe
reduction of rules. The elimination ofR6 produces more
classification errors indicating thatR6 is the winner rule
for some problem instances of class C2. Only the FRBCS
produced from eliminatingR1, highlighted in boldface in the
table, improves both the accuracy and the interpretabilityof
the linguistically simplified FRBCS.

C. Generation of fingrams in a small-size regression problem.
Analysis of specificity and generality.

This example illustrates the use of fingrams in regression
problems. An electrical network distribution problem in north-
ern Spain [60] is analyzed. The system aims to estimate the
length of the low voltage line installed in a certain village. The
problem has two input variables (thepopulation of the village
and itsradius) and one output variable (thetotal length of the
installed line). Real data of 495 villages are available. The
training set contains 396 elements and the test set includes99
elements, randomly selected from the whole sample, taken
from KEEL dataset repository6. Here we will use just the
training set to create the fingrams thus being able to compare
the accuracy results with previous works.

First of all, the problem variables are partitioned as shown
in Fig. 11. The partitions of the input variables (INHABITANTS

and DISTANCE) are tuned to improve the performance, while

6http://sci2s.ugr.es/keel/datasets.php

Inhabitants

Very Low Low Average High Very High

Distance

Very Low

Low

Average Low Average High

High

Very High

Length

Very Low Low

Average Low

Average

Average High

High Very High

Fig. 11. Regression example: Fuzzy partitions for the electrical distribution
problem.

the output variable is partitioned homogeneously coveringthe
interest range, i.e. the range where problem instances are
located. Using these fuzzy partitions along with FPA7 the
following set of rules is generated:
R1 : IF Distance is Very Low

THEN Length is Very Low
R2 : IF Inhabitants is (Very Low OR Low OR Average) AND Distance is Low

THEN Length is Low
R3 : IF Inhabitants is Very Low AND Distance is Average Low

THEN Length is Low
R4 : IF Inhabitants is (Low OR Average) AND Distance is Average Low

THEN Length is Average Low
R5 : IF Inhabitants is High AND Distance is Low

THEN Length is Average Low
R6 : IF Inhabitants is (Very Low OR Low) AND Distance is Average High

THEN Length is Average
R7 : IF Inhabitants is Very High AND Distance is Average Low

THEN Length is Average
R8 : IF Inhabitants is Average AND Distance is (Average High OR High)

THEN Length is Average High
R9 : IF Inhabitants is Very High AND Distance is Average High

THEN Length is High
R10 : IF Inhabitants is Very High AND Distance is High

THEN Length is Very High

This FRBS exhibits a good accuracy (MSE = 130, 046),
similar to the one obtained in [65] (MSE = 133, 763).
Anyway, we should again remind that we are not focused on
finding the most accurate FRBS for the tackled problem. Our
target is showing the utility of fingrams in the context of a
real-world regression problem.

As explained previously in Sec. III-B, the output of each
fuzzy rule will be reflected in the color of the nodes. From
dark to light the node colors represent a range from low
to high values. So for, the output label “VERY LOW” will
be represented by the darkest node while “VERY HIGH”
corresponds to the lightest one close to white. Naturally, the
system will have relations among close labels and close colors,
and when nodes of quite different darkness are related the
expert should focus her/his attention on them.

7FPA can be used for classification and regression problems. Other fuzzy
modeling methods can be used for regression problems, as [61]–[64].
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R1
(cov=0.308)
(G=0.292)

R2
(cov=0.427)
(G=0.610)

0.765

R5
(cov=0.035)
(G=0.220)

0.191

R3
(cov=0.306)
(G=0.075)

0.259

R4
(cov=0.467)
(G=0.171)

0.300

0.298

0.796

R6
(cov=0.275)
(G= -0.393)

0.708

0.122

0.793
R8

(cov=0.106)
(G= -0.483)

0.493

0.436

R7
(cov=0.015)
(G=0.445)

R9
(cov=0.015)
(G= -0.725)

1.000

R10
(cov=0.000)
(G=0.000)

Very Low

Low

Average Low

Average

Average High

High

Very High

Fig. 12. Regression example: Complete fingram for the electrical distribution
problem.

Fig. 12 shows the non-pruned fingram related to the infer-
ence process on the FRBS previously presented. It can be seen
that the two dimensions allow the fingram to spread the nodes
in a grid, relating close outputs, i.e. the evolution of darkness
of the nodes is mapped smoothly. RulesR2 and R4 are
quite general, covering almost half of the problem instances.
Contrary, rulesR5, R7, R9 and R10 cover a small amount
of problem instances, thus being very specific. Moreover, itis
easily appreciated that ruleR10 does not cover any example8

(cov = 0), and thus it can be eliminated without any accuracy
loss. In addition, all rules butR1 have two antecedents, as it
is appreciated in the single-line border of the nodes.

The fingram analysis lets us discover a special relation
between rulesR7 and R9 that appear isolated in a group,
composing a kind of “fuzzy rule cluster” in a specific problem
domain region. They cover some examples that no other rule
covers. Moreover, they cover exactly the same examples (the
related link takes value 1.0) but having different outputs.Even
more, ruleR9 has a negative goodness,−0.725, so for it
is a candidate to be removed, changing, if necessary, the
output of R7. An analysis of these rules must be achieved
to avoid this kind of behavior. Notice that only lookingR7

and R9 at linguistic level is not enough for detecting this
kind of potential problems, but our fingram-based analysis
methodology allows us to quickly identify them.

Fig. 13 shows the pruned network corresponding to the
fingram scaled with Pathfinder. It emphasizes a high relation
among rulesR3, R4, and R6. This interrelation suggests
merging the three rules in a single one. To do so, a new
rule, R346, is constructed fromR3, R4, andR6 in an expert
way. The antecedents of all these rules are combined and
the output is taken from the middle term. This is done just
as an example, and a more complex process, testing the

8As explained in Sec.III.-A, we consider an instance is covered by a rule
when it fires the rule above a threshold (0.1 in this contribution).

R1
(cov=0.308)
(G=0.292)

R2
(cov=0.427)
(G=0.610)

0.765 R4
(cov=0.467)
(G=0.171)

0.300

R5
(cov=0.035)
(G=0.220)

0.298

R3
(cov=0.306)
(G=0.075)

0.796

R6
(cov=0.275)
(G= -0.393)

0.793

R8
(cov=0.106)
(G= -0.483)

0.493

R7
(cov=0.015)
(G=0.445)

R9
(cov=0.015)
(G= -0.725)

1.000

R10
(cov=0.000)
(G=0.000)

Fig. 13. Regression example: Fingram scaled with Pathfinder.

alternatives, could be done.

R3 : IF Inhabitants is Very Low AND Distance is Average Low THEN Length is Low
R4 : IF Inhabitants is (Low OR Average) AND Distance is Average Low THEN Length is Average Low
R6 : IF Inhabitants is (Very Low OR Low) AND Distance is Average High THEN Length is Average
R346 : IF Inhabitants is AND Distance is THEN Length is Average Low

(Very Low OR Low OR Average) (Average Low OR Average High)

We will develop the proposed changes in a sequential
fashion (i.e., first removingR10, then removingR9, and finally
merging R3, R4, and R6) and check how they affect the
resulting FRBS accuracy and interpretability (as detailedin
Table III).

TABLE III
REGRESSION EXAMPLE: QUALITY EVALUATION OF THE GENERATED

FRBSS

Quality Original R10 R9 R3-R4-R6

index FRBS removal removal fusion
MSE 130,046 130,046 125,511 155,838

NR 10 9 8 6
TRL 19 17 15 11
ARL 1.9 1.889 1.875 1.83
AFR 2.463 2.463 2.446 1.695

COFCI 0.971 0.971 0.974 0.981

Analyzing these results we can conclude that the removal
of R10 does not change the behavior of the system because,
as mentioned, it does not cover any problem instance. Thus,
MSE, AFR, and COFCI remain the same while the in-
terpretability indices related to transparency (NR, TRL, and
ARL) are improved. However, deleting the ruleR9 simplifies
the FRBS improving both accuracy (MSE decreases) and
interpretability (all the considered interpretability indices get
better values). The new fingram resulting from these two
eliminations can be observed in Fig. 14. Finally, although
the fusion ofR3, R4, and R6 reduces the accuracy of the
FRBS, it could still be a good option to get a more compact
and understandable FRBS (notice that, all the interpretability
indices are clearly improved). Besides, a more elaborated rule



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

fusion mechanism could be considered by the expert to reduce
the accuracy loss.

R1
(cov=0.308)
(G=0.292)

R2
(cov=0.427)
(G=0.610)

0.765 R4
(cov=0.467)
(G=0.171)

0.300

R5
(cov=0.035)
(G=0.220)

0.298

R3
(cov=0.306)
(G=0.075)

0.796

R6
(cov=0.275)
(G= -0.393)

0.793

R8
(cov=0.106)
(G= -0.483)

0.493

R7
(cov=0.015)
(G=0.445)

Fig. 14. Regression example: Fingram scaled of the best simplified FRBS.

VI. CONCLUSIONS ANDFUTURE WORKS

This paper has introduced fingrams as a new powerful
methodology for exploratory analysis of fuzzy rule bases. A
brief overview of the possibilities that fingrams offer, forboth
design and analysis of fuzzy systems, has been illustrated
through some examples. As it is a novel proposal, some of
the potential uses are just outlined, opening the door to new
alternatives and developments.

In the future we will extensively validate and extend the
methodology. For instance, we plan to look for asymmetrical
co-firing metrics able to yield additional information about
consistency, generality, and/or specificity of rules.

The future of this methodology is very promising, with
several applications to design or improve fuzzy systems.
The human-centric simplification of a FRBS by means of
the elimination or modification of rules could be done after
analyzing the resulting graphs. The detection of rules thatdo
not cover any example is very easy by just looking fingrams
at first sight. Rules that have a low overlapping with others
can be detected to proceed as desired, building, maybe, more
general rules.

A basic simplification procedure may consist of finding
and removing those non-relevant rules normally located at
the periphery of the graph. Moreover, by carefully looking at
fingrams we can first set a ranking of rules according to their
relevance and then run a linguistic simplification procedure
like the one proposed in [55].

A first software package for fingrams generation and anal-
ysis is already implemented [66] as part of the GUAJE
tool, freely downloadable as open source software at
http://www.softcomputing.es/guaje.
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