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Sergio Damas • Óscar Ibáñez
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Abstract One of the most important tasks in forensic

anthropology is human identification. Over the past dec-

ades, forensic anthropologists have focused on improving

techniques to increase the accuracy of identification. Fol-

lowing a thorough examination of unidentified human

remains, the investigator chooses a specific identification

technique to be applied, depending on the availability of

ante mortem and post mortem data. Craniofacial superim-

position is a forensic process in which photographs of a

missing person are compared with a skull in order to

determine whether is the individual depicted and the

skeletal remains are the same person. After more than one

century of development, craniofacial superimposition has

become an interdisciplinary research field where computer

science has acquired a key role as a complement of forensic

sciences. Moreover, the availability of new digital equip-

ment has resulted in a significant advance in the applica-

bility of this forensic identification technique. In this paper,

we review a semi-automatic method devised to assist the

forensic anthropologist in the identification process using

craniofacial superimposition. The technique is based on a

three-stage methodology. The first two are performed

automatically by soft computing techniques. However, the

final decision corresponds to the forensic expert. The per-

formance of the proposed method is illustrated using sev-

eral real-world identification cases.

Keywords Forensic identification � Craniofacial

superimposition � Skull 3D model reconstruction �
Skull-face overlay � Evolutionary algorithms �
Fuzzy landmarks

1 Introduction

Forensic anthropology studies medico-legal questions

related to a deceased person through the examination of his

skeletal remains (Burns 2007). The use of various identi-

fication techniques such as fingerprints, DNA profiles, or

dental data comparison, depends mainly on the availability

of information pertaining to a missing person and the

condition of the remains to be compared, oftentimes, in

missing persons cases, in mass graves or in mass fatalities,

the available data is scanty (Iscan 1981). Hence, anthro-

pological identification based only on skeletal information

can be considered as the last resort for forensic identifi-

cation. In this case, more specific skeleton-based identifi-

cation techniques are alternatively implemented.

Among them, craniofacial superimposition (CS) is the

most relevant technique (Krogman and Iscan 1986; Iscan

1993; Taylor and Brown 1998; Stephan 2009). This

method aims to compare photographs of a ‘‘missing per-

son’’ with a skull by superimposing photographs of the

skull and of the missing person to establish whether they

are same person by matching anthropological landmarks

defined in the literature (Martin and Saller 1966).

These landmarks are located in two objects of different

nature; the skull found, and the available face photograph
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resulting in a variant soft tissue depth among each pair of

landmarks. In addition, their correspondence is not always

symmetrical and perpendicular, some landmarks are loca-

ted in a higher position in the living person and some others

do not have a directly related landmark in the other set

(George 1993; Iscan 1993). These facts, and the location of

the landmarks, represent sources of uncertainty that should

be tackled during the whole CS process. As a result, the

final identification decision includes a certain degree of

uncertainty (Yoshino et al. 1995; Jayaprakash et al. 2001).

Although CS has been in use for over a century, there is

no systematic method but a trial and error approach is

usually followed until a good superimposition is achieved.

Considering that, ‘‘the orientation process is a very chal-

lenging and time-consuming part of the skull-photo super-

imposition technique and correctly adjusting the size and

orienting the images can take several hours to complete’’

(Fenton et al. 2008), a systematic and automatic method for

CS is a real need in forensic anthropology (Ubelaker 2000).

From the computer vision point of view, there is a clear

relationship between the desired procedure and the image

registration (IR) problem (Zitová and Flusser 2003). IR

aims to find the transformation (rotation, translation, etc.)

that overlays two or more pictures taken under different

conditions, bringing the points as closely together as pos-

sible by minimizing the error of a given similarity metric.

CS can be tackled following an IR approach in order to

overlay the skull over the face in the photograph but it

involves a really complex optimization task. On the one

hand, there is incomplete and vague information guiding

the process while, on the other hand, the corresponding

search space is vast and presents many local minima.

Therefore, exhaustive search methods are not useful. Fur-

thermore, forensic experts demand highly robust and

accurate results. IR approaches based on evolutionary

algorithms (EAs) are a promising solution for facing this

challenging optimization problem (Bäck et al. 1997; Eiben

and Smith 2003). Thanks to their global optimization nat-

ure, EAs own the capability to perform robust search in

complex and ill-defined problems as IR (Damas et al.

2011a; Santamarı́a et al. 2010).

Forensic anthropologists usually express the identifica-

tion decision according to several confidence levels,

depending on the degree of conservation of the sample and of

the analytical process put into effect: ‘‘absolute matching’’,

‘‘absolute mismatching’’, ‘‘relative matching’’, ‘‘relative

mismatching’’, and ‘‘lack of information’’ (Jayaprakash et al.

2001; Yoshino et al. 1995).

During the last few years, a multidisciplinary team com-

prised by researches from the European Centre for Soft

Computing and the University of Granada (Spain) has been

working on this issue. They aim to propose a computer-

based methodological framework to assist the forensic

anthropologist in human identification by means of the CS

technique. The work focused on the design of an automatic

method to reconstruct a 3D skull model from the original and

to overlay it on a face photograph, exploiting the capabilities

of soft computing (SC) in a two-fold manner (Bonissone

1997). EAs will be used to build a 3D model of the skull

automatically and find the best fit between the skull found

and the photograph of the face, while, fuzzy sets (FSs) will be

considered in order to manage the different sources of

uncertainty involved in the process (Zadeh 1965). In a final

step, the forensic anthropologist will make an identification

decision using the obtained superimposition.

The aim of this paper is to summarize this method

including the latest developments and showing the results

achieved over a real identification case. We first describe

the most representative CS methods considered in the lit-

erature in Sect. 2. Section 3 is devoted to explain the

proposal and the results obtained when solving a real-world

case. Finally, Sect. 4 presents some conclusions and new

open lines for future works.

2 Overview of craniofacial superimposition methods

The scientific basis of CS was established by Broca (1875)

and Bertillon (1896) more than 100 years ago. Since then,

CS evolved as new technology was available although its

foundations were previously laid.

Martin and Saller (1966) proposed a series of anthro-

pological measurements, indices, and features which are

the base of anthropological studies nowadays. The first

identifications by means of CS consisted of obtaining the

negative of the original photograph of the face and marking

the cephalometric landmarks on it. The same task was done

with a photograph of the skull. Then, both negatives were

overlapped and the positive was developed. This procedure

was specifically named photographic superimposition

(Glaister and Brash 1937).

Video superimposition has been preferred to photo-

graphic superimposition since the former is simpler and

quicker. It overcomes the protracted time involved with

photographic superimposition, where many photographs of

the skull must be taken in varying orientations (Seta and

Yoshino 1993).

The use of computers to assist forensic anthropologists

in the identification process involved the next generation of

CS systems (Pesce Delfino et al. 1986; Ubelaker et al.

1992). Beyond those works using computers just as storage

devices or simple visualization tools, there are just a couple

of proposals exploiting the real advantages of both digital

devices and computer science, especially using computer

graphics and artificial intelligence (Nickerson et al. 1991;

Ghosh and Sinha 2001).
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The process of superimposing the skull and the face

images, requires (Chandra Sekharan 1993): (1) the deter-

mination of the real size of the figures i.e., scaling, and (2)

orientation of the skull to correspond it with the position of

the face in the photograph, using three possible move-

ments: inclination, extension, and rotation.

In all the previous works, the overlay process relies on a

number of corresponding anthropometrical landmarks

proposed by Martin and Saller (1966) which has been used

since then for the assessment of correspondence between

the skull and the face (see Figs. 1, 2). The identification

procedure can follow either an anatomical or an anthro-

pometrical approach. The former relies on the morphology

correlations between the skull and the face (Jayaprakash

et al. 2001), while the latter, emphasizes the measurement

of distances between pairs of landmarks and their com-

parisons to average facial tissue depths. It is also important

to consider as many landmarks as possible, as well as

different proportions among them (George 1993).

The variety of technological support for the CS tech-

nique from the initial identifications involved a large

number of very diverse approaches found in the literature

(Damas et al. 2011b).

3 Semi-automatic craniofacial superimposition

using soft computing

The whole CS process is composed of three stages (Fig. 3),

i.e. image acquiring, skull overlay, and decision making.

The first stage achieves a digital model of the skull and

the enhancement of the image of the face. Obtaining an

accurate 3D model of the skull has been considered a

difficult task by forensic anthropologists in the past.

However, this step can be easily achieved using advanced

scanning devices like laser range scanners (Park et al.

2006). The subject of the identification process, i.e. the

skull, is a 3D object. The use of a 3D model of the skull

instead of a 2D image of the skull should be preferred as it

is a more accurate representation. It has already been

shown that 3D models are much more informative in other

forensic identification tasks (De Angelis et al. 2009).

Concerning the image of the face, most recent systems use

a 2D digital image. This stage also involves the application

of image processing techniques to enhance the quality of

the photograph of the face that was typically provided

when the person disappeared (González and Woods 2008).

The second stage is the skull-face overlay (SFO) which

consists of searching for the best overlay of both 2D

images of the skull and face or of the 3D model of the skull

and the 2D image of the face achieved during the first

stage. A trial–error procedure looks for the best placement

of the skull over the face considering the landmarks cor-

respondences and the soft tissue depths at these points.

Finally, the third stage of the CS process corresponds to

the decision making. Based on the SFO achieved, the iden-

tification decision is made by either judging the matching

between the corresponding landmarks in the skull and in the

face, or by analyzing the respective profiles. Also craniofa-

cial morphanalysis is employed (Jayaprakash et al. 2001).

In order to automate the second stage and facilitate the

first, we perform the former using a 3D model of the skull

and a 2D digital image of the face. Then, we face the SFO

stage as a 3D–2D IR problem, as will be explained below.

3.1 First stage: 3D skull model reconstruction using EC

Since a whole object cannot be completely scanned in a

single image using a range scanner, it is necessary to obtain

and integrate multiple acquisitions from different views to

construct the 3D model by a range image registration (RIR)

algorithm (Dalley and Flynn 2001). This procedure is known

as 3D model reconstruction and as a result a 3D model of the

scanned object is obtained (Ikeuchi et al. 2001).

Some range scanners are equipped with a turn table

device that is connected to the scanner and software for 3D

reconstruction (Fig. 4) which require certain skills to deal

with the set of 3D views usually by supervising the proce-

dure of commercial software packages like RapidFormTM,

or when these software packages do not provide by

Fig. 1 From left to right:
principal facial landmarks,

a lateral and b frontal views
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‘‘stitching up manually’’ every couple of adjacent views. In

some instances the turn table is not available or is useless.

RIR using EC involves a complex optimization task,

with a strongly multimodal and large search space. Thus,

exhaustive search methods are not useful. A different

approach was proposed by Santamarı́a et al. (2007a–c)

which includes a pre-alignment stage that uses a scatter

search (SS) (Laguna and Martı́ 2003) and a refinement

stage based on the classical iterative closest point (ICP)

algorithm (Besl and McKay 1992). The procedure is very

robust because it reconstructs the 3D model of the skull

even if the partial views of the skull present a very different

orientation. (Santamarı́a et al. 2009a).

The proposed 3D reconstruction method carries out con-

secutive alignments of every pair of adjacent views, known

as scene and model. The pair-wise RIR method aims to

determine the Euclidean transformation that brings the scene

view Is ¼ fpig
NIS

1 into the best possible alignment with the

model view Im ¼ fqigNIm

1 , where pi and qi are the points of the

scene and the model, respectively. In particular, a 3D rigid

transformation (f ) is determined by seven real-coded

parameters, that is: a rotation R ¼ ðh;Axisx;Axisy;AxiszÞ and

a translation t~¼ ðtx; ty; tzÞ, with h and Axis
!

being the angle

and axis of rotation, respectively. Then, the transformed

points of the Scene view are denoted by

Fig. 2 From left to right: principal craniometric landmarks, a lateral and b frontal views

Fig. 3 The three stages

involved in our proposed

framework for the 3D/2D

computer-aided CS process
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f ðpiÞ ¼ Rðpi � CIs
Þ þ CIs

þ tðpiÞ
¼ ff ðpiÞg; 8i 2 f1; . . .;NIs

g; ð1Þ

where CIS
is the center of mass of IS.

In order to evaluate the accuracy of the estimated trans-

formation the distance from a transformed IS point f ðpiÞ to

the Model view Im is defined as the squared Euclidean dis-

tance to the closest point qcl of Im, d2
i ¼ f ðpiÞ � qclk k2

.

RIR can be formulated as an optimization problem that

aims to determine the optimal Euclidean transformation f �

achieving the best overlapping of two images according to

the considered Similarity metric F:

f � ¼ arg min
f

FðIS; Im;f Þ s:t: : f �ðISÞ ffi Im ð2Þ

The successful performance of any RIR method is

drastically facilitated by the size of the common

overlapping region present in two consecutive range

images. However, a high overlapping ratio also increases

drastically the number of skull views needed to acquire the

whole 3D skull model. Hence, the authors considered those

scanning cases with a minimum overlapping degree, close

to the fifty percent of the physical surface, in order to ease

the acquisition procedure to the forensic experts. Taking

into account the said overlapping consideration, a robust

objective function based on the minimization of the median

squared error (MedSE) of the closest point distances d2
i is

considered:

FðIS; Im; f Þ ¼ MedSEðd2
i Þ; ð3Þ

where MedSE() corresponds to the computation of the

median d2
i value of the Nth

IS
scene points. The authors used

the grid closest point (GCP) scheme to speed up the closest

point computation (Yamany et al. 1999).

An example of a 3D skull model from the University of

Granada Physical Anthropology Laboratory, automatically

reconstructed from several partial views using the SS-based

method proposed by Santamarı́a et al. (2009a), is shown in

Fig. 5.

The forensic anthropologists established an average

error allowed for the 3D skull model. Figure 6 depicts the

distance deviation histogram comparing the reconstruction

result and the ground-truth 3D model. The averaged error is

less than 1 mm in most of the skull areas. An error higher

than the average was observed only in the posterior area of

the skull that is the least important for the cranio facial

comparison.

Fig. 4 Acquisition of a skull 3D partial view by the use of the

Konica-Minolta laser range scanner of the Physical Anthropology

Laboratory at the University of Granada

Fig. 5 From left to right:
partial views of the skull

Fig. 6 Distance deviation

histogram comparing the

reconstruction result and the

ground-truth 3D model
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3.2 Second stage: SFO by means of EAs and FSs

Searching for the best overlay of the 3D model of the skull

achieved during the first stage, over the 2D digital image of

the face, this process is guided by the correspondence

between some anthropometrical landmarks on the skull

(craniometric) and the face (cephalometric).

Formally, the SFO can be formulated as follows. Given

two sets of 2D facial and 3D cranial landmarks F and C,

respectively, both comprising N landmarks (Ibáñez et al.

2009a):

F ¼

xf1 yf1 1 1
xf2 yf2 1 1
. . . . . . . . . . . .
xfN yfN 1 1

2
664

3
775;C ¼

xc1 yc1 zc1 1
xc2 yc2 zc2 1
. . . . . . . . . . . .
xcN ycN zcN 1

2
664

3
775

The overlay procedure aims to solve the system of

equations (Eq. 4) with the following twelve unknowns:

a rotation represented by an axis ðdx; dy; dzÞ and angle h, a

center of mass ðrx; ry; rzÞ, a translation vector ðtx; ty; tzÞ, a

uniform scaling s, and a 3D–2D projection function that is

given by a field of view u. These twelve parameters

determine the perspective transformation, which projects

every cranial landmark cli of the skull 3D model onto its

corresponding facial landmark fli of the photograph:

F ¼ f ðcÞ ¼ C:ðA:D1:D2:Rh:D
�1
2 :D�1

1 :A�1Þ:S:T :P; ð4Þ

where R ¼ ðA:D1:D2:Rh:D
�1
2 :D�1

1 :A�1Þ represents a rota-

tion matrix to orient the skull in the same pose of the

photograph. S, T, and P are uniform scaling, translation,

and perspective projection matrices, respectively. The

interested reader can refer to Hearn and Baker (1997) for a

detailed description of the matrices in Eq. 4 and their

relation with the twelve unknowns of the problem, as well

as to Ibáñez et al. (2009a) for a deeper explanation.

Hence, SFO can be formulated as a 3D–2D IR problem

that aims to match 3D craniometric and 2D cephalometric

landmarks.

Different definitions of the fitness function were studied,

and the one that achieved the best results was the mean

error (ME):

ME ¼
PN

i¼1 f ðcli � fliÞk k
N

; ð5Þ

where �k k is the 2D Euclidean distance, N is the number of

considered landmarks (provided by the forensic experts),

cli corresponds to every 3D craniometric landmark, fli

refers to every 2D facial landmark, f is the function that

defines the geometric 3D-2D perspective transformation,

and f ðcliÞ represents the projected skull 3D landmark cli in

the image/photograph plane. Notice also that this function

is to be minimized.

In particular, Ibáñez et al. (2009a) proposed two different

real-coded genetic algorithms depending on the crossover

operator employed, the blend crossover (BLX-a) (Eshelman

1993) and the simulated binary crossover (SBX) (Deb and

Agrawal 1995). They also presented a multimodal genetic

algorithm (GA) using the clearing procedure (Ibáñez et al.

2009b), a niching method that consists of sharing limited

resources within subpopulations of individuals characterized

by some similarities (Pétrowski 1996).

Among these three GAs the one that achieved the best

performance uses the SBX-crossover. However, it was

slightly outperformed by another approach studied by

Ibáñez et al. (2009a), based on the covariance matrix

adaptation evolution strategy (CMA-ES) (Hansen and

Ostermeier 2001). Using CMA-ES as optimizer involves a

really good behavior while maintaining at least the same

quality in the results.

Finally, a SS method (Laguna and Martı́ 2003) was

recently proposed in Ibáñez et al. (2012a). In that work, the

SS framework is considered in order to exploit problem

specific information to achieve faster and more precise

solutions. In particular, the rotation angles once the skull

positioned in a frontal pose were delimitated. Even though

other evolutionary approaches have a really good behavior,

achieving similar minima, this new proposal has been

shown to converge faster than CMA-ES and to behave

more robustly in view of the mean values obtained in the

thirty runs developed.

The aforementioned approaches were able to model

properly the 3D–2D IR problem, achieving a high perfor-

mance for all the cases. However, they did not consider the

different sources of uncertainty presented in the problem.

Thus, the resulting overlays did not reach the level of

quality required in many cases, depending on the pose of

the face in the photograph and the number of landmarks the

forensic expert was able to locate. To overcome these

problems, Ibáñez et al. (2011) studied the different sources

of uncertainty and proposed the use of fuzzy landmarks to

overcome most of them. Ibáñez et al. (2011) distinguish

between the uncertainty inherent to the objects under study

and that associated with the overlay process (see Fig. 7).

They identified two inherent sources of uncertainty

regarding the handled objects i.e., a skull and a face and

their relationship. The landmark location uncertainty is

related to the extremely difficult task to locate the points in

an invariable place since the definition of any anthropo-

metric landmark is imprecise in its own. The landmark

matching uncertainty refers to the imprecision that is

involved in the matching of two sets of landmarks corre-

sponding to two different objects: a face and a skull (Fig. 8).

The other type of uncertainty is associated with the 3D

skull-2D face overlay and it is not inherent to the object

themselves but to the approach, as it tries to overlay a 3D

B. R. Campomanes-Álvarez et al.
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model and a 2D image. Figure 9 shows examples of that

situation.

The landmark location uncertainty refers to the diffi-

culty to locate landmarks with the accuracy required for the

automatic overlay of a 3D skull model and a 2D face photo,

whereas the matching uncertainty refers to the negative

influence of a small number of landmarks with an unsuit-

able spatial distribution in the quality of the SFO results as

a consequence of the coplanarity problem (Santamarı́a

et al. 2009b).

Two different approaches have been proposed to deal

jointly with the imprecise landmark location and the

coplanarity problem. Fuzzy landmarks allow the forensic

experts to locate the cephalometric landmarks using ellip-

ses and on considering FSs to model the uncertainty related

to them. Besides, fuzzy distances are considered in order to

model the distance between each pair of craniometric and

cephalometric landmarks.

Following the idea of metric spaces in fuzzy landmark is

defined as a fuzzy convex set of points having a nonempty

core and a bounded support. All its a-levels are nonempty

bounded and convex sets (Diamond and Kloeden 2000).

Since the problem at hand deals with 2D photographs

with and x 9 y resolution, the fuzzy landmarks can be

defined as 2D masks represented as a matrix m with

mx 9 my points i.e., a discrete FSs of pixels. The size of

each fuzzy landmark is different depending on the impre-

cision on its localization but at least one pixel (i.e. crisp

point related to a matrix cell) will have membership with

degree one.

An example of these fuzzy cephalometric landmarks is

given in Fig. 10 on the left and the corresponding mem-

bership values of the pixels of one of those landmarks is

depicted on the right.

The results of the present investigation indicate that a

larger number of landmarks produce a more accurate

overlay. The imprecise location of landmarks is a prom-

ising approach to avoid the coplanarity problem and to

improve the performance of any SFO method, by allowing

the anthropologist to locate additional landmarks that could

not be otherwise determined.

Fig. 7 Scheme of differences

between uncertainty inherent to

the objects and that associated

with the overlay process

Fig. 8 Correspondences between facial and craniometric landmarks:

a lateral and b frontal views

Fig. 9 Examples of precise landmarks location by different forensic

anthropologists. Top row: a, b Labiale superius landmarks. Bottom
row: a, b right ectocanthion landmarks
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Based on nine complex real-world identification cases,

the authors recognized that all the overlays achieved by

their technique were competitive with the manual ones

performed by the forensic experts. The proposed method

successfully provided a good overall alignment of the skull

and the face objects and achieved very accurate results and

still behaved robustly.

Finally, a novel and alternative approach has been recently

proposed by Ibáñez et al. (2012b) to deal with imprecise

cephalometric landmarks in the SFO process. By using a

cooperative co-evolutionary algorithm (CCEA), the authors

were able to search for both the best transformation parameters

and the best landmark location at the same time. Two different

fitness functions were analyzed. One of them measured the

mean distance between pairs of landmarks. The other weigh-

ted those distances by the corresponding value in a two-

dimensional fuzzy set that models the imprecision in the

location of each cephalometric landmark. Results are prom-

ising due to the very short time required by the co-evolutionary

process. In fact, it is ten to forty times faster than the fuzzy-

evolutionary methods and it yields high-quality overlays.

3.3 Application example: real-world cases solved using

our automation approach

This section is devoted to illustrate the operation of the first

two stages of the CS process that we have automated so far.

To do so, we will first study the performance and the

behavior of different methods that tackle the 3D recon-

struction of a forensic object. Then, we will present the

study of the performance of different EAs to model the

imprecise location of cephalometric landmarks within our

SFO method in comparison to a crisp location method.

The forensic objects considered for this experimental

study were chosen by the experts according to several

forensic criteria. It is worth noting that the real-world case

of the first stage does not correspond to the skull used in the

second one.

3.3.1 3D model acquisition and reconstruction

3.3.1.1 Skull image datasets The Physical Anthropology

Laboratory of the University of Granada provided us with a

human skull1 acquired by a Konica-Minolta� 3D Lassers-

canner VI-910. We have taken into account important fac-

tors along the scanning process like time and storage

demand. Following the suggestions in (Silva et al. 2005),

we considered a scan every 458. Hence, we deal with a

sequence of eight different views: 0�–45�–90�–135�–180�–

225�–270�–315�. The dataset we will use in our experi-

ments is only limited to five of the eight views: 270�–315�–

0�–45�–90�. Such a reduced subset of views is enough to

perform a CS study as the obtained open 3D model includes

all the required skull morphological characteristics.

We will consider a feature-based IR approach which

aims to reduce the huge datasets IR algorithms typically

deal with by selecting a small set of truly representative

and invariant characteristics. We use a preprocessing

algorithm that carries out the extraction of feature points

from the range images (the skull views acquired by the

laser scanner) by applying a 3D crest lines edge detector

(Yoshizawa et al. 2005). Figure 11 shows some of the skull

range images and their corresponding feature points.

Therefore, the resulting processed views will be used by

every RIR method. Table 1 summarizes the size (number

of image points) of the forensic range images of the con-

sidered skull before and after the application of the crest

line extraction procedure.

Fig. 10 From left to right: a example of fuzzy location of cephalo-

metric landmarks and b representation of an imprecise landmark

using fuzzy sets

Fig. 11 From left to right: a images I1
315� and I1

0� , each of the two

images comprises both the original skull and b the crest line dataset

1 We cannot provide this dataset as public domain due to the Spanish

law for protection of personal data.
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3.3.1.2 Experimental design We will focus our attention

on the design of automatic, accurate, robust, and fast RIR

methods based on memetic algorithms (MAs) (Krasnogor

and Smith 2005), comparing their performance with those

proposals existing in the IR literature adopting a sequential

hybridization approach following the proposal in Santa-

marı́a et al. 2009a. The sequential hybridization between

global and local strategies is becoming the current trend in

the community (Dru et al. 2006; Jenkinson and Smith

2001; Yao and Goh 2006). In this sequential hybridization

approach, a global search is first carried out taking

advantage of the global search capability of EAs. Then,

some kind of local search (LS) algorithm is used for fine

tuning the result, usually as a separate stage. This scheme

of hybridization is opposite to that considered by the

memetic approach where the local search component is

embedded in the global search procedure (Ishibuchi et al.

2003; Krasnogor and Smith 2005).

We have analyzed nine MAs resulting from the com-

bination of three basic EAs: CHC (Eshelman 1991), dif-

ferential evolution (DE) (Storn 1997), and scatter search

(SS) (Glover 1977) and three LS techniques: Powell’s

(1964), Solis and Wets (1981), and crossover-based local

search (XLS) (Beyer and Deb 2001) methods. The nine

memetic designs will be compared to the three basic evo-

lutionary approaches and to the nine sequential hybridiza-

tions resulting from their combination with the three

selected local optimizers.

On the one hand, the experimental design addresses four

different pair-wise RIR problems: I1
270� � I1

315� ; I
1
315� � I1

0� ;

I1
45� � I1

0� . On the other hand, it is based on those ill-con-

ditioned situations where forensics are advocated to man-

ually intervene to reconstruct an optimal skull 3D model.

That is the aim of the following RIR problem instances.

They simulate an unsupervised scanning process where

there is no turn table available or the particular environ-

ment does not allow its use. Specifically, the RIR instances

are designed from a rigid transformation noted Ti, which is

applied to one of the two images of every pair-wise RIR

problem. For instance, TiðI2
45� Þ � I2

0�represents a certain

RIR instance to be tackled by every RIR method, where the

rigid transformation Ti is applied to the I2
45� image to be

placed in some other location different from its correct

original one. RIR methods aim to recover the original

dataset location (the inverse transformation T�1
i ) achieving

a minimum distance (or maximum overlapping) criterion

between the couple of images.

We will consider different rigid transformations Ti in

every run of the considered RIR methods. Each of these

transformations will simulate a typical bad situation for the

forensics in which, for instance, there is no positional

device or the object could suffer any displacement not

being controlled by them. Indeed, such transformations

(see Sect. 3.1) will be randomly generated with a uniform

distribution as follows: each of the three rotation axis

parameters will be in the range [-1, 1]; the rotation angle

will be in [0�, 360�]; and the three translation parameters in

[-40, 40]. This search space significantly influences

(negatively, of course) the performance of classical RIR

methods (Santamarı́a et al. 2007b; Zhang 1994), which

usually deal with a transformation that slightly modifies the

object location. Thus, any of the RIR methods considered

in this work will have to overcome such really bad ini-

tializations to be considered an automatic, accurate, robust,

and quick reconstruction method of forensic objects (skulls

in the CS case).

3.3.1.3 Parameter settings The different RIR methods

have been run on a 2.2 GHz. AMD ATHLON processor

with 2 GB RAM and the GNU/Linux SuSe 10.1 (32 bits)

O.S. using the GNU/gcc compiler without code optimiza-

tion. Considering the speed requirement of our real-world

application, both the MAs and the basic EA stage of the

sequential hybridization approaches are run for the same

fixed time of 20 s. In order to avoid execution dependence,

every RIR method will tackle thirty different runs for each

of the four considered RIR problem instances. Since we

consider 20 s for the four sub problems comprising a skull

reconstruction, we will be able to provide a skull open 3D

model in just 80 s, which is a great improvement from the

forensic expert point of view.

The three MA-based RIR methods (based on CHC, DE,

and SS) are initialized with a population of 100 random

solutions. The value of the parameter a of the BLX-a operator

employed in CHC is set to 0.5 (Cordón et al. 2006).

The best configuration we found for the control

parameters of the DE-based MA is given by a mutation

factor F = 0.5 and a recombination rate CR = 0.7. In the

SS-based MA, the reference set is composed of b = 8

solutions and the BLX-a crossover operator is applied with

a = 0.3 (Santamarı́a et al. 2007b).

The LS step of the sequential hybridization-based RIR

methods (applied once the previous EA stage is finished)

considers a stop criterion based on a predefined number of

evaluations without improvement. In particular, we consider

Table 1 Size of the range images of the considered dataset in their

original conditions and after the feature extraction process

Views/images

270� 315� 0� 45� 90�

Original 109,936 76,794 68,751 91,590 104,441

Crest lines 1,380 1,181 986 1,322 1,363
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4 number-of-parameters-of-solutions = 28. Notice that this

final refinement step is not taken into account in the 20 s run

time since it spends a very short amount of time. Even so,

sequential hybridizations are slightly benefited from this

consideration.

Finally, the restart mechanism is applied for DE and SS

when the same population is kept during three iterations.

3.3.1.4 Analysis of results Table 2 presents the aggre-

gated results of the basic EA, the sequential hybridization

and the MA-based RIR methods.

The best overall algorithm to tackle our 3D skull

reconstruction task corresponds to a MA which considers

SS as its EA and XLS method as its LS. It achieves the best

performance with an averaged value of 25.20 against a

30.17, 35.56, and 31.38 for the best sequential hybridiza-

tion based methods (SH-CHC-XLS, SH-DE-Powell, and

SH-SS-Powell, respectively) as well as the other two best

MA-based methods, MA-CHC-XLS and MA-DE-XLS,

achieving values of 28.91 and 32.87, respectively.

Figure 12 shows the best reconstructed 3D model of the

studied skull obtained by the MA-SS-XLS based RIR (on

the left) and the perfect 3D model (on the right). In spite of

the different colors that have been used to easily differ-

entiate among the component 3D views, they perfectly

overlap in the reconstructed model after the RIR process.

Indeed, there is no visible difference between the recon-

structed and the ground truth model in the skull.

3.3.2 3D–2D skull-face overlay

We have analyzed three different SFO problem instances

corresponding to a real-world case previously addressed by

the staff of the Physical Anthropology Laboratory in col-

laboration with the Spanish Scientific Police. The case of

study happened in Cádiz, Spain. The three different pho-

tographs that are shown in Fig. 14 were provided by the

relatives, who acquired them in different moments, poses,

and conditions. Hence, this case study consists of three

distinct SFO problem instances.

This identification case was positively solved following

a computer-supported but manual approach for the SFO.

We will consider the available 2D photographs of the

missing person and the respective 3D skull model (Fig. 13)

that was acquired using the Konica-Minolta 3D Lasers-

canner VI-910.

The forensic experts were able to locate 9, 11, and 12

landmarks following a crisp (precise) approach and 14, 16,

and 15 using imprecise landmarks for poses 1, 2, and 3,

respectively (see Fig. 14). These additional landmarks will

play an essential role in order to tackle the coplanarity

problem.2 A clear example is the landmark on the top of

the head, named vertex, which is never used by the forensic

anthropologists because it is normally occluded by hair

(and, thus, they are not able to precisely locate it), although

it is very useful for the automatic overlay process since it

lies in a complete different plane.

3.3.2.1 Experimental design We will study the perfor-

mance of a real-coded genetic algorithm (RCGA) with the

SBX crossover and the CMA-ES method, both presented in

Ibáñez et al. (2009b). They include the fuzzy modeling of

imprecise landmarks (Ibáñez et al. 2011). We named them

f-RCGA and f-CMAES, respectively. In addition, we will

also consider a cooperative co-evolutionary genetic algo-

rithm (CCGA) proposed by Ibáñez et al. (2012a) to model

the imprecise location of cephalometric landmarks within

our SFO method. The latter uses a SBX crossover for

the transformation parameters population and two-point

Table 2 Mean and standard deviation (in brackets) MedSE values for the three basic EAs, the nine sequential hybridization and MA-based RIR

methods

Methods Basic EAs Sequential hybridizations Memetic algorithms

Powell Solis XLS Powell Solis XLS

CHC 30.75 (19.36) 30.20 (18.22) 30.98 (18.16) 30.17 (18.46) 30.84 (17.40) 30.75 (19.53) 28.91 (17.27)

DE 41.62 (19.74) 35.56 (18.29) 40.88 (18.47) 39.03 (18.22) 50.34 (20.49) 38.10 (20.04) 32.87 (19.33)

SS 31.45 (19.66) 31.38 (18.44) 31.45 (18.39) 31.45 (18.39) 36.80 (18.47) 26.81 (20.44) 25.20 (17.66)

Significant bold values treated as best result

Fig. 12 From left to right: a best reconstructed and b perfect model

of the skull

2 Notice that these three images have a frontal or near-frontal pose of

the face, and/or the corresponding craniometric set of landmarks is

coplanar or near-coplanar.
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crossover for the landmark locations population. Random

initial populations and random mutation are used in both

cases, constraining the possible values for the landmark

location to all the pixels inside the region corresponding to

the imprecise landmark the forensic expert located in the

image.

The set of employed parameters are the same described

in Ibáñez et al. (2012b).

We would like to have a quantitative and objective

measure to benchmark the achieved outcomes. Unfortu-

nately, the ME values obtained by each approach are not

fully significant to perform a comparison because of the

different objective functions to be minimized. In addition,

there is no a direct correspondence between ME values and

the visual representations as was pointed out by the experts

from the Physical Anthropology Laboratory at the University

of Granada (Spain) in Ibáñez et al. (2011).

Due to the latter reasons, we adopted an alternative,

specifically designed image-processing scheme, called area

deviation error (ADE) (Ibáñez et al. 2011). It is based on

evaluating the quality of the overlay by measuring the

proper adjustment of the projected skull and the original

face contours.

Despite some shortcomings, the ADE successfully pro-

vides a fair numerical index to compare the obtained SFO in

an objective way, which properly complements the qualitative

forensic anthropologist’ assessment (Ibáñez et al. 2011).

3.3.2.2 Analysis of results Table 3 shows the run time (in

seconds) needed by all the approaches in each of the SFO

instances.

According to run time, the co-evolutionary approach

achieves the best run time results for each pose. Indeed, the

use of FSs in CCGA does not imply an increment in the run

time since CCGA avoids the calculation of fuzzy distances.

Moreover, it is significantly faster than f-CMAES and

f-RCGA, and at least, two times faster than the crisp CMA-

ES approach. The comparison between the two fuzzy

algorithms shows that the run time of f-CMAES is twice

the f-RCGA time, so that latter approach clearly outper-

forms f-CMAES.

Table 4 presents the ADE values for the obtained

overlays in the three instances (poses) of the considered

case. Fuzzy-evolutionary (f-CMAES, f-RCGA), co-evolu-

tionary (CCGA), and a crisp evolutionary (CMA-ES)

approach are distinguished. The minimum (m), maximum

(M), mean (-), and standard deviation (r) ADE values of

the 30 runs performed are shown for each pose.

Following the results of Table 4, it can be seen that the

worst behavior corresponds to the crisp approach. CMA-ES

achieves worse results than the rest of the tested methods.

Figures 15, 16, 17 and 18 show the best superimposition

for the three poses obtained using CMA-ES, f-CMA-ES,

f-RCGA and CCGA, respectively.

Figure 15a presents the superimposition achieved by

CMA-ES in the first pose. The skull does not coincide with

the face of the photograph. f-CMAES (Fig. 16a), f-RCGA

Table 3 Run time (seconds) needed to perform the fuzzy-evolu-

tionary, the co-evolutionary and the crisp-evolutionary approaches

over each of the SFO instances

Approach Run time

Pose 1 Pose 2 Pose 3

CMA-ES 2400 2300 6100

f-CMAES 1200 1300 1000

f-RCGA 4700 7300 14600

CCGA 400 400 400

Significant bold values treated as best result

Fig. 13 Case study: 3D model of the skull

Fig. 14 Case study (left to right): photographs of the missing person

corresponding to poses 1, 2, and 3. Pictures in the top row show the

used crisp landmarks sets, which are composed of 9, 11, and 12 crisp

landmarks, respectively. Pictures in the bottom row show the used

imprecise landmarks sets, which are composed of 14, 16 and, 15

landmarks, respectively
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(Fig. 17a), and CCGA (Fig. 18a) obtained more pre-

cise SFO results than CMA-ES (Fig. 15a) for the first

instance.

Regarding the second pose, CMA-ES achieves a smaller

skull area over the face of the photograph (Fig. 15b) than

the remaining algorithms. Figure 15c shows the superim-

position results for CMA-ES in the third instance. The right

bottom area of the skull does not properly fit to the face of

the photograph.

A direct comparison between f-CMAES and f-RCGA

ADE values show they perform robustly (mean values),

achieving similar results. According to the mean values,

f-RCGA is better than f-CMAES in the first instance

(29.29 against 30.72). Meanwhile, the latter approach

obtains a lower mean value in the second pose (22.27 vs.

28.26). Finally, they achieve very similar values in the

third instance, 25.16 for f-CMAES and 25.64 for

f-RCGA.

On the other hand, f-RCGA outperforms f-CMAES in

the three instances with respect to the minimum values.

Figures 16 and 17 present the best superimposi-

tion results obtained by f-CMAES and f-RCGA,

Table 4 Area-deviation-error

(ADE) values in the best SFO

estimations for each approach

Significant bold values treated

as best result

Instance Approach ADE

m M - r

1 CMA-ES 49.820827 52.994709 51.1051702 0.70216713

f-CMAES 28.792446 30.720665 29.5870543 0.45327576

f-RCGA 20.266197 29.298676 25.0512862 2.46768166

CCGA 20.101246 30.709288 24.913448 2.7747241

2 CMA-ES 43.248581 46.787495 45.58037 0.7342788

f-CMAES 20.85522 22.272806 21.63374 0.4321111

f-RCGA 19.214912 28.268339 22.464926 2.0538164

CCGA 18.330183 23.664318 21.026742 1.335274

3 CMA-ES 49.925446 55.599442 53.380075 1.6042135

f-CMAES 17.90711 25.161003 18.81185 1.2528082

f-RCGA 15.446845 25.640049 18.459968 2.3442206

CCGA 14.181023 20.075504 16.460508 1.4287478

Fig. 15 Best superimposition obtained using CMA-ES. a Pose 1,

b pose 2, and c pose 3

Fig. 16 Best superimposition obtained using f-CMAES. a Pose 1,

b pose 2, and c pose 3

Fig. 17 Best superimposition obtained using f-RCGA. a Pose 1,

b pose 2, and c pose 3

Fig. 18 Best superimposition obtained using CCGA. a Pose 1, b pose

2, and c pose 3
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respectively. f-RCGA achieves a more accurate SFO

than f-CMAES for the first and second instances.

Figure 17a, b show that f-RCGA obtains a lower dis-

tance between the landmarks of the skull and the face

than f-CMAES (Fig. 16a, b).

Finally, f-RCGA and f-CMAES results are very similar

for the third pose (Figs. 17c, 16c). There is almost no

visual difference between the latter algorithms.

4 Concluding remarks and future works

The aim of the present work was to design a complete,

automatic, soft computing-based procedure to aid the

forensic anthropologist in the identification task using CS.

An semi-automatic method based on the use of real-coded

EAs and FSs for solving the first two stages of the CS

process: 3D skull model reconstruction and SFO was

reviewed.

Such methods are fast, and robust, making them useful

in solving a tedious task using a systematic approach

although the technique still requires some improvements, it

could be used as a tangible tool for obtaining a good

superimposition automatically. Such a preliminary solution

would be then manually refined by the forensic expert in a

quick way.

The innovate technique we have reviewed in this paper

is the result of several projects (SOCOVIFI TIN2006-

00829 and the current SIMMRA TIN2009-07727) where

we have performed an automatic procedure to support

forensic anthropologists in the CS process.

This approach can be considered the most advanced

semi-automatic system in the field, the Physical Anthro-

pology Laboratory at the University of Granada has used

the technique to solve several identification real-world

cases for the Spanish Police.

In addition, the system (PCT/ES2010/00350) commer-

cialized in Mexico, has received the IFSA Award for

Outstanding Applications of Fuzzy Technology (2011) and

the EUSFLAT Best Ph.D. Thesis Award (2011).

In the future, once the method has been throughly tested,

the results should be validated through a more extensive

study.

The inherent matching uncertainty regarding each pair

of cephalometric-craniometric landmarks, should be

addressed (Stephan and Simpson 2008a, b), as well as

partial matching situation by means of FSs and fuzzy dis-

tance measures.
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