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Abstract One of the most important tasks in forensic
anthropology is human identification. Over the past dec-
ades, forensic anthropologists have focused on improving
techniques to increase the accuracy of identification. Fol-
lowing a thorough examination of unidentified human
remains, the investigator chooses a specific identification
technique to be applied, depending on the availability of
ante mortem and post mortem data. Craniofacial superim-
position is a forensic process in which photographs of a
missing person are compared with a skull in order to
determine whether is the individual depicted and the
skeletal remains are the same person. After more than one
century of development, craniofacial superimposition has
become an interdisciplinary research field where computer
science has acquired a key role as a complement of forensic
sciences. Moreover, the availability of new digital equip-
ment has resulted in a significant advance in the applica-
bility of this forensic identification technique. In this paper,
we review a semi-automatic method devised to assist the
forensic anthropologist in the identification process using
craniofacial superimposition. The technique is based on a
three-stage methodology. The first two are performed
automatically by soft computing techniques. However, the
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final decision corresponds to the forensic expert. The per-
formance of the proposed method is illustrated using sev-
eral real-world identification cases.

Keywords Forensic identification - Craniofacial
superimposition - Skull 3D model reconstruction -
Skull-face overlay - Evolutionary algorithms -
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1 Introduction

Forensic anthropology studies medico-legal questions
related to a deceased person through the examination of his
skeletal remains (Burns 2007). The use of various identi-
fication techniques such as fingerprints, DNA profiles, or
dental data comparison, depends mainly on the availability
of information pertaining to a missing person and the
condition of the remains to be compared, oftentimes, in
missing persons cases, in mass graves or in mass fatalities,
the available data is scanty (Iscan 1981). Hence, anthro-
pological identification based only on skeletal information
can be considered as the last resort for forensic identifi-
cation. In this case, more specific skeleton-based identifi-
cation techniques are alternatively implemented.

Among them, craniofacial superimposition (CS) is the
most relevant technique (Krogman and Iscan 1986; Iscan
1993; Taylor and Brown 1998; Stephan 2009). This
method aims to compare photographs of a “missing per-
son” with a skull by superimposing photographs of the
skull and of the missing person to establish whether they
are same person by matching anthropological landmarks
defined in the literature (Martin and Saller 1966).

These landmarks are located in two objects of different
nature; the skull found, and the available face photograph
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resulting in a variant soft tissue depth among each pair of
landmarks. In addition, their correspondence is not always
symmetrical and perpendicular, some landmarks are loca-
ted in a higher position in the living person and some others
do not have a directly related landmark in the other set
(George 1993; Iscan 1993). These facts, and the location of
the landmarks, represent sources of uncertainty that should
be tackled during the whole CS process. As a result, the
final identification decision includes a certain degree of
uncertainty (Yoshino et al. 1995; Jayaprakash et al. 2001).

Although CS has been in use for over a century, there is
no systematic method but a trial and error approach is
usually followed until a good superimposition is achieved.
Considering that, “the orientation process is a very chal-
lenging and time-consuming part of the skull-photo super-
imposition technique and correctly adjusting the size and
orienting the images can take several hours to complete”
(Fenton et al. 2008), a systematic and automatic method for
CS is a real need in forensic anthropology (Ubelaker 2000).

From the computer vision point of view, there is a clear
relationship between the desired procedure and the image
registration (IR) problem (Zitova and Flusser 2003). IR
aims to find the transformation (rotation, translation, etc.)
that overlays two or more pictures taken under different
conditions, bringing the points as closely together as pos-
sible by minimizing the error of a given similarity metric.

CS can be tackled following an IR approach in order to
overlay the skull over the face in the photograph but it
involves a really complex optimization task. On the one
hand, there is incomplete and vague information guiding
the process while, on the other hand, the corresponding
search space is vast and presents many local minima.
Therefore, exhaustive search methods are not useful. Fur-
thermore, forensic experts demand highly robust and
accurate results. IR approaches based on evolutionary
algorithms (EAs) are a promising solution for facing this
challenging optimization problem (Béck et al. 1997; Eiben
and Smith 2003). Thanks to their global optimization nat-
ure, EAs own the capability to perform robust search in
complex and ill-defined problems as IR (Damas et al.
2011a; Santamaria et al. 2010).

Forensic anthropologists usually express the identifica-
tion decision according to several confidence levels,
depending on the degree of conservation of the sample and of
the analytical process put into effect: “absolute matching”,
“absolute mismatching”, “relative matching”, “relative
mismatching”, and “lack of information” (Jayaprakash et al.
2001; Yoshino et al. 1995).

During the last few years, a multidisciplinary team com-
prised by researches from the European Centre for Soft
Computing and the University of Granada (Spain) has been
working on this issue. They aim to propose a computer-
based methodological framework to assist the forensic
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anthropologist in human identification by means of the CS
technique. The work focused on the design of an automatic
method to reconstruct a 3D skull model from the original and
to overlay it on a face photograph, exploiting the capabilities
of soft computing (SC) in a two-fold manner (Bonissone
1997). EAs will be used to build a 3D model of the skull
automatically and find the best fit between the skull found
and the photograph of the face, while, fuzzy sets (FSs) will be
considered in order to manage the different sources of
uncertainty involved in the process (Zadeh 1965). In a final
step, the forensic anthropologist will make an identification
decision using the obtained superimposition.

The aim of this paper is to summarize this method
including the latest developments and showing the results
achieved over a real identification case. We first describe
the most representative CS methods considered in the lit-
erature in Sect. 2. Section 3 is devoted to explain the
proposal and the results obtained when solving a real-world
case. Finally, Sect. 4 presents some conclusions and new
open lines for future works.

2 Overview of craniofacial superimposition methods

The scientific basis of CS was established by Broca (1875)
and Bertillon (1896) more than 100 years ago. Since then,
CS evolved as new technology was available although its
foundations were previously laid.

Martin and Saller (1966) proposed a series of anthro-
pological measurements, indices, and features which are
the base of anthropological studies nowadays. The first
identifications by means of CS consisted of obtaining the
negative of the original photograph of the face and marking
the cephalometric landmarks on it. The same task was done
with a photograph of the skull. Then, both negatives were
overlapped and the positive was developed. This procedure
was specifically named photographic superimposition
(Glaister and Brash 1937).

Video superimposition has been preferred to photo-
graphic superimposition since the former is simpler and
quicker. It overcomes the protracted time involved with
photographic superimposition, where many photographs of
the skull must be taken in varying orientations (Seta and
Yoshino 1993).

The use of computers to assist forensic anthropologists
in the identification process involved the next generation of
CS systems (Pesce Delfino et al. 1986; Ubelaker et al.
1992). Beyond those works using computers just as storage
devices or simple visualization tools, there are just a couple
of proposals exploiting the real advantages of both digital
devices and computer science, especially using computer
graphics and artificial intelligence (Nickerson et al. 1991;
Ghosh and Sinha 2001).
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The process of superimposing the skull and the face
images, requires (Chandra Sekharan 1993): (1) the deter-
mination of the real size of the figures i.e., scaling, and (2)
orientation of the skull to correspond it with the position of
the face in the photograph, using three possible move-
ments: inclination, extension, and rotation.

In all the previous works, the overlay process relies on a
number of corresponding anthropometrical landmarks
proposed by Martin and Saller (1966) which has been used
since then for the assessment of correspondence between
the skull and the face (see Figs. 1, 2). The identification
procedure can follow either an anatomical or an anthro-
pometrical approach. The former relies on the morphology
correlations between the skull and the face (Jayaprakash
et al. 2001), while the latter, emphasizes the measurement
of distances between pairs of landmarks and their com-
parisons to average facial tissue depths. It is also important
to consider as many landmarks as possible, as well as
different proportions among them (George 1993).

The variety of technological support for the CS tech-
nique from the initial identifications involved a large
number of very diverse approaches found in the literature
(Damas et al. 2011b).

3 Semi-automatic craniofacial superimposition
using soft computing

The whole CS process is composed of three stages (Fig. 3),
i.e. image acquiring, skull overlay, and decision making.
The first stage achieves a digital model of the skull and
the enhancement of the image of the face. Obtaining an
accurate 3D model of the skull has been considered a
difficult task by forensic anthropologists in the past.
However, this step can be easily achieved using advanced
scanning devices like laser range scanners (Park et al.
2006). The subject of the identification process, i.e. the
skull, is a 3D object. The use of a 3D model of the skull
instead of a 2D image of the skull should be preferred as it
is a more accurate representation. It has already been

Fig. 1 From left to right:
principal facial landmarks,
a lateral and b frontal views

shown that 3D models are much more informative in other
forensic identification tasks (De Angelis et al. 2009).
Concerning the image of the face, most recent systems use
a 2D digital image. This stage also involves the application
of image processing techniques to enhance the quality of
the photograph of the face that was typically provided
when the person disappeared (Gonzalez and Woods 2008).
The second stage is the skull-face overlay (SFO) which
consists of searching for the best overlay of both 2D
images of the skull and face or of the 3D model of the skull
and the 2D image of the face achieved during the first
stage. A trial-error procedure looks for the best placement
of the skull over the face considering the landmarks cor-
respondences and the soft tissue depths at these points.
Finally, the third stage of the CS process corresponds to
the decision making. Based on the SFO achieved, the iden-
tification decision is made by either judging the matching
between the corresponding landmarks in the skull and in the
face, or by analyzing the respective profiles. Also craniofa-
cial morphanalysis is employed (Jayaprakash et al. 2001).
In order to automate the second stage and facilitate the
first, we perform the former using a 3D model of the skull
and a 2D digital image of the face. Then, we face the SFO
stage as a 3D-2D IR problem, as will be explained below.

3.1 First stage: 3D skull model reconstruction using EC

Since a whole object cannot be completely scanned in a
single image using a range scanner, it is necessary to obtain
and integrate multiple acquisitions from different views to
construct the 3D model by a range image registration (RIR)
algorithm (Dalley and Flynn 2001). This procedure is known
as 3D model reconstruction and as a result a 3D model of the
scanned object is obtained (Ikeuchi et al. 2001).

Some range scanners are equipped with a turn table
device that is connected to the scanner and software for 3D
reconstruction (Fig. 4) which require certain skills to deal
with the set of 3D views usually by supervising the proce-
dure of commercial software packages like RapidForm™,
or when these software packages do not provide by
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Fig. 2 From left to right: principal craniometric landmarks, a lateral and b frontal views

Fig. 3 The three stages
involved in our proposed
framework for the 3D/2D
computer-aided CS process
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“stitching up manually” every couple of adjacent views. In
some instances the turn table is not available or is useless.

RIR using EC involves a complex optimization task,
with a strongly multimodal and large search space. Thus,
exhaustive search methods are not useful. A different
approach was proposed by Santamaria et al. (2007a—c)
which includes a pre-alignment stage that uses a scatter
search (SS) (Laguna and Marti 2003) and a refinement
stage based on the classical iterative closest point (ICP)
algorithm (Besl and McKay 1992). The procedure is very
robust because it reconstructs the 3D model of the skull
even if the partial views of the skull present a very different
orientation. (Santamaria et al. 2009a).
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3. Decision making

2. Skull-Face
overlay
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3D model translation,
rotation, scaling, and
2D projection

The proposed 3D reconstruction method carries out con-
secutive alignments of every pair of adjacent views, known
as scene and model. The pair-wise RIR method aims to
determine the Euclidean transformation that brings the scene

view Iy = {p,-}llv’s into the best possible alignment with the

model view I, = {q,-}llvl“‘ , where p; and g, are the points of the
scene and the model, respectively. In particular, a 3D rigid
transformation (f) is determined by seven real-coded
parameters, thatis: arotation R = (0, Axis,, Axis,, Axis,) and

a translation t = (tx, ty, t,), with 0 and Axis being the angle
and axis of rotation, respectively. Then, the transformed
points of the Scene view are denoted by



Computer-based craniofacial superimposition in forensic identification using soft computing

fp:i) = R(pi — C1,) + Cp, +t(pi)
:{f(Pz)}7 ViE{l,...,le}, (1)

where Cj; is the center of mass of Is.

In order to evaluate the accuracy of the estimated trans-
formation the distance from a transformed I point f(p;) to
the Model view [, is defined as the squared Euclidean dis-
tance to the closest point . of 1, d? = ||[f (p;) — qal)*

RIR can be formulated as an optimization problem that
aims to determine the optimal Euclidean transformation f*
achieving the best overlapping of two images according to
the considered Similarity metric F:

= argn}inF(Is,Im.f) st (Is) =2 1y (2)

Fig. 4 Acquisition of a skull 3D partial view by the use of the
Konica-Minolta laser range scanner of the Physical Anthropology
Laboratory at the University of Granada

The successful performance of any RIR method is
drastically facilitated by the size of the common
overlapping region present in two consecutive range
images. However, a high overlapping ratio also increases
drastically the number of skull views needed to acquire the
whole 3D skull model. Hence, the authors considered those
scanning cases with a minimum overlapping degree, close
to the fifty percent of the physical surface, in order to ease
the acquisition procedure to the forensic experts. Taking
into account the said overlapping consideration, a robust
objective function based on the minimization of the median
squared error (MedSE) of the closest point distances di2 is
considered:

Flls, i) = MedSE(d?), 3)

where MedSE() corresponds to the computation of the
median d? value of the N}? scene points. The authors used
the grid closest point (GCP) scheme to speed up the closest
point computation (Yamany et al. 1999).

An example of a 3D skull model from the University of
Granada Physical Anthropology Laboratory, automatically
reconstructed from several partial views using the SS-based
method proposed by Santamaria et al. (2009a), is shown in
Fig. 5.

The forensic anthropologists established an average
error allowed for the 3D skull model. Figure 6 depicts the
distance deviation histogram comparing the reconstruction
result and the ground-truth 3D model. The averaged error is
less than 1 mm in most of the skull areas. An error higher
than the average was observed only in the posterior area of
the skull that is the least important for the cranio facial
comparison.

Fig. 5 From left to right:
partial views of the skull

histogram comparing the 2.17498
reconstruction result and the 1.9330
ground-truth 3D model

Fig. 6 Distance deviation I 2.41664

1.69165
1.44958
1.20832
0.96666
0.72499
0.48333
0.24166
0.00000
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3.2 Second stage: SFO by means of EAs and FSs

Searching for the best overlay of the 3D model of the skull
achieved during the first stage, over the 2D digital image of
the face, this process is guided by the correspondence
between some anthropometrical landmarks on the skull
(craniometric) and the face (cephalometric).

Formally, the SFO can be formulated as follows. Given
two sets of 2D facial and 3D cranial landmarks F and C,
respectively, both comprising N landmarks (Ibafiez et al.
2009a):

X1 ¥Yu 1 1 X1 Ya Za 1
F_|X Yo 1 1 C X2 Yo Zo 1

XN YN XN YeN  ZeN 1
The overlay procedure aims to solve the system of
equations (Eq. 4) with the following twelve unknowns:
a rotation represented by an axis (d,, dy,d,) and angle 0, a
center of mass (r,,ry,r,), a translation vector (ty,ty,t;), a
uniform scaling s, and a 3D-2D projection function that is
given by a field of view ¢. These twelve parameters
determine the perspective transformation, which projects
every cranial landmark c/’ of the skull 3D model onto its

corresponding facial landmark f7' of the photograph:
F =f(c) = C.(A.D\.D,.Ry.D; ' .D;' A™").S.T P, (4)

where R = (A.Dl.Dz.Ro.DZ_I.Dl_l.A_l) represents a rota-
tion matrix to orient the skull in the same pose of the
photograph. S, 7T, and P are uniform scaling, translation,
and perspective projection matrices, respectively. The
interested reader can refer to Hearn and Baker (1997) for a
detailed description of the matrices in Eq. 4 and their
relation with the twelve unknowns of the problem, as well
as to Ibafiez et al. (2009a) for a deeper explanation.

Hence, SFO can be formulated as a 3D-2D IR problem
that aims to match 3D craniometric and 2D cephalometric
landmarks.

Different definitions of the fitness function were studied,
and the one that achieved the best results was the mean
error (ME):

S Il el — A1)

ME = ,
N

(5)
where ||| is the 2D Euclidean distance, N is the number of
considered landmarks (provided by the forensic experts),
cl corresponds to every 3D craniometric landmark, fI’
refers to every 2D facial landmark, f is the function that
defines the geometric 3D-2D perspective transformation,
and f(cl’) represents the projected skull 3D landmark cl’ in
the image/photograph plane. Notice also that this function
is to be minimized.

@ Springer

In particular, Ibanez et al. (2009a) proposed two different
real-coded genetic algorithms depending on the crossover
operator employed, the blend crossover (BLX-o) (Eshelman
1993) and the simulated binary crossover (SBX) (Deb and
Agrawal 1995). They also presented a multimodal genetic
algorithm (GA) using the clearing procedure (Ibafez et al.
2009b), a niching method that consists of sharing limited
resources within subpopulations of individuals characterized
by some similarities (Pétrowski 1996).

Among these three GAs the one that achieved the best
performance uses the SBX-crossover. However, it was
slightly outperformed by another approach studied by
Ibanez et al. (2009a), based on the covariance matrix
adaptation evolution strategy (CMA-ES) (Hansen and
Ostermeier 2001). Using CMA-ES as optimizer involves a
really good behavior while maintaining at least the same
quality in the results.

Finally, a SS method (Laguna and Marti 2003) was
recently proposed in Ibafiez et al. (2012a). In that work, the
SS framework is considered in order to exploit problem
specific information to achieve faster and more precise
solutions. In particular, the rotation angles once the skull
positioned in a frontal pose were delimitated. Even though
other evolutionary approaches have a really good behavior,
achieving similar minima, this new proposal has been
shown to converge faster than CMA-ES and to behave
more robustly in view of the mean values obtained in the
thirty runs developed.

The aforementioned approaches were able to model
properly the 3D-2D IR problem, achieving a high perfor-
mance for all the cases. However, they did not consider the
different sources of uncertainty presented in the problem.
Thus, the resulting overlays did not reach the level of
quality required in many cases, depending on the pose of
the face in the photograph and the number of landmarks the
forensic expert was able to locate. To overcome these
problems, Ibafiez et al. (2011) studied the different sources
of uncertainty and proposed the use of fuzzy landmarks to
overcome most of them. Ibafez et al. (2011) distinguish
between the uncertainty inherent to the objects under study
and that associated with the overlay process (see Fig. 7).

They identified two inherent sources of uncertainty
regarding the handled objects i.e., a skull and a face and
their relationship. The landmark location uncertainty is
related to the extremely difficult task to locate the points in
an invariable place since the definition of any anthropo-
metric landmark is imprecise in its own. The landmark
matching uncertainty refers to the imprecision that is
involved in the matching of two sets of landmarks corre-
sponding to two different objects: a face and a skull (Fig. 8).

The other type of uncertainty is associated with the 3D
skull-2D face overlay and it is not inherent to the object
themselves but to the approach, as it tries to overlay a 3D
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Fig. 7 Scheme of differences
between uncertainty inherent to
the objects and that associated
with the overlay process

Sources of

uncertainty in CS

Fig. 8 Correspondences between facial and craniometric landmarks:
a lateral and b frontal views

model and a 2D image. Figure 9 shows examples of that
situation.

The landmark location uncertainty refers to the diffi-
culty to locate landmarks with the accuracy required for the
automatic overlay of a 3D skull model and a 2D face photo,
whereas the matching uncertainty refers to the negative
influence of a small number of landmarks with an unsuit-
able spatial distribution in the quality of the SFO results as
a consequence of the coplanarity problem (Santamaria
et al. 2009b).

Two different approaches have been proposed to deal
jointly with the imprecise landmark location and the
coplanarity problem. Fuzzy landmarks allow the forensic
experts to locate the cephalometric landmarks using ellip-
ses and on considering FSs to model the uncertainty related
to them. Besides, fuzzy distances are considered in order to
model the distance between each pair of craniometric and
cephalometric landmarks.

Following the idea of metric spaces in fuzzy landmark is
defined as a fuzzy convex set of points having a nonempty

The overlay process \

Landmark location uncertainty:

/ imprecise landmark location definition
The objects under

study
\ Landmark matching uncertainty:
imprecise amount of soft tissue
Landmark location uncertainty:
occlusions, poor quality of the image
3D/2D

Landmark matching uncertainty:
landmark coplanarity

Fig. 9 Examples of precise landmarks location by different forensic
anthropologists. Top row: a, b Labiale superius landmarks. Bottom
row: a, b right ectocanthion landmarks

core and a bounded support. All its a-levels are nonempty
bounded and convex sets (Diamond and Kloeden 2000).

Since the problem at hand deals with 2D photographs
with and x x y resolution, the fuzzy landmarks can be
defined as 2D masks represented as a matrix m with
my; X m, points i.e., a discrete FSs of pixels. The size of
each fuzzy landmark is different depending on the impre-
cision on its localization but at least one pixel (i.e. crisp
point related to a matrix cell) will have membership with
degree one.

An example of these fuzzy cephalometric landmarks is
given in Fig. 10 on the left and the corresponding mem-
bership values of the pixels of one of those landmarks is
depicted on the right.

The results of the present investigation indicate that a
larger number of landmarks produce a more accurate
overlay. The imprecise location of landmarks is a prom-
ising approach to avoid the coplanarity problem and to
improve the performance of any SFO method, by allowing
the anthropologist to locate additional landmarks that could
not be otherwise determined.

@ Springer
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Fig. 10 From left to right: a example of fuzzy location of cephalo-
metric landmarks and b representation of an imprecise landmark
using fuzzy sets

Based on nine complex real-world identification cases,
the authors recognized that all the overlays achieved by
their technique were competitive with the manual ones
performed by the forensic experts. The proposed method
successfully provided a good overall alignment of the skull
and the face objects and achieved very accurate results and
still behaved robustly.

Finally, a novel and alternative approach has been recently
proposed by Ibafiez et al. (2012b) to deal with imprecise
cephalometric landmarks in the SFO process. By using a
cooperative co-evolutionary algorithm (CCEA), the authors
were able to search for both the best transformation parameters
and the best landmark location at the same time. Two different
fitness functions were analyzed. One of them measured the
mean distance between pairs of landmarks. The other weigh-
ted those distances by the corresponding value in a two-
dimensional fuzzy set that models the imprecision in the
location of each cephalometric landmark. Results are prom-
ising due to the very short time required by the co-evolutionary
process. In fact, it is ten to forty times faster than the fuzzy-
evolutionary methods and it yields high-quality overlays.

3.3 Application example: real-world cases solved using
our automation approach

This section is devoted to illustrate the operation of the first
two stages of the CS process that we have automated so far.
To do so, we will first study the performance and the
behavior of different methods that tackle the 3D recon-
struction of a forensic object. Then, we will present the
study of the performance of different EAs to model the
imprecise location of cephalometric landmarks within our
SFO method in comparison to a crisp location method.

@ Springer

Fig. 11 From left to right: a images I}5. and I, each of the two
images comprises both the original skull and b the crest line dataset

The forensic objects considered for this experimental
study were chosen by the experts according to several
forensic criteria. It is worth noting that the real-world case
of the first stage does not correspond to the skull used in the
second one.

3.3.1 3D model acquisition and reconstruction

3.3.1.1 Skull image datasets The Physical Anthropology
Laboratory of the University of Granada provided us with a
human skull' acquired by a Konica-Minolta® 3D Lassers-
canner VI-910. We have taken into account important fac-
tors along the scanning process like time and storage
demand. Following the suggestions in (Silva et al. 2005),
we considered a scan every 45°. Hence, we deal with a
sequence of eight different views: 0°-45°-90°-135°-180°-
225°-270°-315°. The dataset we will use in our experi-
ments is only limited to five of the eight views: 270°-315°—
0°-45°-90°. Such a reduced subset of views is enough to
perform a CS study as the obtained open 3D model includes
all the required skull morphological characteristics.

We will consider a feature-based IR approach which
aims to reduce the huge datasets IR algorithms typically
deal with by selecting a small set of truly representative
and invariant characteristics. We use a preprocessing
algorithm that carries out the extraction of feature points
from the range images (the skull views acquired by the
laser scanner) by applying a 3D crest lines edge detector
(Yoshizawa et al. 2005). Figure 11 shows some of the skull
range images and their corresponding feature points.

Therefore, the resulting processed views will be used by
every RIR method. Table 1 summarizes the size (number
of image points) of the forensic range images of the con-
sidered skull before and after the application of the crest
line extraction procedure.

! We cannot provide this dataset as public domain due to the Spanish
law for protection of personal data.
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Table 1 Size of the range images of the considered dataset in their
original conditions and after the feature extraction process

Views/images

270° 315° 0° 45° 90°
Original 109,936 76,794 68,751 91,590 104,441
Crest lines 1,380 1,181 986 1,322 1,363

3.3.1.2 Experimental design We will focus our attention
on the design of automatic, accurate, robust, and fast RIR
methods based on memetic algorithms (MAs) (Krasnogor
and Smith 2005), comparing their performance with those
proposals existing in the IR literature adopting a sequential
hybridization approach following the proposal in Santa-
maria et al. 2009a. The sequential hybridization between
global and local strategies is becoming the current trend in
the community (Dru et al. 2006; Jenkinson and Smith
2001; Yao and Goh 2006). In this sequential hybridization
approach, a global search is first carried out taking
advantage of the global search capability of EAs. Then,
some kind of local search (LS) algorithm is used for fine
tuning the result, usually as a separate stage. This scheme
of hybridization is opposite to that considered by the
memetic approach where the local search component is
embedded in the global search procedure (Ishibuchi et al.
2003; Krasnogor and Smith 2005).

We have analyzed nine MAs resulting from the com-
bination of three basic EAs: CHC (Eshelman 1991), dif-
ferential evolution (DE) (Storn 1997), and scatter search
(SS) (Glover 1977) and three LS techniques: Powell’s
(1964), Solis and Wets (1981), and crossover-based local
search (XLS) (Beyer and Deb 2001) methods. The nine
memetic designs will be compared to the three basic evo-
lutionary approaches and to the nine sequential hybridiza-
tions resulting from their combination with the three
selected local optimizers.

On the one hand, the experimental design addresses four
different pair-wise RIR problems: I}, — I};s., 3,5, — I3,
I}s. — I}.. On the other hand, it is based on those ill-con-
ditioned situations where forensics are advocated to man-
ually intervene to reconstruct an optimal skull 3D model.
That is the aim of the following RIR problem instances.
They simulate an unsupervised scanning process where
there is no turn table available or the particular environ-
ment does not allow its use. Specifically, the RIR instances
are designed from a rigid transformation noted 7;, which is
applied to one of the two images of every pair-wise RIR
problem. For instance, T;(I3s.) — I3.represents a certain
RIR instance to be tackled by every RIR method, where the
rigid transformation 7; is applied to the I7;. image to be
placed in some other location different from its correct

original one. RIR methods aim to recover the original
dataset location (the inverse transformation 7; ') achieving
a minimum distance (or maximum overlapping) criterion
between the couple of images.

We will consider different rigid transformations 7; in
every run of the considered RIR methods. Each of these
transformations will simulate a typical bad situation for the
forensics in which, for instance, there is no positional
device or the object could suffer any displacement not
being controlled by them. Indeed, such transformations
(see Sect. 3.1) will be randomly generated with a uniform
distribution as follows: each of the three rotation axis
parameters will be in the range [—1, 1]; the rotation angle
will be in [0°, 360°]; and the three translation parameters in
[—40, 40]. This search space significantly influences
(negatively, of course) the performance of classical RIR
methods (Santamaria et al. 2007b; Zhang 1994), which
usually deal with a transformation that slightly modifies the
object location. Thus, any of the RIR methods considered
in this work will have to overcome such really bad ini-
tializations to be considered an automatic, accurate, robust,
and quick reconstruction method of forensic objects (skulls
in the CS case).

3.3.1.3 Parameter settings The different RIR methods
have been run on a 2.2 GHz. AMD ATHLON processor
with 2 GB RAM and the GNU/Linux SuSe 10.1 (32 bits)
O.S. using the GNU/gcc compiler without code optimiza-
tion. Considering the speed requirement of our real-world
application, both the MAs and the basic EA stage of the
sequential hybridization approaches are run for the same
fixed time of 20 s. In order to avoid execution dependence,
every RIR method will tackle thirty different runs for each
of the four considered RIR problem instances. Since we
consider 20 s for the four sub problems comprising a skull
reconstruction, we will be able to provide a skull open 3D
model in just 80 s, which is a great improvement from the
forensic expert point of view.

The three MA-based RIR methods (based on CHC, DE,
and SS) are initialized with a population of 100 random
solutions. The value of the parameter o of the BLX-o operator
employed in CHC is set to 0.5 (Cordén et al. 2006).

The best configuration we found for the control
parameters of the DE-based MA is given by a mutation
factor F = 0.5 and a recombination rate CR = 0.7. In the
SS-based MA, the reference set is composed of b = 8
solutions and the BLX-u crossover operator is applied with
o = 0.3 (Santamaria et al. 2007b).

The LS step of the sequential hybridization-based RIR
methods (applied once the previous EA stage is finished)
considers a stop criterion based on a predefined number of
evaluations without improvement. In particular, we consider
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Table 2 Mean and standard deviation (in brackets) MedSE values for the three basic EAs, the nine sequential hybridization and MA-based RIR

methods
Methods Basic EAs Sequential hybridizations Memetic algorithms

Powell Solis XLS Powell Solis XLS
CHC 30.75 (19.36) 30.20 (18.22) 30.98 (18.16) 30.17 (18.46) 30.84 (17.40) 30.75 (19.53) 28.91 (17.27)
DE 41.62 (19.74) 35.56 (18.29) 40.88 (18.47) 39.03 (18.22) 50.34 (20.49) 38.10 (20.04) 32.87 (19.33)
SS 31.45 (19.66) 31.38 (18.44) 31.45 (18.39) 31.45 (18.39) 36.80 (18.47) 26.81 (20.44) 25.20 (17.66)

Significant bold values treated as best result

4 number-of-parameters-of-solutions = 28. Notice that this
final refinement step is not taken into account in the 20 s run
time since it spends a very short amount of time. Even so,
sequential hybridizations are slightly benefited from this
consideration.

Finally, the restart mechanism is applied for DE and SS
when the same population is kept during three iterations.

3.3.1.4 Analysis of results Table 2 presents the aggre-
gated results of the basic EA, the sequential hybridization
and the MA-based RIR methods.

The best overall algorithm to tackle our 3D skull
reconstruction task corresponds to a MA which considers
SS as its EA and XLS method as its LS. It achieves the best
performance with an averaged value of 25.20 against a
30.17, 35.56, and 31.38 for the best sequential hybridiza-
tion based methods (SH-CHC-XLS, SH-DE-Powell, and
SH-SS-Powell, respectively) as well as the other two best
MA-based methods, MA-CHC-XLS and MA-DE-XLS,
achieving values of 28.91 and 32.87, respectively.

Figure 12 shows the best reconstructed 3D model of the
studied skull obtained by the MA-SS-XLS based RIR (on
the left) and the perfect 3D model (on the right). In spite of
the different colors that have been used to easily differ-
entiate among the component 3D views, they perfectly
overlap in the reconstructed model after the RIR process.
Indeed, there is no visible difference between the recon-
structed and the ground truth model in the skull.

3.3.2 3D-2D skull-face overlay

We have analyzed three different SFO problem instances
corresponding to a real-world case previously addressed by
the staff of the Physical Anthropology Laboratory in col-
laboration with the Spanish Scientific Police. The case of
study happened in Cadiz, Spain. The three different pho-
tographs that are shown in Fig. 14 were provided by the
relatives, who acquired them in different moments, poses,
and conditions. Hence, this case study consists of three
distinct SFO problem instances.

This identification case was positively solved following
a computer-supported but manual approach for the SFO.
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Fig. 12 From left to right: a best reconstructed and b perfect model
of the skull

We will consider the available 2D photographs of the
missing person and the respective 3D skull model (Fig. 13)
that was acquired using the Konica-Minolta 3D Lasers-
canner VI-910.

The forensic experts were able to locate 9, 11, and 12
landmarks following a crisp (precise) approach and 14, 16,
and 15 using imprecise landmarks for poses 1, 2, and 3,
respectively (see Fig. 14). These additional landmarks will
play an essential role in order to tackle the coplanarity
problem.” A clear example is the landmark on the top of
the head, named vertex, which is never used by the forensic
anthropologists because it is normally occluded by hair
(and, thus, they are not able to precisely locate it), although
it is very useful for the automatic overlay process since it
lies in a complete different plane.

3.3.2.1 Experimental design We will study the perfor-
mance of a real-coded genetic algorithm (RCGA) with the
SBX crossover and the CMA-ES method, both presented in
Ibafiez et al. (2009b). They include the fuzzy modeling of
imprecise landmarks (Ibafiez et al. 2011). We named them
f-RCGA and f-CMAES, respectively. In addition, we will
also consider a cooperative co-evolutionary genetic algo-
rithm (CCGA) proposed by Ibaiiez et al. (2012a) to model
the imprecise location of cephalometric landmarks within
our SFO method. The latter uses a SBX crossover for
the transformation parameters population and two-point

2 Notice that these three images have a frontal or near-frontal pose of
the face, and/or the corresponding craniometric set of landmarks is
coplanar or near-coplanar.
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Fig. 13 Case study: 3D model of the skull

crossover for the landmark locations population. Random
initial populations and random mutation are used in both
cases, constraining the possible values for the landmark
location to all the pixels inside the region corresponding to
the imprecise landmark the forensic expert located in the
image.

The set of employed parameters are the same described
in Ibafiez et al. (2012b).

We would like to have a quantitative and objective
measure to benchmark the achieved outcomes. Unfortu-
nately, the ME values obtained by each approach are not
fully significant to perform a comparison because of the
different objective functions to be minimized. In addition,
there is no a direct correspondence between ME values and
the visual representations as was pointed out by the experts
from the Physical Anthropology Laboratory at the University
of Granada (Spain) in Ibafiez et al. (2011).

Due to the latter reasons, we adopted an alternative,
specifically designed image-processing scheme, called area
deviation error (ADE) (Ibanez et al. 2011). It is based on
evaluating the quality of the overlay by measuring the
proper adjustment of the projected skull and the original
face contours.

Despite some shortcomings, the ADE successfully pro-
vides a fair numerical index to compare the obtained SFO in
an objective way, which properly complements the qualitative
forensic anthropologist” assessment (Ibanez et al. 2011).

3.3.2.2 Analysis of results Table 3 shows the run time (in
seconds) needed by all the approaches in each of the SFO
instances.

According to run time, the co-evolutionary approach
achieves the best run time results for each pose. Indeed, the
use of FSs in CCGA does not imply an increment in the run

Fig. 14 Case study (left to right): photographs of the missing person
corresponding to poses 1, 2, and 3. Pictures in the top row show the
used crisp landmarks sets, which are composed of 9, 11, and 12 crisp
landmarks, respectively. Pictures in the bottom row show the used
imprecise landmarks sets, which are composed of 14, 16 and, 15
landmarks, respectively

Table 3 Run time (seconds) needed to perform the fuzzy-evolu-
tionary, the co-evolutionary and the crisp-evolutionary approaches
over each of the SFO instances

Approach Run time

Pose 1 Pose 2 Pose 3
CMA-ES 24" 23" 61"
f-CMAES 12" 13" 10”
f-RCGA 47" 73" 146"
CCGA 4’ 4" 4"

Significant bold values treated as best result

time since CCGA avoids the calculation of fuzzy distances.
Moreover, it is significantly faster than f-CMAES and
f-RCGA, and at least, two times faster than the crisp CMA-
ES approach. The comparison between the two fuzzy
algorithms shows that the run time of f-CMAES is twice
the f-RCGA time, so that latter approach clearly outper-
forms f-CMAES.

Table 4 presents the ADE values for the obtained
overlays in the three instances (poses) of the considered
case. Fuzzy-evolutionary (f-CMAES, f-RCGA), co-evolu-
tionary (CCGA), and a crisp evolutionary (CMA-ES)
approach are distinguished. The minimum (), maximum
(M), mean (@), and standard deviation (¢) ADE values of
the 30 runs performed are shown for each pose.

Following the results of Table 4, it can be seen that the
worst behavior corresponds to the crisp approach. CMA-ES
achieves worse results than the rest of the tested methods.

Figures 15, 16, 17 and 18 show the best superimposition
for the three poses obtained using CMA-ES, f-CMA-ES,
f-RCGA and CCGA, respectively.

Figure 15a presents the superimposition achieved by
CMA-ES in the first pose. The skull does not coincide with
the face of the photograph. f-CMAES (Fig. 16a), f-RCGA
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Table 4 Area-deviation-error

(ADE) values in the best SFO Instance Approach ADE
estimations for each approach m M @ o
1 CMA-ES 49.820827 52.994709 51.1051702 0.70216713
f-CMAES 28.792446 30.720665 29.5870543 0.45327576
f-RCGA 20.266197 29.298676 25.0512862 2.46768166
CCGA 20.101246 30.709288 24.913448 2.7747241
2 CMA-ES 43.248581 46.787495 45.58037 0.7342788
f-CMAES 20.85522 22.272806 21.63374 0.4321111
f-RCGA 19.214912 28.268339 22.464926 2.0538164
CCGA 18.330183 23.664318 21.026742 1.335274
3 CMA-ES 49.925446 55.599442 53.380075 1.6042135
f-CMAES 17.90711 25.161003 18.81185 1.2528082
f-RCGA 15.446845 25.640049 18.459968 2.3442206
Significant bold values treated CCGA 14.181023 20075504 16.460508 14287478

as best result
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Fig. 15 Best superimposition obtained using CMA-ES. a Pose 1,
b pose 2, and ¢ pose 3
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Fig. 16 Best superimposition obtained using f-CMAES. a Pose 1,
b pose 2, and ¢ pose 3

(Fig. 17a), and CCGA (Fig. 18a) obtained more pre-
cise SFO results than CMA-ES (Fig. 15a) for the first
instance.

Regarding the second pose, CMA-ES achieves a smaller
skull area over the face of the photograph (Fig. 15b) than
the remaining algorithms. Figure 15¢ shows the superim-
position results for CMA-ES in the third instance. The right
bottom area of the skull does not properly fit to the face of
the photograph.

A direct comparison between f-CMAES and f-RCGA
ADE values show they perform robustly (mean values),
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Fig. 17 Best superimposition obtained using f-RCGA. a Pose 1,
b pose 2, and ¢ pose 3

Fig. 18 Best superimposition obtained using CCGA. a Pose 1, b pose
2, and ¢ pose 3

achieving similar results. According to the mean values,
f-RCGA is better than f-CMAES in the first instance
(29.29 against 30.72). Meanwhile, the latter approach
obtains a lower mean value in the second pose (22.27 vs.
28.26). Finally, they achieve very similar values in the
third instance, 25.16 for f-CMAES and 25.64 for
f-RCGA.

On the other hand, f-RCGA outperforms f-CMAES in
the three instances with respect to the minimum values.

Figures 16 and 17 present the best superimposi-
tion results obtained by f-CMAES and f{-RCGA,
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respectively. f-RCGA achieves a more accurate SFO
than f-CMAES for the first and second instances.
Figure 17a, b show that f-RCGA obtains a lower dis-
tance between the landmarks of the skull and the face
than f-CMAES (Fig. 16a, b).

Finally, f-RCGA and f-CMAES results are very similar
for the third pose (Figs. 17c, 16c). There is almost no
visual difference between the latter algorithms.

4 Concluding remarks and future works

The aim of the present work was to design a complete,
automatic, soft computing-based procedure to aid the
forensic anthropologist in the identification task using CS.
An semi-automatic method based on the use of real-coded
EAs and FSs for solving the first two stages of the CS
process: 3D skull model reconstruction and SFO was
reviewed.

Such methods are fast, and robust, making them useful
in solving a tedious task using a systematic approach
although the technique still requires some improvements, it
could be used as a tangible tool for obtaining a good
superimposition automatically. Such a preliminary solution
would be then manually refined by the forensic expert in a
quick way.

The innovate technique we have reviewed in this paper
is the result of several projects (SOCOVIFI TIN2006-
00829 and the current SIMMRA TIN2009-07727) where
we have performed an automatic procedure to support
forensic anthropologists in the CS process.

This approach can be considered the most advanced
semi-automatic system in the field, the Physical Anthro-
pology Laboratory at the University of Granada has used
the technique to solve several identification real-world
cases for the Spanish Police.

In addition, the system (PCT/ES2010/00350) commer-
cialized in Mexico, has received the IFSA Award for
Outstanding Applications of Fuzzy Technology (2011) and
the EUSFLAT Best Ph.D. Thesis Award (2011).

In the future, once the method has been throughly tested,
the results should be validated through a more extensive
study.

The inherent matching uncertainty regarding each pair
of cephalometric-craniometric landmarks, should be
addressed (Stephan and Simpson 2008a, b), as well as
partial matching situation by means of FSs and fuzzy dis-
tance measures.
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