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Purpose of review

To systematize existing data and review new findings on the cause of schizophrenia and outline an
improved mixed model of schizophrenia risk.

Recent findings

Multiple and variable genetic and environmental factors interact to influence the risk of schizophrenia.
Both rare variants with large effect and common variants with small effect contribute to genetic risk of
schizophrenia, with no indication for differential impact on its clinical features. Accumulating evidence
supports a genetic architecture of schizophrenia with multiple scenarios, including additive polygenic,
heterogeneity, and mixed polygenic-heterogeneity. The epigenetic mechanisms that mediate gene–
environment (GxE) interactions provide a framework to incorporate environmental factors into models
of schizophrenia risk. Environmental pathogens with small effect on risk have robust effects in the context
of family history of schizophrenia. Hence, genetic risk for schizophrenia may be expressed in part as
sensitivity to environmental factors.

Summary

We propose an improved mixed model of schizophrenia risk in which abnormal epigenetic states with
large effects are superimposed on a polygenic liability to schizophrenia. This scenario can account for
GxE interactions and shared family environment, which in many cases are not explained by a single
structural variant of large effect superimposed on polygenes (the traditional mixed model).
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INTRODUCTION

According to family, twin, adoption and epidemio-
logical studies of schizophrenia, multiple and vari-
able genetic and environmental factors influence its
development and expression [1–4]. Recent advances
in genetic studies of schizophrenia and studies
of epigenetic mechanisms that mediate gene–
environment (GxE) interactions provide a basis
for an integrative model of schizophrenia risk that
accounts for genetic and environmental factors.
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GENETIC FACTORS IN SCHIZOPHRENIA
RISK

Lifetime risk of schizophrenia increases with the
number of schizophrenia relatives: if one parent
has schizophrenia, the risk for each child is
10–15%; if both parents have schizophrenia,
the risk increases to 35–46% [1]. However, about
90% of individuals with schizophrenia have no
schizophrenia parent, and about 60–80% have no
illiams & Wilkins. Unaut
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first or second degree schizophrenia relatives.
Hence, the majority of cases appear sporadic, even
though the liability to schizophrenia is strongly
(up to 80%) heritable [2]. Familial aggregation of
schizophrenia is increased in risk environments [3],
pointing to the importance of environmental
factors in exposing the underlying polygenic
liability. In other words, additional genomic, epi-
static, and environmental (epigenetic) factors influ-
ence the risk of expression of illness in many cases,
horized reproduction of this article is prohibited.
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KEY POINTS

� Accumulating evidence supports a genetic architecture
of schizophrenia with multiple scenarios, including
additive polygenic, heterogeneity, and mixed
polygenic-heterogeneity.

� The epigenetic mechanisms that mediate gene–
environment (GxE) interactions provide a framework to
incorporate environmental factors into models of
schizophrenia risk.

� We outline an improved mixed model of schizophrenia
risk in which abnormal epigenetic states with large
effects are superimposed on a polygenic liability to
schizophrenia; this scenario can account for GxE
interactions and shared family environment, which in
many cases are not explained by a single structural
variant of large effect superimposed on polygenes
(the traditional mixed model).

� As neuroplasticity from epigenetics modulates complex
development of individuals, not groups or populations,
research and treatment of people with schizophrenia
must become more person-centered, that is, informed
by their biology, psychology, environmental and life
event history; still, common environmental factors affect
populations, so prevention, risk prediction, and final
common pathway models can be applied.

Schizophrenia and related psychotic disorders
particularly in cases in which the liability is near
the threshold for expression on average.
Common variants with small effects or rare
variants with large effects?

Sequencing of the human genome has enabled
genome-wide association studies (GWASs) of com-
mon genetic variation using single nucleotide poly-
morphisms (SNPs) as markers. So far, no common
variant with odds ratio more than 1.2 has been
identified. However, recent meta-analyses indicate
that thousands of the same SNPs may cumulatively
explain up to 30% of risk variance in multiple
independent cohorts of schizophrenia [5]. Most
recently, using a family-based sample to control
for cryptic population stratification, enrichment
across a large number of SNPs for the same sets of
common alleles in distinct European populations
has been shown [6

&&

].
Larger structural lesions of the genome, such

as copy number variants or CNVs (these are dupli-
cations and/or deletions of large DNA segments
encompassing multiple genes), explain a higher
portion of genetic variance in schizophrenia [7,8].
CNVs with replicated associations with schizo-
phrenia (e.g., 1q21.1, 15q11.1, 15q13.3, 16p11.2,
16p13.1, 17p12, 22q11.2) are located in unstable
pyright © Lippincott Williams & Wilkins. Unautho
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genomic regions with high rates of mutations and
account for only 2–4% of cases [7]. Most of
the increased burden of CNVs in schizophrenia is
conferred by gene variants within regions with
moderate-to-low rates of mutations (less than one
in 500 individuals) [7] explaining a higher number
but not all cases of schizophrenia.

In summary, evidence shows that both rare
variants with large effect and common variants
with small effect contribute to genetic risk of
schizophrenia with no indication for differential
impact on its clinical features. Neither frequent
SNPs with small average effect (polygenic model)
nor rare CNVs and single gene lesions with large
effect (heterogeneity model) can fully account for
schizophrenia risk, which likely involves additional
genetic (epistatic) and/or environmental (epige-
netic) factors (e.g., to produce the steep rise in
illness probability necessary to generate the observed
recurrence risks to relatives) [9].
Is liability to schizophrenia a trade-off for
advanced human evolution?

Unstable genomic regions with high mutation rates
are evolutionarily recent (humans and chimps
have the highest rates of CNVs) and correspond to
the period of rapid brain evolution in hominids [10].
These flexible (unstable) regions of the genome are
epigenetically most active [11] and, thus, represent
targets of environmental influences that allow
rapid adaptation to the surroundings. In humans,
genes involved in neurodevelopment are overrepre-
sented at sites with high rates of CNVs conferring
schizophrenia risk [12]. Although controversial,
brain plasticity, which has enabled humans to adapt
to a spectrum of environments better than other
species, may also be a liability for schizophrenia.
ENVIRONMENTAL FACTORS IN
SCHIZOPHRENIA RISK

Recent reviews summarize environmental patho-
gens associated with increased risk of schizophrenia
[3,13,14]. Sophisticated epidemiological designs
demonstrate that many of these pathogens are caus-
ative (not just contributing or modifying), especially
in the context of preexisting family history and/or
schizotypal traits [3,15]. Environmental pathogens
with documented association with schizophrenia
risk include prenatal exposures (affecting early neu-
rodevelopment) and postnatal exposures (affecting
interactive experience-based cortical development).

Prenatal factors include maternal infections
(e.g., influenza, toxoplasmosis, genitourinary infec-
tions) [14,16], maternal psychological problems
rized reproduction of this article is prohibited.
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during pregnancy (e.g., major stress, depression)
[17,18], hypoxia secondary to obstetric compli-
cations [19], and nutritional deficiencies and/or
allergies, such as protein, choline, B vitamins, folate
deficiencies [13], or high levels of immunoglobulin
G directed at dietary gluten [20], among others.
Prenatal pathogens rarely affect risk of schizo-
phrenia in the absence of a family history of psy-
chosis or schizotypal traits, but the risk is robustly
greater in offspring with such histories [15,18].

Postnatal factors include cannabis use, psycho-
social stress, migration, and urbanicity [3], among
others. Similarly to prenatal exposures, postnatal
factors are rarely sufficient to cause schizophrenia
independently, but act primarily in the context of
preexisting family history [3] or superimposed
on preexisting central nervous system (CNS) vulner-
abilities relevant to schizophrenia (e.g., cannabis use
superimposed on COMT or AKT1 polymorphisms)
[21,22

&&

].
EPIGENETIC MECHANISMS MEDIATE
GENE–ENVIRONMENT INTERACTIONS

Specific models that integrate environmental
factors into schizophrenia risk architecture have
not been developed thus far. Recent evidence shows
that most GxE interactions are mediated by epige-
netic modulation of gene expression [23–25], but in
some cases may involve activity-based rearrange-
ments of existing postsynaptic protein networks
and augmentation of preexisting vulnerabilities
relevant to schizophrenia, as could be the case with
cannabis use and COMT Val/Val polymorphisms
[21]. Clearly, epigenetic mechanisms provide
a framework to incorporate environmental factors
into models of schizophrenia risk. Epigenomics
focuses on regulations of gene activity that do not
involve alterations in the nucleotide sequence, but
are mediated mostly via methylation of gene pro-
moters and/or covalent modifications of chromatin
[23,25]. Multiple hormonal, enzymatic, and second-
messenger cascades link the external environment
with chromatin to modulate gene activity [24,25]
in response to biochemical [25] and psychosocial
exposures in animals [24–27] and humans [28].

Epigenetic programming of the genome is parti-
cularly active during gametogenesis and embryo-
genesis, when epigenetic marks for temporally
and tissue-specific gene expression set in place to
regulate key periods of neurodevelopment [23,25].
However, epigenetic modulations of DNA activity
continue throughout lifespan [29], in response to
changing or pathological environments [25], even
in fully differentiated somatic cells and neurons
[30]. This lifelong susceptibility to environmental
Copyright © Lippincott Williams & Wilkins. Unaut
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influences provides a mechanism for rapid genome
adaptations to environment. However, it also
allows environmental pathogens to reach the cell
nucleus and adversely affect the genome by creating
abnormal epigenetic states that can dysregulate
development and/or function and increase risk
of many complex illnesses, including cancer and
schizophrenia.
EPIGENETIC DYSREGULATION IN
SCHIZOPHRENIA

Epigenetic processes may be particularly important
for understanding complex disorders like schizo-
phrenia because they are consistently heritable
despite having relatively weak and inconsistent
association with individual genetic variants.
Evidence for epigenetic dysregulation in schizo-
phrenia includes exacerbation of psychosis during
high methionine diets [31], hypermethylation of
gamma-aminobutyric acid (GABA) genes resulting
in GABA deficit in cortical neurons of schizophrenia
patients [32], widespread DNA methylation differ-
ences in relevant neurobiological networks between
monozygotic twins discordant for schizophrenia
[33

&&

], and brain-wide methylation abnormalities
in psychosis [34], among many others. Mill et al.
[34] report aberrant DNA methylation in about
100 loci in schizophrenia, including genes
regulating glutamatergic and GABAergic systems,
stress responses, and neurodevelopment. Using a
network-based approach to determine methylation
patterns across different loci, they found a lower
degree of modularity in schizophrenia, suggesting
systemic epigenetic dysfunction rather than isolated
missteps [34]. These and similar studies indicate that
gene expression involving numerous neurodevelop-
mental genes, longitudinal patterns of gene activity,
and modular networks of co-expressed genes
(all regulated primarily by epigenetic mechanisms)
are altered in schizophrenia.

Such massive involvement of neurodevelop-
mental genes suggests a nonspecific, global epige-
netic effect and an early lesion, occurring at a time
when both DNA methylation and neurodevelop-
ment are highly active. Global epigenetic defects
are unlikely due to transcription errors in copying
DNA methylation marks in the course of rapid cell
replication during embryogenesis (these are called
primary epimutations) but rather to epigenetic
dysregulation resulting from pathological GxE
interactions. There is suggestive evidence, such as
dermoglyphic irregularities in schizophrenia patients
[35], that genes regulating early development of
other ectodermal tissues may have been affected by
the same pathogen, but complex neurodevelopment
horized reproduction of this article is prohibited.
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is apparently more sensitive to the insult and the
consequences are far greater. These early epigenetic
marks are copied (propagated) through mitotic cell
divisions throughout neurodevelopment as mole-
cular precursors of evolving structural and func-
tional CNS abnormalities.
PRODROMAL CENTRAL NERVOUS
SYSTEM AS AN EMERGING RISK
INTERFACE: GENE X BRAIN X
ENVIRONMENT INTERACTION

Early aberrant neurodevelopment in schizophrenia
is manifested postnatally as abnormalities in mental
functioning, commonly called prodromal symp-
toms. We refer to the prodrome as a ‘risk interface’
and not an ‘intermediate phase’ of schizophrenia
because there is no simple stepwise propagation of
the preexisting pathology into manifest illness. In
fact, only 16–40% of ultra high risk individuals,
with positive family histories and early mental
abnormalities, develop schizophrenia [36].

The prodromal brain is interposed between
genes and environment, creating a complex inter-
acting triad (genes–brain–environment) that must
be incorporated into disease models of schizo-
phrenia. Specifically, at every point in time, schizo-
phrenia development will depend on the brain’s
features at the previous time point. In an ongoing
feedback–feedforward pattern, outcomes are modi-
fied by potentiating or protective factors, including
self-correcting homeostasis. Over time, this early
abnormal brain will either get worse and express
schizophrenia, or remain the same, or possibly
improve. Exceptions are observed in cases in which
a strong genetic load drives a psychotic outcome,
regardless of modifying influences. In the case of
expressed schizophrenia, prodromal abnormalities
amplify and disperse throughout the CNS, affecting
all mental activity, including emotion, perception,
motivation, and cognition. This is reflected as wide-
spread structural and functional CNS abnormalities
and aberrant connectivity of neural networks [37]
involving multiple neurotransmitter systems.
RISK ARCHITECTURE OF
SCHIZOPHRENIA: TOWARD AN
INTEGRATIVE MODEL

There is accumulating evidence that schizophrenia
reflects a complex, mutifactorial, and probabilistic
etiology involving variable interacting genetic and
environmental factors with variable contributions
in individual cases. In other words, research
supports a composite model of schizophrenia risk
architecture with multiple scenarios, specifically
pyright © Lippincott Williams & Wilkins. Unautho
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polygenic-threshold, heterogeneity, and mixed
polygenic-heterogeneity models.

Recent GWASs have identified common genetic
variants that segregate in schizophrenia populations
supporting a polygenic model of schizophrenia risk
and causal common variations [6

&&

,38
&&

]. Hence, in a
number of cases, schizophrenia is manifest once the
threshold of cumulative genetic burden is reached
(discontinuous expression of a continuous liability).
This polygenic-threshold model, however, does
not account for the stable global incidence of
schizophrenia despite negative selection pressure,
although creative relatives of schizophrenia patients,
who carry the polygenic liability but do not have
schizophrenia [39

&

], could compensate reproduc-
tively for the low fertility of the patients.

In other cases, rare CNVs or single gene
mutations with large effect have a major role in
producing schizophrenia [8,40

&

,41]. Many different
CNVs can cause schizophrenia but do so one or two
at a time, consistently with the heterogeneity model
[42

&

]. This model, however, does not account for
the co-occurrence of different clinical subtypes of
schizophrenia in the same family.

Most CNVs associated with schizophrenia
are inherited from apparently healthy parents
(i.e., cases appear sporadic), indicating incomplete
penetrance, epistasis, or epigenetic effects. In other
sporadic cases, de-novo CNVs are found [40

&

]. It is
not clear whether these large genetic lesions act
alone or superimposed on polygenic liability. Many
sporadic cases can be explained by threshold effects
on the expression of the liability, as supported by
transmission patterns in children of monozygotic
twins discordant for schizophrenia [43,44]. Never-
theless, at least some sporadic cases may be
truly nonfamilial due to effects unique to the indi-
vidual, including personal experiences or de-novo
mutations [40

&

].
In yet other cases, polygenic liability to

schizophrenia is potentiated by threshold effects
of abnormal epigenetic states. As noted, environ-
mental factors with small or no effect in the general
population, like prenatal maternal infections, have
robust effects in the context of preexisting family
history of schizophrenia [16]. Likewise, familial
aggregation of schizophrenia is increased in risk
environments [3]. In other words, genetic risk for
schizophrenia may be expressed in part as sensitivity
to environmental factors [22

&&

]. Here, abnormal
epigenetic states with large effect are superimposed
on preexisting polygenic liability in which each
factor has a small average effect. This variant of
the mixed model can account for GxE interactions
and/or shared environmental effects, which in
many cases are not explained by a single structural
rized reproduction of this article is prohibited.
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variant of large effect superimposed on polygenes
(the latter, or ‘traditional’, mixed model does not
account for environmental factors in schizophrenia
risk).

In summary, there are multiple factors that are
large enough to affect the liability distribution,
which is no longer a typical bell-shaped curve
seen in polygenic disorders, but includes ‘bumps’
indicating admixture of multiple distributions
contributing to liability (e.g., a large single gene
mutation or a large CNV or abnormal epigenetic
states).

Taken together, the above scenarios (also illus-
trated in Fig. 1) can account for epidemiological and
clinical peculiarities associated with schizophrenia,
such as its high global incidence and evolutionary
resilience despite negative selection pressure,
its sporadic appearance despite strong heritability,
or co-occurrence of different clinical subtypes in the
same family, among others.
SHARED GENETIC LIABILITY FOR
SCHIZOPHRENIA, AUTISM, AND MENTAL
RETARDATION

Genome-wide studies of structural polymorphisms
are beginning to yield replicable results [7,45,46

&

].
However, the five most consistent CNVs associated
with schizophrenia are also consistently associated
with mental retardation, autism, and epilepsy
[7,45,46

&

]. This shared genetic pathology is involved
in key aspects of neurodevelopment, including
synapse formation and maintenance, neuronal
migration and survival, and regulation of basic
excitatory and inhibitory mechanisms [45]. Hence,
it may be thought of as a general liability for
nonspecific brain dysfunction which is, as a core
deficit, shared by autism, schizophrenia, mental
Copyright © Lippincott Williams & Wilkins. Unaut
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retardation, epilepsy, and possibly other neuro-
developmental disorders. Phenotype-specific mech-
anisms that steer shared genetic liability toward
autism, schizophrenia, or mental retardation must
include other genomic factors (e.g., epistasis, protec-
tive genes, nonshared genetic polymorphisms) and/
or nongenomic factors (e.g., nonshared and/or
protective environments). Otherwise, the outcomes
would be decided by neutral genetic differences or
there would be no different phenotypes at all.
Phenotype-specific factors in schizophrenia
neurodevelopment

Prenatal epigenetic influences appear to be global
rather than gene-specific, affecting numerous
genes regulating early neurodevelopment. However,
different gestational periods may be associated with
specific disturbances in fetal brain development and
different adult psychopathology [47]. This may
reflect a specific phase in neurodevelopment (e.g.,
early cell proliferation and differentiation vs. sub-
sequent cell migration and synapse maturation) [47]
or specific features of environmental pathogens
(e.g., not all pro-inflammatory cytokines cross the
placenta, and some, such as interleukin-6, do so
early but not late in gestation) [48]. Hence, the same
pathogen acting on the same genetic background
at different phases of early neurodevelopment
may lead to mental retardation, autism, or schizo-
phrenia. Acting afterward, this may lead to schizo-
typy or even to normal outcomes. Postnatal
pathogens, such as cannabis use or psychosocial
stress, appear more outcome-specific for schizo-
phrenia, as both usually occur after autism and
mental retardation are already manifest.

Although genetic lesions affecting GABAergic
and glutamatergic systems are shared among the
horized reproduction of this article is prohibited.
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three phenotypes [45], the severity of this pathology
may steer neurodevelopment toward schizophrenia.
Indeed, multiple candidate genes affecting GABA
(GAD1 and RELN) and glutamate (G72, DAAO,
SRR, GRM3, Neuregulin1-ErbB4, DNTP1) [32,41]
have been implicated in schizophrenia. Another
example of severe glutamatergic pathology in
schizophrenia is provided by Grant [49], who ident-
ified genomic abnormalities involving 46 N-methyl-
D-aspartate receptor proteins in mental illnesses.
Most abnormalities occur in schizophrenia
(26 proteins), compared with mental retardation
(18 proteins) and mood disorders (bipolar seven
proteins, depression six proteins). In addition to
classical studies demonstrating hypermethylation
of GABA genes in schizophrenia [32], recent
analyses of CNV intensities in genomic DNA
in GABAergic interneurons in the hippocampus
indicate transcriptional changes in GAD67 regula-
tion that are circuitry-based and diagnosis-specific
[50

&

].
Moreover, analysis of dendritic spines forming

glutamatergic synapses in CNVs associated with
autism revealed an increase in spine or dendritic
growth [51], whereas a similar analysis in schizo-
phrenia suggests that a majority of schizophrenia-
associated CNVs lead to a decrease in growth
of dendrites or spines [52]. Therefore, although
the molecular networks implicated in these distinct
disorders may be related, particular mutations
associated with each disease may produce different
functional consequences [52].

Although the pathophysiology of schizophrenia
likely involves the majority (if not all) of neuro-
transmitters and brain networks, system-level
models postulate that concurrent hypoglutamater-
gic and hyperdopaminergic metastable states [53]
may be specific for schizophrenia onset and clinical
course.
CONCLUSION

The schizophrenia ‘spectrum’ disorder results from
shared genomic liability that underlies a range of
outcomes in biological relatives of schizophrenia
patients [54]. This shared liability passes across
generations with only some developing schizo-
phrenia (rare, most severe cases), the majority
developing less severe manifestations (e.g., lower
IQ, schizotypy), and some escaping clinical
symptoms altogether. Hence, our thinking must
shift toward searching for the cause of extended
schizophrenia phenotypes [3], not just schizo-
phrenia proper. As neuroplasticity from epigenetics
modulates complex development of individuals,
not groups or populations, research and treatment
pyright © Lippincott Williams & Wilkins. Unautho
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of people with schizophrenia must become more
person-centered, that is, informed by their bio-
logy, psychology, environmental and life event
history. Still, common environmental factors
affect populations, so prevention, risk prediction,
and final common pathway models can be
applied.

The ultimate purpose of defining gene–gene
(GxG) and GxE interactions is to identify what
they mean in terms of the pathways they involve.
Reflective of complex and variable etiology and
multidirectional GxG and GxE interactions, the
same (different) genotype may lead to different
(same) phenotypes and vice versa (this is commonly
referred to as ’multifinality’ and ‘equifinality’).
Current methodologies have not solved the prob-
lem of interpretability (or semantics) of the GWAS
results. For example, common variants with small
individual effects might contribute more sub-
stantially to disease risk through nonadditive
interactions among loci (epistasis). Because of the
number of SNPs under consideration in a typical
GWAS, it is impossible to identify interaction
effects, unless additional assumptions are made
which may invalidate the solution. Fortunately,
some acceptable approaches, for example, specific
network inference tools for specific applications, are
beginning to emerge [52,55].

As gene expression is governed by allelic
specificity, epigenetic status, noncoding RNAs,
and interactions with co-involved gene products
(proteins), optimal study designs should involve
simultaneous analyses of genomic, epigenomic,
and neuroproteomic data. Such comprehensive
datasets can reveal sequential molecular processes
involved in schizophrenia and ultimately lead
to the understanding of different and variable
biological pathways involved in schizophrenia.
In leukemia research [56], integration of genome-
wide epigenetic patterns with gene expression
levels revealed hundreds of differentially expressed
genes that distinguish dysregulated pathways
that were missed by gene expression arrays alone.
Whether this will be true of schizophrenia remains
unknown, but less comprehensive approaches are
unlikely to provide meaningful descriptions of this
complex set of illnesses.
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