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Abstract—We introduce a new intensity-based image regis-
tration (IR) technique based on a modern, real-coded genetic
algorithm. Our proposal is tested on 16 registration scenarios
involving real-world MRI medical images. A novel method-
ological framework to compare heterogeneous IR algorithms
is also described. Following such methodology, our algorithm
is compared with four well-known IR techniques of different
natures. The proposed method is able to improve the results of
these techniques in the majority of the scenarios.

I. INTRODUCTION

A large number of applications in image processing require
the integration of information from multiple images of the
same or similar subjects obtained under different conditions
(time, viewpoint, sensor or any combination of the latter).
Hence, the images need to be properly aligned in order
to put in correspondence the common content. This task is
called image registration (IR) [1]: given two images, image
registration aims to find the geometric transformation leading
to the best possible overlapping.

IR approaches usually fall into two categories: intensity-
based (or voxel-based) and feature-based methods. The former
make use of the entire images while the latter employ only
salient, distinctive objects such as lines, corners and contours,
detected in a preprocessing step. Feature-based techniques are
faster, as they use only a fraction of the imaging data, but
usually suffer from inevitable errors in the feature detection
process. Independently of their nature, IR techniques involve
an iterative optimization procedure that explores the space
of possible transformations. Registration approaches based on
evolutionary algorithms (EAs) have proven to be a promising
solution to overcome the drawbacks of traditional gradient-
based algorithms [2], [3]. In fact, they are considered global
optimization approaches able to perform a robust search in
complex search spaces like those arising in IR.

The contribution of this work is two-fold. First, we propose
a methodological framework to provide an objective evaluation
of the performance of heterogeneous IR methods according
their nature, feature or intensity-based. Also, we introduce a
new intensity-based IR method based on evolutionary compu-
tation. The proposed method will be validated on a number
of realistic medical image registration scenarios, and the
experimental results will be analyzed in detail and compared
with those of state-of-the-art techniques, both feature- and

intensity-based.
The paper is structured as follows. Section II introduces the

IR problem in detail. Notable IR methods are reviewed and
discussed in Section III. Section IV describes the proposed
approach, whereas the comparison framework is discussed in
Section V. Section VI introduces the test scenarios, the exper-
iments performed and the analysis of their results. Finally,
Section VII provides conclusions and directions for future
work.

II. IMAGE REGISTRATION

In a typical problem instance we are provided with two
images: a reference image, the model, and the image that will
be transformed to reach the model geometry, called scene [1].
We will denote these two images by IM and IS respectively.
The result of the registration process is a transformation f
such that the model IM and the transformed scene f(IS) are
as similar as possible.

IR methods can be characterized by their three main com-
ponents: the transformation model, the similarity metric and
the optimization process. The transformation model determines
what kind of transformation is used to align the images. For
instance, a rigid transformation is a combination of translation
and rotation operations, while similarity transformations also
allow scaling. Their degrees of freedom for 3-D images are 6
and 7, respectively. B-splines and thin-plate splines are instead
examples of elastic (or non-rigid) transformations models,
able to represent local deformations (warping). In applications,
the appropriate transformation model depends on both the
nature of the images and the particular application involved.

A similarity metric is a function F that measures the quality
of a solution of an IR problem. To evaluate a solution f , the
scene image IS is transformed according to f and then the
degree of resemblance between the transformed scene image
f(IS) and the model image IM , denoted by Ψ, is computed,
so F (IM , IS , f) = Ψ(IM , f(IS)). Several choices for Ψ
can be found in the literature, depending on the nature of
the considered images. In feature-based approaches, metrics
are usually based on the distance between corresponding
geometric primitives [4], such as mean square error (MSE),
which is the average square distance between corresponding
feature (in this case points) in the scene and the model images.
To compute the MSE, each point of the model is assigned
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to the closest point in the transformed scene, regardless of
whether the latter had been already assigned to another model
point. That is, MSE = 1

r

∑r
i=1 ‖xi − ci‖2 where ci is the

point of f(IS) that is closest to xi.
In intensity-based approaches, common choices are sum of

squared differences, normalized correlation (NC) and mutual
information (MI) [5]. In particular, MI is specially suited
for multi-modal registration and other scenarios in which the
images have different intensity distributions. It is defined as

MI =
∑

s∈LS ,m∈LM

p(m, s, f) log2

p(m, s, f)

pM (m) pS(s, f)

where LM and LS are sets of regularly spaced intensity bin
centers, p is the discrete joint probability and pM , pS are the
marginal discrete probabilities of the model and scene image.
Normalized correlation is defined as the correlation coefficient
between the images intensity distributions, so

NC =

∑
i∈ΩM

(
IM (i)− IM

) (
If(S)(f(i))− IS

)∑
i∈ΩM

(
IM (i)− IM

)∑
i∈ΩS

(
IS(f(i))− If(S)

)
where ΩM ,ΩS are the images’ voxels and IM , If(S) are av-
erage intensity values. Normalized correlation is conceptually
simpler and faster to compute, but is suitable only when the
images’ intensity distributions are similar.

Finally, the optimization procedure is the component re-
sponsible for finding an appropriate transformation to carry
out the registration. Figure 1 show the flow chart of the whole
registration process. The search strategy adopted depends on
the nature of the algorithm. In matching-based algorithms,
once the images features have been detected, the optimizer
looks for a matching between them and the transformation
parameters are derived from the match. The process is iterated
until reaching convergence within a tolerance threshold of the
concerned similarity metric.

Figure 1. The interactions among the components of a registration technique.

Instead, in parameters-based methods the search is per-
formed directly in the transformation parameters space. Clas-
sic numerical optimization algorithm like gradient descent,

Newton’s method, Powell’s method and discrete optimiza-
tion [6] are among the most common choices, together with
approaches based on EC and other meta-heuristics [2], [3]. It
is common to start the registration process using a “simpler”
version of the images obtained through smoothing and down-
sampling. The registration is divided in multiple stages, called
resolutions, in which increasingly larger and more detailed
versions of the input images are used.

III. OUTSTANDING FEATURE- AND INTENSITY-BASED IR
APPROACHES

This section describes a selection of the most remarkable IR
methods, that later will be involved in the experimental study
along with the IR approach presented in the next section.

A. I-ICP

I-ICP has been introduced by Liu in [7] as an improvement
of the original ICP proposal. The latter is a well-known
matching-based algorithm in computer-aided design, originally
proposed to recover the 3D transformation of pairs of range
images. The novelty in I-ICP compared to its predecessor
is the use of both the collinearity and closeness constraints
to evaluate the possible correspondences established by the
traditional ICP criterion. The collinearity constraint minimizes
the distance between the transformed points and the ray
passing through the corresponding points, while the closeness
constraint minimizes the distance between matching points.
In order to improve the robustness of the algorithm, a tiny
perturbation is added to the estimated motion parameters when
the algorithm is about to terminate. As a result, the algorithm
is forced to search for an optimal solution in the neighboring
region of the estimated parameters.

B. SS*

SS* is a matching-based IR method based on Scatter Search
(SS) [8]. It has been introduced in [9], in which SS* was
found to be the best algorithm in a comparison of feature-
based IR techniques. In the SS* proposal, the authors designed
new improvement, combination and diversification-generation
methods. Crest-lines points [10], [11] are used as features, and
the algorithm exploits the knowledge of the local curvature of
those points to perform the matching. The authors proposed
an advanced coding scheme where a matching is represented
as a permutation of points. Besides, they define a function m
that evaluates the quality of a matching π using the mentioned
curvature values as follows: m(π) = ∆k1+∆k2 where ∆kj =∑r
i=1(kij − kπi

j )2 for j = 1, 2. The values ∆k1 and ∆k2

measure the error in terms of the first and second principal
curvatures. To evaluate a solution, the information about the
matching provided by a similarity metric g (MSE) and m are
combined into F according to the formula F (π) = w1 ·g(π)+
w2 ·m(π) where the weighting coefficients w1, w2 define the
relative importance of each term.
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C. Dyn-GA

Dyn-GA [12] is a parameter-based IR techniques based
on genetic algorithms. The algorithm deals with 3D rigid
transformations, that are encoded as real-coded vector of six
elements: three values encode the rotation (through Euler an-
gles) and three parameters represent the translation component.
The GA uses fitness-proportionate selection and two novel
crossover and mutation operators. Crossover selects randomly
a number of genes to be swapped between two individuals,
while mutation replaces the value of a randomly selected gene.
For the rotation components, the new value is drawn at random
from a fixed range, while for the translation components, the
range of the new value is dynamically computed from the
fitness of the individual: the larger the fitness the larger is
this range. This allows the GA to perform a small mutation
if the individual is close to the optimum and large mutation
otherwise.

A sophisticated restart mechanism, named dynamic bound-
ary is also used. The rationale of this method is that once the
GA has reach a stationary state (i.e. the fitness of the best
individual have not improved for a number of generations),
the individuals in the population are close to the optimum,
and therefore we can concentrate the search in the area in
which the current population lies. The valid ranges for the
genes of an individual are thus restricted around the range of
values already in the population.

D. GD, an IR approach based on gradient descent

In [13] the authors introduced elastix, a toolbox for
intensity-based medical image registration. They also pre-
sented an experimental study over 50 clinical MRI scans
of prostates, in which they compared several gradient-based
methods. Following the guidelines resulting from the study, we
designed a representative for this kind of methods and named
it GD. MI is used as similarity metric and the transformation
model is similarity transformations. The optimizer is an adap-
tive stochastic gradient descent (ASGD) [14], which is used to
minimize a cost function C with parameter x. From an initial
solution xo, ASGD considers the solutions xk+1 = xk−γkgk
where tk+1 = max(0, tk + sigm(−gk · gk−1)), gk = dC

dx (xk)
and γk = a

tk+A . The values a > 0 and A ≥ 1 are user-
specified constants, while sigm is the sigmoid function. GD
uses a random image sampler and a multi-resolution strategy.
The images in the pyramids are obtained by applying both
downsampling and Gaussian smoothing to the original images.

IV. GA+, AN EVOLUTIONARY APPROACH TO IR

This section describes the methodology proposed in this
work. Following the intensity-based approach, our method
tackles IR using the images in their whole, rather than consid-
ering only some of their features. Moreover, the registration
is carried out through a search in the space of transformation
parameters. We have chosen similarity transformations as our
transformation model, so our method deals with transforma-
tions composed by translation, rotation and uniform scaling,
although the approach can be easily adapted to other models.

In three dimensions a transformation can be represented by
seven real numbers: three to specify the versor of the rotation
v, three for the translation t and one for the scaling factor s.
Therefore, an individual of the GA is simply a real vector with
seven elements. Valid solutions require vx, vy, vz ∈ [−1, 1]
and s > 0. Note that the translation component is specified
in spatial units (e.g, millimeters), rather than in number of
voxels.

The operators used in our method are common choices for
real-coded genetic algorithms: blend crossover (BLX-α) [15]
and random mutation [16]. The fitness value of a solution f
is simply the similarity between the two input images when
registered using f , i.e. f → Ψ(IM , f(IS)), where Ψ is a
similarity metric; we considered both MI and NC. Finally,
the parents selection is performed following the tournament
approach.

Finally, the method also adopt a restart strategy. For a
number of causes, it may happen that at the end of the first
resolution the best transformation found by the optimizer has
a very low quality, i.e. it does not even provide a coarse
registration. Thus, it may not be appropriate to proceed to
refine this solution in the further resolutions, but rather to
perform again the search for a suitable initial registration. The
algorithm proceeds as follows: if the metric value of the best
solution has not reached an appropriate amount at the end of
the first resolution, the current state of the optimization process
is discarded and the whole procedure is executed again from
the beginning. As the optimization in the first resolution deals
with a low-resolution version of the input images, this stage
of the registration is the cheapest in terms of computational
effort, thus performing a restart increases the computational
cost of the whole method only by a fraction of its total.

V. A METHODOLOGICAL FRAMEWORK FOR IMAGE
REGISTRATION

In order to provide an objective evaluation of the perfor-
mance of different IR methods, a common methodological
framework is required. Indeed, as we reviewed in Section II,
most IR methods differ in their optimization procedure and
in particular in the similarity metric, which measure the
quality of a solution. The question arises on how to measure
the performance of heterogeneous IR methods, given one
cannot simply compare the similarity values of their output.
In particular, we aim to compare the performance of feature-
based IR methods (typically guided by MSE) and intensity-
based IR methods (usually guided by either MI or NC).

Our approach is to evaluate all solutions using a common
similarity metric. For instance, if MSE is chosen, all solutions
are finally evaluated computing the MSE between the trans-
formed scene’s features and the model’s features. This happens
irregardless of whether these solutions has been produced by
an intensity-based algorithm or a feature-based algorithm that
uses a different metric. This approach is just part of the final
comparison of all methods and it does not affect the original
behavior of each particular IR method, that is implemented
according to the proposal of their authors.
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VI. EXPERIMENTAL STUDY

In this section we present a number of experiments that
have been developed on a medical image data set in order
to study the performance of our proposed method. The most
important challenge is that the goal of the IR process is to
register two different images of similar objects, instead of two
images corresponding to the same object, thus reflecting a
more realistic situation in medical IR.

We made use of a data set from the BrainWeb repos-
itory [17]. It contains four simulated real-world magnetic
resonance images (MRIs) of four human brains with noise,
anatomical lesions, and a certain degree of occlusion; see
Table I. We considered the same images and registration
scenarios that have been used in [9], in which the authors
developed a comparison among state-of-the-art feature-based
IR techniques. The use of the same scenarios will provide
useful reference points for the assessment of the quality of
the results of our proposal. The original comparison included
all the feature-based algorithms we review in Section III. We
extended this work by testing our approach and gradient-based
algorithm GD on the same scenarios. The resulting comparison
thus comprises algorithms having different nature and search
strategies, as well as representatives of various optimization
techniques: gradient-based, evolutionary and other metaheuris-
tics.

A. Experimental setup

The results presented in this section correspond to a number
of registration problems with four different simulated real-
world MRIs. These images have been obtained from the
BrainWeb database at McGill University [17]. Its purpose
is to provide researchers with ground truth data for image-
analysis techniques and algorithms. BrainWeb has been widely
used by the IR research community [18]. Different levels of
noise were added to three of the four images, to model the
noisy conditions in which such images are usually acquired.
Moreover, two of the images include a multiple sclerosis
lesion. The influence of these two factors allow to design a set
of experiments with different complexity levels. The images’
characteristics are reported in Table I; an example image is
shown in Figure 2. All images have size 60× 181× 217.

Table I
THE NOISE LEVEL AND THE PRESENCE OF LESION IN THE FOUR BRAIN
MRI IMAGES USED IN THE EXPERIMENTAL STUDY. THE NUMBER OF

CREST LINE POINTS, USED AS FEATURES, IS ALSO REPORTED.

Image Lesion Noise (%) # of features

I1 No 0 583
I2 No 1 393
I3 Yes 1 348
I4 Yes 5 248

To provide an input for the feature-based algorithms consid-
ered in the comparison, the appropriate kind of feature need
to be extracted. In this case, all the algorithms use points; in
the original comparison, the authors computed the isosurfaces
and extracted the crest line points with relevant curvature

Figure 2. An MRI brain image (left) and the corresponding crest line points
(right).

information [19] (see Figure 2). It is important to remark
this difference. The actual input of intensity-based methods
consists of the whole images data; in this concrete case, two
images made of 60 × 181 × 217 = 2356620 voxels having a
8-bit intensity value. The input of feature-based approaches,
instead, is a set of composed of a few hundred points (Table I).

B. Registration scenarios

In the IR problem instances considered in this study, differ-
ent 3D images have been transformed using four global sim-
ilarity transformations T1, T2, T3 and T4, shown in Table II.
As mentioned in Section II, similarity transformations involve
rotation, translation, and uniform scaling. In Section IV we
described a way to represent such a transformation using seven
real parameters, but here we used a more easily understandable
alternative which consists of eight parameters: the rotation
magnitude (λ), the rotation axis (ax, ay, az), the translation
vector (tx, ty, tz) and the uniform scaling factor s. To achieve
a good solution, every algorithm must estimate these eight
parameters accurately. Values in Table II have been selected
within the appropriate ranges so that important transformations
have to be estimated. Both rotation and translation vectors
represent a strong change in the object location. In fact, the
lowest rotation angle is 115◦. Meanwhile, translation values
are also high. Likewise, the scaling factor ranges from 0.8 (in
the second transformation) to 1.2 (in the fourth one). In this
way, complex IR problem instances were generated.

Table II
PARAMETERS OF THE SIMILARITY TRANSFORMATIONS WE USED IN THE

EXPERIMENTS.

λ ax ay az tx ty tz s

T1 115 -0.863 0.259 0.431 -26 15.5 -4.6 1
T2 168 0.676 -0.290 0.676 6 5.5 -4.6 0.8
T3 235 -0.303 -0.808 0.505 16 -5.5 -4.6 1
T4 276.9 -0.872 0.436 -0.218 -12 5.5 -24.6 1.2

In the experiments, we considered 16 image registration
scenarios. From lower to higher complexity, these are I1 versus
Ti(I2), I1 versus Ti(I3), I1 versus Ti(I4) and I2 versus Ti(I4),
for i = 1, 2, 3, 4.

C. Parameter settings

We tested GA+ using different configurations. For the
similarity metric, we considered both normalized correlation
and mutual information. We also tested the algorithm with and
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without the restart capability. In the first case, the algorithm
performs a single restart if the similarity metric value of the
best solution is lower than 0.9 for NC and 0.4 for MI at the
end of the first resolution. These values, as well as the one
used for other parameters that will be introduced later, were
determined through a preliminary study performed over the
registration scenario I1 versus T1(I1), that is not included
in the subsequent experimentation. The registration was per-
formed in two resolutions. During the first one, the algorithm
used a smoothed (Gaussian smoothing, σ = 4), downsampled
(by a 4 factor) version of the input images, and the similarity
metric was computed over 5000 random spatial samples. For
the second resolution the algorithm, no preprocessing were
applied to the images, and the number of spatial samples was
increased to 20000. When the restart was disabled, the GA
used the same configuration for both resolutions: population
size of 500 individuals, 100 generations, mutation probability
of 0.1, crossover probability of 0.5, blend factor (α) 0.3 and
tournament size equal to 3. When restart occurred the number
of generations in the second resolution were reduced to 75 to
keep the computational cost roughly constant. Finally, as we
are dealing with a non-deterministic algorithm, 15 independent
runs were performed for each test scenarios.

The algorithm is also provided with the ranges of the
transformation parameters; taken into account the scenario
were are dealing with, we used [−30, 30] for the translation
components (tx, ty, tz) and [0.75, 1.25] for the scaling one. No
restrictions were placed over the rotation, so the actual ranges
are [−1, 1] for each component of the versor.

For GD we used the parameters values suggested in [13]:
the registration was performed in four resolutions in which
2000 iterations of the optimization process were performed.
The parameter settings used for SS*, I-ICP and DynGA are
those of the original comparison [9]. We performed a total of
15 runs (with different random seeds) for each of the problem
instances.

Finally, we used running time as stopping criteria. As we
are dealing with both feature and intensity-based techniques,
we let the algorithms run for different amounts of time
according to their nature. Indeed, recall that while intensity-
based methods use the whole images data (or at least a large
subset), only a small fraction of the input data is actually
used in feature-based techniques. Also, the time needed to
extract the features used by the latter algorithms is not counted.
Taken into account these differences, we used a time limit
of 20 seconds for the feature-based approaches (I-ICP, SS*
and Dyn-GA) and one of 20 minutes for the intensity-based
methods (GA+ and GD). These amounts were determined by
considering the proportion between the size of the data used
by algorithms of two classes. The number of spatial samples
of GA+ and GD is 25000, while the average number of feature
points in the test images is 393. The proportion is 63.6, which
roughly approximates the proportion between the amounts of
time, 60.

D. Analysis of results
In accordance to the methodology proposed in Section V,

we evaluate the solutions provided by the different IR tech-
niques using a common similarity metric. We chose the MSE
over the crest line points we provided as input to feature-based
methods. Table III show the results of the experiments on the
first nine scenarios; the results obtained on the remaining seven
scenarios are not reported due to lack of space. For each IR
method, the table provides the minimum, maximum, average
and standard deviation of the MSE values obtained tackling
the IR problems. We printed in bold the best minimum and
average MSE values for each scenario. We also compared each
pair of IR methods and computed the number of scenarios in
which one performed better than the other with respect to the
minimum (Table IV) and the average MSE (Table IV). Figure 3
offers a visual comparison of some of the results.

1) Comparison among the variants of GA+: We will under-
take a detailed comparison of the results of the four different
variants of GA+ we tested. To support the discussion, we have
drawn the boxplot to the distribution of MSE obtained by the
algorithms over the 16 IR scenarios in Figure 4.

a) Effect of the similarity metric: The minimum MSE
values of GA+-MI and GA+-NC are extremely close in all
scenarios, with the largest difference being 1. However, the
latter performed consistently better, having a smaller minimum
value in 13 cases over 16. When we consider the average
MSE values, we note that GA+-NC has a smaller x̄ value in
14 scenarios and the difference is often really large, reaching
6038 on I1 vs T3(I3). A similar picture is provided by
the comparison between the restart versions of GA+. With
respect to the minimum, GA+-NC-Re has a better MSE than
GA+-MI-Re in 13 scenarios over 16, but the difference in
value is again extremely small. The difference average MSE,
instead, varies from less than 1 (several scenarios) up to 3909
on I2 vs T2(I4). GA+-NC-Re outperformed GA+-MI-Re
in terms of average MSE in 13 out of 16 scenarios. This
allows us to conclude that normalized correlation lead to
more accurate registrations on the average in comparison with
mutual information.

b) Effect of the restart policy: By considering the box-
plots in Figure 4, one can note that the distributions of the
errors are usually extremely close to the bottom part of the
graph, but they contains also a few really large values. This
is also confirmed by the position of the medians and the third
quartiles, which are generally close to the minimum. Thus,
for all scenarios, the algorithms converges to a good solution
at least in half of the times. However, the solutions provided
have a really low quality when convergence does not occur,
and actually their quality of is so low that even one of them
is able to increase the average MSE value of more than one
order of magnitude. This phenomenon affects also the version
of GA+ using normalized correlation, but we did not report
the boxplot due to lack of space. This behavior motivate the
use of the restart mechanism: basically we trade some time
used for refining our solution to decrease the probability of
one “bad” run to happen.
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Table III
THE EXPERIMENTAL RESULTS OVER THE FIRST 9 IR SCENARIOS IN TERMS OF MSE. MINIMUM (m), MAXIMUM (M ), AVERAGE(x̄) AND STANDARD

DEVIATION (s) VALUES ARE REPORTED.

I1 vs T1(I2) I1 vs T2(I2) I1 vs T3(I2)

Dyn-GA
GD
I-ICP
GA+-MI
GA+-MI-Re
GA+-NC
GA+-NC-Re
SS*

m M x̄ s
101.3 263.7 194.9 50.5

58597.7 61316.2 59956.9 1922.3
344.4 344.4

36.1 50928.4 8197.8 18383.2
36.1 49631.5 725.5 5844.8
35.8 50008.4 3446.1 12570.4
35.8 36.9 36.4 0.3
34.6 39.7 37.0 1.5

m M x̄ s
43.7 283.6 107.5 52.1

24207.4 29140.2 26673.8 3488.0
130.7 130.7

35.4 31256.7 4661.2 10970.5
35.3 37.6 36.7 0.4
35.8 32233.8 1355.4 6369.4
35.8 37.9 36.7 0.4
36.8 49.8 43.4 3.6

m M x̄ s
86.6 678.4 211.0 137.3

11154.0 109799.0 60476.5 69752.5
894.3 894.3
39.2 25046.2 6665.4 10756.0
39.2 24162.1 1374.2 5521.6
39.2 25435.5 6715.7 10844.8
39.1 24992.1 1736.5 6216.7
57.0 67.2 63.2 2.9

I1 vs T4(I2) I1 vs T1(I3) I1 vs T2(I3)

Dyn-GA
GD
I-ICP
GA+-MI
GA+-MI-Re
GA+-NC
GA+-NC-Re
SS*

m M x̄ s
139.4 600.3 302.0 121.4

33.3 35.6 34.4 1.7
631.7 631.7

32.7 33.2 32.9 0.1
32.7 33.1 32.9 0.1
32.3 33.1 32.7 0.2
32.2 33.1 32.6 0.2
48.8 58.8 53.9 2.6

m M x̄ s
132.2 740.9 299.3 144.1

60286.3 62012.5 61149.4 1220.6
517.7 517.7

51.1 51144.7 4124.5 13607.1
51.1 52.3 51.7 0.3
50.9 59639.0 2437.9 11544.8
50.8 51.9 51.4 0.2
89.8 131.7 112.2 12.4

m M x̄ s
55.7 534.1 154.0 114.2

25895.3 29263.1 27579.2 2381.4
330.3 330.3
43.4 30722.7 1718.5 6955.0
43.3 44.1 43.7 0.2
43.3 31328.7 478.3 3687.0
43.2 44.2 43.8 0.2
49.5 65.8 56.7 4.5

I1 vs T3(I3) I1 vs T4(I3) I1 vs T1(I4)

Dyn-GA
GD
I-ICP
GA+-MI
GA+-MI-Re
GA+-NC
GA+-NC-Re
SS*

m M x̄ s
138.8 839.0 326.5 174.0

10535.0 107814.0 59174.5 68786.6
437.8 437.8
55.3 26148.8 10789.9 11974.3
55.3 25387.8 6379.7 10635.1
54.3 25461.2 4752.2 9618.7
54.3 25461.2 1091.8 4965.8
43.7 235.1 63.8 46.2

m M x̄ s
221.3 841.3 354.3 146.9

45.2 45.8 45.5 0.4
478.0 478.0

44.3 45.7 45.0 0.3
44.3 45.7 45.0 0.3
43.9 45.3 44.6 0.3
43.8 45.3 44.5 0.3

112.3 143.2 122.7 8.2

m M x̄ s
123.7 1083.7 255.4 228.2

59026.2 59126.7 59076.4 71.1
704.3 704.3

52.7 50293.6 5521.6 15577.8
52.7 54.0 53.3 0.3
52.5 53949.8 4252.2 14061.0
52.5 53.5 52.9 0.3

149.3 269.0 183.6 33.0

Table IV
THE COMPARISON BETWEEN THE ALGORITHMS INCLUDED IN THE EXPERIMENTAL STUDY. THE TOP TABLE REPORTS THE NUMBER OF SCENARIOS IN

WHICH THE ALGORITHM ON THE ROW HAS A BETTER MINIMUM MSE VALUE THAN THAT ON THE COLUMN. IN THE BOTTOM TABLE THE AVERAGE MSE
IS USED.

GA+-MI GA+-MI-Re GA+-NC GA+-NC-Re SS* I-ICP Dyn-GA GD
GA+-MI - 2 3 3 13 16 16 16
GA+-MI-Re 14 - 3 3 13 16 16 16
GA+-NC 13 13 - 0 13 16 16 16
GA+-NC-Re 13 13 16 - 13 16 16 16
SS* 3 3 3 3 - 16 13 12
I-ICP 0 0 0 0 0 - 0 12
Dyn-GA 0 0 0 0 3 16 - 12
GD 0 0 0 0 4 4 4 -

GA+-MI GA+-MI-Re GA+-NC GA+-NC-Re SS* I-ICP Dyn-GA GD
GA+-MI - 0 2 0 3 4 3 14
GA+-MI-Re 16 - 10 3 9 10 9 15
GA+-NC 14 6 - 0 4 4 4 16
GA+-NC-Re 16 13 16 - 11 12 11 16
SS* 13 7 12 5 - 16 15 12
I-ICP 12 6 12 4 0 - 0 12
Dyn-GA 13 7 12 5 1 16 - 12
GD 2 1 0 0 4 4 4 -
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Figure 3. Visual comparison of the best registration results for the scenarios I1 versus T2(I3) (top) and I2 versus T4(I4) (bottom). From left to right: the
original setup, the best registrations obtained by I-ICP, SS* and GA+.

The benefits of using restart is clear in both the boxplots
and looking at the MSE values. For both GA+-NC and GA+-
MI the average values decrease in all scenarios. Moreover,
the frequency in which good solutions were delivered also
increased, as we can note by the decrease of third quartiles
in the boxplots; this happens in all IR problems for GA+-NC
and in all but one case for GA+-MI.

2) Comparison of GA+ with previous methods: The results
of GA+ are compared with other state-of-the-art techniques
included in the study. In the original comparison, SS* emerged
as the best algorithm overall, so we expect it to be the strongest
opponent for our methods.

We begin by considering the minimum MSE values. We
already noted that the difference among GA+ variants are
minimal (less than 1), with GA+-NC and GA+-NC-Re being
the best. All four GA+ variants scored better than I-ICP, Dyn-
GA and GD in all 16 IR scenarios. GD has remarkably large
error values in most of the cases and really small values in
the others. This suggests that the algorithm is actually able
to reach a global optimum but often get stuck in a local
one. Instead, Dyn-GA found intermediate quality solutions
in almost every scenarios. I-ICP delivers a less stable level
of quality and the solutions are inferior to that of Dyn-GA.
Finally, GA+ variants outperformed SS* in 13 cases and in the
remaining ones the difference in MSE is really small (less than
10). All GA+ ranks as the best algorithms in the comparison.

According to the mean MSE values of the algorithms, GA+-
NC and GA+-MI are outperformed by all other methods
but GD. When we consider the restart version of the latter
approaches, the picture changes completely. GA+-MI-Re has
a smaller MSE value than those of SS*, I-ICP, Dyn-GA and
GD in 9, 10, 9 and 15 cases, respectively. For GA+-NC-Re,
those values are even better since they increase to 11, 12,
11 and 16. Therefore GA+ restart variants outperformed all
other methods in most of the cases. Compared with SS*, the
advantage of those methods can be noticeable. For instance,
the MSE of SS* is five times higher than that of GA+-
NC-Re and GA+-MI-Re on I2 vs T4(I4). However, this

difference was extremely large in the scenarios where SS*
performed better than GA+. In particular, SS* reaches an
average MSE of 82 on I1 vs T3(I4), while GA+-NC-Re and
GA+-MI-Re values correspond to 2824 and 5202, respectively.
Finally, the good overall performance of GA+ restart variants
is complemented by a quite robust behavior. In 8 scenarios
the standard deviation of the MSE value of GA+-MI-Re was
below 1, and this value improve to 11 for GA+-NC-Re.

VII. CONCLUSIONS

IR is the task of aligning two or more images in order
to combine the information they contain. It is considered a
fundamental task in image processing because it is used in a
wide variety of applications from different domains. Despite
the efforts of the scientific community over the last decades,
there is still need for improvement of current IR techniques.
One of the most critical components of these methods is the
optimization procedure, which is responsible for the actual
search of the best alignment of the images. Metaheuristics
and in particular those methods based on evolutionary com-
putation have proven their worth tackling IR as well as other
image processing problems, avoiding the typical drawbacks
of classical gradient-based numerical optimization techniques.
Nevertheless, a number of evolutionary IR contributions in the
literature did not follow an appropriate evolutionary design.

In this work, we introduced an intensity-based IR technique
based on genetic algorithms, the most prominent family of
evolutionary techniques. We used a modern, real-coded design
for representing the solutions and to define the genetic opera-
tors. The algorithm also combines a multi-resolution strategy,
that allows the registration to be performed in multiple stages
with increasing complexity, with a restart procedure, that
increases the reliability of the algorithm. In addition, we
proposed a novel methodology to compare the performance
of different feature and intensity-based IR approaches. Such
framework allows the undertaking of broad experimental stud-
ies in which methods from both classes are considered, that
so far have been almost absent in the literature. Using this
methodology, we developed an experimental study to compare
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Figure 4. Boxplot of the distribution of mean square error values obtained by the two MI variants of GA+.

our technique with other well-known IR methods, both feature
and intensity-based. Furthermore, we included in the com-
parison four algorithms having different optimization proce-
dures which lay their foundations on classic gradient-descent,
metaheuristics and evolutionary computation to represent all
current approaches to IR. Brain MRI real-world image data has
been used to generate 16 inter-patient registration scenarios of
different complexity. Factors such as presence of noise and
lesions have been represented in the most difficult scenarios.
We proved that our genetic approach performs really well and
it is competitive with the best IR techniques. Despite some
convergence issues that have been properly addressed after the
initial investigation stage, our method actually outperformed
all other algorithms on the majority of the scenarios.
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