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Abstract— Polygonal surface models are typically used in three-

dimensional (3D) visualizations and simulations. They are 

obtained by laser scanners, computer vision systems or medical 

imaging devices to model highly detailed object surfaces. Surface 

mesh simplification aims to reduce the number of faces used in a 

3D model while keeping the overall shape, boundaries, and 

volume. In this work, we propose to deal with the mesh 

simplification problem from an evolutionary multi-objective 

viewpoint. The quality of a solution is defined by two conflicting 

objectives: the accuracy and the simplicity of the model. The 

Non-dominated Sorting Genetic Algorithm II (NSGA-II) is 

adapted to tackle the problem. We compare the NSGA-II 

performance with a classical approach and a single-objective 

implementation. The comparison has been carried out using 

different datasets. 

Keywords-component; Delaunay triangulation; 3D modeling; 

evolutionary multi-objective optimization; mesh simplification 

I.  INTRODUCTION 

Polygonal surface models are the representation of three-
dimensional visualizations and simulations. They are obtained 
by laser scanners, computer vision systems or medical imaging 
devices to model highly detailed object surfaces. These surface 
models are used in many different areas such as computer 
vision, computer-aided design, medicine, topography, etc. 

Typically, a model surface is composed of thousands of 
polygons. The size of the files causes long processing times. 
Obtaining a reduced model with a smaller polygonal surface 
and a similar accuracy is a challenge in the area [9]. 

Surface mesh simplification is the process that aims to 
reduce the number of polygons used in a surface while 
preserving the overall shape, volume, and boundaries as much 
as possible. 

There are several techniques in order to simplify a mesh.  
The decimation [11], [13], [22] and the energy function 
optimization [18] are the most popular and classical methods. 
There are some other recent proposals considering other ways 
to optimize 3D surfaces with evolutionary algorithms [9], [19], 
[25]. 

There is no work on mesh simplification using multi-
objective evolutionary algorithms (MOEAs) that can lead to 
different kind of problems. In particular, file size. Thus, the 
formulation of mesh simplification as a multi-objective 
problem, the combination of classical techniques with a genetic 
algorithm, and the comparison with a classical method is an 

interesting research line which has been studied in this work. In 
particular, we decided to use a computationally fast and elitist 
multi-objective evolutionary algorithm based on a non-
dominated sorting genetic approach (NSGA-II) proposed in 
[7]. Our methodology is based on the simplification of a 3D 
open model by an evolutionary multi-objective algorithm. An 
open model refers to a surface with open ends. The problem is 
based on the location of a certain number of points in order to 
approximate a mesh as accurately as possible to the initial 
surface. It will consider two conflicting objectives: the 
accuracy and the simplicity of a mesh, which are conflicting in 
nature. The orthogonal array crossover (OAX) function [19], 
[20] will be tested for the problem. 

We will perform a comparison between the proposed multi-
objective method, the developed one by Huang et al. in [19] 
which uses a single-objective algorithm to simplify 3D facial 
meshes, and the classical approach edge decimation [22].  

This work is structured as follows. Section 2 introduces a 
short survey regarding classical techniques for mesh 
simplification and some others that consider evolutionary 
algorithms to simplify a surface. Section 3 describes all the 
components of the proposed approach. Section 4 presents the 
performed experiments and the results obtained. Finally, 
Section 5 concludes the whole work and provides some 
guidelines for future works. 

II. STATE OF THE ART IN MESH SIMPLIFICATION 
There are many mesh simplification approaches [4]. They 

can be either local or global. The former simplifies a mesh by 
the repeated use of some local operator iteratively. The latter 
are applied to the input mesh as a whole. The following two 
subsections review local and global families of methods 
respectively. Finally, subsection II.C presents the evolutionary 
approaches to the problem. 

A. Incremental Methods Based on Local Updates 

These methods run the simplification process as a sequence 
of local updates. Each update reduces the mesh size and 
decreases the surface approximation accuracy. 

The decimation method can be classified into three 
different approaches [11], [13], [22] according to the difference 
of the selected objects: removal of vertex [22], removal of edge 
[17] and removal of triangle [14]. This method makes several 
iterations over all the vertices, edges or faces depending on the 
type of the decimation approach. If a vertex/edge/face satisfies 
a decimation criterion then it is removed. The obtained hole is 
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patched by local triangulation. The algorithm finishes when it 
reaches a certain termination condition. The method has a 
simple implementation, achieves a good approximation and 
preserves the topology of the original mesh. However, it does 
not use an evaluation of error. 

Other iterative method is the energy function optimization 
approach [18]. The mesh reduction is iteratively obtained by 
performing legal moves on mesh edges: collapsing, swapping 
or splitting. The approximation quality of the reduced mesh M 
is evaluated with a function which is composed by the sum of 
the squared distances of the original points from M, a factor 
proportional to the number of vertex in M, and the sum of the 
edge lengths. At each step, the element whose elimination 
causes the lowest increase in the energy function is deleted. 

The progressive meshes method [17] is an enhanced 
version of the previously mentioned technique. This method 
obtains high quality results. However, it is not easy to 
implement and use. 

On the other hand, the quadric error metric algorithm [11] 
is based on the iterative contraction of vertex pairs. It uses a 
value called remove cost in order to determine the points to be 
removed. 

B. Non Incremental Methods 

The coplanar method [16] uses a named detecting plane to 
determine whether a vertex is near enough. If the distance 
between a vertex and the detecting plane is small and it lies 
within the specified bounded threshold, the vertex will join the 
plane. The method preserves the geometry but the evaluation of 
the error approximation is highly inaccurate and it is not 
bounded. 

The re-tiling method [23] starts with a polygonal surface 
and creates a triangulation of it with a user-specified number of 
vertices. The number of polygons shared by any given edge is 
the main restriction. The method is suitable for polygonal 
models in which each edge is shared by either one or two 
polygons. If a model satisfies this restriction, the algorithm will 
produce a new model with the same topology. This method 
removes part of the original vertices and it finally makes a local 
re-triangulation. 

The clustering technique [21] is based on the octree 
concept. An octree is a tree structure where each branch or 
node has eight offspring who are the vertices of the mesh. This 
method is based on replacing the stored vertices in a node with 
only one. 

Finally, the algorithms based on wavelets [12], [15] and the 
simplification using envelopes [6] provide tight error bounds 
on arbitrary triangulated meshes while allowing topological 
changes during the simplification. 

C. Mesh Simplification Approaches Based on Evolutionary 

Algorithms 

There are a few studies based on applying evolutionary 
computation to deal with the mesh simplification problem.  

In [9], Fujiwara and Sawai tackled the problem of 
approximating a human facial surface by constructing a 
triangular mesh with a limited number of sample points. They 

developed a single-objective genetic algorithm that selects a 
given number of points from the whole dataset. Points are 
located in such a way that the resulting polygonal mesh 
approximates the original surface as closely as possible. The 
authors used 3D facial surfaces models. 

Huang and Ho [19] proposed an evolutionary algorithm as 
an extension of Fujiwara and Sawai. The improvement is based 
on using the orthogonal array crossover. This algorithm also 
works with open surfaces models. 

Finally, Xiandong et al. proposed a method of triangular 
mesh reduction based on a new concept called super-face and 
using a genetic algorithm in [25]. They used the STL format 
(which is a triangular representation of a 3D surface geometry) 
to manage the data structure.  

III. EVOLUTIONARY 3D MULTI-OBJECTIVE MESH 

SIMPLIFICATION 

In this Section, we formulate the mesh simplification 
problem. We detail a first proposal based on the Huang and Ho 
method and, finally, we describe our multi-objective technique. 

A. Problem Formulation 

Image data are generally represented using the standard 
cylindrical coordinate system (�, �, �) (CCS) where the  � = 0 
axis runs vertically through the middle of the head, �  is the 
yaw angle, and � axis is the vertical axis. A point on the surface 
can be represented by a triplet (�, �, �). It is easy to spread out 
the surface over ℝ�  as 	 = �, 
 = �	 and 	� = �  [19], as it 
shows in Fig. 1 [29]. 

Let M be a scanned 3D model, it is possible to reduce this 
polygonal surface to a two dimensional problem. A three 
dimensional surface of this kind can be represented by the 
function: 

 : �	, 
� ∈ 	ℝ�	 → �	 ∈ 	ℝ . (1) 

 

Figure 1.  Surface representations. (a) Cylindrical coordinate system 
representation. (b) Grid plane representation. 

Therefore, we need to locate n points which are less than N 
(the number of points of the original mesh). The number of 
points to be located can be either fixed during the task or 
chosen by the algorithm. Our experiments are based on this 
second option, i.e., the algorithm attempts to solve the problem 
with few data. 

(a) (b) 
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The previous methods in Section II use the Delaunay 
triangulation [1]. Given a set of points P in the plane, a 
Delaunay triangulation is a triangulation DT(P) such that no 
point in P is on the circumscribed circle of any triangle of 
DT(P). Delaunay triangulations maximize the minimum angle 
of all angles of the triangle; they tend to avoid skinny triangles. 

So, let Pn, be an initial set of n points in ℝ�	 , its 
corresponding Delaunay triangulation is denoted by DT(Pn). 

In our problem, a chromosome encodes a configuration Pn 
of n points in the 3D space. The genotype space consists of 
those 3D configurations: 

Let a population of N individuals, each individual 
represents a certain mesh configuration. An individual is a 
simplified mesh, i.e., a mesh with fewer points than the 
reference model one. It will use a global array with the original 
mesh coordinates, and a binary chromosome array, with length 
n (the number of points which will be located on the new 
simplified mesh) for each individual. 

The members of the population share a global array with 
the original mesh coordinates. Each position of the array stores 
the x, y and z coordinates. Every individual is defined by a 
binary chromosome with n genes. A non-zero value of the 
i��	position of the chromosome array means that the i��	vertex 
of the original model remains in the simplified mesh 
represented by such chromosome. By contrary, a zero means 
that there is not a point on the grid plane for this position. 

The four points of the mesh corners are included in all the 
chromosomes. Hence, it avoids an abnormal boundary shape 
because of maintaining the rectangular shape as a whole [9], 
[19]. 

The algorithm performs the following simplification 
process: it converts the original 3D model of N points (PN) into 
a 2D model with the same number of points. It carries out 
simplification and obtains a new 2D mesh with n points (Pn), 
with Pn < PN. 

It applies Delaunay triangulation to the new 2D mesh 
getting D(Pn). This 2D triangulated final mesh D(Pn) is 
converted into 3D and it obtains a final 3D model with n 
points. The algorithm selects the model that it is the best 
approximation of the original, i.e. the lowest error mesh. The 
following subsection explains how to calculate the error 
between two meshes, the original and the approximation one. 

B. Objectives to Be Optimized 

We have considered two objectives to be optimized, 
accuracy and simplicity. The former is guided by the 
minimization of an error metric. The latter is given by the 
number of triangles in the mesh. Therefore, we aim to 
minimize both objectives. 

We have followed the same procedure presented by Huang 
et al. in [19] to calculate the approximation error. Each 
Delaunay triangle Ti ∈ D(Pn) contains a certain number of grid 
points (x, y). The distance dp (2) at each sample point p is 
defined as follows: 

 �� = ��� − �̃�� , (2) 

where zp is the height value of the surface at the point p and 
�̃�	is the linearly interpolated value of height at p determined 
by the triplet of heights for the three grid points of triangle Ti. 
The error ei (3) for Ti is the sum of these distances over all the 
sample points p inside Ti where:  

 �� =	∑ ��� !" . (3) 

The total approximation error � is defined by 

 � = ∑ ��!" #�$%� . (4) 

Therefore, given a triangle of the Delaunay triangulation Ti 
the equation of its plane is calculated using the three triangle 
vertices. We selected the points of the original mesh which are 
into the triangle. Then, the z coordinate is estimated in the 
plane for each point inside the triangle. The error is the 
Euclidean distance between the original z coordinate of p, zp, 
and the z coordinate of p inside the triangle Ti, z'(. Finally, the 
overall error is the sum of these distances over all triangles of 
the Delaunay triangulation. 

C. Recombination 

We have used the orthogonal array crossover recombination 
based on the Taguchi matrices [20] and developed in [19] in 
order to obtain more diversity than using others recombination 
operators. 

D. Extension of a Single-Objective Genetic Algorithm 

As a first approximation to the multi-objective problem, we 
will extend the Huang and Ho proposal in order to compare it 
with our method. 

This algorithm consists of several functions such as, 
population initialization, selection scheme, genetic operations 
and termination criterion. It is based on the Huang and Ho 
proposal in [19]. Each gene has a phenotype given by its 
Delaunay triangulation D(Pn). The fitness function has been 
adapted in order to consider the explained two objectives: 

 )�*� = +,�*� + �1 − +�/�*�, (5) 

where m is the mesh, w ∈ [0,1] is a weight, E(m) is the error 
determined by (4) to be minimized and T(m) is the number of  
triangles of the final mesh.  

The extension of the original method to tackle the fitness 
function in (5) is based on an evaluation function combining 
several normalized objectives into a weighted sum function [2], 
[5], [8]. It generates a set of Pareto optimal solutions giving 
different weights to the function and running repeatedly the 
algorithm. The method pseudo-code of the extended single-
objective algorithm is as follows: 

Population initialization: The population is initialized by 
randomly locating n points to each individual. The four points 
of the mesh corners are fixed to maintain the boundaries. 

Selection scheme: It uses an elitist selection model in such a 
way that the individual with better fitness is selected to 
reproduce. 
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Mutation: It makes mutation in each gen with a probability 
pm = 1/chromosome length. 

Crossover: From two randomly chosen parents, we 
generate two offspring using an orthogonal array crossover 
operator [19], [20]. 

Termination criterion: Given by a maximum number of 
fitness evaluations. 

E. The Evolutionary Multi-Objective Proposal 

Our multi-objective algorithm proposal is based on NSGA-
II [7]. As said, two conflicting objectives are considered: 
accuracy and simplicity. The former is guided by the 
minimization of an error metric. The latter is given by the 
number of triangles in the mesh. Therefore, we aim to 
minimize both objectives. 

Given a mesh m for the multi-objective method, the fitness 
function is the following: 

min)12�*� = ,�*� 

                                min)1��*� = /�*�. (6) 

The method scheme is detailed below: 

Population initialization: This task is the same than the 
single-objective algorithm population initialization. 

Selection scheme: The algorithm combines the current 
population with the obtained offspring using recombination in 
order to generate the next population. The best individuals 
according to non-dominance and diversity are selected to be 
reproduced. 

Mutation: A gen is mutated with a probability pm = 
1/chromosome length. 

Crossover: From two randomly chosen parents, we 
generate two offspring using an orthogonal array crossover 
operator [19], [20]. 

Termination criterion: Given by a maximum number of 
fitness evaluations. 

IV. EXPERIMENTS 

We have used four datasets to accomplish all the 
simplification experiments. They are synthetic meshes, 
Laurana.ply, Cheff.ply, Ramses.ply and Duck.ply. These 
models are provided courtesy of the AIM@SHAPE Shape 
Repository [29]. All of them are open 3D models (Fig. 2). 
Table I presents the name of the mesh, the code in the 
experiments and the number of vertices and triangles which 
constitute each mesh. 

TABLE I.  DIMENSION  OF THE PROBLEM DATASETS 

Datasets Information 

Dataset Code and Name Vertices Faces or triangles 

M1- Laurana.ply 922 1667 

M2- Cheff.ply 2622 4864 

M3- Ramses.ply 1420 2734 

Datasets Information 

Dataset Code and Name Vertices Faces or triangles 

M4- Duck.ply 1047 2044 

 

  

  

 

Figure 2.  Original meshes. (a) Laurana.ply-M1. (b) Cheff.ply-M2. (c) 
Ramses.ply-M3. (d) Duck.ply-M4. 

A. Experimental Setup 

The algorithms have been implemented in C/C++ and all 
experiments have been performed on an Intel Core 2 Quad 
CPU Q8400 2.66 GHz, with 4 GB RAM, running Windows 7 
Professional. 

The parameters used are as follows: size population= 100, 
number of generation= 50, crossover probability= 0.8 and 
mutation probability= (1/chromosome length). 

The multi-objective method has been run ten times with 
different seeds. Different weight vectors have been considered 
for the single-objective problem. The weight of the first 
objective function, the Delaunay triangle error ranges from 1 to 
0 (step 0.1), and the number of triangles weight from 0 to 1 in 
the same step. It has resulted in 11 weighted vectors per 
objective. The algorithm has been run for each of the eleven 
weighted vectors and the obtained solutions have been grouped 
together to compose a Pareto-front approximation. 

In the case of the classic method, 10 different 
simplifications have been performed changing the reduction 
percentage, i.e., from 5% to 50% of reduction with a 5% step. 
A reduction percentage means that the algorithm reduces the 
mesh into a certain number of faces or triangles. Therefore, the 
classic method will provide ten solutions which compose the 
Pareto-front. 

In order to compare the behavior of different algorithms, 
the optimal Pareto-front is usually considered. However, in 
most real-world problems, the optimal Pareto-front is unknown 
and it cannot be calculated in reasonable time. It is the case of 
this study. 

(a) (b) 

(c) (d) 
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Hence, we have considered (in the single and multi-
objective algorithms) the Pareto-front approximation which is 
obtained from the aggregation of the set of solutions P 
produced by each method in all the performed runs. 

The Pareto-front approximation of the single-objective 
algorithm is calculated merging the eleven solutions obtained 
by each weighted vector. Repeated solutions are removed, and 
a later domination checks using the Pareto dominance 
definition is performed to produce the Pareto-front 
approximation. 

In order to calculate the Pareto-front approximation for the 
multi-objective algorithm, the solutions obtained by ten runs 
are merged. Then, the repeated ones are removed, and finally 
the Pareto dominance is applied in order to achieve the 
aggregated Pareto-front approximation. 

In the case of the classic method, the Pareto-front 
approximation is calculated joining the ten calculated solutions. 
At first, the ten solutions are merged. Then it removes the 
repeated ones, and finally, it applies the Pareto dominance to 
obtain the final Pareto-front approximation. 

We have used three of the usual multi-objective 
performance indicators to measure the quality differences 
between two sets of solutions. One of them is the Hypervolume 
Ratio or HVR [26]. HVR is commonly used for comparing 
multi-objective optimizers [27], [28]. The other two indicators 
considered are the Epsilon [28] and the Coverage (C) metric 
[26]. Both are binary indicators. 

B. Analysis of the Results 

We have performed experiments using M1, M2, M3 and 
M4 datasets. Regarding to M1, M2 and M3, Figs. 3, 4 and 5 
show the aggregated Pareto-front approximations in the three 
datasets. The behavior in the fourth dataset (M4) is rather 
similar. We do not present the Pareto-front approximation 
because of lack of space. The Pareto-front approximation of the 
decimation approach is not shown because this classical 
technique obtains very large errors, between 13500 and 19100 
for the M1 dataset, around 22000 for the M2 dataset and 15000 
for the third dataset; in addition to a high number of triangles, 
so its graphical representation is far from the other two 
algorithms. The multi-objective method converges better than 
the single-objective one. The multi-objective proposal obtains 
solutions covering the whole search space. The single-objective 
just finds solutions in the centre (Figs. 3 and 5) or near the right 
side of the search space (Fig. 4). 

Table II shows the mean and standard deviation (in 
parenthesis) values for the HVR metric of the four methods in 
the studied datasets. A higher value represents a better 
behavior. Hence, the multi-objective technique outperforms the 
rest of the methods. 

Table III shows the mean and standard deviation for the 
Epsilon and C indicators for the M1, M2, M3 and M4 datasets. 
In the case of the Epsilon indicator, a lower value indicates a 
better performance. On the contrary, in the C metric, a higher 
value corresponds to a better performance. 

Note that our multi-objective algorithm achieves better 
results than the single-objective and the classic proposals in 
both indicators. The difference between algorithms is higher in 

the M2 dataset. Furthermore, the multi-objective algorithm 
provides higher diversity as it is shown in Figs. 3-5. The 
cardinality of the decimation approach is 9 for the M1 dataset, 
2 for M2 dataset and 4 in the third and fourth datasets. 

Regarding run time, all methods are similar. They converge 
in around 10 minutes per run.  

TABLE II.  MEAN AND STANDARD DEVIATION OF THE UNARY HVR 
INDICATOR, DATASETS M1, M2, M3 AND M4 

Datasets 
34�5� 

Single-objective Multi-objective Decimation 

M1 0.633(0) 0.833(0.047) 0(0) 
M2 0.467(0) 0.886(0.009) 0(0) 
M3 0.169(0) 0.982(0.004) 0(0) 
M4 0.328(0) 0.826(0.001) 0(0) 

 

TABLE III.  MEAN AND STANDARD DEVIATION OF THE BINARY EPSILON 
AND C INDICATORS, DATASET M1, M2, M3 AND M4 

M1 Dataset 

 

Methods 

 

Metrics 
Single-

objective 

Multi-

objective 
Decimation 

Single-

objective 

Epsilon •  1.027(0.024) 0.393(0) 
C •  0.300(0.165) 1(0) 

Multi-

objective 

Epsilon 1.010(0.009) •  0.600(0.001) 
C 0.667(0.150) •  1(0) 

Decimation 
Epsilon 3.543(0) 3.559(0.014) •  

C 0(0) 0(0) •  
M2 Dataset 

 

Methods 

 

Metrics 
Single-

objective 

Multi-

objective 
Decimation 

Single-

objective 

Epsilon •  1.295(0.120) 0.695(0) 
C •  0(0) 1(0) 

Multi-

objective 

Epsilon 0.993(0.400) •  0.706(0) 
C 0.600(0.516) •  1(0) 

Decimation 
Epsilon 5.705(0) 6.902(0.011) •  

C 0(0) 0(0) •  
M3 Dataset 

 

Methods 

 

Metrics 
Single-

objective 

Multi-

objective 
Decimation 

Single-

objective 

Epsilon •  1.011(0.007) 0.803(0) 
C •  0(0) 1(0) 

Multi-

objective 

Epsilon 1.005(0.004) •  0.815(0.002) 
C 0.566(0.041) •  1(0) 

Decimation 
Epsilon 2.056(0) 2.235(0.134) •  

C 0(0) (0) •  
M4 Dataset 

 

Methods 

 

Metrics 
Single-

objective 

Multi-

objective 
Decimation 

Single-

objective 

Epsilon •  1.011(0.007)  0.804(0) 
C •  0(0) 1(0) 

Multi-

objective 

Epsilon  1.004(0.002) •  0.814(0.003) 
C  0.576(0.009) •  1(0) 

Decimation 
Epsilon  2.057(0) 2.241(0.012) •  

C 0(0) 0(0) •  
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Figure 3.  Pareto-front approximations of the single and multi-objective 
algorithms for the M1 dataset 

 

Figure 4.  Pareto-front approximations of the single and multi-objective 
algorithms for the M2 dataset 

 

Figure 5.  Pareto-front approximations of the single and multi-objective 
algorithms for the M3 dataset 

C. Analysis and Comparison of Solutions 

From each Pareto-front approximation we have selected 
three different solutions, the one having the best value in the 
first objective, the other with the best value in the second 
objective, and a compromise solution with the best tradeoff 
value. The tradeoff solution is selected as follows: we compute 
1000 random weights w ∈[0,1], take the average value of the 
aggregation function of both objectives O_1 (error) and O_2 
(number of triangles): 

 )6�7�� =
∑ 89:_2�<"�=>2?89@:_��<"�
ABBB
"C9

2DDD
. (7) 

The solution with the lowest aggregated value is selected. 
For each solution, we present the values of two global learning 
objectives, error and number of triangles. 

Due to the fact that the objectives O_1 and O_2 are not 
normalized we need to apply a factor in order to scale them: 

 E =
∑

F_G�H"�
F_A�H"�

|JKL|
"

|$ML|
, (8) 

where |NOP|  is the cardinality of the approximation Pareto-
front and 7� is a solution of this Pareto-front. 

The final aggregation formula to compute the average value 
is the following: 

 )6�7�� =
∑ Q89:_2�<"�=>2?89@:_��<"�
ABBB
9CA

2DDD
. (9) 

Table IV contains the three types of best solutions of the 
studied methods for the M1, M2, M3 and M4 models. The 
multi-objective algorithm achieves better solutions than the rest 
in all the datasets. The worst performance corresponds to the 
decimation approach. 

Table IV shows that the multi-objective method is better 
than the single-objective one in all the solutions; in the case of 
the minimum error (3829.92 against 3871.72), minimum 
number of triangles (276 versus 328) and best tradeoff, where it 
gets a low error using a similar number of triangles. 

Regarding to the results of the M2 dataset, the multi-
objective algorithm outperforms the other two proposals. 
Compared to the single-objective technique, the multi-objective 
achieves the minimum error (10198.99 against 15324.94) and 
the minimum number of triangles (633 versus 635).  

The multi-objective method performs better than the other 
proposals in the M3 and M4 results. Regarding to the M3 
dataset, in spite of the fact that both evolutionary algorithms 
obtain the same number of triangles (331), in the minimum 
solution, the multi-objective error is lower than the single-
objective one (6829.47 against 6980.84).  In relation to the M4 
model, the multi-objective algorithm achieves the minimum 
error solution (13592.33 against 13917.14) and the minimum 
number of triangles (260 versus 322) as compared to the single-
objective method. It is worth noting that the differences of error 
among algorithms are larger for the M2 dataset than for the 
others. In the case of the number of triangles, evolutionary 
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algorithms obtain similar results being better the multi
objective proposal.

triangles and minimum error achieved by the evolutionary 
approaches tackling the M

Solutions

Min. error

Min. no. 

triangles

tradeoff

Solutions

Min. error

Min. no. 

triangles

tradeoff

Solutions

Min. error

Min. no. 

triangles

tradeoff

Solutions

Min.

Min. no. 

triangles

tradeoff

 

 
Figure 6. 
number of  triangles

algorithms obtain similar results being better the multi
objective proposal.

Fig. 6 presents the solutions with minimum number of 
triangles and minimum error achieved by the evolutionary 
approaches tackling the M

TABLE IV.  
FRONT APPROXIMATIONS IN 

Solutions Single

O_1

Min. error 3871.72
Min. no. 
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method uses a genetic algorithm to create different Delaunay 
triangulations and the most accurate is chosen. We have 
adapted its fitness function to a scalar that combines the total 
error of the mesh solution with the number of triangles.  

On the other hand, we have chosen the classical technique 
named edge decimation [22] in order to compare it with the 
evolutionary algorithm behavior. This approach is based on 
making several iterations over all the edges of the mesh; if an 
edge satisfies a decimation criterion then it is removed. The 
algorithm will finish if it reaches a certain termination 
condition. 

We have compared the performance of the previous 
approaches considering four public available datasets. In 
addition, the performance comparison includes the Pareto-front 
approximations of all the methods. Furthermore, a Wilcoxon 
rank sum test was accomplished in order to analyze the 
significance of the results. We have considered three 
performance indicators: HVR, Epsilon and C. 

From the developed experiments, the analysis of the 
performance indicators, the significance of the results and the 
Pareto-front representations, we can conclude that our proposal 
clearly outperforms the other two. 

Finally, several ideas arise for future works. On the one 
hand, it would be interesting to extend the method to tackle 
complete 3D surface approximations. On the other hand, it 
could be designed a post-processing task to improve the quality 
of the final model. 
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