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The imbalanced class problem is related to the real-world application of classification in engineering. It is
characterised by a very different distribution of examples among the classes. The condition of multiple
imbalanced classes is more restrictive when the aim of the final system is to obtain the most accurate
precision for each of the concepts of the problem.

The goal of this work is to provide a thorough experimental analysis that will allow us to determine the
behaviour of the different approaches proposed in the specialised literature. First, we will make use of
binarization schemes, i.e., one versus one and one versus all, in order to apply the standard approaches
to solving binary class imbalanced problems. Second, we will apply several ad hoc procedures which have
been designed for the scenario of imbalanced data-sets with multiple classes.

This experimental study will include several well-known algorithms from the literature such as deci-
sion trees, support vector machines and instance-based learning, with the intention of obtaining global
conclusions from different classification paradigms. The extracted findings will be supported by a statis-
tical comparative analysis using more than 20 data-sets from the KEEL repository.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

This paper is focused on the framework of imbalanced data-
sets, also known as the class imbalance problem, which refers to
the case where one or more class, usually the ones that which is
of interest, is under represented in the data-set [8]. This problem
occurs in many real-world classification tasks and has been defined
as a challenge for the Data Mining community [65]. The main dif-
ficulty in approaching this problem is that standard learning algo-
rithms consider a balanced training set which induces a bias
towards the majority classes [53].

In the research community concerned with imbalanced data-
sets, recent efforts have been focused on two-class imbalanced
problems [38,8,44]. However, multiple-class imbalanced learning
problems appear frequently. The correct identification of each kind
of concept in these problems, is equally important when consider-
ing different decisions that must be made in these areas [32,70].

When multiple classes are present, the solutions proposed for
binary-class problems may not be directly applicable, or may
achieve a lower performance than expected. For example, solutions
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at data level [5,15,35] suffer from the increased search space, and
solutions at algorithm level [66,31] become more complicated, as
the learning algorithm must consider several small classes. Addi-
tionally, learning from multiple classes itself implies a difficulty
for Data Mining algorithms, as the boundaries among the classes
may overlap, causing the level of performance to decrease. In this
situation, we may proceed by transforming the original multiple-
class problem into binary subproblems, which are easier to dis-
criminate, via class binarization techniques such as pairwise learn-
ing, also known as the one versus one (OVO) approach [34], or one
class versus all (OVA) [48].

In this paper we develop a complete experimental study for the
classification of multiple-class imbalanced data-sets, aiming to
determine the best approaches to be applied in this scenario. Our
goal is to show the optimal combination between binarization
techniques: either with preprocessing approaches (oversampling
and undersampling), or with the use of cost-sensitive learning for
multiple-class imbalanced data-sets, in the case of both the OVO
and OVA approaches. We also seek to experimentally determine
the degree of synergy achieved between the combination of ‘‘di-
vide-and-conquer’’ techniques (OVO and OVA) and preprocess-
ing/cost-sensitive learning by contrasting their results with those
of the approaches specifically designed to address imbalanced
classification problems in the scenario of multiple classes. This last
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aspect of the study will be carried out by selecting three recent ap-
proaches: Static-SMOTE [21]; a cost-sensitive algorithm that
weights the examples a priori to globally balance the data-set
[71]; and an ensemble learning approach for multi-class imbal-
anced problems [58].

In order to develop this empirical study, we have chosen three
different algorithms from different paradigms of Data Mining,
including Decision Trees with C4.5 [47], Support Vector Machines
(SVMs) [10,46] and the well-known k-Nearest Neighbour (kNN)
[42] as an Instance-Based Learning approach. We have selected a
wide benchmark of 24 multiple-class data-sets from the KEEL
data-set repository1 [1] within the experimental framework. The
performance measure is based on the average accuracy rate (the
mean value for the accuracy of each single class) and the significance
of the results is supported by proper statistical analysis as suggested
in the literature [11,29].

This paper is organised as follows. First, Section 2 introduces the
problem of imbalanced data. Next, Section 3 presents some classi-
fication strategies for multiple-class imbalanced data-sets, i.e.,
those developed ad hoc and those based on OVO and OVA with
the combination of preprocessing or cost-sensitive learning. In Sec-
tion 4 the experimental framework for the study is established. The
complete experimental study is carried out in Section 5. A thor-
ough discussion is presented in Section 6. Finally, Section 7 sum-
marises the work and draws conclusions from it.
2. Imbalanced data-sets in classification

In this section, we will first introduce the problem of imbal-
anced data-sets, paying special attention to the context of multiple
classes. Then, we will describe the techniques that have been ap-
plied in order to deal with the imbalanced problem, namely pre-
processing and cost-sensitive learning. Finally, we will present
the evaluation metrics for this kind of classification problem focus-
ing, as natural, on those applied in the framework of multiple
classes.

2.1. The problem of imbalanced data-sets

In the classification problem field, the scenario of imbalanced
data-sets appears when the numbers of examples that represent
the different classes are very different [8]. The minority classes
are usually the most important concepts to be learnt, since they
represent rare cases [61] or because the data acquisition of these
examples is costly [62]. In this work we use the imbalance ratio
(IR) [44], defined as the ratio of the number of instances of the
majority (known as the negative class) and the minority class
(known as the positive class), to organise the different data-sets
according to this measure [30].

Most learning algorithms aim to obtain a model with a high
prediction accuracy and a good generalisation capability. However,
this inductive bias towards such a model poses a serious challenge
to the classification of imbalanced data [53]. First, if the search pro-
cess is guided by the standard accuracy rate, the covering of the
majority examples is benefited; second, classification rules that
predict the positive class are often highly specialised and thus their
coverage is very low, hence they are discarded in favour of more
general rules, i.e., those that predict the negative class. Further-
more, it is not easy to distinguish between noise examples and
minority class examples and they can be completely ignored by
the classifier.

Furthermore, from Ref. [35] we may conclude that ‘‘the degree of
imbalance is not the only factor that hinders learning. As it turns out,
1 http://www.keel.es/dataset.php.
data-set complexity is the primary determining factor of classification
deterioration, which, in turn, is amplified by the addition of a relative
imbalance’’. Specifically, we must stress the significance of several
factors such as overlapping between classes [38], lack of represen-
tative data [59], small disjuncts [60,45], noisy data [49], dataset
shift [43] and other issues which have interdependent effects with
data distribution (imbalance).

2.2. Addressing the imbalanced problem: preprocessing and cost-
sensitive learning

A large number of approaches have been proposed to deal with
the two-class imbalance problem, both for standard learning algo-
rithms and for ensemble techniques [26,39,51]. These approaches
can be categorised in three groups:

1. Data level solutions: The objective consists of rebalancing the
class distribution by sampling the data space to diminish the
effect of class imbalance, acting as an external approach
[7,5,20,55,27,54].

2. Algorithmic level solutions: These solutions try to adapt specific
classification algorithms to reinforce the learning towards the
positive class. Therefore, they can be defined as internal
approaches that create new algorithms or modify existing ones
to take the class imbalance problem into consideration
[66,4,12,31,9].

3. Cost-sensitive solutions: These incorporate approaches at data
level, at algorithmic level, or at both levels jointly, considering
higher misclassification costs for the examples of the positive
class with respect to the negative class, and therefore, trying
to minimise higher cost errors [14,56,67,52,69,71].

The advantage of data level solutions is that they are more ver-
satile, as their use is independent of the classifier selected. Further-
more, we may preprocess all data-sets before-hand in order to use
them to train different classifiers. In this manner, we only need to
prepare the data once. There are different rebalancing methods
with which to preprocess the training data that can be classified
into three groups:

� Undersampling methods that create a subset of the original
data-set by eliminating some of the examples of the majority
class.
� Oversampling methods that create a superset of the original

data-set by replicating some of the examples of the minority
class or creating new ones from the original minority class
instances.
� Hybrid methods that combine the two previous methods, elim-

inating some of the examples before or after resampling, in
order to reduce overfitting.

Regarding algorithmic level approaches, the idea is to choose an
appropriate inductive bias for a specific classifier. Also, recogni-
tion-based one-class learning is used to model a system by using
only the examples of the target class in the absence of counter
examples. This approach does not try to partition the hypotheses
space with boundaries that separate positive and negative exam-
ples, but it attempts to establish the boundaries which surround
the target concept, for example in SVMs.

Cost-sensitive learning takes into account the variable cost of a
misclassification of the different classes. The cost-sensitive learn-
ing process tries to minimise the total cost of misclassifications,
but in this cost function, the minority class gains importance.
Therefore, cost-sensitive learning supposes that there is a cost ma-
trix available for the different types of errors; however, given a
data-set, this matrix is not usually given [52,53].

http://www.keel.es/dataset.php


Table 1
Acronyms for the methodologies used throughout the experimental study.

Acronym Algorithm Reference

NCL Neighbourhood Cleaning Rule [63]
OSS One-Sided Selection [40]
RUS Random-Undersampling [5]
TL Tomek Links [57]

ROS Random-Oversampling [5]
SMT SMOTE [7]
SMT–ENN SMOTE + ENN [5]
SL-SMT Safe-Levels-SMOTE [6]

CS Instance Weighting Cost-Sensitive (for OVO) [14,56,69]
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In order to develop our experimental study, we have selected
several representative methods from the specialised literature for
the aforementioned groups, which deal with imbalanced classifica-
tion. Specifically, we have chosen four undersampling and four
oversampling techniques, and a cost-sensitive learning approach,
which are summarised in Table 1. We must stress that the selec-
tion of these preprocessing mechanisms is based on previous stud-
ies and reviews on the topic in which their significance for this
classification framework is highlighted [5,20,35]; furthermore,
they are all available within the KEEL software tool (http://
www.keel.es) [2].

� Synthetic Minority Oversampling Technique (SMT) [7]. The minor-
ity class is oversampled by taking each minority class sample
and introducing synthetic examples along the line segments
joining any/all of the k minority class nearest neighbours.
Depending upon the amount of oversampling required, neigh-
bours from the k-nearest neighbours are randomly chosen.
� SMT + Edited Nearest Neighbour (SMT + ENN) [5]. When applying

SMT, class clusters may not be well defined in cases where some
majority class examples invade the minority class space. The
opposite can also be true, since interpolating minority class
examples can expand the minority class clusters, introducing
artificial minority class examples too deeply into the majority
class space. Inducing a classifier in such a situation can lead
to overfitting. For this reason, the ‘‘SMT + ENN’’ hybrid approach
applies Wilson’s ENN rule [63] after SMOTE application to
remove any example misclassified by its three nearest neigh-
bours from the training set.

� Safe-Level SMOTE (SL-SMT) [6]. As we described previously, SMT
randomly synthesises minority instances along a line joining a
minority instance and its selected nearest neighbours, ignoring
nearby majority class instances. By contrast, SL-SMT carefully
samples minority instances along the same line with a different
weight degree, known as the safe level. The safe level is com-
puted using the k-nearest minority class instances. Then, if
the safe level of an instance is close to 0, the instance is consid-
ered to be noise. If it is close to k, the instance is considered safe.
Therefore, it is a new variant from the original SMT preprocess-
ing mechanism which aims at generating synthetic examples in
safe areas of the training set.
� Random-Oversampling (ROS) [5]. This is a non-heuristic method

that aims to balance class distribution through the random rep-
lication of minority class examples. The disadvantage of this
method is that it can increase the likelihood of overfitting
occurring, as it makes exact copies of existing instances.
� Random-Undersampling (RUS) [5]. Random-Undersampling is a

non-heuristic method that aims to balance class distribution
through the random elimination of majority class examples.
The major drawback of Random-Undersampling is that this
method can discard potentially useful data that could be impor-
tant for the induction process.
� Neighbourhood Cleaning Rule (NCL) [63]. For a two-class prob-
lem, this cleaning algorithm can be described in the following
way: for each example ei in the training set, its three nearest
neighbours are found. If ei belongs to the majority class and
the classification given by its three nearest neighbours contra-
dicts the original class of ei, then ei is removed. If ei belongs to
the minority class and its three nearest neighbours misclassify
ei, then the nearest neighbours that belong to the majority class
are removed.
� Tomek Links (TL) [57]. Given two examples ei and ej belonging to

different classes, with d(ei, ej) the distance between ei and ej, a
(ei, ej) pair is called a TL if there is no example el, so that d(ei,
el) < d(ei, ej) or d(ej, el) < d(ei, ej). If two examples form a TL, then
either one of these examples is noise or both examples are bor-
derline. TL can be used as an under-sampling method or as a
data cleaning method. As an under-sampling method, only
examples belonging to the majority class are eliminated, and
as a data cleaning method, examples of both classes are
removed.
� One-Sided Selection (OSS) [40]. This is an under-sampling

method resulting from the application of TL followed by the
application of the Condensed Nearest Neighbour (CNN) rule
[33]. TL is used as an under-sampling method to remove noisy
and borderline majority class examples. Borderline examples
can be considered ‘‘unsafe’’ since a small amount of noise can
cause them to fall on the wrong side of the decision border.
CNN aims to remove examples from the majority class that
are distant from the decision border. The remainder examples,
i.e., ‘‘safe’’ majority class examples and all minority class exam-
ples, are used for learning.
� Instance Weighting (Cost-sensitive learning) [14,56,69]. In this

approach, the instances of each class are differently weighted
according to the misclassification costs established. Hence, the
classifier strives to make fewer errors of the more costly type,
resulting in a lower overall cost. Specifically, since a cost matrix
is usually not provided, it is necessary to define the costs asso-
ciated with the misclassification of training examples: if one
positive example is classified as a negative one, the cost of this
wrong classification is the IR of the data-set; whereas if one
negative example is classified as a positive one, the assigned
cost is one. Obviously, an accurate classification is considered
to have no cost, since in this case classifying correctly must
not penalise the output model.

Regarding all these methodologies, we must discuss the differ-
ences between heuristic and non-informed techniques. The former
are more sophisticated approaches which aim to perform oversam-
pling (mostly based on the SMT) or undersampling (based on CNN)
of instances taking into account the distribution of the instances
within the space of the problem. Hence, these procedures try to
identify the most significant examples in the borderline areas to
enhance the classification of the positive class. The latter selects
random examples from the training set so that the distribution of
examples is set to a desired value given by the user (usually a com-
pletely balanced distribution). We must point out that despite the
former techniques being developed to obtain more robust results,
the quality of the latter ‘‘random’’ approaches is very high (in spite
of their simplicity).

When considering whether it is preferable to ‘‘add’’ or ‘‘remove’’
instances from the training set, several authors have shown the
advantages of the oversampling approaches over the undersam-
pling and cleaning techniques [5,20]. This may be due to the gen-
eration of a better defined borderline between the classes on
account of the addition of more minority class examples in the
overlapping areas. Furthermore, since cost-sensitive learning
based on instance weighting follows a similar scheme to that of

http://www.keel.es
http://www.keel.es
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oversampling, its behaviour is expected to be competitive with this
kind of techniques.

However, the advantage of undersampling techniques lies in
the reduction of the training time, which is especially significant
in the case of highly imbalanced data-sets with a large number
of instances. Another positive feature of these approaches is that
they aim to smooth the discrimination areas of the classes, which
also works quite well in conjunction with the oversampling tech-
niques, as we have previously noted, i.e., SMT + ENN.

2.3. Evaluation in imbalanced domains

In the framework of imbalanced data-sets, standard metrics
such as the accuracy rate should not be considered, since they do
not distinguish between the number of correct classifications of
the different classes, which may lead to erroneous conclusions.
Regarding this issue, our objective is to make use of a performance
metric that gives the same weight to each of the classes of the
problem, independently of the number of examples it has. There-
fore we will use the average accuracy [22]:

AvgAcc ¼ 1
C

XC

i¼1

TPRi ð1Þ

where C stands for the number of classes and TPRi is the True Posi-
tive Rate of the ith class (noted in percentage). We must point out
that the main objective of this paper is to contrast the global classi-
fication performance of the algorithms, not just to focus on the
accuracy of the minority classes. According to selected evaluation
criteria, more robust techniques will be preferred.
3. Solving multiple-class imbalanced data-sets

In this section we describe the different methodologies to solve
multiple-class imbalanced problems. In Section 3.1, we introduce a
preprocessing mechanism based on SMT, which iteratively gener-
ates new samples from the least represented class at each step,
known as Static-SMT [21]. Next, in Section 3.2, we present a global
cost-sensitive approach that re-weights the instances from each
class according to their ratio [71]. Section 3.3 describes Ada-
Boost.NC, a novel boosting-based methodology for addressing mul-
ti-class imbalance problems. Finally, in Section 3.4 we define a
framework based on multi-classification learning [34,48] that will
allow us to apply the standard techniques for dealing with imbal-
anced classification.

3.1. Static-SMT

In this preprocessing mechanism [21], the resampling proce-
dure is applied in C steps, where C stands for the number of classes
of the problem. In each iteration, the resampling procedure selects
the minimum size class, and duplicates the number of instances of
the class in the original data-set.

Synthetic examples are obtained by applying the SMT algorithm
[7] only over the instances of the minority class. To determine the
amount of examples to be to generated, and to create these exam-
ples, only the instances belonging to the original data-set are taken
into account when duplicating the minority class by SMT.

3.2. Global-CS

In order to equilibrate the significance of the examples for the
different classes on an imbalanced framework, Zhou and Liu pro-
pose in [71] to ‘‘re-sample’’ each class in a consistent manner by
considering a factor of Ni/Nmax, with Ni the number of examples
of the ith class and Nmax the number of examples for the majority
class of the problem.

The simplest way to achieve this end is to replicate each in-
stance of class i bNmax/Nic times and to select Nmax%Ni additional
random examples from the data-set. Then, this procedure is re-
peated for all the classes of the problem. We should note that
the majority class will not increment its size since the factor Nmax/
Nmax is 1.

3.3. AdaBoost.NC

Ensemble techniques have shown a very strong behaviour for
imbalanced problems [26]. Wang and Yao have recently developed
a study regarding the extension of boosting techniques for imbal-
ance problems with ‘‘multi-minority’’ and ‘‘multi-majority’’ classes
[58].

Their approach is based on AdaBoost algorithm [23] in combi-
nation with negative correlation learning [41]. The main procedure
is quite similar to any boosting approach, in which the weights of
the examples are updated with an ad hoc formula depending on
the classification or misclassification given by both the classifier
learned in the current iteration, and the global ensemble. Initial
weights in this boosting approach are assigned in inverse propor-
tion to the number of instances in the corresponding class. For
more details regarding this approach please refer to [58].

3.4. Synergy of standard approaches for imbalanced data-sets and
binarization techniques

Multiple classes imply an additional difficulty for Data Mining
algorithms, as the boundaries among the classes may overlap,
causing a decrease in the performance level. In this situation, we
can proceed by transforming the original multiple-class problem
into binary subsets, which are easier to discriminate, via a class
binarization technique [3,13,25].

These techniques are very useful in overcoming the gap be-
tween two-class and multiple-class imbalanced data-sets, since
they make it possible to apply the standard solutions introduced
in Section 2.2. Hence, these methods will be composed of two sim-
ple steps, similar to those we have already developed in our former
works [17]:

1. We divide the original multi-class problem into simpler binary
subproblems.

2. For each subproblem obtained, we apply those solutions that
have been developed to deal with two-class imbalanced data-
sets.

Specifically, there are two well-known approaches to reduce a
multiple-class classification problem to a set of binary classifica-
tion problems: the OVO (pairwise learning) and OVA approaches.
These procedures will be described in the remainder of this
section.

3.4.1. One-versus-one approach
The OVO approach [34] tries to train a classifier for each possi-

ble pair of classes, ignoring the examples that do not belong to the
related classes. When classifying instances, a query is submitted to
all binary models, and the predictions of these models are com-
bined into an overall classification [36,37]. An example of this
binarization technique is depicted in Fig. 1.

For those algorithms that do not have an associated certainty
degree for each class, the most common way to generate the class
label is to represent the output of each binary classifier in a code-
matrix M [3]:



Fig. 1. Example of the OVO binarization technique for a 3-class problem.

Fig. 2. Example of the OVA binarization technique for a 3-class problem.
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Mði; jÞ ¼
1 if output ¼ i

0 otherwise

�
ð2Þ

Clearly, when Mði; jÞ ¼ 1 then Mðj; iÞ ¼ 0 and vice versa. The
final class is assigned by computing the maximum vote:

Class ¼ arg max
i¼1;...;C

XC

j¼1

Mi;j

( )
ð3Þ

In cases where we have a pattern of output for which more than
two classes obtain the same vote, the instance will be classified
according to the maximum a priori probability, i.e., the majority
class. If a vote remains tied, the class is assigned randomly from
the previous possibilities.

3.4.2. One-versus-all approach
The OVA approach [48] builds a single classifier for each of the

classes of the problem, considering the examples of the current
class to be positives and the remaining instances negatives. An
example of this binarization technique is depicted in Fig. 2.

At classification time, each model F1, . . . ,FC will be fired in order
to check the degree of membership of the query instance to its
associated class (for most classifiers this value will be in {0,1}).
Thus, the final decision function F for the system output can be eas-
ily made as

FðF1; . . . ; FCÞ ¼ arg max
i¼1;...;C

ðFiÞ ð4Þ

Again, in the case of a tie, the instance will be assigned to the
majority class, or randomly among the majority classes if they have
the same amount of examples.

4. Experimental framework

In this section we first provide details of the real-world multi-
ple-class imbalanced problems chosen for the experiments (Sec-
tion 4.1). Then we will describe the learning algorithms selected
for this study and their configuration parameters (Sections 4.2
and 4.3 respectively). Next, we present the statistical tests applied
to compare the results obtained with the different classifiers (Sec-
tion 4.4). Finally, we introduce the information shown on the Web-
page associated with the paper (Section 4.5).
4.1. Data-sets

There is no consensus in the research community on what
threshold must be set up for a given data-set to suffer from the
imbalance problem, either for two-class, or in multi-class prob-
lems. In this paper, and according to our previous work on the topic
[20,18,19], we consider a data-set to be imbalanced when one of its
classes has a distribution of examples below 40% of the number of
instances that belong to the majority class; that is, if the IR is high-
er than 1.5.

We are aware, as we stated in Section 2.1, that the IR of a data-
set is not the unique feature imposing a handicap on the classifiers
in order to achieve good results for the different classes of the
problem. However, the IR itself can be viewed as suggestive of a
set of problems which need to be addressed in a special way. Spe-
cifically, throughout the experimental study we will observe that
the results of the base classification algorithm and the simple
OVO and OVA approaches will obtain a low performance in many
data-sets, thus justifying its selection for the experimental frame-
work according to the IR data characteristic.

Table 2 summarises the properties of the selected data-sets. It
shows, for each data-set, the number of examples (#Ex.), the num-
ber of attributes (#Atts.), the number of classes (#Cl.) and the IR.
Furthermore, we show the number of instances per class in Table
3. In the case of missing values (autos, cleveland, dermatology and
post-operative) we have removed those instances from the data-set.

Estimates of the accuracy rate were obtained by means of a 10-
fold cross-validation. That is, we split the data-set into 10 folds,
each one containing 10% of the patterns of the data-set. For each
fold, the algorithm was trained with the examples contained in
the remaining folds and then tested with the current fold. We must
point out that the data-set partitions employed in this paper are
available for download at the KEEL data-set repository [1] so that
any interested researcher can use the same data for comparison.



Table 2
Summary description of the data-sets.

id Data-set #Ex. #Atts. #Cl. IR

Aut Autos 159 25 6 16.00
Bal Balance 625 4 3 5.88
Cle Cleveland 467 13 5 12.62
Con Contraceptive 1473 9 3 1.89
Der Dermatology 358 33 6 5.55
Eco Ecoli 336 7 8 71.50
Fla Flare 1066 11 6 7.70
Gla Glass 214 9 6 8.44
Hay Hayes-Roth 160 4 3 2.10
Led Led7digit 500 7 10 1.54
Lym Lymphography 148 18 4 40.5
New New-thyroid 215 5 3 5.00
Nur Nursery 12690 8 5 2160.00
Pag Page-blocks 5472 10 5 175.46
Pos Post-operative 87 8 3 62
Sat Satimage 6435 36 7 2.45
Shu Shuttle 57999 9 5 4558.60
Spl Splice 3190 60 3 2.16
Thy Thyroid 7200 21 3 40.16
Win Wine 178 13 3 1.48
Wqr Wine-Quality-Red 1599 11 11 68.10
Wqw Wine-Quality-White 4898 11 11 439.60
Yea Yeast 1484 8 10 92.60
Zoo Zoo 101 16 7 10.25
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4.2. Algorithms selected for the study

A brief description of the three algorithms selected for our study
is given in the remainder of this section. All these algorithms are
available within the KEEL software tool [2].

� C4.5 Decision Tree. C4.5 [47] is a decision tree generating algo-
rithm. It induces classification rules in the form of decision trees
from a set of given examples. The decision tree is constructed
top-down using the normalised information gain (difference
in entropy) that results from choosing an attribute to split the
data. The attribute with the highest normalised information
gain is that which is used to make the decision.
� Support Vector Machines. An SVM [10] constructs a hyperplane

or set of hyperplanes in a high-dimensional space. A good
Table 3
Number of instances per class.

Data Examples C1 C2 C3 C4

aut 159 46 13 48 29
bal 625 49 288 288 –
cle 467 164 36 35 55
con 1473 629 333 511 –
der 358 60 111 71 48
eco 336 143 77 2 2
fla 1066 331 239 211 147
gla 214 70 76 17 13
hay 160 65 64 31 –
led 500 45 37 51 57
lym 148 61 81 4 2
new 215 150 35 30 –
nur 12690 2 4320 4266 328
pag 5472 4913 329 87 115
pos 87 62 24 1 –
sat 6435 1358 626 707 1508
shu 57999 8903 45586 3267 49
spl 3190 767 768 1655 –
thy 7200 6666 368 166 –
win 178 59 71 48 –
wre 1599 681 638 199 53
wwh 4898 2198 1457 880 175
yea 1484 244 429 463 44
zoo 101 41 13 10 20
separation is achieved by the hyperplane that has the largest
distance to the nearest training data-points of any class (the
so-called functional margin), as in general, the larger the margin
the lower the generalisation error of the classifier.
In order to solve the quadratic problem that arises from SVMs,
there are many techniques, mostly reliant on heuristics, for
breaking the problem down into smaller, more-manageable
chunks. A common method for solving the quadratic problem
is Platt’s Sequential Minimal Optimization algorithm [46],
which breaks the problem down into 2-dimensional sub-prob-
lems that may be solved analytically, eliminating the need for
a numerical optimisation algorithm [16].
� Instance-Based Learning. We will make use of the most common

approach, kNN [42]. This is a type of instance-based learning, or
lazy learning, where the function is only approximated locally
and all computation is deferred until classification. The kNN
algorithm is amongst the simplest of all machine learning algo-
rithms: an object is classified by a majority vote of its neigh-
bours, with the object being assigned to the most common
class amongst its k nearest neighbours (k is a positive integer,
typically small). If k = 1, then the object is simply assigned to
the class of its nearest neighbour.
The training phase of the algorithm only consists of storing the
feature vectors and class labels of the training samples. In the
classification phase, k is a user-defined constant, and an unla-
beled vector (a query or test point) is classified by assigning
the most frequent label from among the k training samples
nearest to that query point.
Usually Euclidean distance is used as the distance metric;
however this is only applicable to continuous variables.
Consequently, in this work we make use of the Heteroge-
neous Value Difference Metric (HVDM) [64]. This metric
computes the distance between two input vectors x and y
as follows:
HVDMðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

a¼1
d2

aðxa; yaÞ
q

ð5Þ
where m is the number of attributes. The function da(x, y) returns a
distance between the two values x and y for attribute a and is de-
fined as:
C5 C6 C7 C8 C9 C10

20 3 – – – –
– – – – – –

13 164 – – – –
– – – – – –

48 20 – – – –
35 20 5 42 – –
95 43 – – – –

9 29 – – – –
– – – – – –

52 52 47 57 53 49
– – – – – –
– – – – – –

4044 – – – – –
28 – – – – –

– – – – – –
703 1533 – – – –
171 13 10 – – –

– – - – – –
– – – – – –
– – – – – –

18 10 – – – –
163 20 5 – – –

35 51 163 30 20 5
8 5 4 – – –
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daðx;yÞ¼
1; if x or y are unknown; otherwise . . .

normalized vdmaðx;yÞ; if a is nominal
normalized diffaðx;yÞ; if a is linear

8><
>:

ð6Þ
The function da(x, y) uses one of two functions (defined below),
depending on whether the attribute is nominal or numerical. Note
that in practice the square root in Eq. (8) is not usually performed
because the distance is always positive, and the nearest neigh-
bour(s) will still be nearest whether or not the distance is squared.
Since the distance for each input variable is given in the range [0,1],
distances are often normalised by dividing the distance for each
variable by the range of that attribute. In the case of HVDM, the
situation is more complicated because the nominal and numeric
distance values come from different types of measurements: nu-
meric distances are computed from the difference between two lin-
ear values, normalised by standard deviation, while nominal
attributes are computed from a sum of C differences of probability
values (where C is the number of output classes). It is therefore nec-
essary to find a way to scale these two different kinds of measure-
ments into approximately the same range to give each variable a
similar influence on the overall distance measurement.
Since 95% of the values in a normal distribution fall within two
standard deviations of the mean, the difference between numeric
values is divided by four standard deviations to scale each value
into a range that is usually of width 1. The function normalized_diff
is defined as shown below (with ra the standard deviation of the
numeric values of attribute a):
normalized diffaðx; yÞ ¼
jx� yj

4ra
ð7Þ
For the function normalized_vdm the following formula was consid-
ered: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� �s
normalized vdm2
aðx; yÞ ¼

XC

c¼1

Na; x; c
Na; x

� Na; y; c
Na; y

��� ���
2

ð8Þ
4.3. Parameters

Next, we detail the parameter values for the different learning
algorithms selected in this study, which have been set considering
the recommendations of the corresponding authors:

1. C4.5
For C4.5 we have set a confidence level of 0.25, the minimum
number of item-sets per leaf was set to 2 and the application
of pruning was used to obtain the final tree.

2. SVM
For the SVM we have chosen Gaussian reference functions, with
an internal parameter of 0.25 for each kernel function and a
penalty parameter of the error term of 100.0.

3. kNN
In this case we have selected three neighbours for determining
the output class, applying the HVDM as distance metric.

Regarding preprocessing techniques, the cleaning procedures
employ three neighbours to determine whether an instance corre-
sponds to noise or not. In the case of SMT and related preprocess-
ing techniques, we will consider the 5-nearest neighbours of the
minority class to generate the synthetic samples, and balance both
classes to the 50% distribution. In our preliminary experiments we
have tried several percentages for the distribution between the
classes and we have obtained the best results with a strictly bal-
anced distribution. Finally, for AdaBoost.NC we have set up the
penalty strength (k parameter) to 2 and the number of classifiers
composing the ensemble to 51, as suggested by the authors [58].

Although we acknowledge that the tuning of the parameters for
each method for each particular problem could lead to better re-
sults (mainly in SVM), we preferred to maintain a baseline perfor-
mance of each method as the basis for comparison. Since we are
not comparing base classifiers, our hypothesis is that the methods
which win on average on all problems, would also win if a better
setting was performed. Furthermore, in a framework where no
method is tuned, the winning methods tend to correspond to those
which are most robust, which is also a desirable characteristic.

4.4. Statistical tests for performance comparison

In this paper, we use the hypothesis testing techniques to pro-
vide statistical support for the analysis of the results [28,50]. Spe-
cifically, we will use non-parametric tests, due to the fact that the
initial conditions that guarantee the reliability of the parametric
tests may not be satisfied, causing the statistical analysis to lose
credibility with these types of tests [11].

We apply the Wilcoxon signed-rank test [50] as a non-paramet-
ric statistical procedure for performing pairwise comparisons be-
tween two algorithms, as the analogous of the paired t-test. This
procedure computes the differences between the performance
scores of the two classifiers on ith out of Nds data-sets. The differ-
ences are ranked according to their absolute values, from smallest
to largest, and average ranks are assigned in the case of ties. We
call R+ the sum of ranks for the data-sets on which the second algo-
rithm outperformed the first, and R� the sum of ranks for the oppo-
site. Let T be the smallest of the sums, T = min(R+, R�). If T is less
than or equal to the value of the distribution of Wilcoxon for Nds

degrees of freedom (Table B.12 in [68]), the null hypothesis of
equality of means is rejected.

This statistical test allows us to know whether a hypothesis of
comparison of means could be rejected at a specified level of signif-
icance a. It is also very interesting to compute the p-value associ-
ated with each comparison, which represents the lowest level of
significance of a hypothesis that results in a rejection. In this man-
ner, we can know whether two algorithms are significantly differ-
ent and how different they are.

In addition, we consider the method of aligned ranks of the
algorithms in order to show graphically how good a method is with
respect to its partners. The first step to compute this ranking is to
obtain the average performance of the algorithms in each data-set.
Next, we compute the subtractions between the accuracy of each
algorithm minus the average value for each data-set. Then, we rank
all these differences in a descending way and, finally, we average
the rankings obtained by each algorithm. In this manner, the
algorithm which achieves the lowest average ranking is the best
one.

These tests are suggested in the studies presented in [11,28,29],
where its use in the field of machine learning is highly recom-
mended. Any interested reader can find additional information
on the Website http://sci2s.ugr.es/sicidm/, together with the
software for applying the statistical tests.

4.5. Web page associated with the paper

In order to provide additional material to the paper content, we
have developed a Web page at (http://sci2s.ugr.es/multi-imbal-
anced/), where we have included the following information:

� A complete description of the techniques for addressing imbal-
anced data-sets (presented in Section 2.2).
� A description of the classification algorithms used in this study.
� The data-sets partitions employed in the paper.

http://sci2s.ugr.es/sicidm/
http://sci2s.ugr.es/multi-imbalanced/
http://sci2s.ugr.es/multi-imbalanced/


104 A. Fernández et al. / Knowledge-Based Systems 42 (2013) 97–110
� Some Excel files with the train and test results for all the algo-
rithms using the average accuracy, so that any interested
researcher can use them to include their own results and extend
the present study. Furthermore, we include the complete tables
of results obtained with the mean f-measure metric. Since the
conclusions extracted with both metrics are similar, using this
additional metric we reinforce the lessons learned in the course
of this work.

5. Experimental study

In this section, we present the empirical analysis of our method-
ology for multiple-class imbalanced problems. This study is di-
vided into three parts:

1. First, in Section 5.1 we develop an analysis on the synergy of the
different preprocessing approaches and the cost-sensitive
learning method for both multi-classification methodologies
(OVO and OVA) in order to show the best suited techniques in
this context.

2. Then, we carry out an OVO versus OVA analysis in Section 5.2,
using the preprocessing mechanisms and the cost-sensitive
learning selected in the previous item.

3. Finally, we carry out a study to contrast the performance of the
best combinations of pairwise learning and preprocessing/cost-
sensitive learning with respect to the ‘‘ad hoc’’ methodologies
for multiple-class imbalanced data-sets, i.e., Global-CS [71], Sta-
tic-SMT [21] and AdaBoost.NC [58]. We also compare the
results of the multi-classification techniques with those
achieved by the original algorithm (only for C4.5 and kNN)
and without preprocessing, in order to highlight the goodness
of the combination of both techniques. This study is shown in
Section 5.3.

In each section of this study we carry out a statistical analysis
using the Wilcoxon non-parametrical test [50,28] between the dif-
ferent approaches for each one of the four selected classification
paradigms. We must also point out that the complete table of re-
sults for each algorithm can be found on the associated Web-page
(http://sci2s.ugr.es/multi-imbalanced/).
Table 4
Average test results and rankings for the OVO and OVA schemes with and without prepro

Method Adaptation C4.5

Avg-Acc Avg. rank

OVO Std-OVO 69.97 –
ROS 72.35 (4) 89.75
SL-SMT 72.35 (2) 87.37
SMT–ENN 70.84 (6) 116.65
SMT 72.74 (1) 76.17
CS 71.95 (3) 88.15
NCL 68.29 (9) 145.92
OSS 65.92 (8) 143.19
RUS 71.13 (5) 105.58
TL 69.74 (7) 123.73

OVA Std-OVA 67.00 –
ROS 66.07 (6) 109.48
SL-SMT 66.91 (3) 93.48
SMT–ENN 65.84 (5) 102.62
SMT 68.14 (1) 70.31
CS 67.29 (2) 86.94
NCL 64.88 (7) 114.87
OSS 61.48 (9) 153.96
RUS 61.61 (8) 148.75
TL 66.77 (4) 96.08
5.1. Analysis of the combination of preprocessing and cost-sensitive
approaches with multi-classification

In this first part of the study, we want to determine whether
there is a method or a set of methods for preprocessing and/or
cost-sensitive learning that have a better interaction with the mul-
ti-classification schemes.

We show in Table 4 the mean results in test with the average
accuracy metric (noted in percentage), together with the corre-
sponding average rank (computed as indicated in Section 4.4), for
the three algorithms, namely C4.5, SVM and kNN. This table is di-
vided by rows into two parts, which correspond to the results using
OVO and OVA schemes respectively, both with the basic approach
(Std-OVO and Std-OVA) and with all the selected preprocessing
techniques and cost-sensitive learning. The average rank is com-
puted for each of these two parts separately.

From this table we observe that the best average performance
and ranking mostly corresponds to oversampling and cost-sensi-
tive learning techniques, both for OVO and OVA and independently
of the classifier selected for the learning task.

The high differences regarding performance and rank values for
both the oversampling approaches and cost-sensitive learning are
enough to determine the robustness of the use of this type of tech-
nique. Therefore, we may select them as good and solid approaches
in combination with the multi-classification scheme for multiple-
class imbalanced data-sets, and they will be used as representative
methods for the following sections of this experimental study.

5.2. Study of the use of OVO versus OVA

Our aim is to analyse when the cooperation between the multi-
classification approach and preprocessing has a greater positive ef-
fect, whether for the OVO or OVA scheme. Please recall that the
average results for the three algorithms with the different prepro-
cessing and cost-sensitive learning approaches for OVO and OVA
were shown in Table 4.

Observing this table of results, there is an average gap of two
points of performance between the corresponding OVO and OVA
schemes, which determine the goodness of the former. This behav-
iour can be found for the three learning methodologies, but it is
especially evident in the case of the C4.5 algorithm.
cessing and cost-sensitive learning with the average accuracy metric.

SVM kNN

Avg-Acc Avg. rank Avg-Acc Avg. rank

69.14 – 67.76 –
72.41 (3) 80.54 68.95 (4) 100.04
72.32 (4) 82.62 69.28 (3) 98.08
71.73 (5) 89.46 67.42 (2) 97.04
72.58 (2) 78.04 70.31 (1) 72.75
72.70 (1) 76.35 68.67 (5) 106.42
66.02 (8) 148.04 64.21 (7) 124.54
67.96 (7) 138.50 63.30 (9) 137.17
68.90 (6) 130.15 64.63 (6) 113.58
65.42 (9) 152.79 65.07 (8) 126.87

66.23 – 65.28 –
70.47 (1) 71.42 66.62 (4) 108.02
69.72 (4) 82.83 66.63 (5) 111.08
69.79 (5) 86.00 68.54 (2) 85.25
70.18 (3) 75.25 68.89 (1) 71.94
70.39 (2) 72.81 66.62 (6) 111.17
64.00 (9) 155.17 66.09 (7) 120.58
63.54 (8) 151.42 64.04 (9) 134.33
64.44 (7) 142.35 62.67 (8) 128.40
65.43 (6) 139.25 66.45 (3) 105.73

http://sci2s.ugr.es/multi-imbalanced/


Table 6
Average test results and rankings for the standard classification approaches and the OVO schemes with preprocessing and cost-sensitive learning using the average accuracy
metric.

Method Adaptation C4.5 SVM kNN

Avg-Acc Avg. rank Avg-Acc Avg. rank Avg-Acc Avg. rank

Std Base 71.28 (7) 139.60 – – 62.41 (10) 173.29
Global-CS 72.25 (6) 114.69 73.04 (1) 92.40 67.17 (9) 133.46
Static-SMT 70.18 (9) 148.90 70.53 (8) 132.52 68.09 (7) 125.75
AdaBoost.NC 74.03 (1) 75.35 71.70 (7) 108.62 69.29 (6) 122.52

OVO Std-OVO 69.97 (10) 161.15 69.14 (9) 150.12 67.76 (8) 128.04
ROS 72.35 (3) 107.98 72.41 (5) 99.19 68.95 (3) 107.02
SL-SMT 72.35 (4) 110.65 72.32 (4) 99.12 69.28 (2) 102.83
SMT–ENN 70.84 (8) 139.88 71.73 (6) 106.46 67.42 (4) 110.50
SMT 72.74 (2) 94.98 72.58 (2) 93.02 70.31 (1) 87.42
CS 71.95 (5) 111.83 72.70 (3) 95.04 68.67 (5) 114.17

Table 5
Wilcoxon test for the comparison between OVO and OVA.

Algorithm Preprocessing R+ (OVO) R� (OVA) p-Value

C4.5 ROS 276.0 24.0 0.000301
SL-SMT 275.0 25.0 0.000336
SMT–ENN 266.0 34.0 0.000873
SMT 264.0 36.0 0.001070
CS 258.0 42.0 0.001935

SVM ROS 187.0 113.0 0.283977
SL-SMT 193.5 82.5 0.087314
SMT–ENN 171.0 129.0 0.539027
SMT 194.0 106.0 0.203576
CS 205.0 95.0 0.112804

kNN ROS 217.0 83.0 0.053784
SL-SMT 214.0 86.0 0.065350
SMT–ENN 154.0 146.0 0.897697
SMT 177.0 123.0 0.432035
CS 201.0 99.0 0.141175
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In order to contrast the previous findings, we carry out three dif-
ferent statistical analyses (Wilcoxon tests), one for each learning
algorithm. This study is shown in Table 5, which is divided into three
parts: the first shows the results for C4.5; the next part for SVM; and
the last part for kNN. For all these tests, we compare OVO and OVA
with a preprocessing mechanism, showing the sum of the ranks for
the OVO approach in R+ and for the OVA scheme in R�.

This test concludes that the OVO classification methodology is
statistically better than the OVA versions in almost all the cases
of study with a high degree of confidence. In a few cases of SVM
and kNN we found no significant differences, i.e., SMT–ENN, SMT
and CS; in the former the sum of the ranks for the OVO scheme
are quite superior, but not sufficient to obtain a degree of signifi-
cance above 90%. For the latter, this could be due to the relation-
ship between the working procedure of this algorithm and the
way the oversampling is carried out in these cases; that is, both
of them use the distance among the minority instances, which does
not imply any changes regarding the decision procedure.

5.3. Comparative analysis for pairwise learning with preprocessing/
cost-sensitive learning and ‘‘ad hoc’’ approaches

We aim to study the quality of the results achieved with the
dual methodology ‘‘OVO + oversampling’’ and/or ‘‘OVO + cost-sen-
sitive learning’’ versus the use of the learning algorithms in isola-
tion. We will carry out a comparison with two different schemes:

1. The standard version of learning algorithms; i.e., the basic clas-
sification approach (for C4.5 and kNN) and the multi-classifica-
tion algorithms (OVO). This step will allow us to determine the
significance of the proposed combination of methodologies.
2. Solutions to the multiple-class imbalanced data-sets are not
based on a binarization stage. We will contrast the results for
the ‘‘OVO-oversampling’’ and ‘‘OVO + cost-sensitive learning’’
with a global cost-sensitive learning approach [71], Static-
SMT [21], and AdaBoost.NC [58], as introduced in Section 3.

We have divided this analysis into three parts, each one of them
regarding a different learning algorithm selected in our study. Ta-
ble 6 shows the average results in test with the average accuracy,
so we can observe the performance of the classification schemes,
together with the average ranking of these methodologies, which
will allow us to determine the robustness of each approach better
than just considering the experimental results. For the sake of
completeness, we show the whole table of results in test within
each subsection, so that the reader can observe the performance
of the different classification schemes for every single data-set.

In order to extract well-founded conclusions we will carry out a
Wilcoxon test to determine whether there are significant differ-
ences between the studied approaches. The structure of these ta-
bles is as follows: the p-value is shown for the comparison
between the method of the column (oversampling) with those of
the rows (standard and ‘‘ad hoc’’ approaches). The lower the p-va-
lue, the higher the differences between both approaches.

5.3.1. C4.5. decision tree
The study for the C4.5 decision tree is shown in Table 7, where

we show the average performance results. Regarding the compar-
ison for the basic algorithm and the simple OVO scheme (see Table
8), the null hypothesis of equality against the baseline classifier
and OVO approaches are rejected in the case of the combination
with ROS, SL-SMT, SMT and CS. This supports the goodness of the



Table 7
Complete average accuracy test results for C4.5 with the standard and ad hoc learning algorithms and pairwise learning with preprocessing/cost-sensitive learning.

Data Base Std-OVO Global-CS Static-SMT AdaB. NC ROS SL-SMT SMT–ENN SMT CS

aut 80.76 76.25 84.26 82.04 83.16 81.42 80.53 76.25 80.11 81.31
bal 55.55 56.93 55.93 55.30 60.84 55.57 54.90 52.35 54.29 54.20
cle 29.24 24.61 27.65 24.91 25.29 28.95 32.46 29.06 33.89 27.35
con 51.72 50.08 49.83 47.19 50.14 48.05 49.82 52.31 50.09 49.74
der 93.48 95.65 93.56 94.83 94.79 95.71 95.37 95.65 95.61 96.33
eco 70.72 59.69 66.28 65.15 74.79 72.89 71.48 70.97 70.99 73.65
fla 59.24 59.09 64.20 64.01 58.64 64.39 62.97 59.09 64.74 63.72
gla 63.71 65.45 70.95 63.71 73.97 68.81 64.76 70.58 70.84 65.44
hay 83.49 83.49 83.49 86.03 88.17 82.86 83.49 70.08 83.49 83.49
led 71.40 70.52 69.43 72.55 62.78 71.59 71.34 71.32 71.64 70.72
lym 67.67 61.28 69.27 67.81 66.49 72.51 62.86 61.95 60.91 70.77
new 91.39 92.28 91.67 90.56 95.11 90.11 91.44 90.33 92.50 91.44
nur 88.30 88.45 93.51 87.76 93.45 93.33 93.69 92.79 94.07 93.58
pag 84.53 83.80 88.28 85.55 90.59 91.52 90.87 89.88 90.24 90.69
pos 46.62 48.33 38.90 21.34 40.13 37.13 48.89 47.78 48.33 31.92
sat 83.19 83.70 83.73 83.19 88.78 84.28 84.02 84.74 84.18 84.08
shu 92.19 97.98 98.55 95.05 98.47 96.69 96.69 94.70 96.84 96.79
spl 94.11 94.90 94.11 94.33 93.41 94.90 94.81 94.61 94.88 94.92
thy 98.65 98.32 98.94 98.65 99.24 99.02 98.94 98.28 99.28 98.93
win 94.98 91.24 94.32 94.24 96.46 91.24 92.27 87.75 92.02 91.35
wqr 31.87 27.05 34.01 31.87 39.48 33.30 34.25 32.57 34.01 35.84
wqw 38.78 32.32 38.78 38.78 50.04 41.41 41.20 36.64 42.35 40.49
yea 50.24 48.18 47.66 51.77 55.94 50.72 50.98 50.70 52.10 52.30
zoo 88.83 89.73 96.69 87.64 96.69 90.11 88.45 89.73 88.45 87.73

avg 71.28 69.97 72.25 70.18 74.03 72.35 72.35 70.84 72.74 71.95

Table 8
Wilcoxon test: p-values obtained for OVO + preprocessing/CS versus basic approaches
for multiple-class learning (C4.5).

ROS SL-SMT SMT–ENN SMT CS

Base 0.0333 0.0297 0.7642 0.0231 0.0839
Std-OVO 0.0254 0.0156 1.0000 0.0075 0.0411
Global-CS 0.7642 0.7495 1.0000 0.2246 1.0000
Static-SMT 0.0114 0.0789 0.8303 0.0357 0.0158
AdaB.NC 1.0000 1.0000 1.0000 1.0000 1.0000
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application of oversampling and cost-sensitive learning in order to
achieve a higher precision in all the classes of the problem.

In the analysis versus Global-CS, Static-SMT and AdaBoost.NC,
we may observe three different behaviours depending upon the
methodology:

1. First, AdaBoost.NC excels as the best approach overall in terms
of the quality of its obtained results. This behaviour was
expected a priori, since it is known that ensemble methodolo-
gies with ‘‘weak learners’’, such as decision trees, are designed
to maximise the accuracy of the base classifiers by focusing
on difficult examples. Additionally, it uses much many classifi-
ers than the remaining approaches, 51 decision trees in total.

2. Second, Static-SMT is clearly outperformed by ROS, SL-SMT,
SMT and CS, which were shown to be the best methodologies
on average for the pairwise learning scheme.

3. Finally, the Global-CS approach achieves a high performance
and the statistical pairwise comparison shows no differences
in any case; however we must highlight the comparison
between OVO + SMT and Global-CS, in which the former obtains
a p-value closest to the threshold that statistically determines a
superior behaviour.

5.3.2. Support vector machines
We can observe the complete test results for the SVM algorithm

in Table 9. The trend in this case is quite similar to that of C4.5
where, despite AdaBoost.NC dropping in performance, the combi-
nation of OVO + preprocessing, and the Global-CS approach still
achieve the highest global performance from among the remaining
techniques. Additionally, we must highlight the high quality of the
average results in contrast to those obtained by C4.5.

The statistical study for SVM is developed in Table 10. The con-
clusions regarding the comparison between the standard OVO ap-
proach and its combination with oversampling/cost-sensitive
learning are similar to those extracted in the case of the C4.5 algo-
rithm, in which the latter allows the achievement of enhanced re-
sults with respect to the standard OVO approach in the scenario of
multiple-class imbalanced data-sets.

According to the analysis of the Global-CS methodology, we ob-
serve that its performance is truly competitive with that obtained
by OVO and preprocessing, mainly due to the features of the SVM
approach, which internally applies a binarization step, causing
both methodologies to share a similar behaviour. However, Sta-
tic-SMT is outperformed by SMT and CS, and a low p-value is also
achieved for ROS and SMT–ENN, suggesting that its synergy with
pairwise learning is not positive in this case. Finally, as stated at
the beginning of this section, AdaBoost.NC shows a decrease in
its performance with respect to C4.5. This could be due to the fact
that ensemble methodologies do not work well with ‘‘strong clas-
sifiers’’ such as SVMs and therefore the expected improvement of
the results is not achieved in this case. However, it obtains the
highest accuracy for several data-sets, showing a good behaviour
for these problems in comparison with the remaining approaches.
5.3.3. k-Nearest neighbour
Finally, the results for the kNN algorithm are shown in Table 11.

The average performance in this case is somewhat lower than
those obtained for C4.5 and SVM, but the extracted conclusions
are equivalent. Again, the synergy between OVO and oversam-
pling/cost-sensitive learning shows a very positive behaviour,
especially in the case of SMT and SL. Surprisingly, the Global-CS ap-
proach, from which we observed a very robust performance in the
two previous classification paradigms, shows a decrease in the
quality of its results.

The statistical study based on the Wilcoxon test (Table 12)
determines the goodness of the SMT and SL-SMT approaches, fol-
lowing similar findings observed in the previous analysis for C4.5



Table 9
Complete average accuracy test results for SVM with the standard and ad hoc learning algorithms and pairwise learning with preprocessing/cost-sensitive learning.

Data Std-OVO Global-CS Static-SMT AdaB.NC ROS SL- SMT SMT–ENN SMT CS

aut 74.81 76.87 74.58 69.70 75.31 77.31 77.49 77.49 77.88
bal 91.08 91.63 91.63 90.64 91.63 91.63 91.63 91.63 91.63
cle 33.62 34.38 31.74 30.06 35.61 35.97 33.65 34.60 36.88
con 48.10 51.66 49.01 53.18 50.95 51.40 50.95 51.72 50.48
der 95.82 95.78 95.60 97.08 95.93 94.30 95.93 95.78 95.44
eco 70.12 67.95 70.03 65.17 69.37 68.96 70.59 68.21 68.19
fla 61.47 63.45 64.21 63.29 64.91 64.06 63.63 63.63 64.23
gla 58.83 64.72 58.31 55.62 62.42 68.02 61.69 63.95 67.91
hay 56.19 57.78 64.29 57.22 58.41 58.89 54.05 55.00 56.83
led 73.68 72.79 73.17 72.77 73.73 73.28 73.31 73.31 73.53
lym 72.74 82.60 82.74 82.04 82.81 74.13 70.33 70.79 82.39
new 95.17 96.89 95.78 92.67 94.67 96.89 95.56 97.11 96.89
nur 99.39 97.83 95.25 99.84 97.77 99.83 78.73 99.82 97.77
pag 63.94 91.67 69.04 88.29 89.09 89.34 87.93 88.47 89.32
pos 49.63 35.45 50.75 44.20 34.82 33.75 40.90 34.83 37.12
sat 80.71 84.81 80.77 87.72 84.50 84.58 84.63 84.54 84.47
shu 65.27 92.68 63.70 83.87 84.25 84.51 84.17 84.39 84.14
spl 88.18 79.32 95.31 96.14 80.25 80.16 95.26 94.67 79.75
thy 79.64 92.60 81.52 93.03 91.67 92.22 89.89 90.85 92.04
win 97.77 97.77 97.22 95.98 97.22 97.22 97.68 97.22 97.77
wqr 28.83 39.33 30.74 37.22 39.74 37.93 40.92 38.34 37.82
wqw 25.55 34.56 27.53 14.67 34.09 33.29 33.30 33.82 33.41
yea 54.66 55.49 54.45 55.39 55.69 55.08 56.22 56.74 55.91
zoo 94.07 95.02 95.35 95.02 93.02 93.02 93.02 95.02 93.02

avg 69.14 73.04 70.53 71.70 72.41 72.32 71.73 72.58 72.70

Table 10
Wilcoxon test: p-values obtained for OVO + preprocessing/CS versus basic approaches
for multiple-class learning (SVM).

ROS SL-SMT SMT–ENN SMT CS

Std-OVO 0.0293 0.0184 0.0383 0.0082 0.0184
Global-CS 1.0000 1.0000 1.0000 1.0000 1.0000
Static-SMT 0.2113 0.4651 0.2296 0.0946 0.0839
AdaB.NC 0.3897 0.5203 0.8081 0.5531 0.4490
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and SVM; that is, outperforming both the base and the standard
OVO methodology. As stated previously, we observe that signifi-
cant differences are found for SMT, SL-SMT and even ROS with re-
spect to Global-CS. Otherwise, regarding the comparison with
Static-SMT, this methodology obtains a more robust behaviour in
conjunction with the kNN algorithm. Finally, the analysis for Ada-
Boost.NC is identical to that carried out for SVM, in which this ap-
proach obtains a good average performance but, in the contrary
case of C4.5, now the pairwise methodology with SMT is shown
to be a better procedure for addressing this type of problem.

6. Lessons learned and future work

This paper has provided an empirical analysis of several meth-
ods for dealing with multiple-class imbalanced problems, most of
them based on the combination of binary approaches and OVO
and OVA strategies, completed with other ad hoc methods de-
signed for this problem. We structured the analysis in three sec-
tions, developing a scalable study that determined, step by step,
the most representative solutions and finally carried out a global
comparison. From this study we can emphasise seven important
lessons learned:

a. Regarding the synergy of preprocessing and binarization
techniques, the oversampling methodologies have shown a
more robust behaviour than those based on undersampling
and cleaning procedures for multiple-class imbalanced
problems. In the case of the former, this could be due to
the fact that many data-sets have some classes with a very
low number of examples and thus, equalizing the distribu-
tion of classes implies the removal of many instances that
may have relevant information in order to determine the
classification boundary. Regarding cleaning techniques, they
behave similarly, so that a small quantity of examples for
some minority classes is not enough to determine those
majority instances which contribute with noise to bias the
classification.

b. Furthermore, considering the OVO versus OVA comparison,
OVO methods in general have shown better behaviour, espe-
cially according to the average performance obtained. The
reason behind this higher quality of results is primarily that
the pairwise learning technique confronts a lower subset of
instances and is therefore less likely to obtain imbalanced
training-sets, which is the disadvantage in this case.
Additionally, we must be aware that in this case the decision
boundaries of each binary problem may be considerably
simpler than the OVA strategy. Finally, OVO was shown to
be more accurate for rule learning algorithms (C4.5), a find-
ing in accordance with previous studies [24].

c. We have determined that a positive synergy is achieved with
the combination of the standard solutions for binary imbal-
anced problems and the ensemble-based ‘‘divide-and-con-
quer’’ techniques. This ‘‘dual-methodology’’ outperforms
the basic and multi-classifier approaches, thus highlighting
the significance of the application of the standard solutions
to deal with classification with imbalanced data-sets.

d. We must stress that the best of techniques studied are those
based on OVO with SMT and OVO with cost-sensitive learn-
ing. First, because of their overall performance, and also
because higher differences were found when comparing
these techniques with the remaining methodologies during
the statistical analysis. On the other hand, among the over-
sampling techniques, we have observed that, in spite of its
simplicity, Random-Oversampling achieved good results in
comparison with the rest and with the more sophisticated
approaches.



Table 11
Complete average accuracy test results for kNN with the standard and ad hoc learning algorithms and pairwise learning with preprocessing/cost-sensitive learning.

Data Base Std-OVO Global-CS Static-SMT AdaB. NC ROS SL-SMT SMT–ENN SMT CS

aut 55.62 70.78 75.71 77.88 70.49 76.22 76.72 75.78 75.78 77.78
bal 60.28 60.86 56.29 55.67 49.46 54.14 54.75 61.40 56.15 53.70
cle 26.56 34.04 30.64 29.72 29.49 36.75 33.44 32.51 32.68 34.74
con 42.24 43.46 42.58 42.58 45.53 44.24 44.66 47.52 44.44 44.32
der 96.94 96.94 94.86 95.13 95.22 96.82 95.92 97.13 96.49 95.93
eco 72.29 72.40 71.79 70.53 70.43 73.54 73.85 72.75 74.38 72.70
fla 48.32 60.78 56.46 57.30 64.02 62.67 59.84 33.19 60.54 60.69
gla 66.11 69.96 71.73 74.16 69.19 73.87 75.02 70.60 71.52 74.23
hay 24.80 68.29 48.06 49.40 61.83 73.29 79.48 44.80 72.82 77.82
led 45.38 22.91 42.20 43.21 72.97 21.78 19.06 38.41 30.71 20.43
lym 68.44 73.50 77.88 83.99 81.21 73.02 75.10 72.81 74.68 72.81
new 88.78 91.17 95.17 96.50 91.83 94.28 95.39 94.00 96.00 95.39
nur 82.07 94.10 93.25 97.01 92.94 94.90 94.94 73.39 95.21 94.79
pag 72.75 81.71 83.93 84.97 84.63 85.38 86.14 92.65 92.51 86.20
pos 40.98 45.31 39.87 40.06 30.93 43.01 46.42 40.05 38.91 34.70
sat 89.35 89.64 89.58 89.66 87.27 90.25 90.12 90.21 90.29 90.06
shu 91.15 86.66 91.02 92.71 96.13 89.73 89.73 91.58 92.67 89.73
spl 77.50 95.36 93.70 89.43 80.24 95.00 94.82 94.08 94.97 94.67
thy 58.14 78.52 62.86 69.14 67.34 80.27 80.01 86.91 85.72 80.10
win 96.06 96.73 98.10 97.14 96.06 96.25 96.25 95.30 96.25 95.30
wqr 25.99 26.65 26.57 27.37 36.35 29.27 29.50 36.71 36.28 29.10
wqw 28.15 27.31 29.90 30.13 42.05 32.15 32.67 37.91 37.74 32.70
yea 51.13 51.36 50.45 51.22 54.45 50.17 50.53 50.15 52.45 51.91
zoo 88.83 87.88 89.52 89.29 93.00 87.88 88.36 88.36 88.36 88.36

avg 62.41 67.76 67.17 68.09 69.29 68.95 69.28 67.43 70.31 68.67

Table 12
Wilcoxon test: p-values obtained for OVO + preprocessing/CS versus basic approaches
for multiple-class learning (kNN).

ROS SL-SMT SMT–ENN SMT CS

Base 0.0058 0.0045 0.0288 0.0018 0.0170
Std-OVO 0.0235 0.0288 0.5581 0.0069 0.1491
Global-CS 0.0696 0.0288 0.6373 0.0184 0.2246
Static-SMT 0.3531 0.2246 0.8751 0.1491 0.6171
AdaB.NC 0.4155 0.5203 1.0000 0.1491 0.5581
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e. The global cost-sensitive approach [71] and the AdaBoost.NC
ensemble have been shown to be competitive with the
aforementioned techniques. The former achieved a superior
performance when applied with SVMs and the latter in the
case of the C4.5 decision tree. We must also state that for
the sake of focusing on the minority classes, it is mandatory
for AdaBoost.NC to initialise the weights of the examples
with respect to the number of examples per class.

f. Regarding the comparison between OVO plus strategies for
imbalanced classification, and ad hoc approaches, we must
stress several advantages that make the use of the former
preferable, such as efficiency, simplicity in the adaptation
of existing classification approaches, and the possibility of
combining them with new and more sophisticated tech-
niques for addressing data imbalance.

g. Finally and not least importantly, the behaviour of the
studied methodologies has been practically identical inde-
pendently of the classifier used. In other words, the conclu-
sions highlighted throughout the experimental study were
basically the same in all cases, thus providing a higher sup-
port for the findings summarised here.

We have identified throughout this paper that binarization
techniques with an appropriate preprocessing or cost-sensitive
strategy are simple but useful mechanisms to improve classifiers’
performance in imbalanced domains, but still there is still future
work that remain to be addressed regarding this topic:
a. Non-competetent examples in OVO strategy (as stated in [37]):
not all classifiers are trained with all the instances in the
data-set, but in testing phase, the new instance is submitted
to all classifiers. The classifiers which have not been trained
with the instance from the class of the new example will
make a prediction that will probably negatively affect the
final results, as these classifiers are not competent. This is
a crucial issue for imbalanced data-sets since misclassifica-
tions induce wrong weighting values in the score matrix,
implying a higher cost according to the evaluations metrics
applied in this scenario.

b. Scalability: two main challenges need to be studied; the adap-
tation to data-sets with a large number of classes should be
considered, since the learning of the decision boundaries
and their combinations can be directly affected by this issue.
In addition, the number of examples composing each one of
those classes must be also taken into account.

c. The OVO strategy as a decision making problem: new aggrega-
tions with which to combine the score matrix from OVO
classifiers must be developed, aiming to deal with the
unclassifiable region when standard voting is used. Addi-
tionally, new trends of study can be oriented to dealing with
the imbalance degree at the final decision step rather than
simply in the learning phase with both preprocessing and
instance weighting.

d. Intrinsic data characteristics: we must stress the significant
effect of the IR on the classifiers’ performance, but we are
aware that there other data intrinsic characteristics that
can be taken into account such as small sample size, small
disjuncts, class overlapping and dataset shift. Overcoming
these problems in conjunction with the pairwise learning
scheme could be key to developing new approaches that
improve the correct identification of the different minority
and majority classes of the problem.

7. Concluding remarks

We have presented a complete experimental study for the clas-
sification of multiple-class imbalanced data-sets with the aim of
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laying the basis for the achievement of high quality solutions. We
have contrasted the use of the combination of binarization tech-
niques with both preprocessing of instances and cost-sensitive
learning with several ad hoc approaches such as an instance
weighting cost-sensitive learning and an SMT based preprocessing
technique developed for multiple classes.

We have tested the quality of these approaches using three
algorithms based on different paradigms; namely, decision trees,
SVMs and instance-based learning. The experimental results ob-
tained in this study, supported by the corresponding statistical
procedure, allow us to stress the good behaviour achieved by the
synergy between pairwise learning and oversampling/cost-sensi-
tive learning, which obtained the best global results for all the clas-
sification algorithms used in this study. We must also stress the
robustness of global instance weighting based on cost-sensitive
learning and AdaBoost.NC ensemble approaches, both of which
have been shown to be competitive with respect to the combina-
tion of OVO and oversampling/cost-sensitive learning in terms of
average performance.

Finally, we must emphasise that this work provides the basis for
the achievement of high quality solutions for imbalanced data-sets
with multiple classes, but its significance lies also in the fact that it
opens future trends of research, as discussed in depth in the paper.
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