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An extension of the Adaboost algorithm is proposed for obtain-
ing fuzzy rule based classifiers from imprecisely perceived data.
Isolated fuzzy rules are regarded as weak learners, and knowl-
edge bases as ensembles. Rules are iteratively added to a base,
and the search of the best rule at each iteration is carried out
by a genetic algorithm driven by a fuzzy fitness function. The
successive weights of the instances are also fuzzy, however each
rule is assigned a crisp number of votes, interpreted as degrees
of importance of these rules. The results of the new algorithm
are compared to those of other genetic algorithms for low quality
data, in both accuracy and linguistic qualilty.
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1 INTRODUCTION

Boosting algorithms combine different classifiers for obtaining an ensemble
that performs better than any of its components [4]. These algorithms re-
peatedly invoke a learning algorithm to successively generate a committee of
simple, inaccurate classifiers. Each time a new simple classifier is added to
this ensemble, the examples in the training set are re-weighted so that future
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classifiers will focus on the most difficult examples, and a voting strength is
assigned to the classifier. The number of votes a classifier is given depends
on the confidence in its classification accuracy, as measured on the training
set.

Fuzzy Rule Based Classifiers (FRBS) can also be regarded as ensembles,
where each fuzzy rule is matched to one of the mentioned simple classifiers.
When an appropriate reasoning scheme is used, it has been shown that the
mechanism used for obtaining the output of a FRBS, given an input value,
can be assimilated to a voting process [13], and the voting strength of each
simple classifier is the product of the compatibility between the antecedent
of the corresponding fuzzy rule and the degree of certainty of its consequent.
This interpretation has been used before, and the Adabost algorithm has been
applied to the learning of fuzzy rules from data [7][10][12], in combination
with a Genetic Algorithm (GA). The resulting learning algorithm is a Genetic
Fuzzy System (GFS) that shares certain properties with Iterative Rule Learn-
ing approaches [6]. Furthermore, after the work of Friedman [5], this process
has been regarded as a forward stepwise estimation of the statistical param-
eters defining a logit transform of a Generalized Additive Model, giving rise
to the LogitBoost algorithm [5] and its genetic extension for learning FRBS
from data [14].

The use of boosting techniques for learning fuzzy rules from data is there-
fore a well known technique, whose main virtues are a fast learning and accu-
rate results, but this use is not free from problems. The first drawback of the
employment of Adaboost for learning FRBS is in the use of a voting-based in-
ference, that makes the linguistic interpretation of the Knowledge Base (KB)
harder. This problem was addressed in [19], where a new algorithm was pro-
posed for which the degrees of confidence in the consequents of the rules
were iteratively adjusted until the results produced by a “winner-takes-all”
type of inference were similar to that of voting. Nevertheless, there are other
difficulties that are still open. A second issue with the application of Ad-
aboost to the learning of fuzzy rules lies in the requirements imposed to the
data, that must be precisely perceived: being based in Generalized Additive
Models, Adaboost or Logitboost can cope with random uncertainty, but they
are not able to process data when a combination of epistemic and random un-
certainties is present [8]. This means, for instance, that we cannot exploit the
information in vague datasets, comprising censored, interval-valued or fuzzy
instances, among others. Because of these reasons, this paper contains a new
proposal for applying the Adaboost algorithm for learning FRBS from low
quality data [20], including both problems with imprecisely perceived fea-
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tures and problems with a partial lack of knowledge about the class labels
attributed to some instances.

The organization of this work is as follows: the following section, briefly
introduces the Adaboost algorithm, describes the type of fuzzy classifiers that
are boosted and recall a method for boosting approximate fuzzy rule bases [3].
In Section 3, we propose an extension of this algorithm for interval and fuzzy
data. In Section 4 some properties of the proposed algorithms are evaluated
on a number of data sets and compared to that of other GFS for low quality
data. In Section 5 some concluding remarks and future works are discussed.

2 ADABOOST AND FUZZY RULE BASED CLASSIFIERS

At this point we introduce the basic notation employed throughout the paper.
Let X be the feature space, and let x be a feature vector x = (x1, . . . , xn) ∈
X. Let p be the number of classes. The training set is a sample ofm classified
examples (xi, yi), where xi ∈ X, 1 ≤ yi ≤ p, 1 ≤ i ≤ m.

The KB of the FRBS comprises N rules. The antecedents of the rules
are logical combinations of fuzzy logic asserts, whose degrees of truth are
modeled by N fuzzy subsets Aj ∈ F(X), forming a fuzzy partition A =
{Aj}j=1...N of the feature space. A fuzzy rule based classifier is therefore
defined by means of a fuzzy relationship defined on A × {1, . . . , p}. Values
of this relationship describe the degrees of compatibility among the fuzzy
subsets of the feature space collected in A, and each of the classes. In other
words, for every antecedent Aj there are p numbers between 0 and 1 that
represent the confidence in the assertion “All elements in the fuzzy set Aj

belong to class number k”. Values close to 1 indicate “high confidence,” and
values close to 0 denote “absence of knowledge about the assertion.”

In this paper, we will translate the former fuzzy relationship into linguistic
statements by combining p terms

compatibility(Aj , ck) = sk k = 1, . . . p,

into a single sentence, as follows:

if x is Aj then truth(c1) = sj1 and · · · and truth(cp) = sjp.

The antecedents Aj are decomposed in a Cartesian product of fuzzy sets de-
fined over each feature, Aj = Aj1 ×A

j
2 × . . .×Ajn, thus the rules are

if x1 is Aj1 and . . . and xn is Ajn
then truth(c1) = sj1 and · · · and truth(cp) = sjp.
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An instance x is assigned to the class

arg maxk=1,..., p

N∨
j=1

Aj(x) ∧ sjk (1)

where “∧” is the product and “∨” is the arithmetic sum, so called “maximum
voting scheme” [11].

2.1 The Adaboost algorithm
Let us define a set {g1, g2, . . . , gN} of simple, but possibly unreliable binary
classifiers. Boosting consists in combining these low quality classifiers (so
called “weak hypotheses” in the boosting literature) with a voting scheme to
generate an overall classifier that performs better than any of its individual
constituents alone. It has been shown that a fuzzy rule can be regarded as a
particular case of a weak hyphothesis, and a fuzzy rule base can be interpreted
as a weighted combination of weak hypotheses.

Weak hypotheses take feature values as input and produce both a class
number as well as a degree of confidence in the given classification. In two-
classes problems, these two outputs are encoded by a single real number,
gj(x) ∈ R, whose sign is interpreted as the label of x and whose absolute
value is interpreted as the confidence in the classification. The higher this
value the more confidence is given to the classification. AdaBoost is intended
to produce a linear threshold of all hypotheses:

sign

 N∑
j=1

αjgj(x)

 . (2)

An outline of the Adaboost algorithm is shown in Figure 2 in the Ap-
pendix. Observe that Adaboost can operate with any learning algorithm that
generates a confidence rated classifier on a given weighted data set. There are
different algorithms for assigning the number of votes to a weak hypothesis,
and for adjusting the weights of the examples. For example, in confidence-
rated Adaboost [23] the number of votes of the weak hypothesis gh is given
by the value αh that minimizes the following function:

Z(α) =
m∑
i=1

wi exp(−αyigh(xi)) (3)

and the weights wi of the examples are updated according to

wi ← wi exp(−αhyigh(xi))/v (4)
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where v is a normalization factor such that
∑
wi = 1. There are analyti-

cal approximations and heuristics that may replace this formula in specific
problems.

2.2 Boosting fuzzy rules in binary problems
For the sake of simplicity, we restrict the discussion for the time being to
two-classes problems yi ∈ {−1, 1}. The space of weak hypotheses is, in this
case, the product space of the fuzzy partition and the class labels,A×{−1, 1}.
Given the results in the preceding subsection, the fitness of a fuzzy rule is

fitness( if x is Aj then cj) =
∑
i

wi exp(−yicjAj(xi)) (5)

and the number of votes of this rule is the value of αminimizing the following
expression [22]:

Z(α) =
∑
i

wi exp(−αyiAj(xi)). (6)

Z(α) is convex except for the case in which the rule antecedent does not cover
any negative examples; for avoiding this and other numerical instabilities, a
term that penalizes large values of α is added

Z(α) =
X

i

wi exp(−αyiA
j(xi)) +

X
i:Aj(xi)=0

wi exp(|αε|) (7)

where ε is determined by hand.
The weights wi of all the instances are recalculated each time a new weak

learner is added to the ensemble. The weights of correctly classified instances
are lowered, and these of misclassified examples are increased, using the ex-
pression that follows:

wi ←
wi exp(−αjyiAj(xi))∑
i wi exp(−αjyiAj(xi))

(8)

Notice, that an instance is never completely removed unless αj →∞, which
is prevented by the penalty term in eq. (7).

2.3 Boosting fuzzy rules in multiclass problems
We have mentioned that the space of weak hypothesis in two-classes prob-
lems isA×{c1, c2}. That is to say, the j-th iteration of the learning algorithm
searches for a pair (Aj , cj), which are parameters of the rule

if x is Aj then cj , (9)
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for which the fitness value is maximum. This value was defined in Eq. (5),
which we rewrite here as follows:

fitness(if x is Aj then cj) =∑
i:yi=cj

wi exp(Aj(xi))
+
∑
i:yi 6=cj wi exp(−Aj(xi)).

(10)

Once the pair (Aj , cj) maximizing this fitness function is found, the rule is
assigned a number of votes sj (see Eq. (6)), thus its final linguistic writing is:

if x is Aj then truth(cj) = sj . (11)

For extending this scheme to multiclass problems [7] the initial problem is
transformed into p binary problems, where the instances of the k-th binary
problem are re-labelled:

y
(p)
i =

{
1 yi = p

−1 yi 6= p.
(12)

The solution of the k-th problem comprises fuzzy rules with this form:

if x1 is Aj1 and . . . and xn is Ajn
then tr(class = ck) = sjk1 and tr(class 6= ck) = sjk−1.

(13)

These rules can be replaced by their equivalent p-classes consequents, by
substituting the “class 6= ck” label with the corresponding set of class labels
of the multi-class problem, i.e.

if x1 is Aj
1 and . . . and xn is Aj

n then
tr(c1, . . . , ck, . . . , cp) = (sjk

−1, . . . , s
jk
−1, s

jk
1 , s

jk
−1, . . . , s

jk
−1).

(14)

We obtain p fuzzy rule bases, that are merged into the overall multi-class rule
base, as shown in Figure 3 in the Appendix.

3 AN EXTENSION OF THE ADABOOST ALGORITHM TO LEARN
FUZZY RULE BASED CLASSIFIERS FROM LOW QUALITY DATA

We will represent the epistemic uncertainty in the data by means a nested set
of confidence intervals, that provide us with the same information about the
unknown value as a possibility distribution for which the α-cuts of its associ-
ated fuzzy membership function are confidence intervals with level 1− α, as
explained in [20]. Representing the imprecision by means of sets of possible
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values implies that the output of the FRBS might not be completely deter-
mined and generally speaking, it will be a fuzzy subset of the class labels.
From the foregoing it can be deduced that the fitness of a rule should also be
a set, however extending Eq. 5 is not trivial. Different decisions can be taken
that influence the accuracy of the method and also its computational cost.

Let us use an illustrative example for introducing the problems that arise
when we regard the computation of the output of an FRBS for imprecise data
as a voting-based committe. Suppose that we are given the KB that follows:

if x < 1.5 then truth(class is A)= 0.4 and truth(class is B)= 0.8
if x ∈ [1, 2] then truth(class is A)= 0.8 and truth(class is B)= 0.1
if x > 2 then truth(class is A)= 0.2 and truth(class is B)= 0.6

and the input is

x < 1.8.

If we determine first the set of compatibilities of each rule with the imprecise
example and then add the sets of votes, the situation is as follows:

Rule Votes for class ’A’ Votes for class ’B’
Rule # 1: {0,0.4} {0,0.8}
Rule # 2: {0,0.8} {0;0.1}
Rule # 3: 0 0

Total {0, 0.4, 0.8, 1.2} {0, 0.1, 0.8, 0.9}

In words, the output of the classifier is the set of classes {A,B}, because we
cannot state that any element of {0, 0.4, 0.8, 1.2} is higher than any element
of {0, 0.1, 0.8, 0.9} neither the opposite. However, this course of reasoning
will not always produce the most specific answer. Observe that, if the actual
value of x is lower than 1.5, rules 1 and 2 are true, thus the number of votes
of classes ’A’ and ’B’ are 1.2 and 0.9. If the value of x is between 1.5 and
1.8, the number of votes are 0.8 and 0.1. In either case, the object should have
been assigned the class ’A’.

With this example we have shown that regarding a KB as an ensemble is
not immediate when the data are imprecise: the most specific output of the
classifier, when the input is a crisp set, is the set of classes

class(X) = {arg max
k=1...p

N∑
j=1

Aj(x)sjk | x ∈ X}. (15)

However, if we regard the KB as an ensemble of weak classifiers, where each
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one of them is assigned a set-valued, number of votes, the output is the set

bclass(X) = notdom
k=1...p


N⊕
j=1

sjk � {A
j(x) | x ∈ X}

 (16)

where the operator “notdom” means

notdom
k=1...p

{Vk} = {q | Vq � Vr, r = 1, . . . , p} (17)

and the precedence between set-valued votes is

A ≺ B ⇐⇒ a < b for all a ∈ A, b ∈ B (18)

A ‖ B = ¬((A ≺ B) ∨ (B ≺ A)) (19)

A � B = (A ≺ B) ∨ (A ‖ B). (20)

Observe that

class(X) ⊆ bclass(X) (21)

but the equality does not hold, in general.
If the data is fuzzy, the situation is similar. The most specific output of the

classifier is the fuzzy set whose membership function is as follows:

class(X̃)(t) = max{α |
t = arg maxk=1...p

∑N
j=1A

j(x)sjk
and X̃(x) ≥ α}.

(22)

In case we regard the KB as an ensemble of weak classifiers, where each one
of them is assigned a fuzzy number of votes, the output is in turn the fuzzy
set

bclass(X̃)(t) = max{α | t ∈ bclass([X̃]α)}. (23)

Summarizing, when the data is imprecise, the most voted option of the
ensemble is not known but our information about it is a normal fuzzy set. If
the KB is furthermore regarded as an ensemble, thus the number of votes of
each rule are independently computed, the fuzzy set describing the result of
the classification is a superset of the result given by Eq. (22). This loss of
specificity in the view of a KB as an ensemble has to be taken into account in
the definition of the fitness function.
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3.1 Fitness of a rule with interval or fuzzy data
We propose to generalize the fitness function in Eq. (10) to interval-valued
data with the set-valued function that follows, which is based on the bounds
given in Eq. (16):

fitness{(xi,yi)}(if x is Aj then cj) =

⊕i:yi=cjwi � {exp(Aj(x)) | x ∈ xi}⊕

⊕i:yi∩cj=∅wi � {exp(−Aj(x)) | x ∈ xi}⊕ (24)

⊕i:yi 6=cj , yi∩cj 6=∅wi � {exp({Aj(x),−Aj(x)}) | x ∈ xi}

Observe that we allow the use of set valued weights wi. In turn, applying
the extension principle, the same function can be extended to fuzzy data. The
membership function of the fuzzy fitness of a rule is

˜fitness{(exi,eyi)}(if x is Aj then cj)(t) =
max{α | t ∈ fitness{([exi]α,[eyi]α)}(if x is Aj then cj)},

(25)

where t is a real number.

3.2 Issues with the fitness of a rule in multiclass problems
When extending the procedure seen in Section 2.3 for solving multi-class
problems, the intermediate binary sets of data might contain unlabeled in-
stances. Let us explain this with an illustrative example.

Consider the imprecise dataset that follows, comprising three crisp exam-
ples with set-valued labels. It is remarked that, in this context, an instance
labelled “{c1, c2}” means that we are sure that the true class of the object is
not c3, but this knowledge cannot be further precised:

(x1, y1) = (1, {c1, c2})
(x2, y3) = (2, {c1, c3})
(x3, y3) = (3, {c2, c3}).

Following the procedure described in Section 2.3, this dataset will be de-
composed in three binary problems. Let us generalize that procedure to im-
precise instances by using the most specific set of labels that is compatible
with the data, as follows:

Problem # 1
(1, {1,−1})
(2, {1,−1})
(3,−1)
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Problem # 2
(1, {1,−1})
(2,−1)
(3, {1,−1})

Problem # 3
(1,−1)
(2, {1,−1})
(3, {1,−1})

Each one of these three datasets has two elements whose classes are {−1, 1}
and therefore the fitness does not depend on how they are labelled: for in-
stance, for Problem # 1, no matter which rule between

if x=1 then t(class = 1)=s1,11

and

if x=1 then t(class 6= 1)=s1,1−1

is chosen, the same fitness is obtained (see Eq. 24).
In this case, a learning algorithm which is only guided by the optimization

of the fitness function can produce any KBs formed by selecting one rule
from each line that follows. We have grayed out the rules that do not appear
in an arbitary selection, whose merging will be studied later.

Problem # 1
if x=1 then t(class = 1)=s1,11 ≈ if x=1 then t(class 6= 1)=s1,1−1

if x=2 then t(class = 1)=s2,11 ≈ if x=2 then t(class 6= 1)=s2,1−1

if x=3 then t(class 6= 1)=s3,1−1

Problem # 2
if x=1 then t(class = 2)=s1,21 ≈ if x=1 then t(class 6= 2)=s1,2−1

if x=2 then t(class 6= 2)=s2,2−1

if x=3 then t(class = 2)=s3,21 ≈ if x=3 then t(class 6= 2)=s3,2−1

Problem # 3
if x=1 then t(class 6= 3)=s1,3−1

if x=2 then t(class = 3)=s2,31 ≈ if x=2 then t(class 6= 3)=s2,3−1

if x=3 then t(class = 3)=s3,31 ≈ if x=3 then t(class 6= 3)=s3,3−1

The merging of the selected rules is
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if x=1 then t(1,2,3)=(s1,11 +s1,3−1,s1,21 +s1,3−1,0)
if x=2 then t(1,2,3)=(s2,11 +s2,2−1,0,s2,2−1+s2,31 )
if x=3 then t(1,2,3)=(s3,3−1,s3,1−1+s3,21 +s3,3−1,s3,1−1).

Observe that the result of this arbitrary selection has assigned a non-null de-
gree confidence to the class c1 in the third rule, which obviously is not the best
possible KB for this problem. We realize that there are other selections that
achieve the objective, but our point is showing that there is a chance that the
committee does not contain the proper rules unless the unlabeled instances in
the intermediate problems are removed, as follows:

Problem # 1
if x=3 then t(class 6= 1)=s3,1−1

Problem # 2
if x=2 then t(class 6= 2)=s2,2−1

Problem # 3
if x=1 then t(class 6= 3)=s1,3−1

whose merging is:

if x=1 then t(1,2,3)=(s1,3−1,s1,3−1,0)
if x=2 then t(1,2,3)=(s2,2−1,0,s2,2−1)
if x=3 then t(1,2,3)=(0,s3,1−1,s3,1−1).

Notwithstanding, if the unlabelled instances are removed then additional
problems with the decomposition in binary problems will appear. Since the
pruned individual problems do not longer contain information about where
the removed instances were located, it may happen that the corresponding
areas of the feature space are covered at the same time by different rules
that negatively interact between themselves. This problem also happens with
Iterative Rule Learning (IRL) algorithms [3], where it is solved by a simplifi-
cation stage that it is not a part of the boosting algorithm. Therefore, we have
decided to simplify the search and not to generate the intermediate datasets
when working with multiclass problems, and propose instead to define the
fitness of a rule with multiple consequents as a vector of values, and to define
a lexicographic ordering between them. The fitness function we propose is as
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follows:
fitness{(xi,yi)}(if x is Aj then (c1, . . . , cp)) =(⊕

yi=c1
wi � exp({Aj(x) | x ∈ xi})⊕⊕

c1∈yi,c1 6=yi
wi�

exp({−Aj(x), Aj(x) | x ∈ xi})⊕⊕
c1 6∈yi

wi � exp({−Aj(x) | x ∈ xi}),
...⊕
yi=cp

wi � exp({Aj(x) | x ∈ xi})⊕⊕
cp∈yi,cp 6=yi

wi�
exp({−Aj(x), Aj(x) | x ∈ xi})⊕⊕

cp 6∈yi
wi � exp({−Aj(x) | x ∈ xi}

)
.

(26)

In turn, the lexicographic precedence between two crisp fitness vectors A =
(a1, . . . , ap) and B = (b1, . . . , bp) is as follows: let us first define two per-
mutations of the set {1, . . . , p}, denoted (ka1 , . . . , k

a
p) and (kb1, . . . , k

b
p), such

that aka1 ≥ . . . ≥ akap and bkb1 ≥ . . . ≥ bkbp . Then,

A≺ B ⇐⇒ ∃m ∈ {1, . . . , p} |
(akaq = bkbq ) ∀q ∈ {1, . . . ,m− 1} ∧ (akam > bkbm).

(27)

The extension of both the fitness function and the lexicographic ordering to
fuzzy values results from applying the extension principle and from replacing
the comparisons between real numbers with a suitable fuzzy ranking. The
expression of the fitness function, in the general case, is as follows:gfitness{(exi,eyi)}(if x is Aj then (c1, . . . , cp))(t) =

max{α | t ∈
fitness{([exi]α,[eyi]α)}(if x is Aj then (c1, . . . , cp))},

(28)

where t denotes a p-dimensional vector of real values.

3.3 Assignment of weights to the consequent part
The extension of Eq. (7) to set-valued data and multiclass problems consists
in assigning to the k-th class in the consequent of the rule a confidence equal
to the value of αk minimizing the set-valued function Zk defined as follows:

Z
k

{(xi,yi)}(α) =

{ ⊕i:ck=yi wi � exp(−αAj(x)) ⊕
⊕i:ck 6∈yi wi � exp(αAj(x)) ⊕ (29)

⊕i:ck 6=yi, ck∈yi wi � exp({−αAj(x), αAj(x)})
|x ∈ xi}.
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A numerical stabilization term⊕
i:Aj(x)=0 ∀x∈xi

wi exp(|αε|) (30)

with a suitable value of ε can also be added, if needed.
The extension of Eq. (29) to fuzzy data is as follows:

Z̃k{(exi,eyi)}(γ)(t) = max{α | t ∈ Zk{([exi]α,[eyi]α)}(γ)}. (31)

In both the set-valued and fuzzy cases, the values of αk can be found
with a greedy algorithm that uses a precedence operator between fuzzy sets.
However, this optimization is not as efficient as the Brent search used in the
crisp version of the algorithm. Since the optimization must be launched each
time a fitness value is computed, in this paper we have decided to approximate
the value of αk by the center of the set

αk = log(1− Ek)− log(Ek) (32)

where Ek is a normalized weighted sum of the compatibilities of the an-
tecedent of the j-th rule with the elements of the dataset whose class does not
match the k-th term in the consequent:

Ek = K �
(⊕

{i:ck 6∈yi}wi � {A
j(x) | x ∈ xi} ⊕⊕

{i:ck 6=yi∧ck∈yi}

wi � {{0, Aj(x)} | x ∈ xi}
)

(33)

The normalization factor K is the inverse of the upper bound of the normal-
ized weighted sum of the compatibilities of the antecedent of the j-th rule
with all the elements of the dataset:

K = (
∑
i

max{wi} ·max{Aj(x) | x ∈ xi})−1. (34)

3.4 Assignment of weights to the examples
After the j-th rule is added, the weights of the instances are recomputed as
follows:

w′i =
⋃
x∈xi

w′i(x) (35)

where w′i(x) =

K ′ � wi �


ck = yi exp(−αkAj(x))
ck 6∈ yi exp(αkAj(x))

else exp(αkAj(x)� {−1, 1})
(36)

and K ′ is a crisp normalization factor such that max⊕iw′i = 1.
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3.5 Some details of the genetic algorithm
Adaboost depends on a procedure that fits a weak learner to the weighted
training set. If the vector-valued fitness we have proposed in this paper is
to be used, learning a weak classifier reduces to finding the antecedent Aj

that optimizes the fitness function explained in section 3.2, with respect to
the lexicographic ordering defined in the same section. Since all possible
values of the fitness can be compared between themselves, implementing this
criterion amounts to redefining the meaning of the operator “less than” (<) in
an ordinary GA; there is no need to use multicriteria techniques [21], thus we
have used instead a standard generational scheme with a tournament-based
selection.

Details of this algorithm can be found in [7]. Let us recall for the con-
venience of the reader the only part in this GA besides the fitness function
(whose explanation has occupied most of this paper) which departs from a
standard implementation: the coding of the fuzzy memberships.

Descriptive fuzzy rules are coded by an integer, which is the index j of
the antecedent Aj in A. This integer is encoded in turn, by a sequence of
n numbers that refer to labels of the linguistic terms in the underlying fuzzy
partitions. In addition to linguistic labels describing subsets of the domain of
each variable, such as “LOW” and “HIGH”, each linguistic variable includes
a wild card label “ANY VALUE”, with a membership degree of 1 across the
entire universe of discourse.

The linguistic expression of a fuzzy rule that contains a wild card can
be simplified, as illustrated by the following example: assume a classifica-
tion problem with two features (weight,height), where height={low,high} and
weight={light, heavy}. The two linguistic variables are extended with a wild
card term such that height={low, high, anyvalue} and weight={light, heavy,
anyvalue}. If the rule antecedent is described by “anyvalue×heavy”, the lin-
guistic expression

if height is anyvalue and weight is heavy then t(1,2)=(0.4,0.8)
is simplified to

if weight is heavy then t(1,2)=(0.4,0.8).
This property of the genetic representation allows it to code general rules
that only refer to a subset of all possible features, thus enabling the boosting
algorithm to take advantage of feature selection.

The last rule is coded by the sequence (3,2), as “anyvalue” is the third
linguistic term in the first linguistic variable, and “heavy” is the second term
in the second linguistic variable. Observe that the class labels in the rule
consequent are not part of the genetic codification, neither the confidences
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degrees in the consequents are.

4 NUMERICAL RESULTS

In this section we include the first results of the implementation of Adaboost
for learning fuzzy rules from low quality data, applied to the imprecise datasets
“Diagnosis of the Dyslexic” [16] and “Athletics at Oviedo University” [17].
We include first a brief description of these datasets and then we discuss the
compared results of the application of the new method to these problems.

4.1 Description of the datasets
The group of datasets “Diagnosis of the Dyslexic” is based on the early di-
agnosis (ages between 6 and 8) of schoolchildren of Asturias (Spain). These
datasets are samples of a multiclass problem, where the inputs are the an-
swers to the tests in the Table 1 and whose outputs are the diagnosis of a
psychologist (“No dyslexic”, “Control and revision”, “Dyslexic”, “Inatten-
tion, hyperactivity or other problems”). We have considered three databases,
codenamed “Dyslexic-12-12”, “Dyslexic-11-01” and “Dyslexic-11-12”:

• “Dyslexic-12-12” has imprecision in both the input and the output, and
missing values. There are 12 features and three classes; individuals of
the category “control and revision”, are included in class “Dyslexic”.

• “Dyslexic-11-01” and “Dyslexic-11-12” have crisp inputs and impre-
cise outputs. Individuals of the category “control and revision” are
assigned to the classes “No dyslexic” and “Dyslexic” respectively.

The group of datasets “Athletics at the Oviedo University” comprises eight
different sets, whose descriptions are as follows:

1. Dataset “B200ml-I”: This dataset is used to predict whether an athlete
will improve certain threshold in 200 meters. All the indicators or in-
puts are fuzzy-valued and the outputs are sets.

2. Dataset “B200mlP”: Same dataset as “B200mlI”, with an extra feature:
the subjective grade that the trainer has assigned to each athlete. All
the indicator are fuzzy-valued and the outputs are sets.

3. Dataset “Long”: This dataset is used to predict whether an athlete
will improve certain threshold in the long jump. All the features are
interval-valued and the outputs are sets. The coach has introduced his
personal knowledge.
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TABLE 1
Categories of the tests currently applied in Spanish schools for detecting dyslexia
when is an expert who evaluates the children.

Category Test Description
Verbal comprehension BAPAE Vocabulary

BADIG Verbal orders
BOEHM Basic concepts

Logic reasoning RAVEN Color
BADIG Figures
ABC Actions and details

Memory Digit WISC-R Verbal-additive memory
BADIG Visual memory
ABC Auditive memory

Level of maturation ABC Combination of different tests

Sensory-motor skills BENDER visual-motor coordination
BADIG Perception of shapes
BAPAE Spatial relations, Shapes
STAMBACK Auditive perception, Rhythm
HARRIS/HPL Laterality, Pronunciation
ABC Pronunciation
GOODENOU. Spatial orientation

Attention Toulose Attention and fatigability
ABC Attention and fatigability

Reading-Writing TALE Analysis of reading and writing
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4. Dataset “BLong”: Same dataset as “Long”, but now the measurements
or inputs are defined by fuzzy-valued data, obtained by reconciling dif-
ferent measurements taken by three different observers.

5. Dataset “100ml”: Used for predicting whether a threshold in the 100
metres sprint race is being achieved. Each measurement was repeated
by three observers. The input variables are intervals and outputs are
sets.

6. Dataset “100mlP”: Same dataset as “100mlI”, but the measurements
have been replaced by the subjective grade the trainer has assigned to
each indicator (i.e.“reaction time is low” instead of “reaction time is
0.1 seg”).

7. Dataset “B100mlI”: Same dataset as “100mlI”, but now the measure-
ments are defined by fuzzy-valued data.

8. Dataset “B100mlP”: Same dataset as “100mlP”, but now the measure-
ments are defined by fuzzy-valued data.

Both groups of datasets, “Diagnosis of the Dyslexic” and “Athletics at
the Oviedo University”, are available in the KEEL repository? [1, 2]. The
name, the number of examples (Ex.), number of attributes (Atts.), the classes
(Classes) and the fraction of patterns of each class (%Classes) for each dataset
are displayed in Table 2. Observe that the proportions of the different patterns
are intervals, because the class labels of some instances are imprecise.

4.2 Experimental settings
All the experiments have been run with a population size of 100, probabilities
of crossover and mutation of 0.9 and 0.1, respectively, and limited to 150
generations. The fuzzy partitions of the labels are uniform and their size is
5. All the imprecise experiments were repeated 100 times with bootstrapped
resamples of the training set. Each partition of test contains 1000 tests.

4.3 Differences in accuracy
The compared accuracies between the proposed algorithm (Boosting LQD)
and other GFS capable of extracting rules from low quality data (GFS [15]
and MR GFS [18]) data are shown in Table 3. The results are expressed by

? http://www.keel.es/datasets.php
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TABLE 2
Summary descriptions of datasets with meta-information.

Dataset Ex. Atts. Classes %Classes
B200mlI 19 4 2 ([0.47,0.73],[0.26,0.52])
B200mlP 19 5 2 ([0.47,0.73],[0.26,0.52])

Long 25 4 2 ([36,64],[36,64])
BLong 25 4 2 ([36,64],[36,64])
100mlI 52 4 2 ([0.44,0.63],[0.36,0.55])
100mlP 52 4 2 ([0.44,0.63],[0.36,0.55])
B100mlI 52 4 2 ([0.44,0.63],[0.36,0.55])
B100mlP 52 4 2 ([0.44,0.63],[0.36,0.55])

Dyslexic-12-12 65 12 3
([0.32,0.43],[0.32,0.52],

[0.12,0.30])

Dyslexic-11-01 65 11 3
([0.43,0.53],[0.23,0.35],

[0.12,0.30])

Dyslexic-11-12 65 11 3
([0.32,0.43],[0.32,0.52],

[0.12,0.30])

means of intervals, that are our best bounds about the mean values of the test
error. These intervals are defined by the expression

error =

{
1
m

m∑
i=1

ei | ei ∈ ei

}
(37)

where

ei =


0 bclass(xi) = yi and #(yi) = 1,

1 bclass(xi) ∩ yi = ∅,
{0, 1} else.

(38)

The method “Boosting LQD” shows a better performance than the remain-
ing classifiers, in both binary problems (Athletics datasets) and multiclass
(Dyslexic datasets). Observe that MR GFS could not be applied to the mul-
ticlass datasets in this paper because a suitable matrix of costs was not given
for these datasets. The good behavior of the algorithm in the binary problems
“Long”, “BLong”, “B200mlI” and “B200mlP” was remarkable, as shown in
the graphs of the dispersion of the results of the 100 bootstrap tests, that have
been plotted in Figures 4 to 11 in the Appendix.

18



TABLE 3
Behaviour of “GFS”, “MR GFS” and “Boosting LQD” in several datasets of Athletics
and Dyslexia.

Dataset GFS MR GFS Boosting LQD
100mlI [0.176,0.378] [0.178,0.380] [0.170,0.376]
100mlP [0.176,0.360] [0.188,0.367] [0.180,0.358]

Long [0.321,0.590] [0.288,0.557] [0.231,0.499]
BLong [0.326,0.625] [0.286,0.586] [0.219,0.519]

B100mlI [0.172,0.369] [0.188,0.385] [0.158,0.356]
B100mlP [0.160,0.349] [0.161,0.350] [0.161,0.350]
B200mlI [0.232,0.473] [0.178,0.418] [0.171,0.415]
B200mlP [0.262,0.480] [0.215,0.433] [0.188,0.406]

Athletics mean [0.228,0.453] [0.210,0.434] [0.184,0.409]

Dyslexic-12-12 [0.386,0.557] N/A [0.376,0.530]
Dyslexic-11-01 [0.445,0.573] N/A [0.447,0.567]
Dyslexic-11-12 [0.528,0.690] N/A [0.458,0.595]

Dyslexic mean [0.453,0.606] N/A [0.427,0.564]

Global mean [0.340,0.529] N/A [0.305,0.486]

In multiclass problems there is a substantial improvement in the datasets
“Dyslexic-11-12” and “Dyslexic-12-12” (Figures 12 and 13, respectively)
and a slight improvement in “Dyslexic-11-01” (Figure 14). By comparing the
results obtained by the boosting algorithm in “Dyslexic-12-12” and “Dyslexic-
11-12” we detect that the removal of the imprecision in the input values
(dataset “Dyslexic-11-12”) indeed lowers the performance of the algorithm,
supporting a result already found in [16]. Moreover, the boosting algorithm
show us that the imprecise outputs of that dataset are significant for determin-
ing the weights of the instances and the confidences in the consequents.

4.4 Learning time and linguistic quality of the results
The dependence between the maximum number of rules in the knowledge
base and the test error is summarized in Table 4. Most of times the error
has only a small, random fluctuation when related to the number of rules.
Nonetheless, we have not found that the error of the ensemble tends to stabi-
lize when the number of rules is increased; the presence of almost identical
antecedents does not have the same effect with imprecise data than it has with
crisp data [7]. We have included two pathological examples of this behavior
in Figure 1. In the left part of this figure, we have displayed the behavior of
the dataset “100mlP”, for which the test error increases with the number of

19



TABLE 4
Behaviour of “Boosting LQD” with respect to the number of rules

Dataset 7rules 15rules 30rules 40rules 50rules 100rules
100mlI [0.189,0.391] [0.181,0.383] - [0.170,0.376] [0.183,0.384] -
100mlP [0.180,0.358] [0.206,0.385] [0.210,0.389] [0.212,0.391] - -
B100mlI [0.174,0.372] [0.166,0.363] [0.169,0.367] [0.158,0.356] [0.168,0.366] -
B100mlP [0.169,0.358] [0.161,0.350] [0.194,0.379] [0.184,0.373] - -

Long [0.290,0.559] [0.265,0.533] [0.231,0.499] [0.234,0.503] - -
BLong [0.269,0.569] [0.228,0.528] [0.231,0.531] [0.219,0.519] [0.249,0.549] -

B200mlI [0.171,0.415] [0.175,0.420] [0.187,0.431] [0.188,0.432] - -
B200mlP [0.213,0.431] [0.202,0.420] [0.211,0.429] [0.188,0.406] [0.205,0.423] -

Dyslexic-12-12 - - [0.428,0.579] - [0.391,0.543] [0.376,0.530]
Dyslexic-11-01 - [0.476,0.593] [0.471,0.588] - [0.459,0.579] [0.447,0.567]
Dyslexic-11-12 - - [0.509,0.643] - [0.492,0.626] [0.458,0.595]

rules, and in the right part of the same figure the dataset “Blong”, where the
same happens once its optimal size is surpassed.

We have to remark that the number of rules needed for obtaining a good
classification with this technique is not higher than it was with GCCL algo-
rithms [15][18]. In Table 5 we have displayed the average number of rules
needed either with boosting or GCCL algorithms, along with a linguistic as-
sessment of the gain in accuracy, using the labels “High”, “Medium”, “Low”
and “None”. Observe that the best improvements in accuracy are related to an
increase in the size of the KB, however there are some cases, like “B100mlI”
or “B200mlI”, were boosting produces rule bases that are both smaller and
more precise than GCCL. In Table 6 we show an example of one of the KBs
obtained after the application of the boosting algorithm.

4.5 Some variants of the original algorithm
In Table 7 we have included the results of two heuristic variants of the stan-
dard Adaboost algorithm that sometimes are able to improve the accuracy or
the interpretability of the basic algorithm for low quality data-based prob-
lems.

The first of these heuristics (column labeled “No Duplicates”) consists in
disallowing the presence of rules with identical antecedents; in case a dupli-
cate is selected, the consequents of the already present rule and the weights
of the examples are altered, but a new rule is not added. This is only a par-
tial solution to the case, mentioned before, where fuzzy weights prevented
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FIGURE 1
Behaviour of “Boosting LQD” with respect to the number of rules in the datasets
100mlP and BLong (left and right parts, respectively).

TABLE 5
Number of rules obtained with “GFS”, “MR GFS” and “Boosting LQD” in all the
datasets of Athletics and Dyslexia.

Dataset GFS MR GFS Boosting LQD Improvement of Boosting LQD vs. GFS
100mlI 24 24 26 “Low”
100mlP 23 25 7 “Low”

Long 16 16 26 “High”
BLong 16 16 23 “High”

B100mlI 23 23 21 “Medium”
B100mlP 23 23 14 “None”
B200mlI 13 13 7 “High”
B200mlP 13 13 24 “High”
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TABLE 6
Knowledge bases obtained with Boosting LQD in the dataset “100mlP”.

Id. Antecedentet Rule sj0 (Not relevant) sj1 (Relevant)
1 IF reaction time is Low and 20 meters speed is Medium 0.639 0.144

2
IF ratio is Very-high and reaction time is High and

0.072 0.790
40 meters speed is High

3
IF ratio is Very-high and reaction time is Medium and

0.008 0.842
20 meters speed is High

4
IF ratio is High and reaction time is Very-low and

0.98 0
20 meters speed is Low

5
IF ratio is Low and reaction time is Medium and

0.615 0.142
40 meters speed is Medium

6
IF ratio is Medium and reaction time is Very-high and

0 1
20 meters speed is Very-high and 40 meters speed is Very-high

7
IF ratio is Very-low and reaction time is Medium and

0.626 0.12
20 meters speed is High

the cancellation of the votes of almost identical rules, however it produces a
small improvement only in multiclass problems.

In a second place, for improving the linguistic quality we have computed
the results of using an Adaboost generated KB with a “winner takes all” type
of fuzzy inference. One of the main criticisms to the use of Adaboost for
learning fuzzy rules lies in the use of voting in the inference process, which is
less human-readable than an inference based on the winner rule. This differ-
ence, however, is small when there are not duplicate rules and the degree of
overlapping between the rules is small [9]. In the column “Alt. Inference” of
Table 7 we have therefore computed the error of the KB generated by boost-
ing when a winned-based inference is used instead of the sum of votes. The
consequents of the rules are not optimal for this kind of inference (see [19] for
an algorithm whose extension would produce suitable weights for this kind of
inference and crisp data) however the loss of accuracy is not large and in cer-
tain cases (“Dyslexic” problems) this loss is not noticeable. Lastly, observe
that even after this loss of accuracy, the boosting algorithm is still competitive
with GCCL-type algorithms.
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TABLE 7
Heuristic variants of the standard Adaboost algorithm that sometimes are able to im-
prove the accuracy (column “No Duplicates”) or the interpretability (column “Alt.
Inference”). The column “GFS” is included as a reference of the performance of a
GCCL algorithm using a “winner-takes-all” reasoning scheme.

Dataset Boosting LQD No Duplicates Alt. Inference GFS
100mlI [0.170,0.376] [0.185,0.387] [0.186,0.387] [0.176,0.348]
100mlP [0.180,0.358] [0.182,0.361] [0.187,0.366] [0.176,0.360]
B100mlI [0.158,0.356] [0.174,0.372] [0.171,0.369] [0.321,0.590]
B100mlP [0.161,0.350] [0.168,0.357] [0.167,0.356] [0.326,0.625]

Long [0.231,0.499] [0.249,0.517] [0.230,0.499] [0.172,0.369]
BLong [0.219,0.519] [0.227,0.527] [0.229,0.529] [0.160,0.349]

B200mlI [0.171,0.415] [0.189,0.433] [0.186,0.431] [0.232,0.473]
B200mlP [0.188,0.406] [0.187,0.405] [0.198,0.416] [0.262,0.480]

Athletics mean [0.184,0.409] [0.195,0.419] [0.194,0.419] [0.228,0.453]

Dyslexic-12-12 [0.376,0.530] [0.362,0.524] [0.342,0.508] [0.386,0.557]
Dyslexic-11-01 [0.447,0.567] [0.456,0.572] [0.432,0.551] [0.445,0.573]
Dyslexic-11-12 [0.458,0.595] [0.442,0.592] [0.357,0.516] [0.528,0.690]

Dyslexic mean [0.427,0.564] [0.420,0.562] [0.377, 0.525] [0.453,0.606]

Global mean [0.305,0.486] [0.307,0.490] [0.285,0.472] [0.340,0.529]
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5 CONCLUDING REMARKS

In this paper we have proposed a new extension of the Adaboost algorithm
for learning fuzzy rule based classifiers from interval-valued or fuzzy data.
Fuzzy rules were regarded as weak learners and knowledge bases as ensem-
bles. The number of votes of a weak learner was identified with the degree
of confidence of its corresponding consequent. Both the objective function
of the Adaboost algorithm and the weights of the instances were assigned
interval or fuzzy values, however the number of votes each weak learning is
assigned has been designed to be a crisp number thus the classifier does not
introduce uncertainty of its own.

The results of the new algorithm have been compared to that of previ-
ous genetic algorithms for low quality data, in both accuracy and linguistic
interpretation. The results prove that this technique is fast, its accuracy is
competitive and the number of rules in the knowledge base is not higher than
that of the alternatives. On the other hand, it uses a voting-based inference,
whose linguistic quality is not the best, and the performance gain is not highly
relevant for multiclass problems.
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A PSEUDOCODES

Input data:
Training set (x1, y1), . . . , (xm, ym), xi ∈ Rn, yi ∈ {−1,+1}
Number of hypotheses H ∈ {1, . . . , N}

Local Variables:
w ∈ Rm (weights of the examples in the training set)
α ∈ RN (votes of the weak hypotheses)

begin
Initialize wi ← 1/m, αj = 0

Select the number of weak hypotheses H
Repeat H times

Identify the weak hypothesis gh ∈ {g1, . . . gN}
that best classifies the weighted data

Calculate the number of votes αh of gh

Update the weights wi of the examples
end-repeat
Output the classifier: sign

“PN
j=1 α

jgj(x)
”

end

FIGURE 2
Outline of the generalized Adaboost algorithm. Two-class version.
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Input data:
Training set (x1, z1), . . . , (xm, zm), xi ∈ Rn, zi ∈ {1, . . . , p}
Number of fuzzy rules H ∈ {1, . . . , N}

Local Variables:
w ∈ Rm (weights of the examples in the training set)
α ∈ RN×p (votes of the weak hypotheses)
s : A× {−1, 1} → [0, 1] (fuzzy relationship = consequents of rules)
c ∈ {−1, 1}m (consequents of the weak hypotheses)
y ∈ {−1, 1}m (labels of the examples in the two-class problems)

Local Procedures:
Generate a new fuzzy rule: see text
Convert votes into confidences: begin

sj
k ← 0

for j in 1 . . . N

for k in 1 . . . p

if (αj
k > 0) sj

k ← sj
k + αj

k

else
sj
1 ← sj

1 − α
j
k ,

. . .

sj
k−1 ← sj

k−1 − α
j
k ,

sj
k+1 ← sj

k+1 − α
j
k ,

. . .

sj
p ← sj

p − αj
k

end-for
end-for
Normalize consequents: sj

k ← sj
k/max sj

k

end
begin of main algorithm

for k = 1, . . . , p

Initialize wi ← 1/m, αj
k = 0

Initialize if (zi = k) yi = 1 else yi = −1

repeat H/p times
Generate a new fuzzy rule “ if x is Ah then ch”
Calculate the number of votes of the following rule:

“votes( if x is Ah then ch) = αh
k”

Update the weights of the examples
end-repeat

end-for
Convert votes into confidences

Output the classifier: for all j, if any sj
k 6= 0 emit the rule

if x1 is Aj
1 and . . . xn is Aj

n then tr(c0) = sj
0, . . . , tr(cp) = sj

p

end of main algorithm

FIGURE 3
Adaboost algorithm applied to the induction of a descriptive, multi-class, fuzzy rule
based classification system.
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B GRAPHS OF THE DISPERSION OF THE PAIRED BOOTSTRAP
TEST RESULTS

In these graphs, the horizontal coordinate measures the fraction of errors of
the boosting algorithm, and the vertical coordinate measures the same param-
eter in the counterpart algorithm. Each filled circle represents a case where
the boosting algorithm was the best choice, and the squares mean the opposite
result. A blank circle or square means a tie (or a difference with is not signifi-
cant) between both algorithms. Those figures where there is a high density of
filled circles in the upper left part signal cases where the dispersion of the re-
sults is compatible with a statistically significant improvement of the bound,
and those cases where the cloud is near the diagonal or in the lower, right part
display situations where the differences, if exist, are not significant.
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FIGURE 4
Behaviour of “GFS” and “Boosting LQD” respect to the dataset Long. Left figure:
Lower bounds. Right figure: Upper bounds.
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FIGURE 5
Behaviour of “GFS” and “Boosting LQD” respect to the dataset BLong. Left figure:
Lower bounds. Right figure: Upper bounds.
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FIGURE 6
Behaviour of “GFS” and “Boosting LQD” respect to the dataset B200mlI. Left fig-
ure: Lower bounds. Right figure: Upper bounds.
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FIGURE 7
Behaviour of “GFS” and “Boosting LQD” respect to the dataset B200mlP. Left fig-
ure: Lower bounds. Right figure: Upper bounds.
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FIGURE 8
Behaviour of “GFS” and “Boosting LQD” respect to the dataset B100mlI. Left fig-
ure: Lower bounds. Right figure: Upper bounds.
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FIGURE 9
Behaviour of “GFS” and “Boosting LQD” respect to the dataset B100mlP. Left fig-
ure*: Lower bounds. Right figure: Upper bounds.
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FIGURE 10
Behaviour of “GFS” and “Boosting LQD” respect to the dataset 100mlI. Left figure:
Lower bounds. Right figure: Upper bounds.
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FIGURE 11
Behaviour of “GFS” and “Boosting LQD” respect to the dataset 100mlP. Left figure:
Lower bounds. Right figure: Upper bounds.
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FIGURE 12
Behaviour of “GFS” and “Boosting LQD” respect to the dataset Dyslexic11-12. Left
figure: Lower bounds. Right figure: Upper bounds.
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FIGURE 13
Behaviour of “GFS” and “Boosting LQD” respect to the dataset Dyslexic12-12. Left
figure: Lower bounds. Right figure: Upper bounds.
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FIGURE 14
Behaviour of “GFS” and “Boosting LQD” respect to the dataset Dyslexic11-01. Left
figure: Lower bounds. Right figure: Upper bounds.
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