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a Departamento de Informática, Universidad de Oviedo, 33071 Gijón, Asturias, Spain
b Departamento de Estadı́stica, Universidad de Oviedo, 33071 Gijón, Asturias, Spain
c Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802, USA

a r t i c l e i n f o

Article history:

Received 17 December 2011

Received in revised form

13 February 2012

Accepted 18 February 2012

Keywords:

Genetic fuzzy systems

Fuzzy rule-based classifiers

Vague data

Mutual information

Ice-phobic materials

Shear adhesion strength

a b s t r a c t

A methodology for obtaining fuzzy rule-based models from uncertain data is proposed.

The granularity of the linguistic discretization is decided with the help of a new

estimation of the mutual information between ill-known random variables, and a

combination of boosting and genetic algorithms is used for discovering new rules. This

methodology has been applied to predict whether the coating of an helicopter rotor

blade is adequate, considering the shear adhesion strength of ice to different materials.

The discovered knowledge is intended to increase the level of post-processing inter-

pretation accuracy of experimental data obtained during the evaluation of ice-phobic

materials for rotorcraft applications.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Expert knowledge elicitation from experimental data is a valuable tool in the engineering design process, that aids to

make agile decisions in the absence of a causal model or extensive prototype testing. Often, expert knowledge is best

organized as a set of linguistic rules, describing the circumstances under which the behavior of an element is admissible or

unsuitable for a given application. The benefits of computer-produced knowledge depend on the accuracy of the

conclusions that might be drawn from it, and also on it being described at a level that is understandable to the design

engineer [4].

It is generally agreed that, given the right amount of quality data, computer algorithms are capable of obtaining

accurate and informative rule bases, however in practice this is not consistently so. Comprehensive experimental

descriptions can be time consuming and expensive, and therefore there is a need for exploiting the information in low

quality data, including scarce, incomplete and/or imprecise sources of information [12]. Numerous studies have been

published regarding the representation of uncertain empirical information, and the difference between different types of

uncertainties [5,16–18,21,23,24]. According to [16], there are two main categories of uncertainty: stochastic uncertainty,

that arises from random variability related to natural processes such as the heterogeneity of population or the fluctuations
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of a quantity with time, and epistemic uncertainty, that arises from the incomplete or imprecise nature of available

information. Stochastic uncertainty can be modeled with classical probability theory, however there are different theories

for handling incomplete and imprecise information [15], which often appears in engineering problems.

The purpose of this study is therefore to define a methodology for obtaining expert knowledge, comprising fuzzy

classification rules, from ill-known data. This methodology will be demonstrated on a real-world problem: discovering a

set of linguistic rules describing the ice accretion strength of different materials used in helicopter rotor blades, for

different ambient conditions.

This problem is out of the ordinary because neither the ambient conditions nor the experimental parameters of the

essays can be precisely determined on all occasions; they may change during the realization of an essay, and sometimes

they cannot be directly measured. For that matter, the properties of some materials cannot be reliably estimated. This last

fact will be illustrated with the help of an example: In Table 1, some estimations of the shear adhesion strength (SAT) for

Aluminum at ÿ11 1C, found in the literature of the field, were collected. These values are much different among

themselves, arguably as consequence of the impossibility of accurately determining the value of some ambient or

experimental parameters.

Following with the example, imagine that a SAT of 100 kPa was measured in an experiment for which the initial

temperature was ÿ14 1C and the final temperature was ÿ10 1C. In this case, it is not correct to write ‘‘SAT¼100 kPa at a

temperature of ÿ12 1C’’ neither it is to state ‘‘SAT¼100 kPa for temperatures between ÿ14 and ÿ10 1C’’. Our knowledge is

restricted to the fact ‘‘SAT¼100 kPa at an unknown temperature between ÿ14 and ÿ10 1C’’. Clearly, linguistic modeling

techniques are well suited for expressing this kind of information.

In view of the above, the first part of this paper contains a description of the proposed modeling methodology and their

assumptions, and the second part of this study describes a practical application of this methodology to rotor blade

characterization. In Section 2 the use of fuzzy sets for describing the uncertainty in the data is explained. In Section 3 it will

be explained how ill-known data is discretized into linguistic values. The selection of an informative discretization is

addressed in Section 4, where a mutual information measure for fuzzy discretized data is proposed. In Section 5 two

algorithms for finding fuzzy classification rules from imprecise data are described, and in Section 6 the demonstration

problem is detailed. The paper is finished with some concluding remarks, in Section 7.

2. Fuzzy models of uncertainty in the data

The use of stochastic techniques for describing the numerical uncertainty in experimental data is prevalent among

researchers and practitioners. However there may be cases where there are better alternatives. For example, in presence of

coarse digital measurements (lack of significant digits), censored data or missing values, a probabilistic model is too

restrictive. Interval-valued descriptions or other characterizations of the uncertainty, based on families of probability

distributions, are to be preferred [31].

The use of a possibility distribution for describing partial ignorance about a value falls in the second of these groups.

Fuzzy membership functions can be derived from possibility distributions, and interval-valued descriptions are particular

cases of this representation. Moreover, the same description can also be used for summarizing conflicting data, as happens

for instance when a set of measurements of the same physical magnitude is produced by different sensors. Here is a case in

point: suppose that these conflicting measurements are

X ¼ f2;1,3;3,2;2,4g: ð1Þ

Their average is 2.429. Nevertheless, using this value for describing the unknown value of the physical magnitude discards

information that might be relevant: there are some items as low as 1, and others as high as 4. To gain additional insight

about the importance of the dispersion of the values, it can be assumed that the set of items X is a sample of a larger

population, whose mean is unknown. Confidence intervals for the value of this mean can be computed for different

signification levels, and the knowledge about the unknown magnitude described by a list of nested confidence intervals.

Following with the same example, if a Gaussian population is assumed, these confidence intervals are

~Xa ¼ 2:42970:9759 � qt6 1ÿ
a

2

� �

, ð2Þ

where 0.9759 is the standard deviation and qt6 is the quantile function for the t distribution. According to [7,8,46], this set

of intervals contains the same information about the unknown variable that a possibility distribution defined by a fuzzy

Table 1

SAT for aluminum with a temperature of ÿ11 1C, according to different authors.

Author Ice Test SAT-kPa

Loughborough and Hass [30] Freezer ice Pull 558

Stallabrass and Price [50] Impact ice Rotating instrumented beam 97

Itagaki [28] Impact ice Rotating rotor 27–157

Scavuzzo and Chu [47] Impact ice Shear window 90–290

Reich [40] Freezer ice Pull 896
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set whose a-cuts are confidence intervals at the levels 1ÿa. Hence, the membership function associated to the set X is

shown in Fig. 1 (left part). Observe that we can approximate this shape by a triangular membership function without

incurring large errors. Other techniques for computing the membership can also be applied; in the right part of Fig. 1 a

bootstrap-based estimation of the membership function associated to the same data is plotted.

Because of these reasons, a possibilistic representation of ill-known data is adopted in this study. Generally speaking,

those situations where one or more confidence intervals for a parameter can be determined are well suited for this

technique. Conflicting values will also be aggregated and transformed into fuzzy sets. In addition to this, a triangular

membership will be used for approximating those sensors whose specification comprises a broad range of extreme values,

and also a smaller typical range: ‘‘99% of times the temperature was between ÿ18 1C and ÿ8 1C, but 95% of times it was

between ÿ13 1C and ÿ11 1C’’ (see Fig. 2).

3. Linguistic discretization of ill-known data

The notation used in the rest of the paper is introduced at this point. Let x¼ ðx1, . . . ,xdÞ be a vector of features, and let a fuzzy

rule-based classifier system be a list of M ‘‘IF-THEN’’ rules, comprising an antecedent, a consequent and sometimes a weight:

if ðx is ~A iÞ then class is Ci ½with weight wi�, ð3Þ

where ~A i is a fuzzy subset of Rd, and the expression ‘‘x is ~A i’’ is a combination of asserts of the form ‘‘xp is ~A iq’’ by means of

different logical connectives. The terms ~A iq, for q¼ 1, . . . ,ni, are, in turn, fuzzy subsets of R that have been assigned a linguistic

meaning, and the membership function of ~A i models the degree of truth of this combination. Ci are the labels of the different

classes. wi are degrees of credibility that may be given to each rule, wi 2 ½0;1�. For instance, given a rule base

if x1 is HIGH and x2 is LOW then class is C1 with weight 0:8,

if x1 is MEDIUM and x2 is MEDIUM then class is C2 with weight 0:4,

if x2 is HIGH then class is C1 with weight 0:9,

ð4Þ

then ~A11 ¼HIGH, ~A12 ¼ LOW, and the membership functions of these two sets define the compatibility between the values of x1
and x2 and the linguistic terms ‘‘HIGH’’ and ‘‘LOW’’. The fuzzy set ~A1 ¼minð ~A11,

~A12Þ defines the compatibility of each pair ðx1,x2Þ

and the antecedent of the first rule.
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Fig. 1. Membership function of the fuzzy set that represents the sample X. The left one was obtained under normality assumptions, and the right one is a

basic bootstrap estimation.
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Fig. 2. Fuzzy representation of vague data. Left: the only information is the range of the variable. Right: a nested family of confidence intervals is

compatible with a possibility distribution, described by means of a fuzzy membership function, whose level cuts are confidence intervals at the level 1ÿa.
The membership function shown is compatible with the information ‘‘99% of times the temperature was between ÿ18 1C and ÿ8 1C, but 95% of times it

was between ÿ13 1C and ÿ11 1C’’.
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The output of the rule base is determined by a voting procedure, where each rule is assigned a number of votes equal to

the compatibility between x and its antecedent, multiplied by its weight (the number of votes does not need to be integer-

valued). The mechanisms for choosing the winner alternative are two:

1. The class of the object is given by the consequent of the most voted rule:

classðxÞ ¼ Ck where k¼ arg max
i

fwim ~A i
ðxÞg: ð5Þ

2. The votes of all rules with the same consequent are added, and the option with a higher number of votes is chosen [29]:

classðxÞ ¼ arg max
i

X

j ¼ 1...,M

d
j
Ci
wjm ~A j

ðxÞ

8

<

:

9

=

;

, ð6Þ

where dba is Kronecker’s delta, dba ¼ ½a¼ b�.

For features that are not precisely known, a fuzzy set is used for describing the inputs: ~X ¼ ð ~X1,

~X2, . . . ,

~XdÞ, as mentioned

in the preceding section. In this case the output is no longer a class label but a fuzzy set of classes denoted by classð ~X Þ. The

membership function of this set is

mclassð ~X ÞðcÞ ¼maxfm ~X ðxÞ9c¼ classðxÞg: ð7Þ

It has been mentioned that the terms ~A iq are fuzzy subsets of R that have been assigned a linguistic meaning. This

assignment is based on a fuzzy partition defined on the universe of discourse. Strong fuzzy partitions [41,51] will be used,

fulfilling the strength condition

8i, 8x,

X

ni

q ¼ 1

m ~A iq
ðxÞ ¼ 1, ð8Þ

and also

� m ~A iq
ðmqÞ ¼ 1 where mq is the mode of the cell ~A iq (unimodality).

� m ~A iq
ðxÞ monotonically increases in ½mqÿ1,mq� and monotonically decreases on ½mq,mqþ1�.

� For each i, there are not more than two different memberships that are not null at the same point x.

Because of the strength condition, a real number is mapped to a vector of memberships whose sum is 1. This fact allows

considering the elements of a strong fuzzy partition as likelihood functions, i.e. m ~A iq
ðxÞ is the proportion of times that the

value x is tagged as ~A iq in a random experiment [14]. Let Siq be the linguistic term associated to the fuzzy set ~A iq. The vector

of memberships can then be understood as a probability distribution over the set of terms

LiqðxÞ ¼ PðSiq9xÞ ¼ m ~A iq
ðxÞ: ð9Þ

Furthermore, we will assume that the upper probability of the qth term in the antecedent of the ith rule, conditioned on an

unknown value in the interval input ½xn,xn�, is

Liqð½xn,xn�Þ ¼ supfPðSiq9xÞ9x 2 ½xn,xn�g ¼ supfm ~A iq
ðxÞ9x 2 ½xn,xn�g: ð10Þ

4. Selection of an informative linguistic partition

There is necessarily a loss of information in any linguistic discretization of a variable. This loss depends on the partition

granularity. It is possible that a coarse discretization makes an informative variable irrelevant.

However the number of terms in a partition must be low for a good interpretability. There is a balance between the

amount of information that is lost in the discretization and the degree of understandability of the knowledge base that will

be ultimately produced. In this paper it is proposed to find this equilibrium by choosing the partition with the least terms

that do not incur in a high information loss. The loss of information in a discretization will be measured by means of an

extension of the mutual information (MI) [45] that is described now.

Let N be the number of available empirical data, and let ðX1,X2, . . . ,XNÞ and ðY1,Y2, . . . ,YNÞ be the observed values of two

features (or one feature and the response variable). These will be regarded as two paired samples of two discrete random

variables X and Y that can take n andm different values, respectively. Let p1,p2, . . . ,pn and q1,q2, . . . ,qm be the frequencies of

the respective values in both samples, and let r1,r2, . . . ,rs, where s¼ n�m, be the frequencies of the values of the joint

sample X�Y. The mutual information between the variables X and Y is estimated as follows:

MIððX1, . . . ,XNÞ,ðY1, . . . ,YNÞÞ ¼ ÿ
X

n

i ¼ 1

pi log piÿ
X

m

i ¼ 1

qi log qiþ
X

s

i ¼ 1

ri log ri: ð11Þ
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A naive estimation of the MI from two samples of continuous random variables consists in discretizing these variables [10],

computing the frequencies of the discretized values and applying Eq. (11) [39].

For extending this estimation to linguistic fuzzy partitions, it is proposed that these partitions are regarded as bins of

Quasi-Continuous Histograms (QCH) [51], and the estimation of the MI is rewritten by replacing the empirical frequencies

with possibilistic counting transfers. Let ðZ1, . . . ,ZNÞ be a sample of a random interval. Let be considered the event ‘‘the

discretization of ðZ1, . . . ,ZNÞ is the vector of linguistic terms ðSiz1 , . . . ,SizN Þ’’, where 1rzirni. The probability of this event

(see Eq. (10)) is an unknown element of the set

PZðz1, . . . ,zNÞ ¼
Y

N

i ¼ 1

pi9pirLizi ðZi Þ,
X

N

i ¼ 1

pi ¼ 1

( )

: ð12Þ

It is proposed that the mutual information between the discretizations of the samples of two ill-known random

variables ðZ1, . . . ,ZNÞ and ðT 1, . . . ,TNÞ is defined by the imprecise probability distribution that follows:

PMIðmÞ ¼
X

pzpt9pz 2 PZðz1, . . . ,zNÞ,pt 2 PT ðt1, . . . ,tNÞ, m¼MIððz1, . . . ,zNÞ,ðt1, . . . ,tNÞÞ
n o

: ð13Þ

Since there is a finite number M of different discretizations, so there are at the most M different values of the mutual

information. The expected value of the estimated mutual information is therefore the set

MIððZ1, . . . ,ZNÞ,ðT 1, . . . ,TNÞÞ ¼
X

M

k ¼ 1

mkpk9pk 2 PMIðmkÞ,
X

M

k ¼ 1

pk ¼ 1

( )

: ð14Þ

This procedure can be extended to possibilistic data by applying the method proposed in [9]. In short, this method

consists in regarding the fuzzy expectation as a possibility distribution over the set of all possible expected values. A

possibility distribution represents a possibility measure, which is the upper probability associated to a set of probability

measures, hence it can be considered that there is a set of probability measures defined on the set of expected values. For

simplicity, let be supposed that there is a finite set of expected values e1, . . . ,en and one of the considered probabilities

assigns the values p1, . . . ,pn to these expected values. Then it is reasonable to consider the expectation as the mean of these

possible expectations, with respect to this probability,
Pn

i ¼ 1 ei � pi. It can be checked that the mean (in a Dubois–Prade

sense [13]) of the fuzzy expectation is the interval of the means of all the expectations, for all the probabilities dominated

by the considered possibility measure.

Fuzzy random variables (frv) are intended for cases where the outcomes of a random experiment are modeled by fuzzy

sets. A frv is a mapping that associates a fuzzy subset of the final space to each possible result of a random experiment.

This association expresses the imprecise information about the relation between both universes. Thus this concept

generalizes the definition of random variable. Following the model proposed in [8], let ð ~Z1, . . . ,

~ZNÞ and ð ~T 1, . . . ,

~TNÞ be

samples of a fuzzy random variable. Their level cuts ð½ ~Z1�a, . . . ,½ ~ZN�aÞ and ð½ ~T 1�a, . . . ,½ ~TN�aÞ can be regarded as samples of

random intervals, and therefore it makes sense to define

MIa ¼MIðð½ ~Z1�a, . . . ,½ ~ZN�aÞ,ð½
~T 1�a, . . . ,½ ~TN�aÞÞ: ð15Þ

According to the mentioned method, it is proposed that the expected value of the mutual information between two fuzzy

discretizations of ill-known samples is the interval

MIðð ~Z1, . . . ,

~ZNÞ,ð ~T 1, . . . ,

~TNÞÞ ¼

Z 1

0
inf MIa da,

Z 1

0
sup MIa da

" #

: ð16Þ

A numerical algorithm for approximating this value from a sample of data comprising a mix of numerical, interval-

valued and fuzzy data is given in Listing 1.

Listing 1. Simplified pseudocode of the proposed method for estimating the mutual information between two imprecisely

perceived samples of random variables with Quasi-Continuous Histograms.

function Mutual Information ðf ~Z gNk ¼ 1 ,f ~T gNk ¼ 1Þ

1 for a in f 0, 1/LEVELS, 2/LEVELS,y,1 g

2 for iter in f 1,y,NUMITER g

3 Randomly select two discretizations ðz1 , . . . ,zN Þ and ðt1 , . . . ,tNÞ of ~Z and ~T

4 ½zn ,zn� ¼ Bounds of Probability of Discretization ðf½ ~Z �ag
N
k ¼ 1 , ðz1 , . . . ,zNÞÞ

5 ½tn ,tn� ¼ Bounds of Probability of Discretization ðf½ ~T �ag
N
k ¼ 1 , ðt1 , . . . ,tNÞÞ

6 m¼mutual information between the discretizations (see Eq. (11))

7 Store the tuple ð½zn ,zn�, ½tn ,tn�,mÞ in the list L

8 cz ¼ ðznþznÞ=2

9 ct ¼ ðtnþtnÞ=2

10 sump¼ sumpþczct
11 summ¼ summþmczct
12 end for

13 avm¼summ/sump

14 for each element of the list L

15 if m4avm then
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16 sumpupper¼ sumpupperþmzntn

17 pupper¼ pupperþzntn

18 else

19 sumplower¼ sumplowerþmzntn
20 plower¼ plowerþzntn
21 endif

22 end for

23 leftresult¼ leftresultþ sumplower/plower

24 rightresult¼rightresultþ sumupper/pupper

25 end for

26 return [leftresult/(NLEVELSþ1), rightresult/(NLEVELSþ1)]

function Bounds of Probability of Discretization ðfX gNk ¼ 1 , ðz1 , . . . ,zNÞÞ

1 upper¼
Q

kðsupf
~Azk ðxÞ9x 2 ½X k�agÞ

2 lower¼
Q

kð1ÿsupf ~Azk ðxÞ9x=2½X k�agÞ

3 return [lower, upper]

5. Discovering fuzzy classification rules from imprecise data

In this section, two different algorithms for obtaining fuzzy classification rules from empirical data will be described.

Both algorithms search for a set of rules that maximize the accuracy of the model. This accuracy is understood as the

expected number of misclassifications of the model. However since the data is imprecise, this number cannot always be

determined, as discussed in the following section.

5.1. Assessing the misclassification rate with imprecise data

If the input to a classifier is imprecise and its output is set-valued, the same can be said about its misclassification rate.

Let fðci,classð ~X
i
ÞÞgi ¼ 1...N , be a list of N pairs, where ci is the true class of the ith object, and class ð ~X

i
Þ is the set valued output

of the classifier. According to [44], the misclassification rate is computed as follows for a classification problem with Nc

classes: let

p¼ arg max
c ¼ 1,...,Nc

m
classð ~X

i
Þ
ðcÞ, ð17Þ

be the class label with higher membership value in the classifier output at the ith object, and be

q¼ arg max
c ¼ 1,...,Nc ,cap

m
classð ~X

i
Þ
ðcÞ, ð18Þ

the second largest one. The number of errors that the classifier commits at the ith object is either 0 or 1, however the

knowledge about this number is a fuzzy set

~ei ¼

f190,m
classð ~X

i
Þ
ðqÞ91g if ci ¼ p,

fm
classð ~X

i
Þ
ðciÞ90;191g if ciap:

8

<

:

ð19Þ

Finally, the total misclassification rate is a fuzzy subset of f0;1=N,2=N, . . . ,1g

~e ¼
1

N
� �

N

i ¼ 1

~ei , ð20Þ

where the meaning of the fuzzy arithmetic operators is

m
ð ~A� ~BÞðxÞ ¼maxfminðm ~A ðuÞ,m ~B ðvÞÞ9uþv¼ xg, ð21Þ

m
ðk� ~AÞðxÞ ¼ m ~A ðx=kÞ: ð22Þ

The numerical procedures for obtaining rule-based models from data are designed to optimize this value under different

hypotheses, as discussed in the paragraphs that follow.

5.2. Obtaining rule bases from fuzzy data

Some of the most effective numerical techniques for obtaining fuzzy rule bases from data are based on genetic algorithms,

so called ‘‘genetic fuzzy systems’’ (GFS) [6]. A recent branch of these algorithms studies how to obtain rules from imprecise

data, as happens in this study [44]. Two different state-of-the art GFSs will be used. Both are able to exploit the information

in vague data for eliciting a human readable, knowledge base comprising fuzzy rules. The first of these GFSs is called Genetic

Cooperative-Competitive Learning (GCCL) [35,36] and evolves a population of rules so that the misclassification rate in the

experimental data (see Eq. (20)) is minimum. The second one is a generalization of the Adaboost algorithm, that determines

the weights of a set of rules optimizing the expectation of the misclassification rate [37].
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5.2.1. Genetic Cooperative-Competitive Learning

GCCL is designed for finding a set of rules optimizing the fuzzy expression described in Eq. (20). Since the search space

is very large, an exhaustive search is not feasible. Unfortunately, the properties of the objective function do not allow for

significant shortcuts either, thus GCCL is based in two heuristic simplifications

� The number M of rules in the knowledge base is assumed known.

� Given the antecedent part of a rule (‘‘If (x is ~A i)’’), the best consequent and weight for this antecedent only depend on

those experimental cases for which this last expression is true.

As a consequence of these two assumptions, the search space is reduced to the free parameters of the M fuzzy sets

describing the antecedents; the consequents and weights are not part of the search, as they will be computed from the

experimental cases matching their corresponding antecedents (the calculations are described later). The output of the

classifier is computed as shown in Eq. (5).

In turn, each chain can be formed as a combination of the symbols in a finite catalog of linguistic terms and connectives

(for instance: ‘‘x1 is SMALL and x2 is LARGE andy’’). Following the binary representation system described in [11], all the

antecedents of a knowledge base can be represented in a bit chain, allowing for the exploration of the different rule-based

classifier systems by means of a genetic algorithm.

The genetic search consists therefore in finding the bit chain that minimizes the misclassification rate defined in

Eq. (20). There are some problems that must be addressed before this search can take place:

1. The concept of ‘‘minimum’’ depends on the definition of a total order among the fuzzy values of the misclassification

rate, some of which cannot be directly compared.

2. How the best consequent and weight of a rule are produced for a given antecedent.

3. How to alleviate the computational complexity of determining the fuzzy set in Eq. (20), and in particular the

intermediate step in Eq. (7).

The first issue is solved by redefining the objective of the problem: it is acknowledged that a minimum cannot be

obtained, but a set of non-dominated classifiers can be produced. The second problem is solved by embracing and

extending the definition in [27], which consists in selecting the consequent for which the number of misclassifications is

the lowest, constrained to the elements that fulfill the condition ‘‘x is ~A’’. When the experimental data fð ~X
i
,ciÞgNi ¼ 1

comprises fuzzy numbers, our knowledge about this number of correct classifications is

~hitsð ~A,cÞðtÞ ¼max minfm
~X
i ðxiÞg

N
i ¼ 19t¼

X

i

d
c
cim ~A ðxiÞ

( )

, ð23Þ

where dcci ¼ ½c¼ ci�. The best class is selected by means of a fuzzy ranking [3] on the elements of the set f ~hitsð ~A,cÞgNc

c ¼ 0.

5.2.2. Boosting fuzzy rules from low quality data

A second technique for obtaining fuzzy rule based classifiers from data consists in regarding each fuzzy rule as a weak

learner, and the knowledge base as an ensemble of learners. In other words, each rule

if ðx is ~A iÞ then class is Ci with weight wi, ð24Þ

is understood as a simple classifier. For an input x, the output of this classifier comprises a class label (which is always the

same, Ci) and a degree of certainty in the classification, whose value is wi �
~A iðxÞ. These classifiers are not very useful as

isolated entities, but they can be combined in an ensemble that performs better than its constituent parts. In this case, the

boosting [49,25] technique can be applied for obtaining the best set of weights fwig
M
i ¼ 1 for any given set of fuzzy rules. This

is because the output of boosting-based ensemble is identical to the voting inference described in Eq. (6). It is expected

that this procedure improves the accuracy of the preceding approach, however the results are less understandable [48].

This will be further discussed in the next section.

It is remarked that the combined output of this ensemble of classifiers is not intended to directly minimize the

misclassification rate on a training set, as was the case with the GCCL algorithm. Boosting optimizes instead the

exponential loss

X

N

i ¼ 1

expð1ÿ2dc
i

classðxiÞÞ, ð25Þ

where d
b
a ¼ ½a¼ b�. The ensemble for which this last value is minimum is also expected to have the least overall

misclassification rate over the universe.

The Adaboost algorithm [19] solves this optimization problem iteratively. Let z be an instrumental variable, for

simplifying the notation

zðo,x,wÞ ¼o expðwm ~A ðxÞð1ÿ2dc
j

Ci
ÞÞ: ð26Þ
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Firstly, a weight oj ¼ 1=N is assigned to each of the N instances. Secondly, a fuzzy set ~A i and a class label Ci, constituents of

a weak classifier of the form

if ðx is ~A iÞ then class is Ci with weight 1, ð27Þ

is searched, such that its exponential loss

Zð1Þ ¼
X

N

j ¼ 1

zðoj
,xj,1Þ, ð28Þ

is minimum. A genetic algorithm is well suited for this task, using the same binary representation mentioned in the

preceding section. The weight wi of this rule is determined afterwards, as the value wi minimizing

ZðwÞ ¼
X

N

j ¼ 1

zðoj
,xj,wÞ: ð29Þ

Thirdly, the weights of the N instances are updated according to the results of this classifier,

oj
ðtþ1Þ ¼

zðoj
ðtÞ,x

j
,wiÞ

PN
j ¼ 1 zðo

j
ðtÞ,x

j
,wiÞ

: ð30Þ

The process jumps to the second step, and loops until the desired number of fuzzy rules is eventually obtained.

When the training set comprises imprecise data, these steps are altered as follows:

1. Weight and loss of a rule: given a set of fuzzy weights f ~O
j
gNj ¼ 1, the weight of a rule is obtained by finding the minimum

of the fuzzy-valued function ~ZðwÞ defined below.

m ~Z ðwÞðzÞ ¼max

(

min
N

j ¼ 1
fm

~X
j ðxjÞ,m

~O
j ðojÞg ð31Þ

such that z¼
X

N

j ¼ 1

zðoj
,xj,wÞ and

X

N

j ¼ 1

wj ¼ 1

)

: ð32Þ

A fuzzy ranking is used to define an order among the values of ~Z ðwÞ, whose minimal element wi is found with a genetic

algorithm, as done in the preceding section. The loss of a rule, used for searching the best unweighted rules, is the fuzzy

set ~Zð1Þ.

2. The weights of the instances are updated after the inclusion of the ith rule as follows:

~O
j

ðtþ1ÞðoÞ ¼maxfminfm
~X
j ðxÞ,m

~O
j

ðtÞ

ðuÞg9o¼ Kzðwi,x,uÞg, ð33Þ

where K is a normalization factor chosen so that the distance between the (fuzzy arithmetic-based) sum of all the

weights Oj
ðtþ1Þ and the value 1 is as low as possible.

6. Numerical results: obtaining a rule-based model of the ice accretion strength in helicopter blades

In this section, the methodology proposed in this study is applied to a rotorcraft application, and the results compared

to similar knowledge discovery techniques that are not based in imprecise probabilities.

Helicopter rotors are more susceptible to icing than fixed-wing vehicles. Ice accretion can be critically dangerous, as it

can modify the vehicles aerodynamics, create excessive vibration, increase drag [52], and introduce ballistic concerns as

thick ice layers sheds off. A passive ice-phobic coating that prevents ice formation is the ideal solution to helicopter rotor

blade ice accretion, thus the search for ice-phobic materials for rotorcraft applications is ongoing.

To quantify the ice adhesion performance of novel ‘‘ice-phobic’’ coatings, many researchers have attempted to measure

the shear adhesion strength of ice to these materials. The published data varies significantly, even for isotropic materials

[38]. According to this source, the conditions governing ice accretion physics are: Liquid Water Concentration (LWC) of the

cloud, Median Volume Diameter (MVD) of the super-cooled water droplets in the cloud, ambient temperature and impact

velocity. There are authors that claim the surface roughness also influences the ice adhesion strength [47], but there is not

a consensus about this dependence [38]. Computer models of rotorcraft icing are based on empirical data that is gathered

in experiments under controlled conditions. The experiments that will be discussed in this work were developed in the

Vertical Lift Research Center of Excellence at the Pennsylvania State University. This center has developed a new icing

facility for rotorcraft icing research, named ‘‘Adverse Environment Rotor Test Stand’’ (AERTS) which is designed to generate

an accurate icing cloud around test rotor [33].

Please cite this article as: L. Sánchez, et al., A methodology for exploiting the tolerance for imprecision in genetic fuzzy
systems and its application to characterization of rotor blade leading edge materials, Mech. Syst. Signal Process. (2012),
doi:10.1016/j.ymssp.2012.02.009

L. Sánchez et al. / Mechanical Systems and Signal Processing ] (]]]]) ]]]–]]]8



6.1. Technical data of applied measuring devices

The AERTS facility is formed by an industrial 6 m�6 m�6 m cold chamber where temperatures between ÿ25 1C and

0 1C can be achieved. The chamber floor is waterproofed with marine lumber covered by aluminum plating, and a drainage

system in the perimeter of the room collects melted ice during the post-test defrosting process. Inside the chamber, and

surrounding the rotor, there is a ballistic wall in the shape of an octagon. The ballistic wall is formed by 15.2 cm thick

weather resistant lumber reinforced with 0.635 cm thick steel, and covered by aluminum plating for weather protection. A

photograph of the chamber, as seen from above, is provided in Fig. 3. Convection lines and a set of fans located inside the

chamber cool the facility.

A total of 15 NASA standard icing nozzles are located in the chamber ceiling to generate the icing cloud. The nozzles are

similar to those used in the NASA IRT and Goodrich Icing Tunnel. The nozzles are arranged into two concentric circles

located 50.8 cm and 106.6 cm from the center of the rotor shaft to distribute the cloud evenly in the chamber. The nozzles

operate by aerosolizing water droplets with a combination of water and air as per nozzle calibration curves available in

Ref. [26]. The water and air pressures are measured at the input of the water and air lines to the nozzles, which ensures

precise readings of the pressure differential controlling the droplet size. The number of nozzles operating and the MVD of

the water droplets dictate the LWC in the room. The water system is generally similar to the air system, with added

complications in maintaining a constant and controllable supply of pure water. A series of pumps and a feedback control

system is in place to maintain the water pressure at desired conditions.

In the center of the chamber, a 89.5 kW motor rotates the lower hub of a QH-50D DASH UAV vehicle. The configuration

has the capability of reaching 1500 RPM with 1.37 m radius blades, reproducing full-scale helicopter tip speeds.

6.2. Variability of the data and control parameters

There are several parameters influencing the measurements that must be controlled in the ice system. According to

[33], these are the active nozzles, temperature, MVD, LWC, icing time, water input temperature and water purity. However

it is difficult to settle in a set of values for these parameters, as they are subject to slight changes during the tests. The

reasons under this variability are detailed in the following paragraphs.

6.2.1. Temperature control issues

Temperature is arguably the most important parameter for icing testing [20]. In the AERTS system, three thermocouples

are installed around the test chamber to monitor the chamber temperature. Two sensors are mounted near the rotor plane,

and one is mounted on the rotor stand just below the rotor head. There rarely exists an agreement between the readings of

the different thermocouples. Determining the actual temperature of the test chamber is a problem of information fusion

[1,22]. Furthermore, the kinetic friction of the rotor and the input of warm water to the chamber alters the temperature,

thus it makes sense to describe each experiment with two different magnitudes: beginning and end of test temperatures.

6.2.2. Mean volumetric diameter of the water droplets

The size of the water droplets coming from the nozzles is another important parameter. In the AERTS facility, droplet

size is not directly measured. Instead, droplet size is based upon NASA standard nozzle calibration tables and experimental

readings of pressure differentials between the water and the air inputs to the nozzles. To maintain the particle size it is

necessary to adjust the water and air pressure during testing. A feedback control system monitors the nozzle input

pressures and adjusts the water and air pressure to maintain particle size, as shown in Fig. 4. The adjustment made is

Fig. 3. Photograph of the AERTS facility. The AERTS Hub is collective and lateral cyclic capable. Max RPM:1000. Max. rotor diameter: 9 ft (2.75 m). Max.

power: 120 HP.
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never exactly achieved neither maintained during the experiment and this implies that the droplet size can not be

determined with an exact value and is estimated with a 715% error.

6.2.3. Liquid water content (LWC)

LWC is the third parameter that cannot be directly measured or calculated during testing in the chamber. Static LWC

sensors are not applicable to the facility because they require flow velocities of 15 m/s (49 ft/s) to determine the LWC

value of a cloud. To provide these devices with proper operational velocity conditions, the LWC sensors should have been

mounted on the blades. Due to the size and cost of these sensors, their rotation was not possible. Even if they could be

rotated, centrifugal forces on the devices might impair their ability to accurately measure LWC [34].

Instead, this parameter is controlled by the number of active nozzles and input pressures, which are adjusted during

the experiment, and its estimated value is calculated after each test based upon accreted ice thickness. LWC is calculated

from total ice thickness per unit time (within 720% error, see [34]). This is yet another source of variability in the models

of ice adhesion shear force.

6.2.4. Other factors

The three mentioned parameters are responsible of most of the uncertainty in the test data, however there are many

other factors with a smaller relevance, for instance the characteristics of the rotor or the rotation speed. The properties of

the material can also influence the results. The material will be described by two parameters, namely the surface

roughness and the Young’s modulus. The surface roughness is measured by hand with a profilometer. The assumed value

of this parameter is the average of the maximum and minimum of the measurements taken at the stagnation point of the

coating. Lastly, the Young’s modulus is the ratio between the linear stress and the linear strain for a given material. This

value is not experimentally determined at AERTS facilities.

6.3. Properties of the set of data

The set of data describing the ice adhesion strength of helicopter rotor blades materials has been produced after

repeated experiments with nickel, titanium and stainless steel. A threshold of 34.4 kPa (5PSI) has been selected for the ice

adhesion strength. There are seven variables, some of which are imprecisely perceived, whose description follows:

1. Initial temperature (1C): This is the temperature measured by a thermocouple prior to the start of the icing cloud that

promotes ice accretion. This temperature is read three times: when the experiment begins, when the rotor reaches the

desired revolutions per minute (RPM) and before turning on the icing cloud (dry room). These three measurements of

the initial temperature are combined into a fuzzy value with the procedure described in [43].

2. Final temperature (1C): This is the temperature read at the end of the test, once the ice sheds off from the rotor. The

increase in temperature during testing is due to inability of the chamber to compensate for the increase in temperature

Fig. 4. Labview monitor: to adjust the water and air pressure to maintain particle size.
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provided by kinetic friction of the rotor. Again, this temperature is defined by a fuzzy term provided by the aggregation

of readings of several thermocouples.

3. Median Volume Diameter (MVD) of the water particle ðmmÞ: This is the size of the water droplets in the cloud

(measured in micrometers). The size is calculated from calibration tables provided by NASA (NASA icing nozzles used).

The nozzles work via atomization of water. The water and air pressure provided determine the water droplet size. Both

water and air pressure are measured by pressure sensors located at the water and air input to the nozzles. Acceptable

variability of MVD is 715%, thus an interval-valued variable is used. The width of these intervals is determined by a

human expert.

4. Liquid Water Concentration (LWC) ðg=m3Þ: This is the severity of the icing cloud. LWC quantifies how much water is

there in an icing cloud. This quantity is not measured or directly calculated during testing. Test procedures for

determining LWC are based on the measurement of ice thickness at the stagnation location of a blade for a given time

interval. Acceptable variability of LWC is 720% which implies again an interval-valued input whose width is

determined by the expert.

5. Revolutions per minute (RPM) (cycles/min): This is the velocity of rotation of the rotor. The RPM of the rotor is

measured by a Hall sensor that quantifies the rotational speed of the shaft. The measurements obtained from this

sensor are combined into a fuzzy value. Shedding tests are usually conducted at 350 RPM to avoid severe imbalance

issues when shedding is not symmetric, so the rotor RPM was limited to 350 (170 ft/s or 51.86 m/s tip speed) for safety

reasons. The rotor was designed to achieve 800 RPM (380 ft/s or 115.82 m/s tip speed), but shedding rotor imbalance

concerns limited operational RPM.

6. Surface roughness of tested material (min): This is the surface roughness of the coating being tested. The surface

roughness is measured by hand with a profilometer. The quantity provided is a fuzzy value obtained from the values

measured at the stagnation point of the coating.

7. Young’s modulus (Pa): This is the ratio of the linear stress to the linear strain for a given material, a crisp value.

6.4. Granularity of the linguistic partitions

The first stage in the proposed methodology consists of selecting an appropriate granularity for the variables. In Table 2

the Mutual Information Matrix (MIM), computed with the software provided in reference [32], is included. The last row

measures the dependence between each design parameter and the outcome of the experiment (variable ‘‘C’’ for ‘‘Class’’). It

is remarked that there is a significant degree of epistemic uncertainty in these data that is being ignored for computing this

initial matrix; each fuzzy value has been replaced by its modal point, and intervals were replaced by their centerpoints.

In Table 3 the same values have been produced by the QCH-based algorithm in Section 4, partitioning each variable into

five linguistic terms (see Fig. 6). Observe in the table and in Fig. 5 that this discretization does not discard a relevant

amount of information. In this last figure, the white circles are the values of the crisp MIM, and the black circles, along with

their corresponding intervals, are the estimations obtained after the application of the new procedure. In all cases, the

bands of the new estimation contain or are near the crisp estimations, thus it can be concluded that the discretization into

five terms does not discard a relevant amount of information.

6.5. Learning fuzzy classification rules

In Table 4 a selection of rule-based models, built upon these terms, and learnt with different algorithms, is shown for

the ice accretion strength problem. These models are labelled ‘‘crisp data’’ when they have been obtained after removing

the uncertainty of the conflicting measurements, as discussed in the preceding section.

The genetic algorithms have been run with a population size of 100, probabilities of crossover and mutation of 0.9 and

0.1, respectively, and limited to 150 generations. The fuzzy partitions of the labels are uniform and their granularity is the

minimum value without a significant loss of information (measured by means of the generalized mutual information

defined in the preceding sections). All the imprecise experiments were repeated 100 times with bootstrapped resamples of

the training set. Each test set contains 1000 bootstrap resamples. Membership functions were not learned or tuned for

Table 2

Mutual information matrix between the modal points of all the variables in the study, using the algorithm described in [32].

Variable Tini Tfin MVD LWC RPM Rough Young

Tfin 1.02

MVD 0.25 0.33

LWC 0.18 0.23 0.16

RPM 0.22 0.18 0.19 0.15

Rough 0.22 0.23 0.24 0.16 0.11

Young 0.08 0.03 0.13 0.12 0.08 0.08

C 0.25 0.31 0.12 0.09 0.06 0.05 0.01
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preserving their linguistic interpretability, however rules have multiplicative weights, that compensate for the absence of

tuning [42].

The following conclusions can be drawn:

1. The use of boosting is preferred over Genetic Cooperative-Competitive Learning (GCCL), as the misclassification rate of

the former algorithm is better for both crisp and fuzzy data and the readability of both GCCL and boosting is similar for

the problem at hand.

In Fig. 7 there is a boxplot showing that the accuracy of the model produced by the boosting algorithm for low quality

data (p-LQD_Boos algorithm) is better than that of Genetic Cooperative-Competitive Learning for Low Quality Data

algorithm (LQD_GCCL), in both crisp and fuzzy data.

2. The results are noticeably better when fuzzy data is used, in both accuracy (as shown in the preceding boxplot) and

understandability of the model (5% less linguistic terms, on average).

For supporting this last claim, in Table 5 two examples are included where the information provided by the fuzzy data-

based approach about temperature and roughness is preferred. In these cases, the use of fuzzy data allows concluding

that the nickel is a valid material when the temperature is fairly low, independently of the roughness (rules #9 of the

fuzzy model and #7 of the crisp model). On the contrary, if crisp data is used, the roughness appears as a relevant factor,

contradicting recent works [38]. In turn, if rules #9 of the fuzzy model and #8 of the crisp model are compared, the

fuzzy model predicts that any material is valid when the final temperature is fairly low, again independently of the

roughness. The crisp model wrongly predicts that this behavior only happens with nickel.

Summarizing the knowledge elicited from the experimental data, the ice shear adhesion strength grows when either

the temperature decreases or the roughness is higher. Stainless steel should be discarded unless the temperature is very

high and the roughness is low. Nickel is the most appropriate material, improving titanium, and therefore it should

Table 3

Mutual information matrix computed from ill-known data by means of the a QCH-based estimation and granularity five, as proposed in this paper.

Variable Tini Tfin MVD LWC RPM Rough Young

Tfin [0.83 0.93]

MVD [0.17 0.26] [0.23 0.34]

LWC [0.12 0.18] [0.18 0.25] [0.11 0.18]

RPM [0.12 0.21] [0.16 0.24] [0.15 0.23] [0.09 0.16]

Rough [0.13 0.20] [0.18 0.26] [0.20 0.27] [0.13 0.19] [0.14 0.22]

Young [0.06 0.11] [0.09 0.15] [0.08 0.14] [0.09 0.13] [0.09 0.16] [0.18 0.26]

C [0.27 0.33] [0.29 0.32] [0.06 0.11] [0.06 0.10] [0.03 0.08] [0.05 0.09] [0.02 0.02]

0.0

0.1

0.2

0.3

0.4

Mutual information

n
a

ts

Tini Tfin MVD LWC RPM Rou You

Fig. 5. Graphical comparison of the mutual information between the outcome of the experiment and the different features. White circles: estimation

from the modal points of the data with the algorithm in [32]. Black circles and vertical bars: expectation of the mutual information computed with a

QCH-based estimation and granularity five, as proposed in this paper, showing that the linguistic discretization is not losing a significant amount of

information.
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become the baseline for all future tests. Interestingly enough, some of the results obtained by the learning algorithm agree

with previous works in the field (see [38]) and there are facts that have been discovered by the artificial intelligence-based

method proposed herein that were not noticed by the experts in these studies.

7. Concluding remarks

Learning linguistic rules from empirical data allows the engineer to make predictions about the future performance of a

product without the need of extensive experimentation. Obtaining precise experimental data is a time-consuming and

costly process, thus there is interest for algorithms that do not discard data with missing or ill-perceived values. In this

paper it was proposed a methodology for obtaining classification rules from low quality data, whose epistemic uncertainty

is modeled by means of possibility distributions. The loss of information in the linguistic discretization of the features was

measured with a novel measure of mutual information, based upon the use of Quasi-Continuous Histograms.

The outcome of this methodology, when applied to the prediction of ice accretion strength in helicopter rotors, is a

human-understandable model that predicts whether a material is suitable or not for its use, as a function of the desired

environmental and icing conditions. By using the imprecise data collected in 42 experiments it has been confirmed that

the outcomes of the linguistic models learned from possibilistic data improve those of statistical and machine learning

techniques that assume stochastic imprecision in the variables.

Initial Temp.

Final Temp.

MVD

1
Low Fairly-Low Medium Fairly-High High

1

Low Fairly-Low Medium Fairly-High High

1

Low Fairly-Low Medium Fairly-High High

LWC

RPM

Roughness

1
Low Fairly-Low Medium Fairly-High High

1
Low Fairly-Low Medium Fairly-High High

1
Low Fairly-Low Medium Fairly-High High

Young’s

modulus

1
Low Fairly-Low Medium Fairly-High High

-25.75 -14.5-22 -18.25 -10.75 -7 -3.25

-23.3 -19.8 -16.3 -12.8 -9.3 -5.8 -2.3 

-1.25 4 9.25 14.5 19.75 25 30.25

1.25 3 4.75 6.5 8.25 10 11.75

335.25 340 344.75 349.50 354.25 359 363.75

45 70 95 120 145 170 195

97.5 120 142.5 165 187.5 210 232.5

Fig. 6. Fuzzy sets defining the meaning of the linguistic terms in the knowledge base.
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Table 4

Rule base obtained for the dataset ‘‘Ice_Shedding’’ with the algorithms ‘‘p-LQD_Boos’’ and ‘‘LQD_GCCL’’, when the imprecise data in all the input fields is

replaced by the mean of the measurements in conflict. Interval-valued errors are understood as the margin between the prediction errors in the best and

worst cases.

Algorithm and error Rules

p-LQD_Boos imprecise data,

error ¼ ½0:228,0:297�

R1: If initial temp. is low and final temp. is low and RPM is medium then class is no

R2: If final temp. is low and RPM is fairly high and roughness is fairly low then class is no

R3: If LWC is fairly low and RPM is fairly high and roughness is fairly high and Young’s modulus is low then

class is no

R4: If final temp. is low and roughness is fairly high and Young’s modulus is low then class is no

R5: If final temp. is high and MVD is low and LWC is fairly low and roughness is medium and Young’s modulus

is high then class is no

R6: If initial temp. is medium and final temp. is high and LWC is medium and RPM is medium and roughness is

fairly low then class is yes

R7: If MVD is medium and roughness is fairly low then class is yes

R8: If final temp. is fairly high and LWC is medium and RPM is medium and Young’s modulus is fairly high then

class is yes

R9: If final temp. is fairly low and MVD is medium and LWC is medium and Young’s modulus is fairly high then

class is yes

R10: If final temp. is high and MVD is fairly high and LWC is fairly low and Young’s modulus is low then class is

yes

p-LQD_Boos crisp data,

error ¼ ½0:292,0:361�

R1: If final temp. is low and LWC is fairly high and RPM is fairly high and Young’s modulus is high then class is

no

R2: If initial temp. is fairly high and final temp. is fairly high and LWC is high and RPM is high and Young’s

modulus is high then class is no

R3: If initial temp. is low and MVD is fairly low then class is no

R4: If RPM is fairly high and roughness is low and Young’s modulus is high then class is no

R5: If final temp. is medium and RPM is fairly high and Young’s modulus is high then class is no

R6: If final temp. is fairly high and roughness is fairly low then class is yes

R7: If initial temp. is fairly low and LWC is high and RPM is high and roughness is high and Young’s modulus is

fairly high then class is yes

R8: If initial temp. is fairly Low and final temp. is failry low and MVD is fairly high and RPM is and high then

class is yes

R9: If final temp. is medium and LWC is fairly low and RPM is high and roughness is low and Young’s modulus

low is then class is yes

R10: If initial temp. is fairly high and final temp. is fairly high and MVD is fairly low and roughness is high then

class is yes

LQD_GCCL imprecise data,

error ¼ ½0:470,0:545�

R1: If initial temp. is fairly low and final temp. is fairly high and MVD is low and LWC is medium and RPM is

medium and roughness is fairly low and Young’s modulus is medium then class is yes

R2: If initial temp. is medium and final temp. is fairly high and MVD is fairly high and LWC is medium and RPM

is medium and roughness is fairly high and Young’s modulus is medium then class is no

R3: If initial temp. is fairly low and final temp. is medium and MVD is medium and LWC is fairly low and RPM is

medium and roughness is fairly low and Young’s modulus is medium then class is yes

R4: If initial temp. is high and final temp. is high and MVD is fairly low and LWC is medium and RPM is fairly

low and roughness is medium and Young’s modulus is low then class is no

R5: If initial temp. is medium and final temp. is fairly high and MVD is fairly high and LWC is medium and RPM

is medium and roughness is fairly low and Young’s modulus is medium then class is yes

R6: If initial temp. is low and final temp. is low and MVD is low and LWC is medium and RPM is medium and

roughness is fairly low and Young’s modulus is medium then class is no

R7: If initial temp. is fairly low and final temp. is failry low and MVD is medium and LWC is medium and RPM is

medium and roughness is fairly low and Young’s modulus Medium is then class is yes

R8: If initial temp. is fairly low and final temp. is medium and MVD is medium and LWC is fairly low and RPM is

medium and roughness is fairly high and Young’s modulus is medium then class is no

LQD_GCCL crisp data,

error ¼ ½0:507,0:576�

R1: If initial temp. is high and final temp. is high and MVD is fairly low and LWC is fairly high and RPM is fairly

low and roughness is medium and Young’s modulus is low then class is no

R2: If initial temp. is fairly low and final temp. is medium and MVD is medium and LWC is fairly high and RPM

is medium and roughness is fairly low and Young’s modulus is medium then class is yes

R3: If initial temp. is medium and final temp. is medium and MVD is medium and LWC is fairly high and RPM is

failry low and roughness is high and Young’s modulus is medium then class is no

R4: If initial temp. is low and final temp. is low and MVD is fairly low and LWC is fairly high and RPM is

medium and roughness is fairly low and Young’s modulus is medium then class is no

R5: If initial temp. is fairly high and final temp. is fairly high and MVD is fairly high and LWC is fairly high and

RPM is fairly low and roughness is fairly low and Young’s modulus is medium then class is yes

R6: If initial temp. is low and final temp. is low and MVD is fairly high and LWC is fairly high and RPM is

medium and roughness is fairly low and Young’s modulus is medium then class is no

R7: If initial temp. is fairly low and final temp. is medium and MVD is medium and LWC is fairly high and RPM

is medium and roughness is low and Young’s modulus is medium then class is yes
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