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An extension of the Adaboost algorithm for obtaining fuzzy rule-based systems from
low quality data is combined with preprocessing algorithms for equalizing imbalanced
datasets. With the help of synthetic and real-world problems, it is shown that the per-
formance of the Adaboost algorithm is degraded in presence of a moderate uncertainty
in either the input or the output values. It is also established that a preprocessing stage
improves the accuracy of the classifier in a wide range of binary classification problems,
including those whose imbalance ratio is uncertain.
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1. Introduction

The Adaboost algorithm20,21 has been recently applied to learn fuzzy classification

rules from imprecise data.19 In this extension, each fuzzy rule is regarded as a

simple classifier or weak learner. The knowledge base, as a whole, is an ensemble of

learners. For an ensemble comprising N rules or weak learners of the form

If x is Aj then truth(class is cj) = sj , (1)

where j = 1, . . . , N , it is assumed that the output of the j-th rule, given an input x,

comprises a class label (which is always the same, cj) and a degree of certainty in

the classification, whose value is sj ·Aj(x). Using the extension principle, these rule

bases can be applied to interval or fuzzy data. This treatment allows the application

of this method to problems with imprecisely perceived features or a partial lack of

knowledge about the class labels attributed to some instances.

Some datasets with imprecise class labels are possibly imbalanced .18 For in-

stance, imagine a problem with three classes A, B and C where the ranges of
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the relative frequencies of the classes are fA ∈ [0.05, 0.25], fB ∈ [0.05, 0.35] and

fC ∈ [0.3, 0.9]: the majority class can be either B or C, and the actual frequencies

might be 0.25, 0.35 and 0.4 but it is also possible that they are 0.05, 0.05 and 0.9.

This fact is relevant for Adaboost-based learning algorithms because, as it will

be shown later in this paper, the performance of this type of learning is severely

degraded in problems with medium or high imbalance ratios. Following with the

same example, since the actual imbalance ratio can be as low as 0.4/0.25 or as high

as 0.9/0.05, it seems reasonable to adapt those techniques used for preprocessing

imbalanced crisp datasets to low quality data. In this paper this treatment is com-

bined with the boosting-based learning mentioned before, and its effects discussed.

The organization of this work is as follows: the following section briefly recalls,

for the convenience of the reader, the most relevant parts of the Adaboost algo-

rithm, and its application to produce fuzzy rules from either precise or imprecise

data. In Sec. 3, the influence of the uncertainty in input and output variables in

the performance of boosting-obtained rule bases is studied. In Sec. 4, some pre-

processing methods for possibly imbalanced datasets are recalled, and their use in

combination with the considered algorithm is discussed. In Sec. 5, some properties

of the proposed algorithms are evaluated on a number of data sets and compared

to those of other GFS for low quality data. In Sec. 6, some concluding remarks and

future work are discussed.

2. Adaboost-Based Learning of Fuzzy Rule Based Classifiers

The use of Adaboost for learning fuzzy rule bases19 is briefly described in this

section. Let X be the feature space, and let x be a feature vector x = (x1, . . . , xn) ∈

X. Let p be the number of classes. The training set is a sample of m classified

examples (xi, yi), where xi ∈ X, yi ∈ {c1, . . . , cp}, 1 ≤ i ≤ m.

The Knowledge Base (KB) of a Fuzzy Rule-Based Classifier System (FRBCS)

comprises N rules. The antecedents of the rules are logical combinations of fuzzy

logic asserts, whose degrees of truth are modeled by N fuzzy subsets Aj ∈ F(X),

forming a fuzzy partition A = {Aj}j=1...N of the feature space. Fuzzy rules are

linguistic statements

if x is Aj then truth(c1) = sj1 and · · · and truth(cp) = sjp . (2)

An instance x is assigned to the class cq, where

q = arg maxk=1,..., p

N∨

j=1

Aj(x) ∧ sjk (3)

where “∧” is the product and “∨” is the arithmetic sum, so called “maximum voting

scheme”.10
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2.1. Adaboost-based learning of fuzzy rule based classifiers from

crisp data

Fuzzy rules are learned with an extension of confidence-rated Adaboost.20 For

binary problems, let the classes be numbered with the values −1 and 1, i.e.

yi ∈ {−1, 1}. The space of weak learners is comprised by the product space of

the fuzzy partition and the class labels, A× {−1, 1}. The fitness of a fuzzy rule is

fitness( if x is Aj then cj) =
∑

i

wi exp(−yic
jAj(xi)) (4)

and the number of votes of this rule is the value of α minimizing

Z(α) =
∑

i

wi exp(−αyiA
j(xi)). (5)

The weights wi of all the instances are recalculated each time a new weak learner

is added to the ensemble,

wi ←
wi exp(−αjyiA

j(xi))∑
i wi exp(−αjyiAj(xi))

. (6)

2.2. Adaboost-based learning of fuzzy rule based classifiers from

fuzzy data

It has been shown that it is not immediate to regard a fuzzy KB as an ensemble

when data are imprecise.19 If the input is an interval then the output is the set of

classes

class(X) =

{
arg max

k=1...p

N∑

j=1

Aj(x)sjk | x ∈ X

}
. (7)

On the contrary, if the KB is regarded as an ensemble of weak classifiers with a

set-valued number of votes each then the output is the set

bclass(X) = notdom
k=1...p





N⊕

j=1

sjk ⊙ {A
j(x) | x ∈ X}



 (8)

where the operator “notdom” means

notdom
k=1...p

{Vk} = {q | Vq � Vr, r = 1, . . . , p} (9)

and the precedence between set-valued votes is

A ≺ B ⇐⇒ a < b for all a ∈ A, b ∈ B (10)

A ‖ B = ¬((A ≺ B) ∨ (B ≺ A)) (11)

A � B = (A ≺ B) ∨ (A ‖ B) . (12)

Observe that

class(X) ⊆ bclass(X) (13)

but the equality does not hold, in general.
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If the data is fuzzy, the most specific output of the classifier is the fuzzy set

whose membership function is as follows:

class(X̃)(t) = max

{
α | t = arg max

k=1...p

N∑

j=1

Aj(x)sjk and X̃(x) ≥ α

}
. (14)

In case the KB is regarded as an ensemble of weak classifiers, where each one of

them is assigned a fuzzy number of votes, the output is in turn the fuzzy set

bclass(X̃)(t) = max{α | t ∈ bclass([X̃ ]α)} . (15)

The membership function of the fuzzy fitness of a rule is

fĩtness{(x̃i,ỹi)}(if x is Aj then cj)(t)

= max{α | t ∈ fitness{([x̃i]α,[ỹi]α)}(if x is Aj then cj)} , (16)

where t is a real number and

fitness{(xi,yi)}
(if x is Aj then cj)

=
⊕

i:yi=cj

wi ⊙ {exp(A
j(x)) | x ∈ xi}

⊕
⊕

i:yi∩cj=∅

wi ⊙ {exp(−A
j(x)) | x ∈ xi}

⊕
⊕

i:yi 6=cj , yi∩cj 6=∅

wi ⊙ {exp({A
j(x),−Aj(x)}) | x ∈ xi} . (17)

The number of votes of the k-th consequent part of a rule is approximated by the

center of the set

αk = log(1− Ek)− log(Ek) (18)

where

Ek = K ⊙

(
⊕

{i:ck 6∈yi}

wi ⊙ {A
j(x) | x ∈ xi}

⊕
⊕

{i:ck 6=yi∧ck∈yi}

wi ⊙ {{0, A
j(x)} | x ∈ xi}

)
(19)

and

K =

(
∑

i

max{wi} ·max{Aj(x) | x ∈ xi}

)−1

. (20)

For interval-valued data, the reweighting of the instances is done as follows

w′
i =

⋃

x∈xi

w′
i(x) (21)



August 23, 2012 11:50 WSPC/118-IJUFKS S0218488512400156

Combining Adaboost with Preprocessing Algorithms for Extracting Fuzzy Rules 55

where w′
i(x) =

K ′ ⊙ wi ⊙






ck = yi exp(−αkA
j(x))

ck 6∈ yi exp(αkA
j(x))

else exp(αkA
j(x) ⊙ {−1, 1})

(22)

and K ′ is a crisp normalization factor such that max⊕iw
′
i = 1. The equivalent

expression for fuzzy data is similar, defining w′
i = [w̃′

i]α and xi = [x̃i]α for α ∈ [0, 1].

3. A Study About the Influence of Uncertainty in Boosting-Based

FRBS

Boosting fuzzy rules has some singularities that make it different from other uses

of the Adaboost algorithm. In the first place, if rules are descriptive9 then the

catalog of weak learners is finite. As a consequence of this, small perturbations in

the training set may trigger significant changes in the outcome of the learning. In

the second place, small clusters of instances may not be significant enough to be

assigned a rule of its own. Both problems are magnified in imbalanced or possibly

imbalanced datasets.

To illustrate this behavior, in this section a synthetical dataset with known

theoretical properties will be used. The sensitivity of the learning algorithm with

respect to different imbalance ratios, uncertainty in the input and uncertainty in

the class labels will be studied and the need for an equalization of the dataset

empirically justified.

3.1. Description of the problem

Data from two bidimensional Gaussian populations will be analyzed. Density func-

tions of both classes have the form

fi(x) =
1

2π|Ci|1/2
e−

1

2
(x−µi)

tC−1

1
(x−µi) . (23)

The parameters of the majority class are

C1 =

[
4 0

0 4

]
µ1 =

[
2 0

]
. (24)

The minority class is denser and located to the left of the majority class:

C2 =

[
1 0

0 1

]
µ2 =

[
−2 0

]
. (25)

The optimal classifier for this problem is given by the ellipse

IR · f1(x) − f2(x) = 0 (26)

where IR is the imbalance ratio, i.e. the quotient between the a priori probabilities

of majority and minority classes. In Fig. 1 the optimal decision surface is displayed

for imbalance ratios of 13.3, 8 and 1. Note that in the first two cases the optimal

decision surface misclassifies a high fraction of the instances of the minority class.4
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Fig. 1. Optimal Bayes-error classifier for different imbalance ratios.
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Fig. 2. Boosting fuzzy rule-based classifier for different imbalance ratios.

3.2. Boosting for different imbalance ratios

Linguistic partitions of size 3 (SMALL, MEDIUM and LARGE) were defined for

both variables. Six fuzzy rules were obtained by application of the boosting algo-

rithm mentioned in the preceding section. Uncovered areas were assigned to the

minority class.

The application of the boosting algorithm to data depicted in Fig. 1 produces

the decision surfaces shown in Fig. 2. Observe that the minority class has not been

assigned a rule for IR = 13.3 or IR = 8. Preprocessing the dataset with an over-

sampling algorithm would convert either of these problems into the situation shown

in the rightmost part, IR = 1. The minority class will be assigned rules for imbal-

ance ratios lower than IR = 6.6 (not shown in the figure). These images show how

dependent are the results of the boosting algorithm to the imbalance ratio:22 the

decision surface for IR = 1 is close to the optimal one in the region separating both

classes, however the approximation has failed for medium-imbalanced problems.
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Fig. 3. Boosting fuzzy rule-based with imprecise inputs classifier for different imbalance ratios.

3.3. Uncertainty in the input variables

The sensitivity of the decision surfaces to the imbalance ratio causes that small

changes in the input variables produce large deviations in the outcome of the learn-

ing, as mentioned. In this third set of experiments each instance has been sur-

rounded by a rectangle of size 0.25. The output of the extension of boosting to

uncertain data is plotted in Fig. 3. Each point in the domain of the variables has

been colored in a different shade of grey: dark grey if it has labelled as majority,

light grey if minority or medium grey if non-conclusive.

Non-conclusiveness results from interval-valued numbers of votes of the majority

class having non-null intersection with those of the minority class, as mentioned in

the preceding section. Observe that a possible deviation of ±0.25 units in the input

has a negligible influence in the problem where IR = 1, but most of the points of the

combined sample are in the indecision region for IR = 13.3 or IR = 8. The influence

of the imbalance in the spread of the non-conclusive area starts with IR = 5 (not

shown in the figure). These figures also show that the effect of a preprocessing stage

for equalizing the number of instances of each class is relevant for problems with

uncertainty in the input variables, as the apparent effect of this uncertainty (the

presence of an area where the class of an object cannot be decided) is magnified for

imbalance ratios as low as 5.

3.4. Uncertainty in the class labels: semi-supervised learning

The fourth set of experiments illustrate the influence of the uncertainty in the class

labels in the results of the learning. Points of the majority class to the left of the

abscissa x = 1, and points of the minority class to the right of x = −1, have been

labeled with both classes. Given the interpretation of multiple labels followed in

this study,19 this assignment produces a semi-supervised problem,2 since a fraction

of the training set is unlabeled. The results of the low quality data-based boosting
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Fig. 4. Boosting fuzzy rule-based with imprecise outputs classifier for different imbalance ratios,

without removing the unlabelled examples.
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Fig. 5. Boosting fuzzy rule-based with imprecise outputs classifier for different imbalance ratios,
after removal of unlabelled examples.

are shown in Fig. 4. The ratio between the proportion of instances of majority and

minority classes for the three problems displayed in this last figure are, from left

to right, [2.8, 29.7], [2.3, 17.8] and [0.5, 1.3]. The first and the second are possibly

imbalanced datasets, and in the rightmost problem there is not information enough

for determining which class appears more frequently.

Unlabeled examples cannot be handled by the standard Adaboost algorithm,

thus in Fig. 5 these were removed. The comparison of the results of Figs. 4 and

5 shows that the extension of Adaboost to low quality data is exploiting the in-

formation in the unlabeled elements for IR = 6.6; removing these elements causes

that the decision surface ignores the minority class, as shown in the middle part

of Fig. 5. On the other hand, the decision surfaces for IR = 1 are similar in both

figures, showing again the usefulness of a preprocessing algorithm in this context.
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4. Preprocessing Imbalanced Low Quality Datasets

In the preceding section it was shown that the Adaboost algorithm may not produce

a meaningful classifier in the presence of imbalanced datasets. It was also mentioned

that a possible solution for this problem consists in combining this algorithm with

a preprocessing stage capable of equalizing imprecise datasets.

In previous works,18 three different categories of preprocessing algorithms for im-

balanced problems and low quality data were proposed and their effect over Generic

Cooperative-Competitive Learning was compared. In the next section, similar ex-

periments will be carried to determine whether the algorithms that are discussed

in the following serve the same purpose:

• Under-sampling methods: These obtain a subset of the original dataset by

eliminating some of the instances of the majority class. Given that the concept

of “minority class” is not precise under our assumptions, as discussed in the

preceding section, those algorithms discarding elements of all classes are preferred

to those removing elements from either the majority or the minority classes.

This category comprises the Condensed Nearest Neighbour rule (CNN),8

Tomek links,23 One-sided selection (OSS),12 Neighbourhood cleaning rule

(NCL)13 based on the Wilson’s Edited Nearest Neighbour (ENN)24 and the ran-

dom under-sampling. In the context of FRBCS for imprecise data, the most

relevant extended methods are LQD NCL, LQD ENN and LQD CNN. In par-

ticular, the extended ENN algorithm is useful because this algorithm removes

elements from all classes.

• Over-sampling methods: These obtain a superset of the original dataset by

replicating some of the instances of the minority class or creating new ones from

the original minority class instances. This is the assumed behavior for the prepro-

cessing algorithm in the previous section, where highly imbalanced datasets were

transformed into balanced sets by adding new synthetic instances, drawn from

the known statistical distribution of the minority class, until the imbalance ratio

is one. In the preceding section this statistical distribution was assumed known,

however in practical problems it is approximated by interpolation. The consid-

ered methods are Synthetic Minority Over-sampling Technique (SMOTE)3 and

random over-sampling. LQD SMOTE consistently obtained better results than

the random-over-sampling for GCCL. In the next section these experiments will

be extended to boosting.

• Hybrid methods: These combine over-sampling and under-sampling, and

obtain a set by combining the two previous methods. This behavior has been

modeled in the preceding section, when elements with a similar probability of

being assigned to either class were removed from the training set. For instance,

SMOTE+Tomek Link and SMOTE+ENN. The best combination for GCCL

was SMOTE+ENN. This last algorithm and SMOTE+Tomek links produced

similar results, near to those obtained with SMOTE, however ENN tended to

remove more instances than the Tomek links did, so it produced a deeper data
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cleaning.7 The application of these techniques to Adaboost is studied in the fol-

lowing section.

Summarizing this section, the catalog of preprocessing algorithms that will be com-

bined with Adaboost comprises LQD NCL, LQD ENN, LDQ CNN, LQD SMOTE

or LQD SMOTE+ENN. The performance of the combination of Adaboost and a

preprocessing algorithm for low quality data will be assessed in the next section,

for different synthetic and real-world datasets.

5. Numerical Results

Nine binary datasets comprising vague data are analyzed in this section. Some

problems are possibly imbalanced, thus they have been preprocessed with different

algorithms, as mentioned. Part of this data is taken from two different real-world

scenarios addressed by us in previous works. These are “future performance of

athletes”17 and “ice adhesion strength measurement from helicopter rotor blades”.1

The structure of this section is as follows: a brief description of the datasets used

in the experimentation is included first. Second, the experimental settings and the

metrics used for evaluating the results are discussed, as well as those mechanisms

used for removing the uncertainty in the data, that are needed for comparing this

algorithm to crisp classification systems. Finally, the results obtained by Adaboost

with and without combining it with preprocessing algorithms are explained, and

will also be contrasted with other learning algorithms: the cooperative-competitive

(GCCL) method,16 the combination of GCCL and same preprocessing algorithms

used in this study18 and in the last place the cost-oriented GCCL.17

5.1. Description of the datasets

The name, the number of examples (Ex.), number of attributes (Atts.), the classes

(Classes) and the fraction of patterns of each class (%Classes) for each dataset are

displayed in Table 1. Observe that the proportions of the different patterns are

intervals, because the class labels of some instances are imprecise.a

5.1.1. Athleticism at Oviedo University

The group of datasets “Athleticism at Oviedo University” comprises eight different

sets, whose descriptions are as follows:

(1) Dataset “B200ml-I”: This dataset is used to predict whether an athlete will

improve certain threshold in 200 meters. All the indicators or inputs are fuzzy-

valued and the outputs are sets.

aThese datasets are available online: https://ccia35.edv.uniovi.es/datasets.
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Table 1. Summary descriptions of datasets with meta-information.

Dataset Ex. Atts. Classes %Classes

B200mlI 19 4 2 ([0.47, 0.73], [0.26, 0.52])

B200mlP 19 5 2 ([0.47, 0.73], [0.26, 0.52])

Long 25 4 2 ([0.36, 0.64], [0.36, 0.64])

BLong 25 4 2 ([0.36, 0.64], [0.36, 0.64])

100mlI 52 4 2 ([0.44, 0.63], [0.36, 0.55])

100mlP 52 4 2 ([0.44, 0.63], [0.36, 0.55])

B100mlI 52 4 2 ([0.44, 0.63], [0.36, 0.55])

B100mlP 52 4 2 ([0.44, 0.63], [0.36, 0.55])

Ice shedding 42 7 2 ([0.47, 0.54], [0.46, 0.53])

(2) Dataset “B200mlP”: Same dataset as “B200mlI”, with an extra feature: the

subjective grade that the trainer has assigned to each athlete. All the indicators

are fuzzy-valued and the outputs are sets.

(3) Dataset “Long”: This dataset is used to predict whether an athlete will improve

certain threshold in the long jump. All the features are interval-valued and the

outputs are sets. The coach has introduced his personal knowledge.

(4) Dataset “BLong”: Same dataset as “Long”, measurements or inputs are defined

by fuzzy-valued data, obtained by reconciling different measurements taken by

three different observers.

(5) Dataset “100ml”: Used for predicting whether a threshold in the 100 metres

sprint race is being achieved. Each measurement was repeated by three ob-

servers. Input variables are intervals and outputs are sets.

(6) Dataset “100mlP”: Same dataset as “100mlI”, measurements have been re-

placed by the subjective grade the trainer has assigned to each indicator.

(7) Dataset “B100mlI”: Same dataset as “100mlI”, measurements are defined by

fuzzy-valued data.

(8) Dataset “B100mlP”: Same dataset as “100mlP”, measurements are defined by

fuzzy-valued data.

5.1.2. Ice adhesion strength measurement from helicopter rotor blades

This data was taken from an ongoing study at the Pennsylvania State University

(U.S.), where ice adhesion strength testing of different coatings for helicopter rotor

blades is being conducted under the Boeing Company funding. An Adverse Environ-

ment Rotor Test Stand (AERTS) facility is available to reproduce icing conditions

for a 9 feet diameter helicopter rotor. The rotor blades are instrumented to quantify

ice accretion mass and to calculate the shear adhesion strength of the accreted ice

to a given coating.1 The datasets based on the ice adhesion strength measurement

from helicopter rotor blades (“Ice shedding”) are obtained from the study realized

by the expert from several runs in the facility. This is a binary problem, whose
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Table 2. List of the parameters controlled in the ice adhesion strength measurement

from helicopter rotor blades.

Parameter Unidades Description

Initial temperature ◦C Temperature measured before icing

Final temperature ◦C Temperature read at the end of the test

MVD of the water particle µm Size of the water droplets in the cloud

Liquid water concentration g/m3 Amount of water in an icing cloud

Revolutions per minute cycles/sec Speed of the rotor

Roughness µin Surface roughness of tested material

Young’s modulus Pa Linear strain of tested material

inputs (the parameters that need to be controlled, see Table 2) are imprecise, and

whose outputs are the groups determined by the expert (A,B).

5.2. Experimental settings

All the experiments have been run with a population size of 100, probabilities of

crossover and mutation of 0.9 and 0.1, respectively, and limited to 150 generations.

The fuzzy partitions of the labels are uniform and their size is 5.

A bootstrap-based experimental design has been used. Each algorithm has been

trained with 100 samples with replacement of the training set. Each sample has the

same size as the training set, however a number of the train elements are repeated

and therefore not all the training instances are used at each repetition. These unused

or “out of the bag” elements are used for testing. For making an accurate estimation

of the bounds of the classification error in these imprecise elements, 1000 crisp

samples compatible with these test elements are generated, and upper and lower

bounds of the classification error are assigned to the best and worst result of these

tests. For instance, let the training set of an hypothetical classification problem

with one input variable comprise five instances

([2, 3] C1)

([3, 4] {C1, C2})

([2, 4] C2)

([3, 5] {C1, C2})

([2, 6] C1)

(27)

and let a training resampling be

([2, 3] C1)

([2, 3] C1)

([2, 4] C2)

([2, 4] C2)

([3, 5] {C1, C2})

(28)
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thus its corresponding test partition is

([3, 4] {C1, C2})

([2, 6] C1).
(29)

1000 crisp test sets compatible with this imprecise test partition are generated at

random. These test sets have two elements each, of the form

(x1 c1)

(x2 c2),
(30)

where x1 ∈ [3, 4], c1 ∈ {C1, C2}, x2 ∈ [2, 6] and c2 = C1. The FRBCs will

be tested in these 1000 test sets, and the minimum and maximum of the 1000

test error values computed. The whole process is repeated 100 times, and the

test error is defined as the mean, using interval arithmetic, of the 100 pairs

(minimum test error,maximum test error).

For those experiments involving preprocessed data, the classes were equalized

before the learning stage whenever a low quality dataset was possibly imbalanced.

The preprocessing algorithms are intended to balance the relative frequencies of

all the classes, taking into account the imprecise outputs in the process. The same

processing is applied to the 100 bootstrapped resamples of the training set.

5.3. Evaluating algorithms over a mix of crisp and imprecise data

When an interval is used to express the result of an algorithm, this interval defines

our best bounds about the mean values of the test error. Wider intervals denote a

lesser knowledge about the result, which might be any point in that interval. For

instance, an algorithm scoring a result [0, 0.10] is not necessarily better than other

scoring [0.05, 0.10].

Interval-valued errors are computed by means of the expression that follows

(recall Eq. 8):

error =

{
1

m

m∑

i=1

ei | ei ∈ ei

}
(31)

where

ei =






0 bclass(xi) = yi and #(yi) = 1 ,

1 bclass(xi) ∩ yi = ∅ ,

{0, 1} else

(32)

and the accuracy is defined as

accuracy = 1⊖ error . (33)
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In words, if an instance is correctly classified without doubt (because the target

is not set-valued and the classifier produced the correct class) this instance does

not contribute to the error. If the instance is misclassified for sure (because the

output of the classifier does not intersect with the set of classes of the target) the

contribution to the total error is of 1/m. Otherwise, the contribution is the pair of

values {0, 1/m}, meaning that the instance might have been misclassified or not.

The same course of reasoning has been used to generalize the confusion matrix of

a classifier, the geometric mean and all the needed measurements of the quality of

a classifier in imbalanced problems.18

The statistical comparison between samples of interval or fuzzy data is not a

mature field yet. There still exist some controversy in the definition of the most

appropriate statistical tests. Some authors propose the use of interval or fuzzy p-

values,5 while other researchers define a crisp distance between fuzzy values and

use this distance for formulating statistical tests with crisp p-values between fuzzy

data.11,15 The interpretation used in this study is compatible with the first point

of view, however at this moment only bootstrap tests for paired comparisons have

been defined.6

That being said, in many cases the same information provided by a multiple

comparisons test can be obtained with graphical representations.14 It was decided

to use a graphical representation, based on our own extension of the boxplots.16

In this case, the boxes show the 75% percentile of the maximum and the 25%

percentile of the minimum errors. The interval-valued median of the maximum and

minimum errors are represented too, as well as the mean of the minimum and

maximum fitness, using dotted lines in this last case, because these are not part of

an standard boxplot.

5.4. Analysis of the results and discussion

In this section the behavior of the Adaboost algorithm for low quality data19

either with raw or preprocessed information, will be compared with that of

other approaches in the literature. In the first place, the preprocessing meth-

ods LQD SMOTE and LQD SMOTE+ENN will be combined with Adaboost

and GCCL,16 and also with a cost-oriented algorithm.17 In a second set of

experiments, the preprocessing methods LQD SMOTE, LQD SMOTE+ENN,

LQD ENN, LQD CNN and LQD NCL will be applied in combination with the

best classifier in the first stage.

It is remarked that these preprocessing methods are not designed for improving

the accuracy, but a different quality metric suitable for imbalanced data. In this

work, the geometric mean of the diagonal of the confusion matrix was chosen. Nev-

ertheless, in this section we will show that, under certain conditions, preprocessing

the data not only improves this metric but it also improves the misclassification

rate.
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Table 3. Behaviour of “LQD GCCL”, isolated and in combination with the preprocessing algo-

rithms LQD SMOTE and LQD SMOTE+ENN in several datasets (Athleticism and Ice shedding).

LQD GCCL LQD SMOTE+GCCL LQD SMOTE+ENN+GCCL

Dataset AccTst AccTst GMTst AccTst GMTst

100mlI [0.622,0.824] [0.625,0.826] [0.609,0.806] [0.619,0.821] [0.602,0.796]

100mlP [0.640,0.824] [0.653,0.832] [0.628,0.806] [0.646,0.825] [0.627,0.808]

B100mlI [0.631,0.828] [0.633,0.831] [0.620,0.812] [0.581,0.779] [0.541,0.694]

B100mlP [0.651,0.840] [0.650,0.839] [0.619,0.809] [0.642,0.831] [0.633,0.809]

Mean [0.636,0.829] [0.641,0.832] [0.619,0.808] [0.622,0.814] [0.600,0.776]

Long [0.410,0.679] [0.486,0.755] [0.377,0.605] [0.414,0.683] [0.296,0.467]

BLong [0.375,0.674] [0.444,0.744] [0.333,0.596] [0.445,0.743] [0.355,0.612]

B200mlI [0.527,0.768] [0.516,0.760] [0.402,0.643] [0.594,0.838] [0.429,0.621]

B200mlP [0.520,0.738] [0.518,0.736] [0.399,0.604] [0.514,0.732] [0.361,0.534]

Mean [0.458,0.714] [0.510,0.748] [0.377,0.612] [0.491,0.749] [0.360,0.558]

Athletics mean [0.547,0.790] [0.575,0.775] [0.498,0.710] [0.555,0.778] [0.480,0.667]

Ice shedding [0.550,0.619] [0.660,0.729] [0.623,0.689] [0.655,0.724] [0.625,0.690]

Table 4. Behaviour of “LQD GCCL” with costs, and “LQD Boost”, isolated and in combination with
the preprocessing algorithms LQD SMOTE and LQD SMOTE+ENN in several datasets (Athleticism
and Ice shedding).

MR LQD GCCL LQD Boost LQD SMOTE Boost LQD SMOTE+ENN Boost

Dataset AccTst AccTst AccTst GMTst AccTst GMTst

100mlI [0.620,0.822] [0.624,0.830] [0.639,0.841] [0.637,0.830] [0.612,0.814] [0.604,0.799]

100mlP [0.633,0.812] [0.642,0.820] [0.659,0.838] [0.636,0.808] [0.654,0.833] [0.640,0.816]

B100mlI [0.615,0.812] [0.644,0.842] [0.628,0.825] [0.632,0.820] [0.606,0.803] [0.600,0.784]

B100mlP [0.650,0.839] [0.650,0.839] [0.670,0.859] [0.654,0.840] [0.642,0.830] [0.630,0.808]

Mean [0.629,0.821] [0.640,0.832] [0.649,0.840] [0.639,0.824] [0.628,0.820] [0.618,0.801]

Long [0.443,0.712] [0.492,0.760] [0.525,0.794] [0.492,0.772] [0.472,0.741] [0.418,0.683]

BLong [0.414,0.714] [0.470,0.770] [0.459,0.769] [0.443,0.739] [0.489,0.789] [0.447,0.744]

B200mlI [0.582,0.822] [0.585,0.829] [0.511,0.756] [0.459,0.691] [0.545,0.789] [0.453,0.670]

B200mlP [0.567,0.785] [0.594,0.812] [0.554,0.782] [0.525,0.718] [0.556,0.773] [0.441,0.626]

Mean [0.501,0.758] [0.534,0.791] [0.512,0.775] [0.479,0.730] [0.515,0.770] [0.439,0.680]

Athletics [0.566,0.790] [0.587,0.813] [0.580,0.807] [0.559,0.777] [0.571,0.795] [0.528,0.740]
mean

Ice shedding — [0.639,0.708] [0.682,0.751] [0.684,0.745] [0.657,0.726] [0.651,0.712]

5.4.1. Comparison of a combination of Adaboost and oversampling to other

combinations of GFSs with preprocessing, and cost-based GFSs

The compared accuracies between the extended cooperative-competitive algorithm

GCCL16 (labelled “LQD GCCL”) and Adaboost (labelled “LQD Boost”),19 with

the preprocessing algorithms LQD SMOTE and LQD SMOTE+ENN,18 are shown

in Tables 3 and 4 for binary data. These tables contain the accuracies of the different
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Fig. 6. Accuracies of several GFSs able to support low quality data, highlighting the behaviour
of LQD Boosting.
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Fig. 7. The combination of preprocessing and Adaboost is not significantly better than the
application of Adaboost to the raw data in athleticism datasets.

classifiers in the test data (columns labelled AccTst) and the geometric mean of the

diagonal of the confusion matrix (columns labelled GMTst), thus higher values are

better.
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Fig. 8. Behaviour of several GFSs able to support low quality data with LQD SMOTE and
LQD SMOTE+ENN, highlighting the behaviour of Boosting.

The following conclusions can be drawn from these tables:

• The Adaboost algorithm improves the best combination of GCCL either with

preprocessing or costs. In Fig. 6 the mean errors of the datasets being stud-

ied were displayed: “200 ml” and “Long” corresponding to LQD GCCL (with

and without the preprocessing stages LQD SMOTE and LQD SMOTE+ENN),

LQD boost and LQD GCCL with a fitness function that penalizes the different

misclassifications with the help of a linguistic cost matrix defined by a human

expert (MR LQD GCCL).

• The preprocessing of the dataset “Ice shedding” improves the accuracy of GCCL.

The results of Adaboost were similar to those of the combination of GCCL and

preprocessing in this dataset. However, Adaboost is better than GCCL if the

preprocessing is not used.

• The number of misclassifications in athleticism datasets is not reduced when the

preprocessing algorithms are applied (LQD SMOTE and LQD SMMOTE+ENN,

see Fig. 7) in the Adaboost algorithm. Similar to the preceding case, Adaboost

is better than GCCL but the combination of GCCL and preprocessing offers a

performance similar to that of Adaboost alone.

• Boosting achieves a better accuracy in athleticism and “Ice shedding” than

GCCL, when SMOTE and ENN are applied. This improvement is more notice-

able for those datasets with a higher imbalance ratio; in Fig. 8 a combined boxplot

of all the datasets is plotted that shows that there is a slight improvement in the

final results when SMOTE or SMOTE+ENN are applied prior to Adaboost than

prior to GCCL.

• The linguistic quality of the Adaboost is better, because the size of the knowledge

base is smaller for the same or better accuracy. This improvement is consistent

for all uses of the algorithm, isolated or in combination with any preprocessing,

as shown in Table 5.
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Table 5. Average number of rules obtained with several preprocessing methods combined with

“LQD GCCL” and “LQD Boost”.

LQD GCCL LQD SMOTE+GCCL LQD SMOTE+ENN+GFS

100mlI 24 23 23

100mlP 23 26 30

B100mlI 23 33 32

B100mlP 23 25 25

Long 16 35 28

BLong 16 26 25

B200mlI 13 30 25

B200mlP 13 35 22

Ice shedding 50 50 50

Avg. Rules 22 30 27

LQD Boost LQD SMOTE+Boost LQD SMOTE+ENN+Boost

100mlI 24 24 24

100mlP 7 7 7

B100mlI 20 20 20

B100mlP 7 7 7

Long 26 26 26

BLong 22 22 22

B200mlI 7 7 —

B200mlP 7 7 7

Ice shedding 50 50 50

Avg. Rules 19 19 19

• If the geometric mean is considered, LQD SMOTE is the best technique, alone or

in combination with ENN. For instance, the dataset “Long” scores [0.377, 0.605]

with GCCL and LQD SMOTE, and this value is improved up to [0.492, 0.772]

if the same preprocessing is applied to boosting. The improvement is higher,

from [0.296, 0.467] to [0.418, 0.683] if LQD SMOTE+ENN is considered. Gener-

ally speaking, the best preprocessing algorithm from the point of view of the geo-

metric mean is LQD SMOTE, which is also the best technique for crisp data.7,18

5.4.2. Adaboost combined with a selection of oversampling and

undersampling algorithms

In Table 6 the behavior of the Adaboost algorithm with respect to the prepro-

cessing methods LQD SMOTE, LQD SMOTE+ENN, LQD ENN, LQD CNN and

LQD NCL is detailed. The conclusions that can be obtained are:

• LQD SMOTE is the best alternative even for those cases where the imbalance

ratio is low. Our results confirm that the conclusions in the literature about these

algorithms7,18 can also be extended to vague data.

• The use of LQD CNN is not advocated, since there are cases where the prepro-

cessing degrades the performance of the classification algorithm.



August 23, 2012 11:50 WSPC/118-IJUFKS S0218488512400156

Combining Adaboost with Preprocessing Algorithms for Extracting Fuzzy Rules 69

Table 6. Behaviour of boosting with several preprocessing algorithms in low quality and possibly

imbalanced binary datasets.

LQD SMT LQD SMT+ENN LQD ENN LQD NCL LQD CNN

+Boost +Boost +Boost +Boost +Boost

Dataset GMTst GMTst GMTst GMTst GMTst

100mlI [0.637,0.830] [0.604,0.799] [0.620,0.809] [0.610,0.802] [0.360,0.505]

100mlP [0.636,0.808] [0.640,0.816] [0.610,0.772] [0.591,0.756] [0.344,0.478]

B100mlI [0.632,0.820] [0.600,0.784] [0.614,0.793] [0.623,0.811] [0.339,0.483]

B100mlP [0.654,0.840] [0.630,0.808] [0.606,0.777] [0.617,0.792] [0.414,0.568]

Long [0.492,0.772] [0.418,0.683] [0.431,0.656] [0.445,0.703] [0.441,0.693]

BLong [0.443,0.739] [0.447,0.774] [0.416,0.711] [0.433,0.736] [0.256,0.497]

B200mlI [0.459,0.691] [0.453,0.670] [0.379,0.522] [0.463,0.651] [0.302,0.432]

B200mlP [0.525,0.718] [0.441,0.626] [0.232,0.327] [0.341,0.463] [0.334,0.375]

Athletics mean [0.559,0.777] [0.528,0.740] [0.436,0.670] [0.515,0.714] [0.348,0.503]

Ice shedding [0.487,0.537] [0.405,0.447] [0.410,0.450] [0.424,0.465] [0.334,0.375]

Behaviour of LQD_Boosting respect to several preprocessing mechanism
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Fig. 9. Behaviour of low quality data in the Boosting algorithm respect to several preprocessing
mechanism (upper bound of GM metric).

• LQD ENN cleans both majority and minority instances, improving LQD CNN,

as expected. The results of this algoritm are intermediate between LQD NCL y

LQD CNN, as shown in previous works.18 See Figure 9 for the summarized differ-

ences among these preprocessing algorithms in the atlethics datasets, according

to the upper bound of the GM metric.
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6. Concluding Remarks

An extension of the Adaboost algorithm for learning fuzzy rules from imprecise

data was combined with different preprocessing algorithms in this paper. While the

primary purpose of these preprocessors is to equalize the dataset and improve met-

rics of quality different than the misclassification rate, it has been shown that, for

binary problems, these techniques also help to improve the fraction of classification

errors. The reasons under this improvement have been studied with the help of a

synthetical problem, where the sensitivity of Adaboost to different imbalance ratios

and uncertainties in both the input and the output variables were assessed.
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