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Image  registration  is  a widely  tackled  research  topic in  the  computer  vision  and  the  computer  graphics
fields.  This  problem  aims  to  find  an optimal  transformation  or correspondence  between  images  acquired
under  different  conditions.  Recently,  a new  3D  image  acquisition  device  based  on the  time-of-flight  tech-
nology  has  appeared  which  obtains  range  images  from  real-time  3D  video  sequences.  In this  contribution,
we  aim  to study  the  feasibility  of  using  this  new  class  of  cameras  to  face  the  3D  model  reconstruction
procedure.  Our  proposal  is two-fold.  First,  we  introduce  a novel  image  preprocessing  pipeline  in  order  to
mage registration
volutionary computation
D modelling
ime of flight
acterial foraging

improve  the  quality  of  time-of-flight  range  images  and a subsequent  feature  extraction  method  consid-
ering both  2D  and  3D  images.  As  second  major  objective,  we propose  an  adaptation  of  the  evolutionary
bacterial  foraging  optimization  algorithm,  which  has  recently  emerged  as  a very  powerful  technique  for
real parameter  optimization  and  gained  a high  interest  for distributed  optimization  and  control,  to  tackle
the  range  image  registration  problem.  Finally,  we  analyse  the performance  of  our  proposal  against  other
state-of-the-art  evolutionary  image  registration  methods.
. Introduction

In the last decade, 3D range imaging has been widely used in
he community in order to obtain 3D models of real-world objects.
n the last few years, range imaging-based technology has opened
ew lines of research in the computer vision (CV) and the computer
raphics (CG) fields [1], mainly focused on the processing of the
eometry and the topology of range images, e.g. in noise reduction,
nalysis, segmentation, classification and 3D model reconstruction.
D representation of real-world scenarios is essential for a wide
ariety of applications as robotics, automotive engineering, video
urveillance or medical imaging [2–4].

One of the greatest challenges of modern range imaging devices
as been the acquisition of quality 3D images in real time. Recently,
he time-of-flight (ToF) technology used in some real-time 3D video
evices, e.g. the Photonic Mixer Device (PMD) [5], has evolved sig-

ificantly. Unlike traditional range scanners, the image accuracy of
his novel technology is highly dependent on resolution and other
mbient and light scene factors. As first approach to face these
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shortcomings, it is necessary to balance the frame rate in order
to reduce the source of error. Nevertheless, more suitable solutions
are needed to obtain quality 3D images.

Image registration (IR) [6,7] is a fundamental task in CV that
aims at finding the optimal transformation between two (or more)
images. Such transformation estimation is formulated as an opti-
mization problem where the degree of resemblance between
images is measured by a similarity metric. The optimization process
applied by traditional IR methods, e.g. the iterative closest point
(ICP) algorithm [8,9] is highly influenced by image noise, image dis-
cretization, image misalignment, among others. On the other hand,
evolutionary computation (EC) [10,11], in particular evolutionary
algorithms (EAs) [4,12] have demonstrated its ability to overcome
some of the shortcomings of traditional IR methods, achieving a
robust performance in complex optimization problems.

Recently, natural swarm inspired algorithms like particle swarm
optimization (PSO), ant colony optimization (ACO) have found their
way into this domain and proved their effectiveness. Following
the same trend of swarm-based algorithms, Passino proposed the
BFOA in [13]. Application of group foraging strategy of a swarm
of Escherichia coli bacteria in multi-optimal function optimization

is the key idea of the new algorithm. Bacteria search for nutri-
ents in a manner to maximize energy obtained per unit time.
Individual bacterium also communicates with others by sending
signals. A bacterium takes foraging decisions after considering two
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ever, the success of convergence of the algorithm will depend on
the initial pose of the images.1
Fig. 1. A general framewor

revious factors. The process, in which a bacterium moves by tak-
ng small steps while searching for nutrients, is called chemotaxis
nd key idea of BFOA is mimicking chemotactic movement of vir-
ual bacteria in the problem search space. It has already drawn
he attention of researchers because of its efficiency in solving
eal-world optimization problems arising in several application
omains. Unlike others evolutionary-based approaches, the under-

ying biology behind the foraging strategy of E. coli is emulated in
n extraordinary manner and used as a simple optimization algo-
ithm. In this work we aim to analyse the performance of a novel
esign of BFOA facing a challenging real-world problem.

This contribution is structured as follows. Section 2 is aimed to
ntroduce the 3D reconstruction problem using evolutionary com-
utation (EC). Also, this section details the main features of ToF
ameras. Next, Section 3 describes our IR proposal based on a spe-
ific image processing pipeline using ToF devices and a hybrid EA to
ackle the IR problem. Section 4 introduces the experimental study.
inally, Section 5 draws some conclusions and future lines.

. Background

.1. Image registration
In the last few years, specialized communities have expe-
ienced a growing interest using range scanners for building
igh-quality 3D models of real-world objects and scenes [14,3],
e IR optimization process.

and avoiding humans to manually produce these models using
laborious and error-prone CAD-based approaches [15]. To do so,
improved techniques within the 3D model reconstruction pipeline,
e.g. IR algorithms, has been contributed to date [2].

There is not a universal design for a hypothetical IR method
that could be applicable to all registration tasks, since various
considerations on the particular application must be taken into
account [6]. However, IR methods usually require the follow-
ing four components (see Fig. 1): two input Images named as
Scene Is = {�p1, �p2, . . . , �pn} and Model Im = {�p ′

1 , �p ′
2 , . . . , �p ′

m}, with
�pi and �p ′

j
being image points; a Registration transformation f,

being a parametric function relating the two images; a Similarity
metric function F, in order to measure a qualitative value of close-
ness or degree of fitting between the transformed scene image,
noted f′(Is), and the model image; and an Optimizer that looks
for the optimal transformation f inside the defined solution search
space.

Usually, the iterative closest point (ICP) algorithm [8,16] is the
de-facto standard for doing pair-wise IR of range images to build the
3D models in a process called 3D modelling/reconstruction. How-
1 The experiments conducted in [12] demonstrated the poor performance of ICP
when facing IR problems considering different degrees of image misalignment.
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Fig. 2. Pair-wise ev

.2. Evolutionary image registration

As stated before, the Optimizer component is of great impor-
ance in the success of the IR procedure. Since the ICP algorithm
as introduced, many contributions have been proposed extend-

ng and partially solving its shortcomings [17,18,9]. Nevertheless,
hey still assume it is provided an initial near-optimal alignment of
mages.

On the other hand, EAs [11,10] make use of computational mod-
ls of evolutionary processes as key elements in the design and
mplementation of computer-based problem solving systems. In
he last decade, there is an increasing interest on applying EC
rinciples to complex optimization tasks due to their capability
o scape from local optima. Genetic algorithms (GAs) [19,20] are
he more extensively adopted EAs facing optimization problems.
hese algorithms are based on the mechanism of natural selec-
ion, where the search space of the problem is represented as a
ollection of individuals (problem solutions) or chromosomes (con-
orming a population), each of them simultaneously operating on
everal points of the search space. At every generation (iteration),
ome of the candidate solutions are paired and parts of each indi-
idual (block of genes) are mixed (crossover operator) to form
wo new solutions, and additionally, every individual is subject to
andom changes (mutation operator). The next generation is pro-
uced by selecting (selection operator) individuals from the current
ne on the basis of their fitness or objective function, which meas-
res how good is each candidate solution and guides the search
pace exploration strategy. The objective function is one of the
ost important components of heuristic methods whose design

ramatically affects the performance of the method implemented.
ptimization procedures using stochastic schemes as those based
n EAs are theoretically and empirically found to provide global
ear-optimal solutions for complex optimization problems, with
everal of them from the computer vision and the computer graph-
cs fields [21–25].

The first attempts to face the IR problem using EC can be found in
he 1980s [26], where a GA [27] was developed for tackling rigid IR
f 2D angiography images. Since then, evolutionary IR has become

 very active area due to the successful results and several well-
nown EAs have been considered to tackle the IR optimization
rocess [12].

Unlike ICP-based algorithms, there is no formal proof to asses
hat EC-based IR methods converge to the global optimum. In order
o address this theoretical shortcoming, a two-stage IR approach

see Fig. 2) is usually considered in which a first coarser and time
onsuming stage using EAs, named as pre-alignment, and a refine-
ent step usually2 applying ICP-based IR algorithms are applied in

2 Other refinement approaches have been utilized [28].
nary IR approach.

a serialized fashion. Despite this limitation, evolutionary IR meth-
ods are able to achieve accurate results even without requiring any
refinement stage as we  will see in Section 4.

2.3. Time of flight cameras

ToF cameras are able to capture real-time 3D video. In particular,
PMD  scanners are based on the time-of-flight principle. Usually,
they consist on a CCD or a CMOS sensor and some LEDs or laser
diodes that illuminate the scene with a continuous modulated light,
which is reflected by the object surface and demodulated in the
receiver. The difference between the emitted light and the reflected
one generates a phase delay which is used to measure the distances:

Di = cϕi

4�fmod
(1)

where fmod is the modulated signal frequency, c is the light speed,
and ϕi is the phase shift of the signal.

Additionally, the phase delay generates an offset from which
it is possible to obtain more information about the signal, e.g.
intensity or amplitude values. Specifically, the PMD  scanner has
a 204 × 204 resolution, 25 fps frame rate, and a CMOS sensor
with suppression of background illumination (SBI) features which
allows to measure distances between 0.3 and 7 m.  However, one
of the main limitations of the real-time 3D video devices is their
low resolution [29–32], reaching values between 62 × 32 and
640 × 860 pixels. Other difficulties are the appearance of system-
atic errors as the generation of perfect sinusoidal modulated signal
(distance-related error) or by the non-linearity of the electronic
components (amplitude-related error). Moreover, non-systematic
measurement errors occur when ToF cameras illuminate the whole
scene at once. Usually, pixels have a high dynamic range generated
by the reflectivity of the object itself, thus leading to measurement
errors mostly motivated by cross-reflections or inter-reflections
when the signal is reflected on several surfaces (corners, concave
objects, etc.).

3. Image registration proposal

This section is devoted to introduce both the novel image pre-
processing pipeline including feature extraction and the hybrid
evolutionary IR algorithm proposed to tackle problem instances
considering range images acquired by ToF devices.

3.1. Image processing pipeline
As said, it is necessary to reduce the source of noise in order
to improve the quality of range images acquired by ToF cameras.
Our novel approach uses a three-staged pipeline scheme in which
range images obtained from 3D video sequences are enhanced by
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Fig. 3. Comparison between the original acquired image (left column)

uccessively reducing the level of noise. Next, the improved images
re used to obtain a small set of robust 3D features (that will guide
he IR process) as final step of the procedure. The first stage faces
he noise introduced in the calibration of the emitted signal [33]
nd consists on the acquisition of an averaged image of the object
y means of considering different values of both the integration
ime and the modulated frequency parameters. Additionally, the
rame rate is reduced, which is a quite effective solution as can be
hown in Fig. 3.

Despite the application of this first noise reduction stage, dis-
ance measurements are not accurate enough. Median or amplitude
orrection filters can be used [34]. Nevertheless, these solutions
re prone to provide robust results in presence of remaining noise.
hen, the second stage uses an enhancement technique based
n the Shading Constraint [35] principle. This technique follows
he Shape from Shading (SfS) [36] approach which is based on
he statistical dependence between range (3D) and intensity (2D)
nformation. The code of this stage was provided by the Action
ecognition and Tracking based on Time-of-Flight Sensors project
ARTTS, http://www.artts.eu). Fig. 4 shows enhanced results using
his novel technique when considering the local albedo operation

ode [35].
Quality improvement of range images achieved following these

tages is decisive for the subsequent third stage, i.e. 3D feature
xtraction. This last step of the proposed pipeline aims to obtain

 reduced subset of characteristic range image points in order to
oth speed up and guide the optimization process of the subse-
uent IR task. Specifically, it allows to extract two  subsets of 3D
eatures as follows:
First, the method proposed by Castellani et al. [37] is used to
extract a small quantity of disperse interest points. This tech-
nique builds a geometric descriptor for every salient point which
e corresponding image when the first stage is applied (right column).

allows to derive information about prominence levels, curvature,
and normals. The main advantage of this method is its robustness
against noise, holes and occlusions.

• The previous subset of features is increased with additional points
taking advantage of the intensity (gray-level) value acquired for
each range image point. To do so, we considered the Speeded Up
Robust Features (SURF) [38] algorithm which is one of the most
used invariant feature extraction methods in CV due to its robust-
ness against to noise, errors, and geometric distortions.

Then, our feature extraction proposal exploits the 2D intensity
values to extract more relevant information, thus avoiding certain
problems shown by similar methods when corrupted 3D geometric
information is present. Fig. 5 shows a graphical summary of the
proposed image preprocessing pipeline.

3.2. Hybrid bacterial foraging algorithm

Recently, Passino has proposed the BFOA search strategy [13]
has proposed the BFOA search strategy [13]. It is based on the forag-
ing approach of the E. coli bacteria, which consists on the following
four steps:

3.2.1. Chemotaxis
This process simulates the foraging behaviour of the bacteria
according to movement in two different ways. Depending on the
food concentration, it swims  for a period of time in the same direc-
tion or it tumbles to change its current direction. Mathematically,
�i(j, k, l) represents the ith bacterium in the jth chemotactic, kth

http://www.artts.eu
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Fig. 4. Comparison between the image obtained in the first stage (left c

eproductive, and lth elimination and dispersal phases. The tumble
ovement is modelled as in [13]:

(i) = �(i)√
�(i)T �(i)

(2)

here � indicates a random vector which direction lies in the range
− 1, 1]. Thus, the chemotactic step is defined:

i(j + 1, k, l) = �i(j, k, l) + C(i)�(i) (3)

here C(i) represents the step size taken during the swim step.

.2.2. Swarming
A  social behaviour is simulated in this stage. Those bacteria

laced in locations with high amount of nutrients tends to attract
ther bacteria, while those placed in hazardous zones tend to repel
hem. This cell to cell attraction-repulsion behaviour is modelled
s follows:

cc(�, P(j, k, l)) =
S∑

i=1

Jcc(�, �i(j, k, l))

=
S∑

i=1

[−dattract exp(−wattract�
p
m=1(�m − �i

m)2)]

S∑
p i 2
+

i=1

[−hrepell exp(−wrepell�m=1(�m − �m) )] (4)

here Jcc(�, P(j, k, l)) is the swarming value to be added to the objec-
ive function during the chemotactic step j; S is the total number
) and the subsequent one provided in the second stage (right column).

of bacteria; p is the number of variables (or dimensionality of the
problem) to be optimized; dattract, wattract, hrepell, and wrepell are dif-
ferent coefficients that represent the attractant and the repellant
intensity factors of the bacteria.

3.2.3. Reproduction
The least healthy bacteria, i.e. those who have found less amount

of nutrients during the chemotaxis, will die during the reproductive
step. On the other hand, the most healthy bacteria will be asexu-
ally split in two bacteria. Only the first half of the bacteria will be
considered for reproduction by means of replacing the remaining
bacteria in order to keep the swarm size constant.

3.2.4. Elimination-dispersal
The last step consists on the elimination or dispersal of some

bacteria based on the simulation of sudden or gradual changes in
the local environment, e.g. a rise of the temperature may  kill a group
of bacteria within a region. This event is simulated by the elim-
ination of some bacteria with a small probability and randomly
initializing a new bacteria for replacement.

The pseudo-code of the canonical BFOA [13] is described in the
following:

Step 1 Initialize p, S, Nc, Ns, Nre, Ned, Ped, C(i), �i

where:
p: search space dimension
S: total number of bacterium in the population

Nc: number of chemotaxis steps
Ns: maximum number of swims
Nre: number of reproductive steps
Ned: number of elimination-dispersal steps
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Fig. 5. The proposed image preprocessing pipeline.
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F function in 3D modelling [43] due to its robustness in presence
of outliers (e.g. acquired noisy range images) are present in the RIR
process, and it can be formulated as:
184 E. Bermejo et al. / Applied Sof

Ped: elimination-dispersal probability
C(i): chemotaxis step size
�i: bacterium i

tep 2 Elimination-dispersal loop l = l + 1:
tep 3 Reproduction loop k = k + 1:
tep 4 Chemotaxis loop j = j + 1:

For i = 1, . . . , S take the chemotactic step:
(a) Compute fitness:

J(i, j, k, l) = J(i, j, k, l) + Jcc(�i(j, k, l), P(j, k, l))
(b) Tumble:

(i) Generate a random vector: �m(i), m = 1, . . . , p
(ii) Move: �i(j + 1, k, l) = �i(j, k, l) +

C(i)(�(i)/
√

�(i)T �(i))
(iii) Compute the new fitness value J(i, j + 1, k, l)

(c) Swim:
Initialize m = 0; While m < Ns Do

• m = m + 1
• If J(i, j, k, l) < Jlast

update Jlast
move: �i(j + 1, k, l) = �i(j, k, l) +

C(i)(�(i)/
√

�(i)T �(i))
• Else

m = Ns. This is the end of the while statement and
the chemotactic step for bacterium i

(d) Repeat the process with the next bacterium i = i + 1 while
i /= S

tep 5 If j < Nc go to Step 4
tep 6 Reproduction:

(a) For each bacterium, k and l, compute:

Ji
health =

Nc+1∑

j=1

J(i, j, k, l) (5)

to represent the total health of the bacterium i along its
lifetime. Sort bacteria in ascending order of Jhealth

(b) The worst Sr bacteria (those with the highest Jhealth val-
ues) are replaced with the copies of those bacteria with
lower Jhealth values

tep 7 If k < Nre go to Step 3
tep 8 Elimination-Dispersal: eliminate the entire pool of bacteria

with probability Ped
tep 9 If l < Ned go to Step 2

Otherwise End

The main shortcoming of the canonical BFOA is the oscillation
f the state of the bacteria when they are close to the optimal val-
es, performing a considerable number of unnecessary chemotactic
teps. In order to avoid this, Dasgupta et al. [39] proposed a refined
ariant in which the step size is adapted as follows:

 = |J(�)|
|J(�)| + �

= 1
1 + �/|J(�)| (6)

here � is a positive constant. Thus, when J(�) is large the step
ize is accordingly increased (C → 1), and it will be decreased once
he bacteria approaches the global optima. This adaptive approach
utperforms the canonical BFOA as shown in [39]. Our hybrid BFOA
HBFOA) proposal is based on the latter. Additionally, HBFOA incor-
orates the following novel components to achieve a more suitable
erformance tackling the IR problem:

It may  occur in the original reproduction step that the bacterium
with less accumulated life (Jhealth) is not the best bacterium in

the swarm. We  propose an alternative based on a probabilistic
selection of the best bacteria. Instead of sorting the bacteria in
ascending order of their accumulated Jhealth values, a probabilistic
filter is applied previous to sorting of the bacteria. In first place,
uting 13 (2013) 3178–3189

the current life value of each bacteria is normalized considering
the life accumulated during the chemotaxis. Then, the best fit
bacteria to be reproduced are selected with inverse probability of
this normalized value. Finally, the bacteria are sorted and the first
half reproduce as in the original method. This strategy increases
the importance of those bacteria that obtain best fitness values
in the last chemotactic cycles.

• Despite the elimination-dispersal step considers a small prob-
ability of application (1/8), we tested the performance of the
algorithm usually gets down, thus losing the progress achieved
in the chemotactic steps. Thus, we  have considered the best
bacterium found so far to guide the dispersal step in order to min-
imize the negative impact of killing the best bacterium. Moreover,
each transformation parameter has a 30% probability of being
similar to the best bacterium.

• Besides, we introduce a set of elite solutions with the M (5) best
solutions found. After each chemotactic step, if the algorithm
finds a solution, pnew, better than the worst elite solution, em,
a recombination mechanism is applied considering pnew and a
randomly selected elite solution. Recombination is done by using
the BLX-  ̨ operator [40]. In case of the new solution, rnew, is better
than pnew, the former will replace both the worst elite solution,
em, and its parent. Otherwise, pnew will replace both em and its
parent.

• Finally, we  have introduced a local search (LS) strategy as a
hybridization with the Dasgupta et al.’s BFOA variant. In partic-
ular, we  considered the crossover-based LS (XLS) [41] method
which has obtained promising results in previous works [42]. XLS
is applied after the reproduction step.

3.3. Coding scheme and objective function

As said, the 3D model reconstruction pipeline involves the appli-
cation of several pair-wise alignments of two adjacent range images
(see Fig. 1) in order to obtain the final 3D model of the physical
object [3]. Therefore, every pair-wise IR method aims to find the
Euclidean motion that brings the scene view (Is) into the best pos-
sible alignment with the model view (Im). An Euclidean motion is
usually considered based on a 3D rigid transformation (f) deter-
mined by six or seven real-coded parameters when using either
Euler or axis plus angle representation for rotation, respectively.
Specifically, Euler-based rotation matrices suffer from the pitfall
of the gimbal-lock and specialized literature recommends using the
second scheme. Thus, we  define the rigid transformation as: a rota-
tion R = (�, Axisx, Axisy, Axisz) and a translation �t = (tx, ty, tz), with
� and �Axis being the angle and axis of rotation, respectively. Then,
the transformed points of the scene view are denoted by

f (�pi) = R(�pi) + �t, i = {1, . . . , n} (7)

where n is the number of points of the Is image. Hence, the pair-wise
RIR procedure based on EAs can be formulated as an optimization
problem developed to search for the Euclidean transformation3 f*

achieving the best alignment of both f(Is) and Im

f ∗ = arg min
f

F(Is, Im; f ) s.t. : f ∗(Is) ∼= Im (8)

according to the Similarity metric, F, being optimized. Among oth-
ers, the median square error (MedSE) is usually considered as the
3 For optimization, any RIR solution is represented as a seven-dimensional real-
coded vector x = 〈�, Axisx , Axisy , Axisz , tx , ty , tz〉.
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Table  1
Number of feature points extracted once the third step of the proposed pipeline is applied.

Goblin Teddy Pirate

0◦ 45◦ 0◦ 45◦ 0◦ 45◦

Raw 11,468 10,983 13,80
Features 224 228 26

Table 2
Parameter settings used in Passino, Dasgupta, and HBFOA algorithms.

Parameter Value Description

np 7 Problem dimension.
ns 16 Swarm size.
Nc 30 Number of chemotactic steps.
Ns 20 Number of swims.
Nre 6 Number of reproductive steps.
Probed 0.125 Elimination-dispersal probability.
Ned 3 Number of elimination-dispersal steps.
Ci 0.1 Step length (fixed only for Passino).
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�  0.0001 Constant value used to calculate the step
length (Ci) in Dasgupta and HBFOA algorithms.

(Is, Im; f ) = MedSE(d2
i ), ∀i = {1, . . . , n} (9)

here MedSE() corresponds to the median value of all the squared
uclidean distances, d2

i
, between the transformed scene point, f (�pi),

nd its corresponding closest point, �p′
j
, in the model view Im, that is:

2
i = ‖f (�pi) − �p′

j‖2, j = {1, . . . , m}  (10)

here m is the number of points of the Im image. Notice that, it
an be said that both the F function and either the fitness or the
bjective function (see Section 2.2) have the same meaning within

he optimization process. In order to speed up the computation of
he closest point of every f (�pi) point, indexing structures as kd-trees
28] or the grid closest point (GCP) transform [44] are often used.
pecifically, we have considered the kd-tree scheme together with

able 3
tatistical results obtained in the prealignment stage for each dataset showing minimum (

Goblin Teddy 

m 	 
 m 	

Passino 0.00610 0.01211 0.00243 0.01222 

Dasgupta 0.00569 0.01064 0.00383 0.01182 

HBOFA 0.00561 0.00760 0.00275 0.01226 

ICP-L  0.01167 0.01314 0.00027 0.02788 

GA-C  2.49962 303.279 346.837 11.3260 4
GA-S 0.00947 0.09527 0.07582 0.01638 

PSO-W 0.00842 0.01208 0.00087 0.01710 

SS-S  0.00568 0.00971 0.00340 0.01220 

old values highlight the best value obtained for minimum and mean results considering

able 4
tatistical results obtained in the refinement stage for each dataset showing minimum (m

Goblin Teddy 

m 	 
 m 	

Passino 0.00522 0.00896 0.00151 0.01164 0
Dasgupta 0.00519 0.00777 0.00224 0.01163 0
HBFOA 0.00518 0.00611 0.00179 0.01169 0

ICP-L 0.00934 0.00978 0.00008 0.01215 0
GA-C  0.01296 0.07843 0.02832 0.02851 0
GA-S 0.00525 0.06017 0.04673 0.01209 0
PSO-W 0.00522 0.00942 0.00112 0.01199 0
SS-S  0.00518 0.00700 0.00180 0.01172 0

old values highlight the best value obtained for minimum and mean results considering
2 13,641 11,340 10,210
1 259 254 224

a random sampling of the cloud points in our later experimental
study.

4. Experiments

4.1. Datasets

The range images used in the experiments were obtained from
video sequences acquired using a PMD[Vision]® Camcube 2.0 cam-
era considering three different objects. Each scan has been carried
out every 45 rotation degrees using a turn table [18]. Fig. 6 shows
the snapshots of the three considered objects, named: Goblin,
Teddy, and Pirate. The left column depicts the obtained range
images by using the first two  steps of the proposed pipelined image
processing scheme (Section 3.1).

Table 1 shows the number of points of both the preprocessed
range image (raw data) and the extracted features using the pro-
posed image processing pipeline (Section 3.1). It is remarkable the
reduced size of data the IR method should deal with, thereby it will
allow to speed up such a procedure.

4.2. Experimental design

Each problem instance to be tackled consists on the registration

of two adjacent views (0◦ and 45◦) of every of the three considered
objects. We compared the performance of our proposal, HBFOA,
against to the Passino’s canonical BFOA [13] (Passino) and the Das-
gupta et al.’s improved BFOA variant [39] (Dasgupta). Besides, we

m), mean (	) and standard deviation (
) values of MedSE. Results are scaled (×103).

Pirate

 
 m 	 


0.04671 0.03222 0.00625 0.00853 0.00325
0.01594 0.00249 0.00634 0.00728 0.00046
0.01413 0.00140 0.00647 0.00730 0.00052

14.7746 20.8366 0.00746 2.74628 0.50859
40.990 498.899 3.29864 412.714 520.820

0.29109 0.38431 0.00598 0.13806 0.37838
0.03689 0.01461 0.00594 0.00982 0.00276
0.01446 0.00161 0.00653 0.00738 0.00039

 each dataset.

), mean (	) and standard deviation (
) values of MedSE. Results are scaled (×103).

Pirate

 
 m 	 


.02181 0.02115 0.00549 0.00581 0.00012

.01205 0.00014 0.00552 0.00577 0.00011

.01198 0.00015 0.00553 0.00573 0.00013

.01284 0.00034 0.00579 0.00589 0.00002

.46021 0.23071 0.02499 0.07598 0.03782

.09637 0.08075 0.00547 0.03242 0.02784

.01295 0.00144 0.00546 0.00586 0.00012

.01202 0.00015 0.00554 0.00577 0.00011

 each dataset.
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Fig. 6. 3D/2D snapshots of the three objects (Goblin, Teddy,  and Pirate)  acquired using the PMD  camera. Textured range images (left) and their corresponding photo (right)
are  shown.
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onsidered some of the most relevant state-of-the-art IR evolution-
ry algorithms:

Luck et al.’s [45] method, which is based on ICP and annealing
(ICP-L).
Chow et al.’s [46] method. It makes use of GAs (GA-C).
Silva et al.’s [28] method, which makes use of GAs (GA-S).
Wachowiak et al.’s [47] method. It is based on the particle swarm
optimization (PSO) [48] algorithm (PSO-W).

Santamaría et al.’s [49] method, which is based on the Scatter
Search (SS) [50] algorithm (SS-S).

ig. 7. Convergence study of the tested algorithms facing the Goblin, Teddy, and
irate datasets.
uting 13 (2013) 3178–3189 3187

We considered the CPU time as the stop criterion of the prealign-
ment stage (see Section 2.2) in order to perform a fair comparison of
all the IR methods. After a preliminary study, we  determined that
20 s is a suitable value once noticed that every method properly
converge to accurate enough solutions. In order to avoid execu-
tion dependence, 30 different runs of each IR algorithm have been
performed in every problem instance. Additionally, we have set 40
iterations for the refinement step which makes use of the ICP-based
algorithm [9].

4.3. Parameter settings

All the IR methods were run on an Intel® CoreTM i7 2.93 GH
platform with 4 GB RAM and implemented using C/C++and the
GNU/g++compiler under the GNU/Linux Ubuntu 10 operating sys-
tem. For every IR algorithm of the literature, we used the parameter
values recommended by the authors in their contributions. Table 2
shows the parameter values considered in Passino, Dasgupta, and
HBFOA.

4.4. Analysis of results

Tables 3 and 4 show the results of the prealignment and the
refinement stages, respectively. These numerical results refer to
the mentioned MedSE metric (Eq. (9)) using a Kdtree-based nearest
neighbour rule instead of the GCP one considered in the objective
function (see Section 3.3).

Regarding the prealignment results, all the BFOA-based IR meth-
ods obtain better performance, according to the mean value,
than the rest of the methods of the state-of-the-art. Specifically,
HBFOA obtains the best mean results in two of the three prob-
lem instances (Goblin and Teddy)  and a similar one in the third
dataset (Pirate)  compared with the adaptive BFOA (Dasgupta).
According to the minimum values, both HBFOA and Dasgupta IR
methods obtain the best results in Goblin and Teddy instances,
respectively. PSO-W achieves the best minimum outcomes in the
Pirate instance.

Table 4 shows the refinement results. Quite similar outcomes
are obtained compared to the prealignment stage, in which HBFOA
demonstrates to be the most robust IR method. As shown in [18],
all the IR algorithms using the EC paradigm provide accurate
enough prealignment solutions that favour the proper convergence
of the ICP-based IR method considered for refinement. Specif-

ically, HBFOA obtains the best mean performance in the three
problem instances and the best minimum in the Goblin dataset. Das-
gupta, SS-S, and PSO-W achieve accurate results in the remaining
instances.

Fig. 8. Averaged performance of all the IR methods in the three considered problem
instances when applying the prealignment and the refinement stages. Results are
scaled (×103).
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ig. 9. 3D snapshots of the best IR estimations obtained by our HBFOA proposal fo
he  refinement (second row) stages.

These results confirm that our proposal, HBFOA, provides a com-
etitive performance compared to the state-of-the-art IR methods.
ig. 7 shows the convergence velocity of the evolutionary algo-
ithms in the three problem instances. Fig. 8 shows the averaged
erformance (according to mean value of MedSE) obtained by every
lgorithm in the three problem instances when applied the pre-
lignment and the refinement stages. This graphic remarks the
mportance of obtaining an accurate enough prealignment result
o promote a suitable convergence of the refinement process. Fig. 9
hows the best prealignment and refinement results obtained by
BFOA in every problem instance.

. Conclusion and future works

In this work, we have conducted a viability study of using video
equences of ToF cameras to tackle 3D reconstruction problems
sing evolutionary IR techniques. Our first contribution consists on

 novel image preprocessing pipeline which provides an enhanced
ange image and a subsequent feature extraction procedure. Specif-
cally, we adopted recent advances in both computer vision and
omputer graphics fields to develop the latter procedure.

The second major contribution refers to the proposal of an
mproved variant of the bacterial foraging optimization algorithm
or tackling the IR problem. Our hybrid evolutionary IR algorithm
as proved to be better than previous bacteria foraging approaches
nd it also obtains a very competitive performance when compared
o the most relevant state-of-the-art IR methods. Thus, we have
emonstrated the suitability of using the proposed evolutionary
pproach to address the 3D reconstruction problem.

Due to the increasing interest of recent market in new ToF
evices, we expect the emergence of new cameras offering

nhanced features. Specifically, the Microsoft KinectTM is a cutting-
dge camera which allows to acquire 3D video images of higher
esolution than those obtained by similar scanners such as the
MD. Furthermore, we plan to carry out a comparative study of 3D

[

[

onsidered datasets Goblin,  Teddy, and Pirate after the prealignment (first row) and

reconstruction results using different devices based on this recent
technology.

Acknowledgements

This work is partially supported by both the Spanish Ministe-
rio de Educación y Ciencia (Ref. TIN2009-07727) including EDRF
fundings and the University of Jaén (Ref. R1/12/2010/61) including
fundings from Caja Rural de Jaén.

References

[1] R.C. González, R.E. Woods, Digital Image Processing, Prentice-Hall, Upper Sad-
dle  River, NJ, 2002.

[2] R.J. Campbell, P.J. Flynn, A survey of free-form object representation and recog-
nition techniques, Computer Vision and Image Understanding 81 (2) (2001)
166–210.

[3] F. Bernardini, H. Rushmeier, The 3D model acquisition pipeline, Computer
Graphics Forum 21 (2) (2002) 149–172.

[4] S. Damas, O. Cordón, J. Santamaría, Medical image registration using evolu-
tionary computation: a survey, IEEE Computational Intelligence Magazine 6
(4) (2011) 26–42.

[5] Z. Xu, R. Schwarte, H. Heinol, B. Buxbaum, T. Ringbeck, Smart pixel – photonic
mixer device (PMD) new system concept of a 3D-imaging camera-on-a-chip,
in:  5th Int. Conf. on Mechatronics and Machine Vision in Practice, 1998, pp.
259–264.

[6] B. Zitová, J. Flusser, Image registration methods: a survey, Image and Vision
Computing 21 (2003) 977–1000.

[7] J. Salvi, C. Matabosch, D. Fofi, J. Forest, A review of recent range image regis-
tration methods with accuracy evaluation, Image and Vision Computing 25 (5)
(2007) 578–596.

[8] P.J. Besl, N.D. McKay, A method for registration of 3D shapes, IEEE Transactions
on Pattern Analysis and Machine Intelligence 14 (1992) 239–256.

[9]  Z. Zhang, Iterative point matching for registration of free-form curves and sur-
faces,  International Journal of Computer Vision 13 (2) (1994) 119–152.

10] T. Bäck, D.B. Fogel, Z. Michalewicz, Handbook of Evolutionary Computation, IOP
Publishing Ltd. and Oxford University Press, New York, EEUU, 1997.
11] A. Eiben, J. Smith, Introduction to Evolutionary Computation, Springer, Berlin,
2003.

12] J. Santamaría, O. Cordón, S. Damas, A comparative study of state-of-the-art
evolutionary image registration methods for 3D modeling, Computer Vision
and Image Understanding 115 (2011) 1340–1354.



t Comp

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[49] J. Santamaría, O. Cordón, S. Damas, I. Alemán, M.  Botella, A Scatter Search-based
E. Bermejo et al. / Applied Sof

13] K. Passino, Biomimicry of bacterial foraging for distributed optimization and
control, IEEE Control Systems Magazine 22 (3) (2002) 52–67.

14] M.  Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M.  Ginzton,
S. Anderson, J. Davis, J. Ginsberg, J. Shade, D. Fulk, The Digital Michelangelo
Project: 3D scanning of large statues, in: ACM SIGGRAPH 2000, 2000, pp.
131–144.

15] G. Dalley, P. Flynn, Range image registration: a software platform and empir-
ical  evaluation, in: Third International Conference on 3-D Digital Imaging and
Modeling (3DIM’01), 2001, pp. 246–253.

16] Y. Chen, G. Medioni, Object modelling by registration of multiple range images,
Image and Vision Computing 10 (3) (1992) 145–155.

17] J. Feldmar, N. Ayache, Rigid, affine and locally affine registration of free-form
surfaces, International Journal of Computer Vision 18 (2) (1996) 99–119.

18] Y. Liu, Improving ICP with easy implementation for free form surface matching,
Pattern Recognition 37 (2) (2004) 211–226.

19] D.E. Goldberg, Genetic Algorithms in Search and Optimization, Addison-
Wesley, New York, EEUU, 1989.

20] J.H. Holland, Adaptation in Natural and Artificial Systems, The University of
Michigan Press, Ann Arbor, 1975.

21] Z.H. Hu, Y.S. Ding, W.B. Zhang, Q. Yan, An interactive co-evolutionary CAD
system for garment pattern design, Computer-Aided Design 40 (12) (2008)
1094–1104.

22] W.  Pang, K. Hui, Interactive evolutionary 3D fractal modeling, The Visual Com-
puter (2010) 1–17.

23] X. Qin, Y. Yang, Estimating parameters for procedural texturing by genetic
algorithms, Graphical Models 64 (2002) 19–39.

24] A. Wiens, B. Ross, Gentropy: evolving 2D textures, Computer Graphics 26 (1)
(2002) 75–88.

25] L. Simon, O. Teboul, P. Koutsourakis, N. Paragios, Random exploration of the pro-
cedural space for single-view 3D modeling of buildings, International Journal
of  Computer Vision (2010) 1–19.

26] J. Fitzpatrick, J. Grefenstette, D. Gucht, Image registration by genetic search, in:
IEEE Southeast Conference, Louisville, EEUU, 1984, pp. 460–464.

27] Z. Michalewicz, Genetic Algorithms + Data Structures = Programs, third ed.,
Springer-Verlag, Berlin, 1996.

28] L. Silva, O.R.P. Bellon, K.L. Boyer, Precision range image registration using a
robust surface interpenetration measure and enhanced genetic algorithms,
IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (5) (2005)
762–776.

29] R. Lange, 3D time-of-flight distance measurement with custom solid-state
image sensors in CMOS/CCD-technology, Ph.D. Thesis, University of Siegen,
2000.

30] B. Büttgen, T. Oggier, M.  Lehmann, R. Kaufmann, F. Lustenberger, CCD/CMOS
lock-in pixel for range imaging: challenges, limitations and state-of-the-art,
in: 1st Range Imaging Research Day, 2005, pp. 21–32.
31] S. Fuchs, S. May, Calibration and registration for precise surface reconstruction
with ToF cameras, in: Proceedings of the Dynamic 3D Imaging Workshop in
Conjunction with DAGM (Dyn3D), vol. 1, Citeseer, 2007.

32] S. May, 3D Time-of-Flight Ranging for Robotic Perception in Dynamic Environ-
ments, Ph.D. Thesis, Universität Osnabrück, 2009.

[

uting 13 (2013) 3178–3189 3189

33] S. Fuchs, G. Hirzinger, Extrinsic and depth calibration of ToF-cameras, in:
2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008,
pp.  1–6.

34] S. Oprisescu, D. Falie, M.  Ciuc, V. Buzuloiu, Measurements with ToE cameras
and their necessary corrections, in: 2007 International Symposium on Signals,
Circuits and Systems (July), 2007, pp. 1–4.

35] M.  Böhme, M.  Haker, T. Martinetz, E. Barth, Shading constraint improves
accuracy of time-of-flight measurements, Computer Vision and Image Under-
standing 114 (12) (2010) 1329–1335.

36] J.E. Cryer, M.  Shah, Shape-from-shading: a survey, IEEE Transactions on Pattern
Analysis and Machine Intelligence 21 (8) (1999) 690–706.

37] U. Castellani, M.  Cristani, S. Fantoni, V. Murino, Sparse points matching by com-
bining 3D mesh saliency with statistical descriptors, Computer Graphics Forum
27  (2) (2008) 643–652.

38] H. Bay, A. Ess, T. Tuytelaars, L. Vangool, Speeded-up robust features (SURF),
Computer Vision and Image Understanding 110 (3) (2008) 346–359.

39] S. Dasgupta, S. Das, A. Abraham, A. Biswas, Adaptive computational chemotaxis
in bacterial foraging optimization: an analysis, IEEE Transactions on Evolution-
ary Computation 13 (4) (2009) 919–941.

40] L.J. Eshelman, Real-coded genetic algorithms and interval schemata, in: L.D.
Whitley (Ed.), Foundations of Genetic Algorithms 2, Morgan Kaufmann, San
Mateo, EEUU, 1993, pp. 187–202.

41] H.G. Beyer, K. Deb, On self-adaptive features in real-parameter evolution-
ary algorithms, IEEE Transactions on Evolutionary Computation 5 (3) (2001)
250–270.

42] J. Santamaría, O. Cordón, S. Damas, J. García-Torres, A. Quirin, Performance eval-
uation of memetic approaches in 3D reconstruction of forensic objects, Soft
Computing 13 (8–9) (2009) 883–904.

43] M.  Rodrigues, R. Fisher, Y. Liu, Special issue on registration and fusion of range
images, Computer Vision and Image Understanding 87 (1–3) (2002) 1–7.

44] S.M. Yamany, M.N. Ahmed, A.A. Farag, A new genetic-based technique
for matching 3D curves and surfaces, Pattern Recognition 32 (1999)
1817–1820.

45] J.P. Luck, C.Q. Little, W.  Hoff, Registration of range data using a hybrid sim-
ulated annealing and iterative closest point algorithm, in: IEEE International
Conference on Robotics and Automation (ICRA’00), 2000, pp. 3739–3744.

46] C.K. Chow, H.T. Tsui, T. Lee, Surface registration using a dynamic genetic algo-
rithm, Pattern Recognition 37 (2004) 105–117.

47] M.P. Wachowiak, R. Smolikova, Y. Zheng, J.M. Zurada, A.S. El-Maghraby, An
approach to multimodal biomedical image registration utilizing particle swarm
optimization, IEEE Transactions on Evolutionary Computation 8 (3) (2004)
289–301.

48] J. Kennedy, R. Eberhart, Particle swarm optimization, in: IEEE International
Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948.
technique for pair-wise 3D range image registration in forensic anthropology,
Soft Computing 11 (2007) 819–828.

50] M.  Laguna, R. Martí, Scatter Search: Methodology and Implementations in C,
Kluwer Academic Publishers, Boston, 2003.


	Quality time-of-flight range imaging for feature-based registration using bacterial foraging
	1 Introduction
	2 Background
	2.1 Image registration
	2.2 Evolutionary image registration
	2.3 Time of flight cameras

	3 Image registration proposal
	3.1 Image processing pipeline
	3.2 Hybrid bacterial foraging algorithm
	3.2.1 Chemotaxis
	3.2.2 Swarming
	3.2.3 Reproduction
	3.2.4 Elimination-dispersal

	3.3 Coding scheme and objective function

	4 Experiments
	4.1 Datasets
	4.2 Experimental design
	4.3 Parameter settings
	4.4 Analysis of results

	5 Conclusion and future works
	Acknowledgements
	References




