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Abstract—Image segmentation is the critical task of partition-
ing an image into multiple objects. Deformable Models are effec-
tive tools aimed at performing image segmentation. Among them,
Topological Active Nets (TANs), and their extension, ETANs, are
models integrating features of region-based and boundary-based
segmentation techniques. Since the deformation of the meshes
composing these models to fit the objects to be segmented is
controlled by an energy functional, the segmentation task is
tackled as a numerical optimization problem. Despite their good
performance, the existing ETAN optimization method (based on
a local search) can lead to result inaccuracies, that is, local
optima in the sense of optimization. This paper introduces a novel
optimization approach by embedding ETANs in a global search
memetic framework, Scatter Search, thus considering multiple
alternatives in the segmentation process using a very small
solution population. With the aim of improving the accuracy
of the segmentation results in a reasonable processing time,
we introduce a global search-suitable internal energy term, a
diversity function, a frequency memory population generator
and two proper solution combination operators. In particular,
these operators are effective in coalescing multiple meshes, a task
previous global search methods for TAN optimization failed to
accomplish. The proposal has been tested on a mix of 20 synthetic
and real medical images with different segmentation difficulties.
Its performance has been compared with two ETAN optimization
approaches (the original local search and a new multi-start local
search) as well as with the state-of-the-art memetic proposal
for classical TAN optimization based on differential evolution.
Our new method significantly outperformed the other three for
the given set of images in terms of four standard segmentation
metrics.

Index Terms—Deformable models, topological active nets, ex-
tended topological active nets, local search optimization, global
search optimization, memetic algorithms, scatter search, differ-
ential evolution.

I. INTRODUCTION

IMAGE SEGMENTATION is a key task in image process-
ing aiming at partitioning a digital image into multiple

objects which share some common properties. Image segmen-
tation is a critical issue as the quality of its outcomes has a
strong influence on the posterior image understanding task.
Among its practical applications are medical imaging (where
it is employed for tasks such as tumor location, computer-
guided surgery, and diagnosis); traffic control systems; object
location in satellite images (roads, forests, etc.); and machine
vision.
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Figure 1: Example of segmentation of a medical image by a
DM. (a) is the image to be segmented, (b) is the final adjust-
ment of the DM (in red), and (c) is the result image identifying
two segments, the object (black) and the background (white).

Deformable Models (DMs) are a promising and vigorously
researched computer-assisted image segmentation technique
[1]. They have proven to be effective in segmenting digital
images by exploiting features of the image data together with
a priori knowledge about the structures of these images. Since
the pioneering work of Kass et al. [2], a number of different
kinds of Deformable Models have been proposed. Fig. 1 shows
an example of a segmentation task by a DM.

The Topological Active Net (TAN) model is a geometric
DM consisting of a discrete implementation of an elastic mesh
with interrelated nodes [3]. It integrates features of region
based and boundary-based segmentation techniques. Since
the TAN deformation is controlled by an energy functional
in such a way that the mesh reaches a minimum when the
model is over the objects, the segmentation process is tackled
as a numerical optimization (energy minimization) problem.
The original optimization strategy is a Best Improvement
Local Search (BILS) [4]. The advantage of this model is the
capability of fitting the edges of the objects while at the same
time detecting their inner topology. Conversely, the model is
complex and has limitations regarding topological changes,
local deformations, and the definition of the energy functional.

To overcome these limitations while keeping the promising
features of TAN, Bova et al. [5] recently presented an Ex-
tended Topological Active Net (ETAN) model. The authors
developed novel mechanisms tackling topological changes in-
cluding external and internal link cuts, proposed a new external
energy term to properly guide the model in case of complex
concavities and highly non-convex shapes, and introduced
node movement constraints to avoid crossing links. Besides,
they designed a specific local search for ETAN optimization,
the Extended BILS (EBILS) procedure, incorporating heuris-
tics to correct the position of eventually misplaced nodes.
Although the ETAN model is a significant improvement over
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the TAN, the local search nature of the EBILS optimization
method can still make it get stuck in local optima, thus
providing suboptimal segmentations.

The main approach developed in the TAN literature to
overcome this limitation has been endowing TANs with a
global search framework. Actually, two Memetic Algorithms
(MAs) [6] were introduced in [7] and [8], respectively based
on Genetic Algorithms (GAs) [9] and Differential Evolution
(DE) [10]. Although the segmentation results obtained by the
MAs for TAN optimization improve the BILS approach, their
applicability is still limited in real world images and complex
synthetic ones. In particular, those proposals failed to design
proper evolutionary operators able to effectively combine nets
and consequently required very large populations of solutions
to operate, thus negating the main advantage of a global search
approach. In addition, they lack a proper energy definition for
a global optimization scenario.

The aim of this work is to provide an accurate, quick and
robust segmentation technique by endowing ETANs with an
effective global search method. To do so, we will embed
ETANs in a flexible and powerful memetic framework, Scatter
Search (SS) [11], carefully designing specific components to
avoid getting stuck in local optima while considering small
populations.

The proposed design technique will be tested over a dataset
made up of a mix of 20 synthetic and real-world medical
images. It will be compared with two other ETAN optimization
methods, the original EBILS [5] and a new Multi-Start Local
Search (MSLS) designed in this paper, as well as with the
state-of-the-art DE-based MA for TAN optimization [8].

The structure of this paper is as follows. Section II in-
troduces both the TAN and ETAN models and summarizes
the main global optimization approaches dealing with TANs,
focusing on the state-of-the-art evolutionary proposal based
on DE. Section III describes the proposed global search
framework while Section IV is devoted to the evaluation of
the performance of our proposal and comparison with other
methods. Finally, Section V summarizes some conclusions and
future developments.

II. BACKGROUND

A. Topological Active Nets

A TAN is a discrete implementation of an elastic two-
dimensional mesh with interrelated nodes [3]. The structure
of a TAN is depicted in Fig. 2. The model has two kinds of
nodes: the external nodes fit the edges of the objects whereas
the internal nodes model their internal topology. Hence, this
model allows information based on both discontinuities and
regions to be integrated in the segmentation process.

External nodes

Internal nodes

Links

Figure 2: An example 5x5 mesh.

A TAN is defined parametrically as v(r, s) =
(x(r, s), y(r, s)) where (r, s) ∈ [0, 1] × [0, 1]. The mesh
deformations are controlled by an energy function defined as
follows:

E(v(r, s)) =

∫ 1

0

∫ 1

0

[Eint(v(r, s)) + Eext(v(r, s))] drds (1)

where Eint and Eext are the internal and the external energy
of the TAN, respectively. The internal energy controls the
shape and the structure of the mesh whereas the external
energy represents the external forces governing the adjustment
process.

The internal energy depends on first and second order
derivatives which control contraction and bending, respec-
tively. The internal energy term is defined as:

Eint(v(r, s)) =α(|vr(r, s)|2 + |vs(r, s)|2)+
β(|vrr(r, s)|2) + |vrs(r, s)|2 + |vss(r, s)|2)

where subscripts represents partial derivatives, and α and β are
coefficients that control the first and second order smoothness
of the net. In order to calculate the energy, the parameter
domain [0, 1]× [0, 1] is discretized as a regular grid defined by
the internode spacing (k, l) and the first and second derivatives
are estimated using the finite differences technique [3].

On the one hand, the first derivatives are computed using
the following equations to avoid the central differences:

|vr(r, s)|2 =
[
‖d+r (r, s)‖2 + ‖d−r (r, s)‖2

]
/2

|vs(r, s)|2 =
[
‖d+s (r, s)‖2 + ‖d−s (r, s)‖2

]
/2,

where d+ and d− are respectively the forward and backward
respectively, which are computed as follows:

d+r (r, s) = [v(r + k, s)− v(r, s)] /k
d−r (r, s) = [v(r, s)− v(r − k, s)] /k
d+s (r, s) = [v(r, s+ l)− v(r, s)] /l
d−s (r, s) = [v(r, s)− v(r, s− l)] /l.

On the other hand, the second derivatives are estimated by:

vrr(r, s) =
v(r − k, s)− 2v(r, s) + v(r + k, s)

k2

vss(r, s) =
v(r, s− l)− 2v(r, s) + v(r, s+ l)

l2

vrs(r, s) =
v(r − k, s)− v(r − k, s+ l)− v(r, s) + v(r, s+ l)

kl
.

The external energy represents the features of the scene that
guide the adjustment process. It is defined as:

Eext(v(r, s)) = ωf [I(v(r, s))]+

ρ

|ℵ(r, s)|
∑

p∈ℵ(r,s)

1

‖v(r, s)− v(p)‖
f [I(v(p))]

where ω and ρ are weights, I(v(r, s)) is the intensity value
of the original image in position v(r, s), ℵ(r, s) is the neigh-
borhood of node (r, s), and f is a function, that is different
for both types of nodes since the external nodes fit the edges
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whereas the internal nodes model the inner features of the
objects. In this situation, function f is defined as:

f [I(v(r, s))] =


γI(v(r, s))n, for internal nodes

Imax − I(v(r, s))n+
ξ(Gmax −G(v(r, s)))+
δGD(v(r, s)), for external nodes

γ, ξ and δ are weighting terms, Imax and Gmax are the maxi-
mum intensity values of the image I and the gradient image G,
respectively, I(v(r, s)) and G(v(r, s)) are the intensity values
of the original image and the gradient image in node position
v(r, s), and I(v(r, s))n is the mean intensity in a n×n square
mask1. If the objects to detect are dark and the background is
bright, the energy of an internal node will be minimum when
it is on a point with a low gray level. The energy of an external
node will be minimum when it is on a discontinuity and on a
light point outside the object. Notice that, since the work of
Ibáñez et al. [7] the external energy also includes the gradient
distance term, GD(v(r, s)), that is, the distance from position
v(r, s) to the nearest edge. This term introduces a continuous
range in the external energy since its value diminishes as the
node gets closer to an edge.

The adjustment process consists of minimizing these energy
functions. In the original TAN proposal [4], the mesh is placed
over the whole image and, then, the energy of each node is
minimized using a BILS algorithm (called greedy search in
previous papers). In each step of the algorithm, the energy of
each node is computed in its current position and in its nearest
neighborhood. The position with the lowest energy value is
selected as the new position of the node. The algorithm stops
when there is no node in the mesh that can move to a position
with lower energy.

B. Related works: TAN global optimization
Evolutionary Computation has been broadly applied in med-

ical image segmentation during the last thirty years [12]. In
particular, evolutionary-based approaches for DMs optimiza-
tion recently gained much attention [13], [14]. However, after
more than twenty years of TAN development there are just a
few proposals for its optimization due to the inherent com-
plexity of the model. In [7] the authors defined and adapted
the classical genetic operators to deal with this problem,
with emphasis on a mutation operator that produces models
with no crossings in their definition nodes. The GA showed
superiority in the minimization of the probability of getting
stuck in local minima, especially with noisy images. Later,
they proposed a MA that hybridizes the previous GA and
the BILS [4]. That method clearly outperformed the accuracy
of the segmentation of the previous proposals. However, it
required a high computation time as a consequence of the huge
population sizes required to operate properly. Additionally, in
[15] the authors used a multi objective evolutionary approach
to avoid the complex energy parameter tuning.

The proposal by Novo et. al in [8] is probably the state of the
art in TAN optimization. It consists of a MA that hybridizes

1Here and in the rest of the paper, the part of the mask falling out of image
boundaries is ignored when approaching those limits.

a DE [10] and the BILS in [4]. The classical DE operator,
based on discrete recombination and differential mutation [10],
is considered to create new candidate solutions. The mutation
scale factor F is experimentally established as a random value
between 0.2 and 0.6, specifically computed for each node. The
crossover rate CR is fixed to 1. The base vector x1 is selected
using tournament selection of size 3% of the population size,
which was established to 1000 individuals, thus keeping the
requirement of handling large size populations.

The BILS algorithm is applied to every mesh in the pop-
ulation only in specific moments of the evolutionary process,
typically every 10 generations, with a random number of steps
in [0, 4]. A more frequent and/or deeper (in the sense of
number of steps) application would require a non affordable
computation time without a significant improvement of the
results. The BILS not only achieves the best local adjustment
but also allows topological changes in the TANs. However, the
topological changes are only enabled for the best individual
of the population. Then, the resulting topology is extrapolated
to the entire population. The presence of just one topology
in such a large population is due to the incapacity of the
crossover operator to produce feasible offspring nets (e.g.
without crossing links) by combining parents with different
topologies.

C. Extended Topological Active Nets

This new Deformable Model extends TANs in several ways
[5]. The following sections give a summary of their main
features, as well as of the EBILS proposed to optimize them.

1) External energy: ETANs employ a new external energy
term to guide the mesh in case of complex concavities and
highly convex shapes. It is calculated for every pixel p from the
Extended Vector Field Convolution (EVFC) [16] by equalizing
a distance to gradient image DGevfc such that:

DGevfc(p) =
1∑

q∈ℵw(p)

|q|
, (2)

where q is a vector of the EVFC field belonging to the squared
neighborhood of size w of the pixel p. Fig. 3 shows an example
of the construction of this image. Therefore, the final energy
function becomes the one in Section II-A changing the term
GD(v(r, s)) by DGevfc in Eq. (2).

2) Topological changes: If the shape of the object(s) calls
for the need of cutting links and, eventually, changing the
topology of the ETAN, it is necessary to properly adapt the
structure of the net. The previously existing solution [7] does
not take into account the underlying image and it cannot open
holes into the mesh.

To solve these issues, the underlying idea in ETANs is to
cut the links which bear an energy higher than a threshold.
The energy of a link is calculated as

Elink =

(∑
p∈A

DGevfc(p) ·
I(p)

Imax

)/
|A|, (3)

where p is a pixel belonging to the area A over which the
energy is computed, I is the original image, Imax is the
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(a) (b) (c)

Figure 3: (a) original image; (b) the EVFC of (a); (c) equalized
energy term derived from (b).

maximum intensity value in the original image, and |A| is
the size of the area A.

The cutting threshold is not fixed, in fact it depends on
the mean energy the links of a mesh are experiencing, Emean.
However, not all links in a mesh can be cut, even if they bear
a high energy, as the topology of the net can be damaged
[7]. Therefore the only links whose energy is measured and
contributes to Emean are those which passed some cuttability
tests and can actually be cut [5].

The holes in a mesh are recognized starting from misplaced
internal nodes. For every internal node n, r(n) is derived as

r(n) =
Eext(n)

Eext(n) + Eint(n)
, (4)

where Eext(n) is the external energy and Eint(n) is the internal
energy of node n. The node nh with the highest ratio is
selected and if r(nh) > thholes, a hole is opened in the net
starting from this node. If this is the case, the values of
the energy of the links connecting nh and its neighbors are
calculated and the highest one is chosen. This internal link is
removed and the mesh can now cut more links and adjust to
the internal edge of the object.

3) ETAN optimization process: The adjustment of the mesh
to the object is a procedure that comprises several steps. After
the mesh initialization, the first step is an EBILS algorithm that
optimizes the position of every node in the mesh. To do so, a
new location (i.e. a pixel on the image) with a lower energy
is searched for each node in a square window centered on it,
according to Eq. (1). If a better position is found, the node is
immediately moved to this location. The search is performed
sequentially from the first to the last node of the net and the

Segmentation

Input image

   Image filtering
   Automatic net
   initialization

Optional tasks

   EBILS
   Misplaced nodes correction
   Fixnet heuristic

   Cutting links
   Holes segmentation
   No topology restrictions

Optimization

Topological changes

ETAN

Figure 4: The segmentation process using ETAN and EBILS.

(a) (b) (c)

Figure 5: (a) original image; (b) resulting image after cluster-
ing image (a); (c) resulting segmentation from (b).

whole process is repeated until no node can be further moved.
To avoid crossings of the links connecting nodes, EBILS test if
the node is located outside the safe area, that is the polygonal
area delimited by the node neighbors, repositioning it if that
is the case. When it is not possible to stretch or compress
the mesh anymore, the link cutting procedure is activated. A
specific heuristic procedure is called after this phase to correct
the position of gradient-misplaced nodes. At this point the
mesh should be adjusted to the contour of the object and it
is now possible to segment the holes which eventually exist
inside the object. The last step of the process is the activation
of a less constrained version of the cutting procedure to finalize
the segmentation. Fig. 4 depicts the overall scheme, that will
be used as the local optimization component in the SS-based
method proposed in this contribution.

4) Image filtering: The gradient and distance to the gradient
images are usually constructed from the application of an edge
detector over the the original image. As an alternative, ETANs
can use a K-means clustering generated pre-segmentation
[5] (see Fig. 5). Moreover, the bounding box of this pre-
segmentation can be used to automatically initialize the mesh.

III. A SCATTER SEARCH FRAMEWORK FOR EXTENDED
TOPOLOGICAL ACTIVE NETS OPTIMIZATION

The results obtained by ETANs were encouraging [5]. They
outperformed TANs and state-of-the-art snake models [16],
while needing lower computational resources. Moreover, the
robustness achieved was significantly better than the previous
TAN method, and the ETAN together with the EBILS opti-
mization procedure less sensitive to parameter values changes.

However, since the ETANs were optimized using a local
search procedure, the model can reach wrong segmentations,
local minima from the optimization viewpoint, due to the
presence of noise and/or artifacts or simply to the complexity
found in the images. Fig. 6 shows two of these cases. A
feasible solution is to complement the EBILS optimizer with a

(a) (b)

Figure 6: Two cases of ETANs inaccuracies (in red).
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global search. Indeed, such a global optimizer could consider
multiple meshes at the same time, combining them to generate
more accurate ones until approaching the global minimum of
the energy function.

In this section we describe our proposal of such an ETAN
global search method. First of all, we introduce the basis of
SS. Then we provide a motivation for the use of this specific
MA. Finally, we deal with the customization of the SS general
framework to fit our ETAN optimization problem, describing
every designed component in detail.

A. The Scatter Search template

SS fundamentals were originally proposed by Fred Glover
[17] and later developed in [11]. The main idea of this
technique is based on a systematic combination between
solutions (instead of a randomized one like that usually done
in GAs) taken from a considerably reduced evolved pool of
solutions named Reference set (between five and ten times
lower than usual GA population sizes) as well as on the typical
use of a local optimizer. This way, an efficient and accurate
search process is encouraged thanks to the latter and to other
innovative components we will describe below.

The fact that the mechanisms within SS are not restricted
to a single uniform design allows the exploration of strategic
possibilities that may prove effective in a particular imple-
mentation. These observations and principles led the authors
in [11] to propose the following “five methods” template for
implementing SS:

1) A diversification generation method to generate a collec-
tion of diverse trial solutions.

2) An improvement method to transform a trial solution into
one or more enhanced trial solutions.

3) A Reference set update method to build and maintain a
Reference set consisting of the b “best” solutions found
in terms of quality and diversity.

4) A subset generation method to operate on the Reference
set, to produce a subset of its solutions as a basis for
creating combined solutions.

5) A solution combination method to transform a given
subset of solutions into one or more combined solution
vectors.

The SS design starts with the creation of a population P , of
size Psize, by means of the diversification generation method.
The solutions, generated by a diversity criterion, are enhanced
by the improvement method. Then, a total of b solutions
are selected to form the RefSet, that is partitioned into two
subsets of high quality and diverse solutions. This strategy
is called a two-tier design [11] and is used to proactively
inject diversification into the search. The quality subset of the
RefSet, RefSet1, is created by selecting the b1 (b1 ≤ b) fittest
solutions from P , from which they are removed. For every
solution remaining in P , the minimum of the distances from
the elements in RefSet is calculated, according to a proper
diversity function. Then, the solution with the maximum of
these minimum distances is removed from P and inserted in
RefSet2, the diversity subset of the RefSet. Finally, all the

Subset Generation
Method

Scatter Search main loop

Stop
conditions

Solution Combination 
Method

End of SS run

Reference Set
Update Method

Population P

Diversification Generation 
Method

Repeat until
|P| = PSize

Initialization

Improvement 
Method

RefSet

Improvement 
Method

Restart (No more new solutions)

Figure 7: The control diagram of SS.

distances are updated. This procedure is repeated b2 = b− b1
times, until completing RefSet2.

The subset generation method builds different subsets of
RefSet solutions to be later combined to produce new ones.
This method is not limited to combining just pairs of solutions.
However, it has been shown in [18] that the simple design
considering all the subsets of two solutions usually provides a
very high performance. Therefore, there is no need to consider
subsets of larger cardinality as recommended in early SS
designs.

The next step is combining the solutions of each subset
by means of the solution combination method. Since the SS
framework does not rely on mutations, like other evolutionary
approaches do, this is a crucial component of the process.
In fact, an effective combination method is often heavily
problem-dependent.

Finally, the combined solutions are enhanced by the im-
provement method and processed by the Reference set update
method which will refresh the RefSet according to quality and
diversity metrics. If none of the combined solutions is worth
inserting in the RefSet, SS performs a restart: only the best
solution is kept and P is created again. The whole process ends
considering problem-specific stop conditions. Fig. 7 shows the
interaction among the five methods and puts in evidence the
central role of the RefSet.

B. Motivation for the use of Scatter Search

Despite the huge dimensionality of the search space in our
problem, we can rely on an effective local search, EBILS
(see Sec. II-C3). In fact, ETANs outperformed TANs in every
experiment we did in [5]. The counterpart is that ETAN
EBILS-based optimization process is two orders of magnitude
slower than the TAN-BILS one. These time constraints have to
be taken into account when designing how our global search
will consider multiple alternatives in the segmentation process.

The simplest option we implemented was a MSLS [19]. In
this case, we initialized a large number of meshes, different
in size and location in the image plane, run the EBILS on
them and chose, as final result, the one with the lowest energy.
This method is simple and fast, but it lacks the capability
of mixing solutions. In our case, this problem is particularly
evident in the case of images with multiple, distant objects. In
fact, it is unlikely that a single mesh is able to divide and move
toward distant objects, without getting stuck in local minima,
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e.g. noise, along the way. Other more advanced approaches as
iterated local search and variable neighborhood search would
show the same problem [19].

Another possibility could be to use an evolutionary algo-
rithm, or even better, its hybridization with a local search, a
MA [6]. Contrary to the MSLS, they have the ability of com-
bining candidate solutions and of improving them to provide
high quality candidates, thus providing a better intensification-
diversification tradeoff. According to [8], the segmentation
results obtained by the DE-based memetic approach (using
TANs) improve previous global and local proposals. However,
it implies a high computational cost. Indeed, it is a huge effort
since the employed evolutionary algorithm used a population
of 1000 individuals, each one storing a complete mesh and
relative topology. Actually, the proposed DE applies the BILS
just every 10 generations, and for only a few steps, because
the authors needed to reduce the heavy computational burden
implied by those huge populations.

There are two main reasons for the need of such large
populations: firstly, the absence of an adequate combination
method. The existing ones employ simple flavors of arith-
metical combination operators which prove to be inefficient
in combining meshes with moderate differences in shape,
or even small differences in topology. In fact, the decision
to force a single topology in [8] or to employ niches of
topologies in [7] arise from the inability to deal with meshes
with different topologies. This implies that those proposals fail
in segmenting objects with complex shapes or, even worse,
multiple, distant objects, above all when separated by heavy
noise. Ad-hoc combination procedures to generate feasible and
usable offsprings are then strongly required.

Secondly, large populations are required due to the evolu-
tionary framework employed, where randomized combinations
of individuals are considered. Within the large umbrella of
MAs [6], SS is endowed with some specific and very attractive
capabilities [11], as introduced in the previous section. In fact,
SS has been successfully applied to other computer vision
tasks, such as image registration [20]. The SS methodology is
very flexible since each of its elements can be implemented
in a variety of ways and degrees of sophistication. Besides,
the SS approach relies on systematically injecting diversity
in the RefSet to achieve better exploration and, therefore,
avoiding the need for a large population. Considering the time
constraints imposed by ETANs (which are effective but slower
than TANs), employing a reduced population of high-quality
solutions is quite an advantage in order to deal with a global
search for our problem. Thanks to this fact, the EBILS can
be deeply applied at every generation, thus getting a better
intensification-diversification tradeoff. The aggregation of this
intensive EBILS application and a problem-specific solution
combination method allowing us to properly mix nets with
different topologies would become a very convenient way to
deal with ETAN optimization. These are the reasons why we
considered SS the metaheuristic which fits our problem the
most.

C. Scatter Search-based ETAN optimization implementation

Each individual in the SS population encodes a different
ETAN definition, using a double encoding, A and B, as shown
in Fig. 8. The A part stores two real values, the x and y
coordinates in the image plane for every node in the mesh.
The B part stores the topology of the net for every node,
that is, the presence or absence of links to the four possible
neighbors and the type of node (external or internal).

Figure 8: The coding scheme of our SS proposal.

The overall scheme of the designed algorithm is shown in
Fig. 9. The first step is performing some preliminary oper-
ations to incorporate image-specific information into the SS
process, with two objectives: i) generating proper gradient and
distance gradient images, which are employed in the external
energy term; and ii) achieving a rough pre-segmentation, by
the K-means clustering described in Sec. II-C4, whose result
is employed to define the reference net size and to bias the
population initialization.

The diversification generation method is implemented using
a frequency memory, with the purpose of creating an initial
population of diverse meshes, P . The generated solutions,
coherently with the SS framework, are enhanced through the
use of the improvement method, in our case the whole EBILS
procedure described in Sec. II-C3. Then, the Reference set
update method selects the best meshes in terms of quality and
diversity and insert them in the RefSet. We thus consider a
two-tier RefSet approach (see Sec. III-A).

In the next step, the subset generation method generates
all possible solution pairs to perform structured combinations
of them by means of the solution combination method. The
obtained results are also enhanced applying the improvement
method, i.e. the EBILS. The best solutions obtained are
selected to replace the worst ones in the Reference set.

The main SS loop is repeated until one of the following
events happens:
• the RefSet did not change in the last iteration;
• the diversity among RefSet1 solutions is below a threshold;
• a new population has not been generated in the last thpop

iterations.
Then, a restart is performed. All but the best solution

are removed from the RefSet and a new base population is
reinitialized in order to inject diversity. The algorithm stops
if the fitness of the best individual did not improve after a
given number of restarts (NR) or the maximum number of SS
iterations (NSS) has been reached.

The remaining specific SS components are described in the
next subsections.

D. Objective function definition: internal energy terms

When tackling image segmentation as an energy minimiza-
tion task, the correlation between fitness function and segmen-
tation quality plays a critical role. Indeed, if this correlation is
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Figure 9: The complete segmentation process using ETANs and SS.

loose, even the perfect optimizer would lead to suboptimal seg-
mentation results. Although the mesh adjustment to the object
contour (local search) and the evaluation of a segmentation
through its mesh position (global search) are both tackled
as minimization problems, they actually are quite different
tasks. Hence, it is not surprising that the most suitable fitness
functions for the two tasks do not match. As a consequence,
we employ two different energy function definitions.

The fitness function is the sum of the internal and external
energy of every node (see Sec. II-A and Eq. (1)). While we
opted for the same external energy formulation for both local
and global searches, the internal energy function has been
redesigned for the global search in order to solve some specific
problems which are described below.

In fact, in (E)TANs (including previous evolutionary TAN
optimization proposals) the energy function is derived from the
original formulation, designed with the consideration of a local
minimization approach. In that formulation, the contraction
term gives energy values directly proportional to the distance
among the nodes, thus forcing the mesh to contract. The
contraction is stopped by the external nodes in presence of
edges. However, the contraction term is not suitable in a global
search framework because it penalizes big nets regardless of
the size of the target segmentation object. To deal with this
issue we propose to substitute the contraction term of the
internal energy with an area-related one. Different from the

other terms which are calculated on a per-node basis, this
term only takes into account the total area of the meshes.
Its magnitude is proportional to the ratio of the area of the
candidate net A(nc) (the net whose fitness is being calculated)
and the reference area Ar, taken from the K-means pre-
segmentation (see Sec. II-C4). The obtained value of the ratio
is the input of a proper function fα, computed as follows:

Eintα,nt = fα

(
A(nc)

Ar

)
; fα(x) =

{
ψ 1
x − ψ if x < 1

ψx− ψ if x ≥ 1,

where ψ is a constant (with a typical value of 5).
Another important change we performed is the removal of

the bending term in the global search fitness function. The
aim of this term is ensuring a smooth mesh shape and this
plays a central role in the local adjustment to the object,
helping to keep the net together. However, this term is not
suitable for the evaluation of the meshes in a global search
framework. It strongly penalizes meshes which divide into
parts to adapt their topology to the objects, in particular when
the segmentation target is composed of many objects.

In some cases, the desired segmentation is made up of sev-
eral objects of different sizes. If the size of the smaller objects
is negligible compared to the bigger ones, the contribution
provided by the global area energy term is not enough to
distinguish among nets segmenting only big objects and nets
segmenting all the objects. This implies that, in these cases,
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(a) A mesh with 2 submeshes (b) A mesh with 3 submeshes

Figure 10: The submesh reward procedure. For the image in
(a): α-term = 20, Eext = 310, reward = -66, total = 264. For
the image in (b): α-term = 10, Eext = 350, reward = -108, total
= 252. With the reward, (b) has a lower energy than (a).

the fitness values are only dependent on the external energy
value. Moreover, if the smaller objects are brighter2 than the
bigger ones, the fitness values of the meshes segmenting them
will be worse than the fitness values of meshes segmenting
only the bigger, darker objects.

The solution we propose involves the use of submeshes, i.e.
isolated parts of a mesh resulting from topological changes to
adapt to more than one object. Every node in a mesh is part
of only one submesh. When evaluating the fitness of a mesh,
we calculate its submesh relevance, that is g =

∑
i gi, where

gi refers to every submesh the mesh is divided into. For every
submesh i, gi = 1 if the following three conditions hold:

1) the ratio between the covered area si and the total area
of the image is above a threshold, Gmin ∈ (0, 1);

2) the ratio between the area of the bounding box containing
the submesh and its area is lower than a threshold, Ga;

3) the form factor of the bounding box, defined as the ratio
between the longest and shortest edges of the rectangle,
is below a threshold, Gff.

The Gmin threshold defines the minimum area of a structure
in the image to be considered an object. Together with the
net reference size, they are the only kind of prior knowledge
we insert into the process, thanks to the SS flexibility to do
so. If one of the three previous conditions does not hold, then
gi = −si/Gmin. Experimentally found proper values for the
three thresholds are 0.005, 8 and 5, respectively.

Once the submesh relevance g has been determined, we
reward the net on the basis of g, calculating fr = f ·(1−rg ·g),
where f is the fitness value calculated so far, fr is the
fitness value considering the submesh reward, and rg is a
weighting coefficient in (0, 1). The rationale is rewarding
(that is, lowering the fitness value of) the meshes with many
relevant submeshes and penalizing the meshes with many
non-relevant ones. In particular, the non-relevant submeshes
penalize the mesh depending on their size: the larger, the
worse. An experimentally found proper value for rg is 0.1.
Fig. 10 shows an example of the submesh reward term.

E. Diversity function
Our diversity function is meant to measure how much a net

solution is different from another one, with the aim of selecting

2In this article the target objects are dark and the background is bright.

(a) k-means bias (b) After 20 meshes (c) After 40 meshes

Figure 11: The frequency-memory population initialization.

candidate nets for the diversity subset of the RefSet. We intend
this subset as a reservoir of meshes which are not good enough
to be considered as a possible outcome of the segmentation
process but that, nevertheless, segment some objects (or parts
of them) in a proper way. Moreover, these objects should be
located far away, on the image plane, from the ones segmented
by the nets in the quality subset of the RefSet. With this in
mind, we designed the following diversity function:

d(m1,m2) =

∑n
i=1

√
(m1,i,x −m2,i,x)2 + (m1,i,y −m2,i,y)2

Eext(m1) + Eext(m2)
,

where m1 and m2 are two meshes, n is the number of nodes
in a mesh, and ma,i,k is the component k = {x, y} of the ith
node of mesh a. In this way, the numerator of d(·) implies
that the farther the meshes are located on the image plane,
the higher the d(·) measure will be. Besides, the denominator
implies that the poorer the meshes adjustments, the lower the
d(·) measure. We only consider the external energy because
we are especially interested in small, distant objects. In fact,
the internal energy of nets only segmenting small objects is
usually high because their areas are probably different from
the reference area.

F. Diversification generation method
Our diversification generation method employs controlled

randomization and frequency-based memory, typically used
in SS, to generate an initial set of diverse and good quality
solutions. When a population is initialized, we generate Psize
candidate rectangular nets with uniformly spaced nodes. The
EBILS is applied to each of them and we select the b1 fittest
nets and the b2 most diverse nets to form the RefSet.

Each new mesh Mn is generated by randomly selecting the
size and the ratio between the two sides of the rectangle. Then,
we place Mn in the image plane on the basis of the frequency-
memory image, Ifm, that has the same size of the image to
be segmented. To keep record of the already searched areas,
we lower the intensity values of Ifm pixels covered by every
mesh we generated. Therefore, we always place Mn over the
brightest area of Ifm in which the new mesh could fit.

To improve the convergence time of the segmentation pro-
cess, we bias the search toward the most promising areas by
initializing Ifm with a blurred version of the K-means pre-
segmentation (see Fig. 11(a)).

As the brightest area of Ifm is always chosen and its
intensities lowered, after the generation of some meshes,
Ifm becomes flatter. Therefore, new meshes are placed over
the image more uniformly (see Fig. 11(b,c)), permitting the
exploration of the whole search space.
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G. Solution combination method

In previous works as [7], [8], either the DE operator [10]
or the arithmetic crossover [21] were employed for TAN
combination. The formulation of the latter is as follows:

mo,i = θm1,i + (1− θ)m2,i,

where ma,i is the ith node of the mesh a and θ is a real number
randomly generated in [0, 1], the same for all the nodes of the
two combined meshes.

Unfortunately, this operator is only useful at the very
beginning of the search process, producing nets worsening
their parents’ fitnesses whenever the search process starts to
converge. In addition, it does not incorporate the same infor-
mation the parents hold and infeasible offsprings are obtained
when combining nets with different topologies. To overcome
this problem, we propose an advanced solution combination
method based on two different solution combination operators
(SCOs):

1) The genotypic SCO: The rationale of this operator is try-
ing to combine two nets which perform a good segmentation
of different parts of the object(s). Regardless of the topology
of the parents, the combination will have a basic topology,
with every link in place. The EBILS, always called after the
combination, will eventually take the function of cutting links
and/or open holes in the mesh.

The genotypic SCO calculates a different θ (a combination
weight) for every pair of homologous nodes of the parent nets.
This value is inversely proportional to the local energy of the
nodes, in such a way that the location of the corresponding
offspring node will be more similar to the parent node with a
lower local energy (hence, it works as a heuristic real-coded
crossover [21]). The θ weights are only derived for the external
nodes located in the four edges of the net. The genotypic SCO
performs a “boost” of the combination weights by means of
the fcw function (Eq. (5)) to further increase high θ values
and further decrease lower θ values. The idea is to keep the
position of a parent node placed over an edge in the offspring
net, since a final node position depends on the θ value of both
parents. Moreover, the weights are smoothed substituting them
with the mean of their external neighbors (including the node
itself) to prevent link crossings. The relations are:

θi =
e2,i

e1,i + e2,i

θb,i = fcw(θi) =
1

2
sin

(
πθi −

π

2

)
+

1

2

θµ,i = θb,ℵE(i); mo,i = θµ,im1,i + (1− θµ,i)m2,i.

(5)

(a) P1 (42474) (b) Offs. (31781) (c) P2 (69772)

Figure 12: The genotypic SCO. (a) and (c) show the parents,
while (b) depicts the offspring. Net energies in parenthesis.

The θ weights obtained with this procedure for the parent
nets shown in Fig. 12(a,c) are shown in Fig. 13(a). These
θi weights multiply the parent 1 net, while those multiplying
the parent 2 are computed as 1 − θi. The weights for the
x coordinates are obtained interpolating the extremes of the
row while the weights for the y coordinates are calculated
interpolating the extremes of the column. The results of the
interpolations for the weights of Fig. 13(a) are shown in Fig.
13(b,c).

Finally, Fig. 12(b) shows the result of the genotypic SCO
applied to the nets shown in Fig. 12(a,c). Note how the
energy of the offspring net (shown in the caption) and the
segmentation obtained are better.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15
r1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95
r2 0.82 - - - - - - - - - - - - - 0.95
r3 0.49 - - - - - - - - - - - - - 0.89
r4 0.16 - - - - - - - - - - - - - 0.58
r5 0.00 - - - - - - - - - - - - - 0.25
r6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02

(a) Weights of the external nodes for the net in Fig. 12 (6× 15 nodes).

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15
r1 1.00 0.99 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.95
r2 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.93 0.94 0.95
r3 0.49 0.52 0.55 0.58 0.61 0.63 0.66 0.69 0.72 0.75 0.78 0.81 0.84 0.87 0.89
r4 0.16 0.19 0.22 0.25 0.28 0.31 0.34 0.37 0.40 0.43 0.46 0.49 0.52 0.55 0.58
r5 0.00 0.02 0.04 0.06 0.07 0.09 0.11 0.12 0.14 0.16 0.18 0.19 0.21 0.23 0.25
r6 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02

(b) Interpolation of the external weights along the columns (x coordinate).

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15
r1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95
r2 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.76 0.77
r3 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.57 0.58
r4 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.38 0.40
r5 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.21
r6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02

(c) Interpolation of the external weights along the rows (y coordinate).

Figure 13: The weights of the genotypic SCO for Fig. 12(a,c)

2) The phenotypic SCO: Despite its good performance
in combining good segmentations of different parts of the
object(s), the genotypic SCO does not perform properly when
trying to combine nets which perform good segmentations of
different objects. Fig. 14(c) shows an example.

As a solution to this problem, we propose a phenotypic
SCO. This SCO tackles the problem of combining two meshes
with a top-down approach, the opposite of the bottom-up

(a) Parent 1 (b) Parent 2

(c) Genotypic offspring (d) Phenotypic offspring

Figure 14: The results of the two SCOs on nets which perform
good segmentations of different objects.
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approach of the genotypic SCO. The first step is to derive the
segmentation images of the two parents, as if they were the
final results of the process. A two-step filtering is applied to
the binary images in order to remove the “segmentation noise”.
First, a submesh filtering is applied to remove any submesh
which is not considered relevant. Second, a morphological
closing followed by an opening are applied to further smooth
the resulting shape.

The union of the resulting two binary images is calculated,
merging them through a logic OR. The following step is
adjusting a mesh to the shape of the object(s) in the union
image, a task the EBILS has been demonstrated capable of.
With this in mind, we initialize the offspring net using the
bounding box of the synthetic object of the union image. Then,
we run EBILS to fit the mesh to the synthetic object(s). The
resulting net will have the same shape of the union of the two
parent nets, including a new proper topology, calculated by
EBILS. While this SCO has only been applied to subsets of
size two, it can be extended easily to combinations of more
than two solutions. Fig. 15 depicts the phenotypic SCO process
while Fig. 14(d) shows the result of the combination of the
nets in Figs. 14(a,b).

3) Application of the SCOs: The phenotypic and genotypic
SCOs are fully complementary. The former is appropriate in
combining high quality meshes segmenting different objects
while the latter is useful to derive better nets while combining
solutions segmenting the same object(s). Therefore, we use
both of them in the solution combination method. We propose
to alternate them on the basis of the RefSet1. In order to do
so, at every iteration of the algorithm, we test if

fmargin =
fmean − fbest

fbest
< thmargin,

where fbest is the fitness value of the best mesh in the
RefSet, fmean is the mean fitness value of the meshes in the
quality subset of the RefSet, and thmargin is a proper threshold

Two nets Segmentations

Union of the
segmentations

EVFC of the 
union Result

EBILS
optimization

Figure 15: The phenotypic SCO process.
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Figure 16: A convergence graph of RefSet1. The green, blue
and red lines show the fitness of the best, mean and worst
solutions, respectively. “P” stands for phenotypic SCO, “G”
for genotypic SCO, and “R” for restart.

experimentally set to 0.1. If the inequality is true, we apply the
genotypic SCO, otherwise we apply the phenotypic version.
We also apply the phenotypic SCO after every population
generation, to exploit its superior capabilities in merging
different nets. Moreover, if the best solution improved in the
last SS iteration, we apply again the same SCO to the whole
population in the current iteration. Fig. 16 depicts an extract of
a convergence graph that shows how both SCOs synergically
contribute to the fitness improvement.

IV. RESULTS AND ANALYSIS

A. Experimental design

We tested four different segmentation algorithms: the TAN-
DE [8], the ETAN-EBILS [5], initialized by the bounding box
of the K-means pre-segmentation, an ETAN-MSLS consider-
ing EBILS as local search method, and our ETAN-SS proposal.
In this section we will refer to the four algorithms as DE, LS,
MS and SS, respectively. The three ETAN-based algorithms
employ the same fitness function and set of parameters.
DE, MS and SS are run ten times each while LS, being
deterministic, is executed just one time.

MS considers multiple alternative solutions applying the
EBILS starting from different positions. The meshes are ini-
tialized with the same frequency-memory procedure described
in Section III-F. Since the time needed to calculate the value
of the objective function is much lower than the duration of
the EBILS itself, the stopping condition of the MS is the mean
run time of the ten executions of the SS.

The considered image dataset is made up of a mix of 20
synthetic and real-world medical images. The images show
various difficulties and have a ground truth allowing us to
properly evaluate the segmentation performance.

In order to quantitatively assess our results on the dataset,
we compute the spatial accuracy index S, which is a similarity
index based on the overlapping rate between the segmentation
result and the ground truth [22]:

S = 2 · Card(R ∩ T )
Card(R) + Card(T )

, (6)

where R is the segmentation result, T is the ground truth, and
Card(X) is the cardinality of the X set, that is the number of
pixels it contains. Therefore, this index is dimensionless and
varies in the range [0, 1]. The higher its value, the better.

We also compute the mean distance MdRT between the
contours of the segmentation results and the ground truth as
well as the mean distance MdTR between the ground truth and
the segmentation results:

MdRT =

∑
r∈R

min
t∈T

d(r, t)

Card(R)
, MdTR =

∑
t∈T

min
r∈R

d(r, t)

Card(T )
,

where d(x, y) is the Euclidean distance.
Finally, we compute the Hausdorff distance [23], that is the

maximum distance between the two contours:

dH(R, T ) = max

{
sup
r∈R

inf
t∈T

d(r, t), sup
t∈T

inf
r∈R

d(r, t)

}
. (7)

The latter three distances are measured in pixels. While zero
is the lower bound, the upper bound depends on the size of the
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image. In any case, the lower the value, the better the obtained
segmentation. Among the three distance metrics, dH(R, T ) is
the most relevant one since it measures the worst case of the
segmentation. A low value in this metric implies per se an
effective segmentation.

The parameters used to run the algorithms over the 20
images in the dataset are shown in Table I. Some, related
to ETANs, are covered in [5]. As shown, the ETAN-based
algorithms have all the parameters of the TAN and some new
ones. Although this could suggest that tuning an ETAN is
harder than a TAN, we experimentally arrived at an opposite
conclusion. Indeed, in order to achieve an appropriate perfor-
mance for the TAN, there is a need to develop a specific ex-
perimental design for each individual image, testing different
values for each parameter in a wide range. For instance, for
the TAN case, using a net size of 30×30 nodes provided poor
results and it was necessary to manually set this parameter to
lower vales, different for each image. Moreover, often small
adjustments of the parameter values lead to significant changes
in the behavior of the nets. Conversely, ETANs are far less
sensitive to changes in those parameters [5].

The three ETAN-based algorithms have been implemented
in C++, while the DE in C. The tests were run on an Intel R©
CoreTM2 Quad CPU Q8400 at 2.66 GHz with 4 GB RAM.

B. Image dataset

The 20 images selected try to cover the most typical diffi-
culties in images segmentation: concavities, complex shapes,
fuzzy borders, holes, noise, and multiple objects. They are
shown in Fig. 17 with the SS results superposed to save space.
We divided them into two categories:

1) Real-world medical images: Two groups of images
belong to this category. Images from k1 to k4 (Fig. 17(a-d))
are real-world CT images of a human knee. The gray value of
all pixels have been inverted so the bone becomes the darker
object in the image. Images from l1 to l6 (Fig. 17(e-j)) are CT
images of human lungs. The target objects are, respectively,
the bones and the lungs. The ground truth has been derived
manually. The images have sizes up to 432× 470 pixels.

2) Synthetic images: We drew these images trying to cover
the mentioned segmentation difficulties. In addition, these
images have been artificially perturbed with three different
kinds of noise: Gaussian (with σ = 20), Lorentz (salt-and-
pepper, with γ = 7), and tiny-objects, that is, small dots
or lines which are not part of the target objects. The only

Parameter DE ETAN-based

α ∈ [0.01, 1.0] ∈ [5.0, 15.0]
β ∈ [0.1, 0.5] 3.0
ω ∈ [1.0, 20.0] 3.0
ρ 1.0 1.0
ξ ∈ [1.0, 2.0] 3.0
δ ∈ [2.0, 9.0] 15.0
γ 1.0 ∈ [1.0, 7.0]
Net size ∈ [12× 12, 20× 20] ∈ [20× 20, 30× 30]
thcut - 3.4
thholes - ∈ [0.6, 1.0]
SCanny - ∈ [15, 150]
Psize 1000 20
b1, b2 - 3, 3

Table I: The parameters used in the experimentation.

exception is image s1, which is only affected by the latter
kind on noise. Since they are synthetic images, they have been
generated starting from the ground truth. All the images have
size 375× 375 pixels.

C. Analysis of the results

Table II shows the numeric results obtained by the four
methods in the four considered metrics for every image. Since
DE, MS and SS are run ten times for each image, the table
shows the corresponding mean (µ) and standard deviation (σ).
It also shows their overall values on the whole dataset. Since
it is not possible to normalize the values provided by the three
distance metrics, the corresponding overall figures are only an
indication. For every image, and for the global µ and σ, the
best result for every metric is highlighted in boldface.

It can be clearly seen that our proposal achieves the best
mean results in the four quality metrics in almost every case.
It also showed the best behavior regarding robustness. Notice
that our SS method achieved the lowest standard deviation
values in the four segmentation metrics.

With regards to the execution time, while LS is quite fast,
with a mean time of 1.18 s, SS and MS are almost 300 times
slower, on average. DE is slightly faster, at about 150 times
slower. This is an expected result, given their global search
nature and the use of a simpler LS with a very limited number
of applications (see Sec. II-B) in the case of DE. It is worth
noting that any other MA employing the introduced operators
and the EBILS would be slower than our SS proposal which
uses a very reduced population. In addition, our approach is a
fully automatic segmentation method while LS needs a good
initialization, with the consequent time consumption.

In all the images, the target objects are structures, generally
darker than the background, surrounded by a wide range
of other structures. Segmentations including both the target
objects and part of the background correspond to local optima
of the energy function. They often have high values of the
dRT metric. Incomplete segmentations, lacking part of the
target objects, are another kind of local optima. Typically,
these segmentations showed high values of the dTR metric.
Conversely, segmentations including all and only the target
objects are close to the global optimum, with low values of
the dRT , dTR, and, consequently, dH metrics.

For LS, it got trapped in local optima on the knee images,
triggered by the tissue part around the bone. On the lung CTs,
the results were similar. In these cases, the local optima are
caused by the presence of the ribs, the vertebral column, and
the interface between the external air and the tissue. Figs.
18(a)-(c) show some examples of the problems described. On
the synthetic images, LS obtained slightly better results. It was
able to segment the holes in the images and to successfully
filter the two kinds of punctual noise. However, the algorithm
tends to segment the small dots and other structural noise,
even getting stuck into them, like in the case of image s8.

The segmentations obtained by MS are expressions of
different local minima (see Figs. 18(d)-(f) for illustrative
examples). In these cases, the algorithm found meshes with
a lower energy than LS. However, in doing so, it lost some
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(a) k1 (b) k2 (c) k3 (d) k4 (e) l1

(f) l2 (g) l3 (h) l4 (i) l5 (j) l6

(k) s1 (l) s2 (m) s3 (n) s4 (o) s5

(p) s6 (q) s7 (r) s8 (s) s9 (t) s10

Figure 17: SS results on: (a)-(j) real-world CT images; (k)-(t) synthetic images. For every image, the mesh shown is the most
similar to the mean one, resulting from the ten runs, according to the S index and Hausdorff distance statistics.

high energy objects, not being able to cut the connections
between these objects and the background. Indeed, it often
was unable to segment the smallest object in images k2, k3
and k4. Moreover, the segmentation of the lungs are often
incomplete, lacking some important parts. Connections with
external borders are also present, as in the case of LS, but to
a lesser extent. The values of the dRT and the dTR distances
for the LS and MS algorithms confirm the analysis of the
segmentation defects. Unsurprisingly, on the synthetic images,
MS was able to filter the structural noise better than LS, but
it showed the same tendency to undersegment the objects. It
successfully filtered the two kinds of punctual noise.

The results obtained by DE are poor. The meshes got stuck
in both kinds of local optima exposed so far. In addition, they
failed in locating the objects, eventually taking degenerated
shapes. The only successful result was s1, which is only

(a) LS on k2 (b) LS on l1 (c) LS on s3

(d) MS on k2 (e) MS on l1 (f) MS on s3

Figure 18: Examples of LS and MS inaccuracies (in red).
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Real-world Synthetic Overall
Metric k1 k2 k3 k4 l1 l2 l3 l4 l5 l6 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 µ σ

S

LS 0.92 0.96 0.95 0.92 0.89 0.97 0.96 0.98 0.92 0.87 0.97 0.97 0.94 0.93 0.97 0.97 0.96 0.47 0.94 0.93 0.92 0.10

µ
MS 0.90 0.92 0.90 0.93 0.86 0.97 0.95 0.97 0.94 0.83 0.98 0.98 0.97 0.96 0.98 0.96 0.95 0.95 0.89 0.90 0.93 0.04
DE 0.44 0.40 0.57 0.28 0.63 0.56 0.80 0.82 0.54 0.64 0.98 0.65 0.64 0.57 0.77 0.72 0.47 0.61 0.56 0.50 0.61 0.16
SS 0.93 0.97 0.96 0.94 0.98 0.99 0.99 0.99 0.97 0.94 1.00 0.99 0.99 0.98 0.99 0.98 0.97 0.98 0.96 0.93 0.97 0.02

σ
MS 0.05 0.03 0.01 0.01 0.10 0.01 0.03 0.02 0.02 0.06 0.01 0.00 0.02 0.01 0.00 0.02 0.02 0.02 0.05 0.04
DE 0.20 0.18 0.07 0.07 0.03 0.11 0.04 0.01 0.10 0.05 0.01 0.01 0.04 0.12 0.02 0.02 0.03 0.02 0.03 0.04
SS 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.02

MdRT

LS 2.84 10.17 10.17 17.14 10.86 4.13 5.39 3.80 6.01 7.41 18.68 2.76 20.64 21.52 7.33 2.52 2.19 51.54 5.91 2.59 10.68 10.27

µ
MS 12.93 5.14 4.39 7.84 6.62 4.89 5.14 3.22 5.05 5.64 11.17 2.37 10.15 4.91 5.80 3.04 2.17 5.29 5.47 3.06 5.71 2.79
DE 14.10 8.83 21.86 23.80 17.90 25.03 17.73 18.27 39.70 21.80 1.89 12.75 3.77 3.90 14.24 12.13 9.55 11.27 7.28 11.38 14.86 8.65
SS 3.03 1.45 2.13 2.90 1.57 0.94 0.89 0.64 1.34 2.17 0.57 0.59 0.84 0.74 0.99 1.61 0.72 0.83 1.62 2.14 1.39 0.73

σ
MS 8.12 5.69 1.05 4.05 1.58 1.18 1.39 0.83 0.81 0.82 7.44 0.61 3.37 1.33 3.97 0.65 0.84 3.54 1.09 0.67
DE 10.68 2.64 0.98 3.71 4.23 4.83 1.60 1.41 12.39 4.77 1.10 1.23 1.61 1.31 2.16 2.98 1.86 1.44 0.64 3.15
SS 0.43 0.27 0.26 0.35 0.38 0.11 0.09 0.08 0.27 0.89 0.03 0.02 0.49 0.23 0.38 0.42 0.10 0.10 0.14 0.25

MdTR

LS 4.46 1.63 1.77 2.00 6.27 1.49 2.25 1.29 2.81 7.96 0.91 1.00 1.09 1.34 0.87 0.86 0.84 59.33 1.84 1.82 5.09 11.54

µ
MS 3.39 11.30 13.73 9.30 31.01 2.51 3.92 5.37 2.09 14.64 0.94 0.77 1.08 1.03 0.84 1.12 1.06 2.48 6.25 3.01 5.79 7.19
DE 28.99 53.59 24.97 32.84 80.76 66.43 34.86 31.31 34.23 35.22 1.56 36.76 41.61 37.58 22.56 24.68 35.19 29.53 42.42 40.03 36.76 15.91
SS 2.73 1.51 2.04 3.50 1.60 1.42 1.84 1.30 2.72 3.87 0.56 0.60 0.67 0.63 0.80 0.83 0.66 0.88 1.89 1.71 1.59 0.96

σ
MS 1.25 4.90 2.45 5.28 31.44 0.68 2.68 4.92 0.69 16.25 0.41 0.10 0.78 0.22 0.05 0.51 0.55 2.15 5.23 2.59
DE 11.29 13.31 1.75 3.25 4.37 14.29 2.45 2.50 7.70 9.50 0.83 2.08 3.10 4.46 2.12 2.50 9.49 1.95 3.22 4.26
SS 0.40 0.31 0.35 3.46 0.24 0.16 0.20 0.07 0.19 0.74 0.02 0.02 0.24 0.15 0.05 0.04 0.10 0.15 0.79 0.32

dH

LS 28.60 62.10 72.44 83.01 54.45 44.94 37.44 45.28 31.83 48.80 98.99 34.89 135.91 126.57 76.69 30.41 35.90 121.81 71.06 36.00 63.86 30.35

µ
MS 74.43 86.58 92.29 91.58 121.94 49.79 42.05 53.10 38.40 59.88 70.03 32.73 96.88 72.92 78.33 34.43 38.25 74.86 82.13 38.10 66.43 24.42
DE 74.60 127.19 88.09 86.67 234.70 183.04 118.06 104.81 94.33 104.61 17.23 98.95 126.73 100.05 70.44 81.21 95.99 83.25 123.24 100.63 105.69 42.50
SS 17.17 8.48 17.49 30.12 24.19 22.64 25.72 14.81 38.15 27.08 2.38 4.08 8.92 7.19 9.52 24.01 10.79 8.65 21.23 31.41 17.70 9.82

σ
MS 16.98 10.66 16.28 12.15 77.92 9.45 11.43 15.02 14.90 43.55 28.34 4.60 24.63 13.40 21.73 14.01 19.41 12.19 18.12 8.87
DE 18.58 24.48 6.15 4.55 7.76 24.90 6.25 5.96 10.01 24.57 12.34 4.48 4.96 6.99 2.72 7.47 24.87 11.97 8.35 13.67
SS 1.35 2.28 10.24 23.81 2.82 2.75 3.09 0.40 15.34 3.86 1.88 1.28 12.52 3.67 9.12 2.07 3.72 3.40 13.01 7.76

Table II: Numeric results of the four segmentation metrics for all the algorithms on all the images.

affected by tiny-objects noise, showing how the global search
is able to filter these kinds of structures. Conversely, the
algorithm proved to be heavily affected by the punctual noise
on the synthetic images. Although DE achieved good perfor-
mance in [8], the images considered there were significantly
simpler than the ones in our dataset. The lack of an energy
term rewarding the segmentation of multiple objects, the loss
of the topology information of every net but the best individual
at every new generation, the inability of the BILS to adjust
the mesh to objects with complex shapes, and the absence
of crossover operators considering the characteristics of the
problem strongly limit the performance of that proposal.

Finally, the results obtained by SS are clearly the best ones.
For all the images, it performed better than the other three
methods in almost every statistic. Indeed, it respectively ranked
first 20 and 19 out of 20 times, according to the mean of
the S and dH index values, as shown in Table II. The low
values of the dRT and the dTR distances, smaller than the three
competitors, are in line with the quality of the segmentations.
SS gets the best result in 19 cases for dRT and in 15 cases for
dTR. Focusing on the medical images, the resulting nets on
images k2, k3 and k4 properly segment the small objects and
there are few connections to the background on all the images
of this category. The segmentations are almost complete but, in
some cases, SS was not able to segment some small structures,
as in Figs. 17(g, h, i). As for the synthetic images, the
segmentations are complete while there is almost no presence
of structural noise.

D. Statistical analysis of the results

In the previous section, we provided a detailed analysis
of the numerical results obtained, giving an insight of the
performance of the four compared methods. To prove the
significant superiority of the segmentation capabilities of our
proposal, in this section we provide a statistical analysis of
the obtained results. With this aim, we performed a two-

tailed Wilcoxon signed-rank test [24] for each of the four
segmentation metrics as follows.

Let N = 20 be the sample size, that is, the number of
images in the dataset and hence the number of pairs in the
test. We compare the mean performance over the ten runs
for each image. Each pair is composed of the result of our
SS proposal and the best result among those achieved by
the other three algorithms. This is the hardest case since,
for every image, we always compare SS against an aggregate
algorithm whose performance is the best one obtained by the
set C = {LS,MS,DE}. Since we are now comparing only two
algorithms (C and SS), we are allowed to use the Wilcoxon
test, as outlined in [25]. The null and alternative hypothesis
are defined, respectively, as:
• H0: median difference between the pairs is zero,
• H1: median difference is not zero.

The p-values obtained for the four metrics are shown in
Table III. For SS, the values of the medians are higher for the S
index and lower for the three distances. Given the obtained p-
values, we found enough evidence to reject the null hypothesis
with a confidence level of 0.05 for every metric. It is worth
noting that the confidence level could have been much lower
for the S, MdRT and dH metrics, for example 0.01.

Although the Wilcoxon test is significant enough to prove
the superiority of the performance of our proposal with respect
to the other three methods, for the sake of clarity we also show
a boxplot of the two most relevant metrics, S and dH , in Fig.
19. These boxplots are a quick way to graphically examine
graphically the distributions of the 200 results obtained by the

Metric p-value median(C) median(SS)

S 1.907 · 10−6 0.958 0.977
MdRT 3.815 · 10−6 4.266 1.164
MdTR 2.958 · 10−2 1.700 1.465
dH 5.722 · 10−6 47.036 17.328

Table III: The results obtained by the Wilcoxon test.
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three stochastic algorithms over the 20 images, considering
the 10 runs (being deterministic, LS has been run just once
per image).
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Figure 19: The distributions of the results (1/10 runs for 20
images), for S and dH metrics obtained by the four methods.

V. CONCLUSIONS AND FUTURE WORK

In this work we have proposed an accurate, robust and
automatic segmentation method that is able to perform in a
reasonable time. It embeds the ETAN model into a customized
SS global search framework. We designed several new specific
components for the method. They become a crucial outcome
allowing us to really take advantage of the population-based
optimization framework as none of the previous approaches
were able to do. The obtained results were encouraging.
Our SS proposal significantly improved the accuracy of the
segmentation on real-world medical images, as well as on
synthetic ones, in comparison with the original ETAN-EBILS,
an ETAN-MSLS and the state-of-the-art DE-based MA for
TANs. Moreover, the robustness achieved was significantly
better than the previous methods.

Nevertheless, regardless of its good performance, our
method still has room for improvement. In a few cases
the obtained segmentations were not fully correct. To better
take advantage of the region-based segmentation capabilities,
we could endow the ETAN with a texture analysis system.
Indeed, texture is one of the important characteristics used in
identifying objects or regions of interest in an image.
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