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The task of assessing the similarity of research papers is of interest in a variety of applica-
tion contexts. It is a challenging task, however, as the full text of the papers is often not
available, and similarity needs to be determined based on the papers’ abstract, and some
additional features such as their authors, keywords, and the journals in which they were
published. Our work explores several methods to exploit this information, first by using
methods based on the vector space model and then by adapting language modeling tech-
niques to this end. In the first case, in addition to a number of standard approaches we
experiment with the use of a form of explicit semantic analysis. In the second case, the
basic strategy we pursue is to augment the information contained in the abstract by inter-
polating the corresponding language model with language models for the authors, key-
words and journal of the paper. This strategy is then extended by revealing the latent
topic structure of the collection using an adaptation of Latent Dirichlet Allocation, in which
the keywords that were provided by the authors are used to guide the process. Experimen-
tal analysis shows that a well-considered use of these techniques significantly improves
the results of the standard vector space model approach.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Due to the rapidly growing number of published research results, searching for relevant papers can become a tedious task
for researchers. In order to mitigate this problem, several solutions have been proposed, such as scientific article recom-
mender systems [4,24,29,8] or dedicated search engines such as Google Scholar. At the core of such systems lies the ability
to measure to what extent two papers are similar, e.g. to find out whether a paper is similar to papers that are known to be of
interest to the user, to explicitly allow users to find ‘‘Related articles’’ (as in Google Scholar), or to ensure that the list of
search results that is presented to the user is sufficiently novel and diverse [6]. To find out whether two articles are similar,
content-based approaches can be complemented with collaborative filtering techniques (e.g. based on CiteULike.org or Bibs-
onomy.org) or citation analysis (e.g. PageRank, HITS, etc.). While the latter are well-studied, content-based approaches are
usually limited to baseline techniques such as using the cosine similarity between vector representations of the abstracts.

Comparing research papers is complicated by the fact that their full text is often not publicly available, and only semi-
structured document information containing the abstract along with some document features such as keywords, authors,
or journal can be accessed. The challenge thus becomes to make optimal use of this limited amount of information. A first
option is to use these features in the vector space model, either separately or combined in some way. Alternatively, language
. All rights reserved.
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modeling techniques can be considered, as they have already been shown to perform well for comparing short text snippets
[14,30].

Our main goal in this paper is to study to what extent such additional, semi-structured information can be used to com-
pare research paper abstracts, and how we can make use of it in the context of either the vector space model or a language
modeling approach. For the vector space model, we first consider the traditional tf–idf approach as a baseline method, and
then investigate the potential of the idea of explicit semantic analysis. In particular, we adapt a method from [10], represent-
ing each document as a vector of keywords, a vector of authors, or a vector of journals. By abstracting away from the indi-
vidual terms that appear in a document, and rather describing it in terms of how strongly it is related to e.g. a given keyword,
we can hope to overcome problems of vocabulary mismatch that hamper the baseline method. For language modeling, on
the one hand, we consider the idea of estimating language models for document features such as keywords, authors, and
journal, and estimate a language model for the overall article by interpolating these models, an idea which has already pro-
ven useful for expert finding [38]. Furthermore, we use Latent Dirichlet Allocation (LDA) to discover latent topics in the doc-
uments, and further improve the language model of an article based on the revealed topical information. To improve the
performance of the standard LDA method, we replace its random initialization by an initialization which is based on the key-
words that have been assigned to each paper. The main underlying idea is that a topic can be identified with a cluster of
keywords.

The remainder of this paper is structured as follows. After reviewing the related work in Section 2, we study two methods
based on the vector space model to measure article similarity in Section 3, while in Section 4 we propose a number of meth-
ods based on language modeling. In Section 5 we explain the details concerning our experimental set-up, and present and
discuss the obtained results. The main conclusions are summarized in Section 6.

Note that this paper extends and improves on the approaches that were presented in [15] and [16]. In particular, it im-
proves on both previous works in the way the various methods are evaluated. We have substantially expanded the analysis
of the results, and use a more representative test set than before. In addition, a number of key improvements to the language
modeling methods have been added, including the use of communities and the combination of features in LDA methods
(resulting in the LMe methods that offer the best performance, as shown by the results).
2. Related work

Language models are a relatively recent approach to information retrieval, and are typically seen as an alternative to the
traditional methods based on the vector space model. The language modeling approach is based on the assumption that a
document has been generated using some kind of probabilistic model. To estimate the relevance of a query to a document,
we then try to estimate the underlying probabilistic model, primarily based on the terms that occur in it, and then compare
the query to that model, rather than to the actual document. Most current work builds on the initial approach by Ponte and
Croft [28]. The most common way to improve language models is to improve the smoothing method. The basic idea of
smoothing is to estimate the probability that a term is generated by the language model underlying a document not only
from the terms that occur in the document itself, but also from the terms that occur in the rest of the collection. It is used
to lessen the impact of common words (not unlike the idea of inverse document frequency in the vector space model), and to
ensure that only non-zero probabilities are used. A comprehensive overview of the most common smoothing methods can be
found in [36]. A number of authors have investigated smoothing methods that go beyond the standard approaches. For in-
stance, [22] combines Dirichlet smoothing with bigrams, instead of the unigrams typically used, and the collection used for
smoothing is expanded with external corpora, for the task of spontaneous speech retrieval. Deng et al. [7] follow a somehow
inverse approach and apply smoothing based only on subsets of the collection corresponding to a specific community of ex-
perts. Different smoothing strategies are found in the literature precisely for this task of expert finding. Karimzadehgan et al.
[18] and Petkova and Croft [26] try to improve smoothing by interpolating models, expanding the idea originally proposed
by [17] on which we have partially built our approach. The idea of interpolating different language models was used in a
particularly comprehensive way in [26]: to represent an expert, a model is estimated for his mails, another model for his
papers, etc., and then they are interpolated; at the same time, in order to model the mails, a model can be created for the
body of the mails, another model for the subject headers, etc. Mimno and McCallum [25] evaluate, for the same task, models
that combine author-based information with Dirichlet smoothing. Finally, [37] also proposes the interpolation of several
models to discover new expertise.

It is interesting to see that, as in our case, efforts to improve language modeling often lead to the use of Latent Dirichlet
Allocation [2]. Examples of this are the already mentioned methods of [25,37]. As we will discuss in Section 4.2.1, the topics
underlying a particular collection of documents (and a document itself) can be discovered by using LDA. These topic models
have gained a lot of popularity in the last years and have been used in a vast diversity of tasks such as tag recommendation
[20], measuring the influence of Twitter users [35], or text classification [27]. The basic form of LDA does not suffice in many
cases, however. While for some problems it is enough to adapt the distributions used by the algorithm [1], most of the solu-
tions involve changes in the way the estimated probabilities are computed and, depending on the task, different kinds of
extra information are incorporated. For example, the chronological order of the documents can be taken into account to dis-
cover topic trends [5]; on the other hand [34] considers the intuition of authors usually writing about the same topics, and
add information about authors to create author-topic models, which in turn have been improved as well [12,25]. A different
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approach consists in improving language models by using document labels, such as scores or tags, which can be used as a
kind of supervision [3], or be associated with the topics in direct correspondence [31]. The approach of Kataria et al. [19]
could also be included in this group, as they use entities, annotations, and classifications from Wikipedia to construct better
models. One of the methods proposed in this latter work has some similarities with ours, as the number of times a word is
assigned to a Wikipedia topic is used in LDA in a manner comparable to our LM0e method (Section 4.3). However, our strat-
egy uses no external sources of information, but only what is already in the document. Finally, it should be noted that the
LDA topic models cannot only be improved by feeding them with additional information, but also by improving the initial-
ization of the Gibbs sampling method that is typically used. This idea appears to have received little attention in the liter-
ature, and will be explored in methods LM2 and LM2e (Section 4.4).

3. Vector space model

In this section we discuss two methods based on the vector space model to assess paper similarity using the information
commonly available for a research paper: abstract, keywords, authors, and journal. First we propose an approach which
makes use of tf–idf (term frequency–inverse document frequency), and then another one based on an indirect indexing
scheme known as explicit semantic analysis [10].

3.1. Baseline

A simple way to measure the similarity of two papers is by comparing their abstracts in the vector space model: each
paper is represented as a vector, with each component corresponding to a term (unigram) occurring in the collection. To con-
vert a document into a vector, the stopwords1 are first removed; we do not use stemming. Then, to calculate the weight for
each term ti in the abstract of document d, the tf–idf scoring technique [32] is used:
1 The
followin
tfidf ðti; dÞ ¼
nðti;dÞ
jdj � log

jCj
jfdj : ti 2 djgj þ 1

ð1Þ
where n(ti,d) is the number of occurrences of ti in the abstract of d, jdj is the total number of terms in the abstract of d; jCj is
the number of abstracts in the collection, and j{dj: ti 2 dj}j is the number of abstracts in the collection that contain ti. Two
vectors d1 and d2 corresponding to different papers can then be compared using standard similarity measures such as the
cosine, generalized Jaccard, extended Jaccard, and Dice similarity, defined respectively by
simcðd1;d2Þ ¼
d1 � d2

kd1k � kd2k
ð2Þ

simgjðd1;d2Þ ¼
P

kminðd1k
;d2k
ÞP

kmaxðd1k
; d2k
Þ ð3Þ

simejðd1;d2Þ ¼
P

kminðd1k
;d2k
Þ

kd1k2 þ kd2k2 � ðd1 � d2Þ
ð4Þ

simdðd1;d2Þ ¼
2ðd1 � d2Þ
kd1k2 � kd2k2 ð5Þ
where d1 � d2 denotes the scalar product and k.k the Euclidean norm. We refer to the method that combines tf–idf on the
abstract with these four similarity measures as abstract.

We also consider vector representations that are based on the keywords that have been assigned to the documents, thus
ignoring the actual terms of the abstract (method keywords). Each component then represents a keyword from the collection.
However, since each keyword occurs only once in a document, the tf–idf formula used in this case degenerates to:
tfidf ðti; dÞ ¼
1
jdj � log

jCj
jfdj : ti 2 djgj þ 1

ð6Þ
where jdj is now the number of keywords assigned to the document, instead of the number of terms in the abstract. Unlike in
the method abstract, where the terms are unigrams (individual terms), here we consider the whole keywords, which may be
multigrams (e.g. ‘‘recommender system’’).

3.2. Explicit semantic analysis

A problem with the previous methods is that only one feature (keywords or abstract) is used at a time. Valuable infor-
mation is thus ignored, especially in the keywords method which does not use the abstracts. In order to use the keywords
without ignoring the information from the abstract, we propose an alternative scheme which we refer to as explicit semantic
list of stopwords we have used for the experiments was taken from http://snowball.tartarus.org/algorithms/english/stop.txt, expanded with the
g extra terms: almost, either, without, and neither.

http://snowball.tartarus.org/algorithms/english/stop.txt


Fig. 1. Generation of the ESA vector dE of a document.
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analysis (ESA), as it is analogous to the approach from [10]. In this scheme, a new vector representation dE is defined for each
document d, where dE has one component for every keyword k in the collection. The idea is that each component of the vec-
tor should reflect how related the document is with the concept represented by the corresponding keyword.

Let d be the vector obtained from method abstract. In addition, we consider a vector to represent each keyword (and,
therefore, each concept). In order to build such a vector, a new collection CE of artificial documents is considered, with
one document dk for each keyword, which consists of the concatenation of the abstracts of the documents from the original
collection to which keyword k was assigned. Then, a weighted vector dk is considered for each dk, with each component cor-
responding to a term in CE and where the weights are the tf–idf scores calculated w.r.t. CE. Thus, dk represents the concept
corresponding to keyword k in the same way that d represents document d. Finally, after normalizing both d and dk, they are
compared to calculate the weight wk in dE of the component corresponding to keyword k:
wk ¼ d � dk ð7Þ
Fig. 1 summarizes this process. For a detailed example we refer to Appendix A. The dE vectors can be compared by using any
of the similarity measures defined in Section 3.1.

We further refer to this method as ESA-kws. Similar methods are considered in which vector components refer to authors
(ESA-aut) or to journals (ESA-jou), where, instead of dk, a weighted vector da (for authors) or dj (for journals) is used. In these
cases, the collection CE of artificial documents is built by considering a document da for each author (resp. dj for each journal),
which consists of the concatenation of the abstracts of the documents from the original collection to which author a (resp.
journal j) is associated. For efficiency and robustness, only authors are considered that appear in at least four papers of the
collection in the ESA-aut method, and only keywords that appear in at least six papers in the ESA-kw method.

4. Language modeling

4.1. Baseline

As an alternative to the approaches based on the vector space model, we consider estimating unigram language models
[28] for each document, and calculating their divergence. A document d is then assumed to be generated by a given prob-
abilistic model D. This model is estimated from the terms that occur in the abstract of d (and the rest of the abstracts in the
collection). Using Jelinek-Mercer smoothing [36], the probability that model D generates term w is given by:
DðwÞ ¼ kPðwjdÞ þ ð1� kÞPðwjCÞ ð8Þ
where C is again the whole collection of abstracts, and k controls the weight given to the smoothing term PðwjCÞ. The prob-
abilities P(wjd) and PðwjCÞ are estimated using maximum likelihood, i.e. P(wjd) is the fraction of occurrences of term w in the
abstract of document d, and PðwjCÞ is the fraction of occurrences of term w in the collection. Once the models D1 and D2 cor-
responding to two documents d1 and d2 are estimated, we measure their difference using the Kullback–Leibler divergence
[21], defined by
KLDðD1jjD2Þ ¼
X

w

D1ðwÞlog
D1ðwÞ
D2ðwÞ

ð9Þ
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Note that KLD(D1jjD2) is not equal to KLD(D2jjD1) in general. If a symmetric measure is desired, a well-known and popular
alternative is Jensen–Shannon divergence [9], where the models are first compared to an average model (D1 + D2)/2 and then
the mean of both divergences is calculated:
JSDðD1jjD2Þ ¼
KLD D1jj D1þD2

2

� �

2
þ

KLD D2jj D1þD2
2

� �

2
ð10Þ
In the remainder of this section we consider different ideas to improve this basic language modeling approach.

4.2. Language model interpolation

The probabilities in the model of a document are calculated using the abstracts in the collection. However, given the
short length of the abstracts, it is important to make maximal use of all the available information, i.e. to also consider the
keywords k, authors a, and journal j of the paper. In particular, the idea of interpolating language models, which underlies
Jelinek-Mercer smoothing, can be generalized:
DðwÞ ¼ k1PðwjdÞ þ k2PðwjkÞ þ k3PðwjaÞ þ k4PðwjjÞ þ k5PðwjCÞ ð11Þ
with
P

iki ¼ 1. Interpolation of language models has also been used for example in [38] for the task of expert finding, inte-
grating several aspects of a document in a model. In order to estimate P(wjk), P(wja), and P(wjj), we consider an artificial
document for each keyword k, author a and journal j corresponding to the concatenation of the abstracts of the documents
where k, a and j occur, respectively. Since a document may contain more than one keyword ki and one author aj, we define
P(wjk) and P(wja) as:
PðwjkÞ ¼ 1
K

XK

i¼1

PðwjkiÞ ð12Þ

PðwjaÞ ¼ 1
A

XA

j¼1

PðwjajÞ ð13Þ
where K and A are the number of keywords and authors in the document. The probabilities P(wjj), P(wjki) and P(wjaj) are
estimated using maximum likelihood, analogously to P(wjd). Alternatively, we can try to reflect the bigger influence of
the first author by giving a higher weight c to his probabilities. In that case, if there is more than one author, (13) becomes:
PðwjaÞ ¼ cPðwja1Þ þ
1� c
A� 1

XA

j¼2

PðwjajÞ ð14Þ
4.2.1. Latent Dirichlet Allocation
Two conceptually related abstracts may contain different terms (e.g. synonyms, misspellings, related terms), and may

therefore not be recognized as similar. While this is a typical problem in information retrieval, it is aggravated here due
to the short length of abstracts. To cope with this, methods can be used that recognize which topics are covered by an ab-
stract, where topics are broader than keywords, but are still sufficiently discriminative to yield a meaningful description
of the content of an abstract. This topical information is not directly available, but it can be estimated by using Latent Dirich-
let Allocation (LDA) [2].

The idea behind LDA is that documents are generated by a (latent) set of topics, which are modeled as a probability dis-
tribution over terms. To generate a document, a distribution over those topics is set, and then, to generate each term w in the
document, a topic z is sampled from the topic distribution, and w is sampled from the term distribution of the selected topic.
In other words, the set of distributions / over the terms in the collection (for each topic) and the set of distributions h over all
the topics (for each paper) need to be estimated. To do so, we use LDA with Gibbs sampling [13]. These probabilities are then
estimated as:
PðwjzÞ ¼ /̂ðwÞz ¼ nðwÞz þ b

nð�Þz þWb
ð15Þ

PðzjsÞ ¼ ĥðdÞz ¼
nðdÞz þ a

nðdÞ� þ Ta
ð16Þ
where s is the LDA model obtained with Gibbs sampling, W is the number of terms in the collection, and T is the number of
topics. Parameters a and b intuitively specify how close (15) and (16) are to a maximum likelihood estimation: if their value
is zero, (15) and (16) become a maximum likelihood estimation, while high values make them tend to a uniform distribution.
The value nðwÞz is the number of times term w is assumed to have been generated by topic z, while nðdÞz is the number of times a
term instance of document d is assumed to have been generated by topic z. Finally, nð�Þz is the total number of times a term has
supposedly been generated by topic z, and nðdÞ� is the total number of term instances of document d generated by any topic.
All these values, except nðdÞ� , which is simply the length of d, are unknown a priori.
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The idea of the Gibbs sampling algorithm is to sample all variables from their distribution when conditioned on the cur-
rent values of the rest of the variables. If repeated, the values will start to converge to the actual distribution. To apply the
LDA algorithm, we first initialize it by randomly sampling a topic from a uniform distribution, for each occurrence of a term
in every document; the topic is assigned as the generator of that instance of the term. By doing this, the aforementioned
counts nðwÞz ; nðdÞz and nð�Þz are randomly initialized. Then, an iterative process begins. In each iteration, for each instance w
of a term in the collection, a topic is sampled based on probability estimates derived from the current assignments, i.e.
the probability that topic z is chosen is given by
Pðzjw; sÞ / PðwjzÞ � PðzjsÞ ¼ n0z
ðwÞ þ b

n0ð�Þz þWb
� n0ðdÞz þ a
n0ðdÞ� þ Ta

ð17Þ
where n0ðwÞz ; n0ðdÞz ; n0ð�Þz and n0ðdÞ� are analogous to nðwÞz ; nðdÞz ; nð�Þz and nðdÞ� respectively, but without including the current assign-
ment of w. When the values converge, or, alternatively, after a given number of iterations, the algorithm stops, and / and h
can finally be estimated according to (15) and (16).

Author information can also be used in an analogous way, as similar papers are often written by authors within the same
community. This information about different communities may be useful, as it complements the information about topics: in
the same way that a group of keywords can define a topic, a group of authors (a community) can define the set of topics they
usually write about. By using the author information instead of the keywords, the underlying communities can be found. A
community model thus becomes available by straightforwardly modifying Eqs. (15)–(17) as follows:
PðwjqÞ ¼ /̂ðwÞq ¼ nðwÞq þ b

nð�Þq þWb
ð18Þ

PðqjjÞ ¼ ĥðdÞq ¼
nðdÞq þ a

nðdÞ� þ Ca
ð19Þ

Pðqjw;jÞ / PðwjqÞ � PðqjjÞ ¼ n0ðwÞq þ b

n0ð�Þq þWb
� n0ðdÞq þ a
n0ðdÞ� þ Ca

ð20Þ
where C is the number of communities, q is a given community and j is the new LDA model obtained with Gibbs sampling.
The counts nðwÞq ; nðdÞq ; nð�Þq ; n0ðwÞq ; n0ðdÞq and n0ð�Þq are defined analogously to nðwÞz ; nðdÞz ; nð�Þz ; n0ðwÞz ; n0ðdÞz and n0ð�Þz .

To find the underlying topics and communities, the LDA algorithm needs some input, namely the number T of topics and
the number C of communities to be found. In Section 5.2 we study and discuss the best values for T and C. The topics and
communities that are obtained from LDA can be used to improve the language model of a given document d. In particular,
we propose to add P(wjs) and P(wjj) to the right-hand side of (11), with the appropriate weights ki:
DðwÞ ¼ k1PðwjdÞ þ k2PðwjkÞ þ k3PðwjaÞ þ k4PðwjjÞ þ k5PðwjsÞ þ k6PðwjjÞ þ k7PðwjCÞ ð21Þ
P(wjs) reflects the probability that term w is generated by the topics underlying document d. It can be estimated by consid-
ering that:
PðwjsÞ ¼
XT

i¼1

PðwjziÞ � PðzijsÞ ð22Þ
On the other hand, P(wjj) represents the probability that term w is generated by the underlying communities, and is defined
by:
PðwjjÞ ¼
XC

i¼1

PðwjqiÞ � PðqijjÞ ð23Þ
In summary, we can now build a model D for each document d interpolating not only some features as in (11), but also
underlying information such as topics and communities as defined in (21). This method is further referred to as LM0.

4.3. Enriched estimations

Eq. (16) estimates the probability P(zjs) of a topic z given an LDA model s. However, this estimation is only based on the
abstracts, while intuitively both authors and journals have an important influence on the topics: authors usually write on the
same topics, and journals cover a more or less well-defined spectrum. Therefore, we propose to use both features in order to
compute the estimations of / and h.

While the outline of the method remains the same, we rewrite (16) as
PðzjsÞ ¼ ĥðdÞz ¼
nðdÞz þ a1 þ nðjÞz a2 þ nðaÞz a3

nðdÞ� þ Ta1 þ nðjÞ� a2 þ nðaÞ� a3
ð24Þ
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where new counts are introduced: nðjÞz is the number of times a term of journal j has been assigned to topic z; nðjÞ� is the total
of terms (instances) of j; nðaÞz is the number of times a term of author a has been assigned to topic z, and nðaÞ� is the total of
terms of a. Also, the value of a in (16) is now split into a1, a2 and a3. These values, which control the importance of each
feature in the smoothing method, are discussed in Section 5.2. This modification implies changes in the Gibbs sampling algo-
rithm as well, replacing the part of the estimation of P(zjs) in (17) by (24). We call this method LM0e.

4.4. Improved initialization

A different approach to improve LM0 is by taking advantage of the fact that keywords have been assigned to each paper. In
particular, we propose to exploit the available keywords to improve the initialization part of the Gibbs sampling algorithm,
and therefore to get more accurate estimations.

The idea is to cluster the keywords and identify each cluster with a topic. The parameters of the multinomial distributions
corresponding with each topic can then initially be estimated from these clusters. Conceptually, we represent each keyword
by an artificial document, corresponding to the concatenation of the abstracts of the papers to which that keyword has been
assigned (analogously to the dk documents in Section 3.2). Similarity between keywords is then estimated by calculating the
cosine similarity between the corresponding artificial documents. The clusters are then obtained using the K-means algo-
rithm [23]. This is a basic clustering algorithm, but also fast, well known, and easy to implement. However, other algorithms
can be considered.

Once the clusters have been determined, we represent them by the concatenation of all abstracts to which at least one of
the keywords in the clusters was assigned. We can then estimate a multinomial distribution from these documents, and ini-
tialize the Gibbs sampling procedure with it.

For this process, only the keywords which appear in a minimum number of documents are used (the value of this thresh-
old is discussed in Section 5.2). This means that the terms occurring in documents that do not contain any of those keywords
are not taken into account to build the clusters (and therefore, to compute the initial values for the parameters). Also, there is
no information about the topics that generate the terms which occur exclusively in those documents. In those cases, the to-
pic is not sampled from the resulting multinomial distributions, but from a uniform distribution, i.e., we fall back on the basic
initialization method that is usually considered. For more details, we refer to the example in Section 4.5, and in particular to
Section 4.5.4.

In addition to terms that do not occur in the artificial cluster documents at all, we may also consider that terms that are
rare in these clusters may need to be smoothed. Initial experiments, however, indicated that this does not actually improve
the performance, hence we will not consider this additional form of smoothing in our experiments, avoiding the unnecessary
introduction of more parameters.

Once initial values for all the parameters in (15) and (16) have been set, we can apply the iterative part of the LDA algo-
rithm. We call this method LM2.2 By clustering authors instead of keywords, the community models are analogously improved
in this method.

This idea can also be used to improve LM0e. In that case, the counts nðjÞz ;nðjÞ� ;n
ðaÞ
z and nðaÞ� must be initialized as well. After

sampling a topic for each instance of a term in a given document d, the respective counts for the journal corresponding to
that document are increased. In order to estimate which author generated a term instance, a uniform distribution on the
total number of authors of d is used, and the counts corresponding to the author sampled from it are increased. The rest
of the process is analogous to method LM2; we call this method LM2e.

4.5. Running example

We provide an example of how the proposed method based on language models works as a whole, step by step. In par-
ticular, we detail how the language models are created and interpolated, how the LDA step works, and how the initialization
of LDA can be improved.

We consider the following collection C consisting of four documents. In order to improve readability, we use letters in-
stead of words, keywords, authors’ names, or journals:
2 In p
notation
d1 ¼ fabs ¼ ða; b; a; c; d; aÞ; kws ¼ ðk1; k2Þ; aut ¼ ðu1;u2Þ; jou ¼ ðj1Þg
d2 ¼ fabs ¼ ða; a;d; a; b; aÞ; kws ¼ ðk1; k3Þ; aut ¼ ðu1;u3Þ; jou ¼ ðj1Þg
d3 ¼ fabs ¼ ða; b; aÞ; kws ¼ ðk2; k3Þ; aut ¼ ðu2;u4Þ; jou ¼ ðj2Þg
d4 ¼ fabs ¼ ða; b; b; eÞ; kws ¼ ðk4Þ; aut ¼ ðu5; u6Þ; jou ¼ ðj2Þg
4.5.1. Step 1: basic language models
As explained in Section 4.1, the probabilities are initially only based on the abstract information and estimated using

maximum likelihood. In this way, the probabilities of a term being generated by the language model of d1 are:
revious work [16], we studied a third method called LM1, which we do not consider in this paper. To avoid confusion we have decided to keep the same
, and therefore we speak about method LM2 without having mentioned a method LM1 before.
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Pðajd1Þ ¼
3
6

Pðbjd1Þ ¼
1
6

Pðcjd1Þ ¼
1
6

Pðdjd1Þ ¼
1
6

Pðejd1Þ ¼ 0
Also, the probabilities of a term being generated by the background model must be estimated:
PðajCÞ ¼ 10
19

PðbjCÞ ¼ 5
19

PðcjCÞ ¼ 1
19

PðdjCÞ ¼ 2
19

PðejCÞ ¼ 1
19
Now the basic model D1 can be calculated for d1 (models D2, D3 and D4 are built analogously):
D1ðaÞ ¼ k
3
6
þ ð1� kÞ10

19
D1ðbÞ ¼ k

1
6
þ ð1� kÞ 5

19

D1ðcÞ ¼ k
1
6
þ ð1� kÞ 1

19
D1ðdÞ ¼ k

1
6
þ ð1� kÞ 2

19

D1ðeÞ ¼ k0þ ð1� kÞ 1
19
4.5.2. Step 2: interpolated language models
However, as proposed in Section 4.2, we do not only want to use the abstract, but also the other features. For example, to

use the keyword information, we first consider an artificial document for each keyword in the collection. This artificial doc-
ument contains a concatenation of the abstracts of those documents where the keyword occurs:
k1 ¼ fa; b; a; c; d; a; a; a;d; a; b; ag
k2 ¼ fa; b; a; c; d; a; a; b; ag
k3 ¼ fa; a; d; a; b; a; a; b; ag
k4 ¼ fa; b; b; eg
The probabilities can now be estimated similarly to the case of the abstracts. For k1, for instance:
Pðajk1Þ ¼
7

12
Pðbjk1Þ ¼

2
12

Pðcjk1Þ ¼
1

12

Pðdjk1Þ ¼
2

12
Pðejk1Þ ¼ 0
The same is done for k2, k3 and k4. The same process is repeated for the authors and the journal: an artificial document is
considered for each author (resp. journal) in the collection, and then the probabilities can be estimated. After doing this, new
models can be calculated with the new probabilities, as is done in Eq. (11). Some examples:
D1ðaÞ ¼ k1
3
6
þ k2

7
12þ 5

9

2
þ k3

7
12þ 5

9

2
þ k4

7
12
þ k5

10
19

D3ðaÞ ¼ k1
2
3
þ k2

5
9þ 6

9

2
þ k3

5
9þ 2

3

2
þ k4

3
7
þ k5

10
19

D1ðcÞ ¼ k1
1
6
þ k2

1
12þ 1

9

2
þ k3

1
12þ 1

9

2
þ k4

7
12
þ k5

1
19
It can be seen that, in the case of keywords and authors, the final probability is estimated by calculating the average of the
probabilities of the keywords (resp. authors) that occur in that document.

4.5.3. Step 3: Latent Dirichlet Allocation
In Section 4.2.1 we have proposed using LDA in order to extract new information, this time regarding the (underlying)

topics. First, the number of topics to be found must be given. In this example we assume that there are two underlying topics,
A and B. Then, as explained in Section 4.2.1, we need some counts to estimate the required probabilities (15) and (16). These
counts are initialized this way: for each term w in the abstract of each document d, a topic z is randomly sampled. This topic
is then assumed to have generated that very instance of the term, which means that the counts nðwÞz ;nðdÞz and nð:Þz are increased.
By doing so, we obtain for example:
nðaÞA ¼ 7 nðbÞA ¼ 3 nðcÞA ¼ 0 nðdÞA ¼ 1 nðeÞA ¼ 0

nðaÞB ¼ 3 nðbÞB ¼ 2 nðcÞB ¼ 1 nðdÞB ¼ 1 nðeÞB ¼ 1
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nðd1Þ
A ¼ 4 nðd2Þ

A ¼ 3 nðd3Þ
A ¼ 3 nðd4Þ

A ¼ 1

nðd1Þ
B ¼ 2 nðd2Þ

B ¼ 3 nðd3Þ
B ¼ 0 nðd4Þ

B ¼ 3
nð:ÞA ¼ 11, the total number of instances generated by topic A
nð:ÞB ¼ 8, the total number of instances generated by topic B
These values are then used to initialize the LDA algorithm. For example, for term a and document d1 we obtain:
/̂ðaÞA ¼
7þ b

11þ 5b
/̂ðaÞB ¼

3þ b
8þ 5b

ĥðd1Þ
A ¼ 4þ a

6þ 2a
ĥðd1Þ

B ¼ 2þ a
6þ 2a
The LDA algorithm can now be run. In this example we set the parameters a = 0.16 and b = 0.1, and the following estima-
tions for the desired probabilities are obtained:
/̂ðaÞA ¼ 0:93 /̂ðbÞA ¼ 0:018 /̂ðcÞA ¼ 0:018 /̂ðdÞA ¼ 0:018 /̂ðeÞA ¼ 0:018

/̂ðaÞB ¼ 0:35 /̂ðbÞB ¼ 0:35 /̂ðcÞB ¼ 0:076 /̂ðdÞB ¼ 0:15 /̂ðeÞB ¼ 0:076

ĥðd1Þ
A ¼ 0:02 ĥðd2Þ

A ¼ 0:5 ĥðd3Þ
A ¼ 0:65 ĥðd4Þ

A ¼ 0:037

ĥðd1Þ
B ¼ 0:97 ĥðd2Þ

B ¼ 0:5 ĥðd3Þ
B ¼ 0:35 ĥðd4Þ

B ¼ 0:96
With these values, and following (22), we can calculate the probability of a given term being generated by a given topic,
and then add that probability to the document model as shown in (21). For example:
D1ðaÞ ¼ k1
3
6
þ k2

7
12þ 5

9

2
þ k3

7
12þ 5

9

2
þ k4

7
12
þ k5ð0:93� 0:02þ 0:35� 0:97Þ þ k6

10
19

D3ðaÞ ¼ k1
2
3
þ k2

5
9þ 6

9

2
þ k3

5
9þ 2

3

2
þ k4

3
7
þ k5ð0:93� 0:65þ 0:35� 0:35Þ þ k6

10
19

D1ðcÞ ¼ k1
1
6
þ k2

1
12þ 1

9

2
þ k3

1
12þ 1

9

2
þ k4

7
12
þ k5ð0:018� 0:02þ 0:076� 0:97Þ þ k6

1
19
The same process is followed to use the information about the communities. For the sake of simplicity, we do not consider
them here, and therefore the term regarding the communities in the previous examples for D1(a), D3(a) and D1(c) is missing.

4.5.4. Step 4: LDA improvements
Sections 4.3 and 4.4 propose how to improve the previously explained method. To enrich the estimations new variables

are introduced in Eq. (24). In order to use these variables, we consider artificial documents as in Section 4.5.2, and then we
use them to initialize the variables as in the previous section. Since there are no other differences, we do not go into details
here.

The use of the improved initialization does require a more detailed example. First, as explained in Section 4.4, the key-
words are clustered. Only those keywords which occur in a minimum number of clusters are used. In this example we
set the minimum to 2. After clustering the keywords, suppose two clusters A and B are obtained:
A ¼ fk1; k2g
B ¼ fk3g
with their respective artificial documents cA and cB:
cA ¼ fa; b; a; c;d; a; a; a;d; a; b; a; a; b; ag
cB ¼ fa; a;d; a; b; a; a; b; ag
According to the information in the clusters, topic A has generated term a nine times, and B has generated a six times. This
information leads to the initial estimation P(ajA) = 9/15 and P(ajB) = 6/15. Then, to estimate which topic actually generates a
specific instance of a in document d1, we just sample the topic from that distribution. If the sampled topic is, for example, A,
we increase the counts nðaÞA ;nðd1Þ

A , and nð�ÞA . The process is analogous for the remaining occurrences of a, b, c and d. However,
term e does not occur in the artificial cluster documents, and therefore there is no information about it. To estimate the topic
which generates e, we use a uniform distribution on the T topics, i.e. P(ejA) = 1/2 and P(ejB) = 1/2. This leads us to the follow-
ing initial values for those variables for example:
nðaÞA ¼ 8 nðbÞA ¼ 3 nðcÞA ¼ 1 nðdÞA ¼ 2 nðeÞA ¼ 0

nðaÞB ¼ 3 nðbÞB ¼ 1 nðcÞB ¼ 0 nðdÞB ¼ 0 nðeÞB ¼ 1
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nðd1Þ
A ¼ 5 nðd2Þ

A ¼ 4 nðd3Þ
A ¼ 3 nðd4Þ

A ¼ 2

nðd1Þ
B ¼ 1 nðd2Þ

B ¼ 2 nðd3Þ
B ¼ 0 nðd4Þ

B ¼ 2
As we can see, if c only occurs in cA, the only topic that can generate it should be A. However, with the random initiali-
zation, as shown in Section 4.5.3, it could be assumed to be generated by B. Of course, the execution of LDA can correct this
later, but there is no guarantee about it. The improved initialization, on the other hand, already departs from more realistic/
correct assumptions.

With both improvements, the rest of the LDA process remains the same. Finally, when the definitive models have been
calculated, they can be compared by using (9).

5. Experimental evaluation

5.1. Experimental set-up

To build a test collection and evaluate the proposed methods, we downloaded a portion of the ISI Web of Science,3 con-
sisting of files with information about papers from 19 journals in the Artificial Intelligence domain. These files contain, among
other data, the abstract, authors, journal, and keywords freely chosen by the authors. A total of 25,964 paper descriptions were
retrieved, although our experiments are restricted to the 16,597 papers for which none of the considered fields is empty.

The ground truth for our experiments is based on annotations made by 8 experts.4 First, 220 documents were selected, and
each of them was assigned to an expert sufficiently familiar with it. Then, using tf–idf with cosine similarity, the 30 most similar
papers in the test collection were found for each of the 220 papers. Each of those 30 papers was manually tagged by the expert
as either similar or dissimilar. To evaluate the performance of the methods, each paper p is thus compared against 30 others,5

some of which are tagged as similar. The approaches for assessing paper similarity discussed in Sections 3 and 4 can then be
used to rank the 30 papers, such that ideally the papers similar to p appear at the top of the ranking. In principle, we thus obtain
220 rankings per method. However, due to the fact that some of the lists contained only dissimilar papers, and that sometimes
the experts were not certain about the similarity of some items, the initial 220-paper set was reduced to 209 rankings. To eval-
uate these rankings, we use two well-known measures:

� Mean Average Precision (MAP). This measure takes into account the position of every hit within the ranking, and is defined
by:
MAP ¼
PjRj

r¼1AvPrecðrÞ
jRj ð25Þ

where jRj is the total number of rankings and AvPrec is the average precision of a ranking, defined by:

AvPrec ¼
Pn

i¼1PrecðiÞ � relðiÞ
number of relevant documents

ð26Þ

with Prec(i) the precision at cut-off i in the ranking (i.e. the percentage of the i first ranked items that are relevant) and
rel(i) = 1 if the item at rank i is a relevant document (rel(i) = 0 otherwise).
� Mean Reciprocal Rank (MRR). Unlike MAP, this measure only takes into account the first hit within the rankings, along with

its position. It is defined by:
MRR ¼
PjRj

r¼1RRðrÞ
jRj ð27Þ

where RR is the reciprocal rank of a ranking:

RR ¼ 1
fhit

ð28Þ

with fhit the rank of the first hit in the ranking.

5.2. Results

5.2.1. Vector space model
Table 1 summarizes the results of the experiment for the approaches based on the vector space model, as described in

Section 3. As already mentioned in that section, the vectors representing the documents are compared using the following
://apps.isiknowledge.com.
set of annotations is publicly available at http://www.cwi.ugent.be/respapersim/.

ing the annotation process it was also possible to tag some items as ‘‘Don’t know’’ for those cases where the expert had no certainty about the similarity.
tems are ignored and therefore some papers are compared to less than 30 others.

http://apps.isiknowledge.com
http://www.cwi.ugent.be/respapersim/
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measures: cosine (cos), generalized Jaccard (g.jacc), extended Jaccard (e.jacc), and Dice (dice) similarity. In this table it is
interesting to observe that the abstract method, traditionally combined with cosine similarity, performs significantly better
when combined with the general Jaccard similarity measure (paired t-test, p < 0.001). This is the reason why we show double
results for the ESA methods: the second block of the table summarizes the results obtained by building the dE vectors using
cosine similarity as proposed in Section 3.2 and defined in (7), while the third block substitutes the cosine similarity for gen-
eral Jaccard. However, although the results in this last case are slightly better when the resulting dE vectors are compared
using cosine similarity, when comparing with the other similarity measures the results are slightly worse. On the other hand,
neither ESA-kws nor ESA-aut can outperform abstract, despite using two features (abstract and keywords/authors) instead of
just one as abstract does. It turns out that the journal information is too general, hence the especially bad performance of
ESA-jou.
5.2.2. Language modeling
Table 2 shows the results obtained with the language modeling methods, described in Section 4. The k configurations in

the first columns correspond to those controlling the weight of abstract, keywords, authors, journal, topics, and communi-
ties, in that order (see Table 3).

The first block of the table summarizes the results obtained with language models that only use one of the features. We
find that language models which only use the abstract (line 1) significantly improve the performance of most of the vector
space methods (paired t-test, p < 0.001), the only exception being when general Jaccard is used to compare the abstracts
(p ’ 0.089). Models uniquely based on other features can perform slightly better than abstract (depending on the chosen
similarity measure used by the latter), but these improvements were not found to be significant. However, these results
are still useful as an indication of the amount of information contained in each of the features: language models based exclu-
sively on keywords or on authors perform comparable to the method abstract. Using only topics yields such results when
LM2e is used, while using communities performs slightly worse. The information contained in the journal feature is clearly
poorer. Moreover, Fig. 2 shows that giving a higher weight to the first author when modeling a paper, as proposed in Sec-
tion 4.2, does not make a big difference.

In the second block of Table 2 we examine different combinations of two features: abstract with topics on lines 7–9, and
abstract with keywords on lines 10–12. These results confirm that the abstract contains the most information, and should be
assigned a high weight. On the other hand, we can observe how the topics, when combined with the abstract, yield a better
MAP score. In particular, the MAP scores on line 9 are significantly better than those on line 12 (LM0: p ’ 0.003; LM2:
p ’ 0.001; LM2e: p < 0.001). The differences are also significant between lines 8 and 11 for LM2 and LM2e (LM0:
p ’ 0.062; LM2: p ’ 0.005; LM2e: p < 0.001), and between lines 7 and 10 for LM2e (LM2e: p ’ 0.026). Other combinations
of two features perform worse.

The third block shows the results of combining abstract and topics, with keywords, authors, and journal. It is clear that
giving a small weight to keywords is beneficial, as it leads to high scores, which are significantly better than the configura-
tions in lines 10–12 (p < 0.001 for the three methods LM0, LM2 and LM2e). For methods LM0 and LM2, the improvement is
significant with respect to the configurations in lines 7–9 as well (p < 0.029, resp. p < 0.03). Using authors and journal also
means an improvement, but smaller than that achieved with the keywords. Combining more than three features, as in lines
Table 1
Results obtained with the approaches based on the vector space model (methods described in Section 3). The bold values
indicate the highest MAP and MRR values.

cos dice e.jacc g.jacc

MAP
Abstract 0.546 0.546 0.546 0.604
Keywords 0.497 0.5 0.5 0.486

ESA-kws (cos) 0.576 0.549 0.549 0.529
ESA-aut (cos) 0.576 0.563 0.563 0.537
ESA-jou (cos) 0.397 0.404 0.404 0.329

ESA-kws (g.jacc) 0.599 0.536 0.536 0.504
ESA-aut (g.jacc) 0.582 0.553 0.553 0.512
ESA-jou (g.jacc) 0.403 0.37 0.37 0.273

MRR
Abstract 0.726 0.726 0.726 0.779
Keywords 0.71 0.724 0.718 0.703

ESA-kws (cos) 0.738 0.704 0.704 0.701
ESA-aut (cos) 0.744 0.715 0.715 0.704
ESA-jou (cos) 0.546 0.554 0.554 0.42

ESA-kws (g.jacc) 0.749 0.72 0.72 0.695
ESA-aut (g.jacc) 0.736 0.736 0.736 0.697
ESA-jou (g.jacc) 0.565 0.524 0.524 0.32



Table 2
Results obtained with the approaches based on language modeling (methods described in Section 4). The bold values indicate the highest MAP and MRR values.

Line k-configuration MAP MRR

abs kws aut jou tpc com LM0 LM2 LM2e LM0 LM2 LM2e

1 0.9 0 0 0 0 0 0.622 0.622 0.622 0.791 0.791 0.791
2 0 0.9 0 0 0 0 0.558 0.558 0.558 0.73 0.73 0.73
3 0 0 0.9 0 0 0 0.557 0.557 0.557 0.711 0.711 0.711
4 0 0 0 0.9 0 0 0.314 0.314 0.314 0.382 0.382 0.382
5 0 0 0 0 0.9 0 0.505 0.523 0.585 0.655 0.674 0.751
6 0 0 0 0 0 0.9 0.491 0.491 0.491 0.621 0.621 0.621
7 0.7 0 0 0 0.2 0 0.642 0.647 0.655 0.805 0.798 0.82
8 0.2 0 0 0 0.7 0 0.607 0.625 0.644 0.774 0.775 0.814
9 0.45 0 0 0 0.45 0 0.648 0.655 0.66 0.816 0.804 0.819

10 0.7 0.2 0 0 0 0 0.625 0.625 0.625 0.793 0.793 0.793
11 0.2 0.7 0 0 0 0 0.574 0.574 0.574 0.746 0.746 0.746
12 0.45 0.45 0 0 0 0 0.597 0.597 0.597 0.773 0.773 0.773
13 0.4 0.1 0 0 0.4 0 0.671 0.681 0.678 0.822 0.823 0.824
14 0.1 0.4 0 0 0.4 0 0.61 0.611 0.624 0.776 0.773 0.783
15 0.4 0.4 0 0 0.1 0 0.612 0.616 0.619 0.777 0.781 0.785
16 0.3 0.3 0 0 0.3 0 0.632 0.641 0.648 0.791 0.797 0.802
17 0.4 0 0.1 0 0.4 0 0.66 0.67 0.66 0.812 0.805 0.806
18 0.4 0 0 0.1 0.4 0 0.649 0.655 0.665 0.801 0.802 0.818
19 0.3 0.1 0.1 0.1 0.3 0 0.667 0.675 0.67 0.81 0.812 0.818
20 0.4 0.1 0.1 0 0.3 0 0.667 0.675 0.668 0.812 0.819 0.816
21 0.4 0.1 0 0.1 0.3 0 0.674 0.681 0.683 0.826 0.82 0.828
22 0.4 0 0 0 0.4 0.1 0.647 0.656 0.666 0.803 0.805 0.827
23 0.3 0.1 0 0 0.3 0.2 0.68 0.685 0.687 0.822 0.827 0.831
24 0.4 0.1 0.1 0 0.3 0.1 0.673 0.68 0.683 0.822 0.822 0.831
25 0.4 0.1 0 0.1 0.3 0.05 0.675 0.684 0.678 0.823 0.824 0.82

Table 3
Configurations for the study of the impact of the first author’s weight.

abs kws aut jou tpc com

cfg.1 0 0 0.9 0 0 0
cfg.2 0.3 0.1 0.1 0.1 0.3 0
cfg.3 0.4 0.1 0.1 0 0.3 0
cfg.4 0.3 0.3 0.3 0 0 0

Fig. 2. Impact of the first author’s weight (configuration values shown in Table 3).
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19–21, does not show a significant improvement with respect to the previous lines. In Fig. 3 we further explore the impor-
tance of the abstract and the topics. We set the weight of the keywords to a fixed value of 0.1, and the remaining weight of
0.8 is divided between abstract and topics. What is particularly noticeable is that ignoring the abstract is penalized stronger
than ignoring the topics, but the optimal performance is obtained when both features are given approximately the same
weight.

Finally, in the fourth and last block we also include the communities. Since abstracts and topics have proven to contain
most of the information, they still get higher weights. However, by assigning a small weight to the communities, we can
achieve the highest scores (although the difference with the best scores in the third block is not significant).



Fig. 3. Importance of abstract vs. topics.

Fig. 4. Impact of the keyword threshold, with cfg.1: ktpc = 0.9 and cfg.2: kabs = 0.3, kkws = 0.1, ktpc = 0.3, kcom = 0.2.

Fig. 5. Impact of the number T of topics, T = kws/X, with cfg.1: ktpc = 0.9 and cfg.2: kabs = 0.3, kkws = 0.1, ktpc = 0.3, kcom = 0.2.
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We can note that LM2 only slightly improves LM0, but larger differences in MAP scores can be observed between LM0 and
LM2e in those cases in which the topics are given more importance, such as in line 8 (p ’ 0.001). The difference is particularly
striking when only the topics are used to create the models (line 5, with ktopics = 0.9, p < 0.001), which shows how much LDA
can benefit from the initialization based on the different features.
5.2.3. Parameter tuning
For the experiments concerning the language modeling methods, we fixed the sum of these weights to 0.9, and set the

general smoothing factor (k7 in (21)) to 0.1. Also, the threshold determining the minimum number of documents in which
a keyword must appear in order to be taken into account for the clusters was fixed to 4. This means that a total number of
3219 keywords was used. The reason for this choice lies mainly in computing performance constraints, but also in the fact



Fig. 6. Importance of the number C of communities, C = authors/Y, with cfg.1: kcom = 0.9 and cfg.2: kabs = 0.3, kkws = 0.1, ktpc = 0.3, kcom = 0.2.
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that keywords appearing in just a couple of documents may introduce noise. The choice of the number of keywords influ-
ences the number T of topics, since we fixed this number to 10% of the number of keywords. Therefore, the results displayed
in Table 2 were obtained with 321 topics. Figs. 4 and 5, however, show the limited importance of these choices with respect
to the final results. Furthermore, parameters a and b introduced in (15) and (16) are fixed to a = 50/T (i.e. a = 0.157 in this
case) and b = 0.1, since these are the values typically used for LDA with Gibbs sampling. Finally, the communities used in our
experiments (line 6 and last block of Table 2) were calculated with method LM2 and a fixed number C of communities equal
to 201. This value of C was obtained analogously to T: 2017 authors occurred in more than four documents and then we di-
vided by 10. In Fig. 6, however, we can observe the robustness of the method w.r.t. the choice of the value of C.

As for method LM2e, the chosen values for the a-weights in these experiments are a1 = 0.8a and a3 = 0.2a. In other words,
the author information is now added to the LDA smoothing with a mild weight. However, no weight is given to the journal,
since preliminary experiments showed that the performance was not improved when using the journal information, as it
was, like in ESA-jou, too general.
6. Conclusion and future work

We have proposed and compared several content-based methods to compare research paper abstracts. To do so, we have
studied and enriched existing methods by taking advantage of the semi-structured information that is usually available in
the description of a research paper: a list of keywords, a list of authors, and the journal in which it was published. These
methods, based either on the vector space model or on language modeling, perform comparably when only the abstract
is considered. However, when the additional document features are used, important differences are noticed. The proposed
methods based on the vector space model cannot outperform the traditional method, although the ESA methods, which com-
bine abstract with another feature, do outperform the standard tf–idf approach in the case where the popular cosine simi-
larity is considered. In fact, our results suggest that cosine similarity is far from an optimal choice for assessing document
similarity in the vector space model, at least in the case of research paper abstracts. Language models, however, have proven
more suitable in this context than any of the vector space methods we considered, as the results show that they are able to
take advantage of the extra document features. By interpolating models based on the different features, the typical approach
where only the abstract is used is significantly improved. Finally, we have also explored how LDA could be used in this case
to discover latent topics and communities, and a method has been proposed to effectively exploit the keywords and authors
associated with a paper to significantly improve the performance of the standard LDA algorithm.

All experiments were performed with an annotated dataset which we have made publicly available. To our knowledge,
we are the first to contribute such a public dataset to evaluate research paper similarity.

The present work leaves some issues open for future work, offering two main directions for further research. On the one
hand, there are still some points in the studied methods that may be improved. The use of the author field is a good example.
Author names in bibliographical databases are prone to problems due to several reasons: badly recorded names, the appear-
ance of several variants of an author’s name, or different authors having the same name are only some of them. This is a non-
trivial problem that comprises several challenges [33] which we have not addressed here. Also, as mentioned in Section 4.4,
alternative clustering algorithms could be used for the LDA initialization. Or, focusing on the vector space model approaches,
it may be interesting to consider other approaches based in concept representation (similarly to ESA), such as the one pro-
posed in [11].

On the other hand, a very interesting idea is to implement a scientific article recommender system in which the studied
methods are applied. Such a system can build user profiles based on the previously published papers of each user, and/or on
papers in which he has already expressed an interest, and then compare those papers with the rest of the papers in the data-
base or databases used. Of course, such a system would have some of the limitations inherent to content-based systems, so a
next step would be combining the proposed methods with other ideas such as collaborative filtering or the use of
authoritativeness.



Fig. 7. How ESA vectors are calculated.
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Appendix A. An ESA example

In this appendix we show a small example of how ESA exactly works. For the sake of simplicity, we have used letters in-
stead of words in order to represent the terms. The example, depicted in Fig. 7, shows the whole process of calculating the
ESA vectors for a collection C of four documents, C ¼ fD1;D2;D3;D4g.

First, an artificial document is considered for each keyword by concatenating the abstracts of the documents where they
occur, forming a new collection CE (A). Then, a weighted term vector is calculated for each of those documents using tf–idf
(1), which is then normalized (B). Weighted term vectors are calculated analogously for each document in the original col-
lection C, which contains the documents that we want to represent as ESA vectors (C). Finally, each vector di resulting from
step C is compared to every vector ki resulting from step B. The result of each of those comparisons is used as the weight of
the corresponding components in the resulting ESA vector dEi (D).
Appendix B. A detailed case study

This appendix offers a more qualitative view on the results, rather than the quantitative view offered in Section 5.2.2, in
order to gain insight into the improvements of the proposed methods. To do so, we detail a particular case where the system
must find matches for the following paper: ‘‘(v, T)-fuzzy rough approximation operators and the TL-fuzzy rough ideals on a
ring’’.6

As explained in Section 5.1, a paper is compared to 30 others tagged as similar or not similar, obtaining then a ranking
where the most similar papers occur in the highest positions. Table B.4 shows the titles of the top ten papers of such a rank-
ing when methods abstract (g.jacc), LM0 and LM2e are used to find matches for the aforementioned paper. The actual hits are
highlighted in bold. Also, at the bottom of the table the average precision for each method is shown.

It can be seen that the top four positions for LM2e are indeed hits. LM0 already misses one of those four hits (it appears at
the 6th position), while abstract ranks its first hit in the 10th position. This is due to the fact that the abstracts of the hits,
although they share some vocabulary with that of the given document, do not have so many (meaningful) terms in common
6 Only the titles are used here; for information about the rest of features used by the system we refer to the articles’ records in the ISI Web of Science.



Table B.4
Top ten matches for the studied paper.

Rank Abstract LM0 LM2e

1 On characterizations of (I, T)-fuzzy rough
approximation operators

Rough set theory applied to (fuzzy) ideal
theory

Roughness in rings

2 Generalized fuzzy rough approximation
operators based on fuzzy coverings

Roughness in rings Generalized lower and upper
approximations in a ring

3 Constructive and axiomatic approaches of
fuzzy approximation operators

The product structure of fuzzy rough sets on
a group and the rough T-fuzzy group

Rough set theory applied to (fuzzy) ideal
theory

4 The minimization of axiom sets characterizing
generalized approximation operators

Generalized fuzzy rough approximation
operators based on fuzzy coverings

The product structure of fuzzy rough sets
on a group and the rough T-fuzzy group

5 Minimization of axiom sets on fuzzy
approximation operators

An axiomatic characterization of a fuzzy
generalization of rough sets

Generalized fuzzy rough approximation
operators based on fuzzy coverings

6 On generalized intuitionistic fuzzy rough
approximation operators

Generalized lower and upper
approximations in a ring

Rough approximation operators on two
universes of discourse and their fuzzy
extensions

7 On characterization of generalized interval-
valued fuzzy rough sets on two universes of
discourse

Rough approximation operators on two
universes of discourse and their fuzzy
extensions

An axiomatic characterization of a fuzzy
generalization of rough sets

8 Generalized fuzzy rough sets A novel approach to fuzzy rough sets based on
a fuzzy covering

A novel approach to fuzzy rough sets based
on a fuzzy covering

9 Rough approximation operators on two
universes of discourse and their fuzzy
extensions

On characterizations of (I, T)-fuzzy rough
approximation operators

On fuzzy rings

10 The product structure of fuzzy rough sets on
a group and the rough T-fuzzy group

On characterization of generalized interval-
valued fuzzy rough sets on two universes of
discourse

On characterizations of (I, T)-fuzzy rough
approximation operators

AP 0.18 0.772 0.853
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with the selected paper as for example the first document ranked by abstract. On the other hand, the LDA initialization based
on keyword clustering cause the difference between LM0 and LM2e. More specifically, this is due to the fact that, in such a
case, the keywords, although different sometimes, are grouped under the same clusters. When this happens, the words
occurring in the abstracts of those documents are assumed by the LDA initialization to have been generated by the same
topic, increasing the probabilities related to that given topic in both models and reducing the differences between them
(as long as the weight given to the topics in (21) is big enough).
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