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Classifier performance, particularly of instance-based learners such as k-nearest neighbors, is affected

by the presence of noisy data. Noise filters are traditionally employed to remove these corrupted data

and improve the classification performance. However, their efficacy depends on the properties of the

data, which can be analyzed by what are known as data complexity measures. This paper studies the

relation between the complexity metrics of a dataset and the efficacy of several noise filters to improve

the performance of the nearest neighbor classifier. A methodology is proposed to extract a rule set

based on data complexity measures that enables one to predict in advance whether the use of noise

filters will be statistically profitable. The results obtained show that noise filtering efficacy is to a great

extent dependent on the characteristics of the data analyzed by the measures. The validation process

carried out shows that the final rule set provided is fairly accurate in predicting the efficacy of noise

filters before their application and it produces an improvement with respect to the indiscriminate

usage of noise filters.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Real-world data is commonly affected by noise [1,2]. The
building time, complexity and, particularly, the performance of the
model, are usually deteriorated by noise in classification problems
[3–5]. Several learners, e.g., C4.5 [6], are designed taking these
problems into account and incorporate mechanisms to reduce the
negative effects of noise. However, many other methods ignore
these issues. Among them, instance-based learners, such as
k-nearest neighbors (k-NN) [7–9], are known to be very sensitive
to noisy data [10,11].

In order to improve the classification performance of noise-
sensitive methods when dealing with noisy data, noise filters
[12–14] are commonly applied. Their aim is to remove potentially
noisy examples before building the classifier. However, both correct
examples and examples containing valuable information can also be
removed. This fact implies that these techniques do not always
provide an improvement in performance. As indicated by Wu and
Zhu [1], the success of these methods depends on several circum-
stances, such as the kind and nature of the data errors, the quantity
of noise removed or the capabilities of the classifier to deal with the
loss of useful information related to the filtering. Therefore, the
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efficacy of noise filters, i.e., whether their usage causes an improve-
ment in classifier performance, depends on the noise-robustness
and the generalization capabilities of the classifier used, but it also
strongly depends on the characteristics of the data.

Data complexity measures [15] are a recent proposal to
represent characteristics of the data which are considered diffi-
cult in classification tasks, e.g., the overlapping among classes,
their separability or the linearity of the decision boundaries.

This paper proposes the computation of these data complexity
measures to predict in advance when the usage of a noise filter
will statistically improve the results of a noise-sensitive learner:
the nearest neighbor classifier (1-NN). This prediction can help, for
example, to determine an appropriate noise filter for a concrete
noisy dataset – that filter providing a significant advantage in terms
of the results – or to design new noise filters which select more or
less aggressive filtering strategies considering the characteristics of
the data. Choosing a noise-sensitive learner facilitates the checking
of when a filter removes the appropriate noisy examples in contrast
to a robust learner—the performance of classifiers built by the
former is more sensitive to noisy examples retained in the dataset
after the filtering process. In addition, this paper has the following
objectives:
1.
 To analyze the relation between the characteristics of the data
and the efficacy of several noise filters.
2.
 To find a reduced set of the most appropriate data complexity
measures for predicting the noise filtering efficacy.
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3.
 Even though each noise filter may depend on concrete char-
acteristics of the data to work correctly, it would be interesting
to identify common characteristics of the data under which
most of the noise filters work properly.
4.
 To provide a set of interpretable rules which a practitioner can
use to determine whether to use a noise filter with a classi-
fication dataset.

A web page with the complementary material of this paper is
available at http://sci2s.ugr.es/filtering-efficacy. It includes the
details of the experimentation, the datasets used, the performance
results of the noise filters and the distribution of the data complex-
ity metrics of the datasets.

The rest of this paper is organized as follows. Section 2 presents
data complexity measures. Section 3 introduces the noise filters and
enumerates those considered in this paper. Section 4 describes the
method employed to extract the rules predicting the noise filtering
efficacy. Section 5 shows the experimental study performed and the
analysis of results. Finally, Section 6 enumerates some concluding
remarks.
2. Data complexity measures

In this section, first a brief review of recent studies on data
complexity metrics is presented (Section 2.1). Then, the measures
of overlapping (Section 2.2), the measures of separability of
classes (Section 2.3) and the measures of geometry (Section 2.4)
used in this paper are described.

2.1. Recent studies on data complexity

There are some methods used in classification, either learner
or preprocessing techniques, which work well with concrete
datasets, while other techniques work better with different ones.
This is due to the fact that each classification dataset has
particular characteristics that define it. Issues such as the general-
ity of the data, the inter-relationships among the variables and
other factors are key for the results of such methods. An emergent
field proposes the usage of a set of data complexity measures to
quantify these particular sources of the problem on which the
behavior of classification methods usually depends [15].

A seminal work on data complexity is [16], in which some
complexity measures for binary classification problems are proposed,
gathering metrics of three types: overlaps in feature values from
different classes; separability of classes; and measures of geometry,
topology and density of manifolds. Extensions can also be found in
the literature, such as in the work of Singh [17], which offers a review
of data complexity measures and proposes two new ones.

From these works, different authors attempt to address different
data mining problems using these measures. For example, Baum-
gartner and Somorjai [18] define specialized measures for regular-
ized linear classifiers. Other authors try to explain the behavior of
learning algorithms using these measures, optimizing the decision
tree creation in the binarization of datasets [19] or to analyze fuzzy-
UCS and the model obtained when applied to data streams [20]. The
data complexity measures have been referred to other related fields,
such as gene expression analysis in Bioinformatics [21,22].

The research efforts in data complexity are currently focused
on two fronts. The first aims to establish suitable problems for a
given classification algorithm, using only the data characteristics,
and thus determining their domains of competence. In this line
of research recent publications, e.g., the works of Luengo and
Herrera [23] and Bernadó-Mansilla and Ho [24], provide a first
insight into the determination of an individual classifier’s
domains of competence. Parallel to this, Sánchez et al. [25] study
the effect of data complexity on the nearest neighbor classifier.
The relationships between the domains of competence of similar
classifiers were analyzed by Luengo and Herrera [26], indicating
that related classifiers benefit from common sources of complex-
ity of the data.

Data complexity measures are increasingly used in order to
characterize when a preprocessing stage will be beneficial to a
subsequent classification algorithm in many challenging domains.
Garcı́a et al. [27] firstly analyzed the behavior of the evolutionary
prototype selection strategy using one complexity measure based
on overlapping. Further developments resulted in a characteriza-
tion of when the preprocessing in imbalanced datasets is bene-
ficial [28]. The data complexity measures can also be used online
in the data preparation step. An example of this is the work of
Dong [29], in which a feature selection algorithm based on
complexity measures is proposed.

This paper follows the second research line. It aims to
characterize when a filtering process is beneficial using the
information provided by the data complexity measures. Noise
will affect the geometry of the dataset, and thus the values of the
data complexity metrics. It can be expected that such metrics will
enable one to know in advance whether noise filters will be useful
for the given dataset.

In this study, 11 of the metrics proposed by Ho and Basu [16]
will be analyzed. In the following subsections, these measures,
classified by their family, are briefly presented. For a deeper
description of their characteristics, the reader may consult [16].

2.2. Measures of class overlapping

These measures focus on the effectiveness of a single feature
dimension in separating the classes, or the composite effects of a
number of dimensions. They examine the range and spread of
values in the dataset within each class and check for overlapping
among different classes.
�
 F1—maximum Fisher’s discriminant ratio: This is the value of
Fisher’s discriminant ratio of the attribute that enables one to
better discriminate between the two classes, computed as

F1¼ max
i ¼ 1,...,d

ðmi,1�mi,2Þ
2

s2
i,1þs

2
i,2

ð1Þ

where d is the number of attributes, and mi,j and s2
i,j are the

mean and variance of the attribute i in the class j, respectively.

�
 F2—volume of the overlapping region: This measures the

amount of overlapping of the bounding boxes of the two
classes. Let maxðf i,CjÞ and minðf i,CjÞ be the maximum and
minimum values of the feature fi in the set of examples of class
Cj, let minmaxi be the minimum of maxðf i,CjÞ,ðj¼ 1,2Þ and
maxmini be the maximum of minðf i,CjÞ,ðj¼ 1,2Þ of the feature
fi. Then, the measure is defined as

F2¼
Y

i ¼ 1...d

minmaxi�maxmini

maxðf i,C1 [ C2Þ�minðf i,C1 [ C2Þ
ð2Þ
�
 F3—maximum feature efficiency: This is the maximum fraction
of points distinguishable with only one feature after removing
unambiguous points falling outside of the overlapping region
in this feature [30].

2.3. Measures of separability of classes

These give indirect characterizations of class separability. They
assume that a class is made up of single or multiple manifolds
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that form the support of the probability distribution of the given
class. The shape, position and interconnectedness of these mani-
folds give hints of how well the two classes are separated, but
they do not describe separability by design.
�
 L1—minimized sum of error distance by linear programming:
This is the value of the objective function that tries to minimize
a linear classifier obtained by the linear programming formula-
tion proposed by Smith [31]. The method minimizes the sum of
distances of error points to the separating hyperplane. The
measure is normalized by the number of points in the problem
and also by the length of the diagonal of the hyper-rectangular
region enclosing all training points in the feature space.

�
 L2—error rate of linear classifier by linear programming: This

measure is the error rate of the linear classifier defined for L1,
measured with the training set.

�
 N1—rate of points connected to the opposite class by a minimum

spanning tree: N1 is computed using a minimum spanning tree
[32], which connects all the points to their nearest neighbors.
Then the number of points connected to the opposite class by
an edge of this tree are counted. These are considered to be the
points lying next to the class boundary. N1 is the fraction of
such points over all points in the dataset.

�
 N2—ratio of average intra/inter class nearest neighbor distance:

This is computed as

N2¼

Pm
i ¼ 0 intraðxiÞPm
i ¼ 0 interðxiÞ

ð3Þ

where m is the number of examples in the dataset, intraðxiÞ the
distance to its nearest neighbor within the class, and interðxiÞ

the distance to the nearest neighbor of any other class. This
metric compares the within-class spread with the distances to
the nearest neighbors of other classes. Low values of this
metric suggest that the examples of the same class lie close in
the feature space, whereas large values indicate that the
examples of the same class are dispersed.

�
 N3—error rate of the 1-NN classifier: This is the error rate of a

nearest neighbor classifier estimated by the leave-one-out
method. This measure denotes how close the examples of
different classes are. Low values of this metric indicate that
there is a large gap in the class boundary.

2.4. Measures of geometry, topology, and density of manifolds

These measures evaluate to what extent two classes are
separable by examining the existence and shape of the class
boundary. The contributions of individual feature dimensions are
combined and summarized in a single score, usually a distance
metric, rather than evaluated separately.
�

Table 1
Noise filters employed in the experimentation.

Filter Reference Abbreviation

Classification filter [37] CF
L3—nonlinearity of a linear classifier by linear programming:
Hoekstra and Duin [33] propose a measure for the nonlinearity
of a classifier with respect to a given dataset. Given a training
set, the method first creates a test set by linear interpolation
(with random coefficients) between randomly drawn pairs of
points from the same class. Then, the error rate of the classifier
(trained by the given training set) on this test set is measured.
Cross-validated committees filter [38] CVCF
�

Ensemble filter [13] EF

Edited nearest neighbor with estimation of

probabilities threshold

[39] ENNTh

Edited nearest neighbor [12] ENN
N4—nonlinearity of the 1-NN classifier: The error is calculated
for a nearest neighbor classifier. This measure is for the
alignment of the nearest neighbor boundary with the shape
of the gap or overlap between the convex hulls of the classes.
Iterative-partitioning filter [40] IPF
�

Nearest centroid neighborhood edition [41] NCNEdit

Prototype selection based on relative

neighborhood graphs

[35] RNG
T1—ratio of the number of hyperspheres, given by E-neighborhoods,
by the total number of points: The local clustering properties of
a point set can be described by an E-neighborhood pretopology
[34]. Instance space can be covered by E-neighborhoods by
means of hyperspheres (the procedure to compute them can
be found in [16]). A list of such hyperspheres needed to
cover the two classes is a composite description of the shape of
the classes. The number and size of the hyperspheres indicate
how much the points tend to be clustered in hyperspheres or
distributed in thinner structures. In a problem where each
point is closer to points of the other class than points of its
own, each hypersphere is retained and is of a low size. T1 is the
normalized count of the retained hyperspheres by the total
number of points.

3. Corrupted data treatment by noise filters

Noise filters are preprocessing mechanisms designed to detect
and eliminate noisy examples in the training set. The result of
noise elimination in preprocessing is a reduced and improved
training set which is then used as an input to a machine learning
algorithm.

There are several of these filters based on using the distance
between examples to determine their similarity and create neighbor-
hoods. These neighborhoods are used to detect suspicious examples
which can then be eliminated. The Edited Nearest Neighbor [12] or
the Prototype Selection based on Relative Neighborhood Graphs [35]
are some examples of methods that can be found within this group of
noise filters.

Another group of noise filters creates classifiers over several
subsets of the training data in order to detect noisy examples.
Brodley and Friedl [13] trained multiple classifiers built by
different learning algorithms, such as k-NN [7], C4.5 [6] and a
Linear Discriminant Analysis [36], from a corrupted dataset and
then used them to identify mislabeled data, which are character-
ized as the examples that are incorrectly classified by the multiple
classifiers. Similar techniques have been widely developed con-
sidering the building of several classifiers with the same learning
algorithm [37,38]. Instead of using multiple classifiers learned
from the same training set, Gamberger et al. [37] suggest a Classi-
fication Filter (CF) approach, in which the training set is partitioned
into n subsets, then a set of classifiers is trained from the union
of any n�1 subsets; those classifiers are used to classify the
examples in the excluded subset, eliminating the examples that
are incorrectly classified.

The noise filters analyzed in this paper are shown in Table 1.
They have been chosen due to their good behavior with many
real-world problems.
4. Obtaining rules to predict the noise filtering efficacy

In order to provide a rule set based on the characteristics of the
data which enables one to predict whether the usage of noise
filters will be statistically beneficial, the methodology shown in



Fig. 1. Methodology to obtain the rule set predicting the noise filtering efficacy.

Table 2
Base datasets and their number of instances (#INS), attributes (#ATT) and classes (#CLA). (R/I/N) refers to the number of real, integer and nominal

attributes.

Dataset #INS #ATT (R/I/N) #CLA Dataset #INS #ATT (R/I/N) #CLA

australian 690 14 (3/5/6) 2 led7digit 500 7 (7/0/0) 10

balance 625 4 (4/0/0) 3 mammographic 830 5 (0/5/0) 2

banana 5300 2 (2/0/0) 2 monk-2 432 6 (0/6/0) 2

bands 365 19 (13/6/0) 2 mushroom 5644 22 (0/0/22) 2

bupa 345 6 (1/5/0) 2 pima 768 8 (8/0/0) 2

car 1728 6 (0/0/6) 4 ring 7400 20 (20/0/0) 2

chess 3196 36 (0/0/36) 2 saheart 462 9 (5/3/1) 2

contraceptive 1473 9 (0/9/0) 3 sonar 208 60 (60/0/0) 2

crx 653 15 (3/3/9) 2 spambase 4597 57 (57/0/0) 2

ecoli 336 7 (7/0/0) 8 tae 151 5 (0/5/0) 3

flare 1066 11 (0/0/11) 6 tic-tac-toe 958 9 (0/0/9) 2

glass 214 9 (9/0/0) 7 titanic 2201 3 (3/0/0) 2

hayes-roth 160 4 (0/4/0) 3 twonorm 7400 20 (20/0/0) 2

heart 270 13 (1/12/0) 2 wdbc 569 30 (30/0/0) 2

housevotes 232 16 (0/0/16) 2 wine 178 13 (13/0/0) 3

ionosphere 351 33 (32/1/0) 2 wisconsin 683 9 (0/9/0) 2

iris 150 4 (4/0/0) 3 yeast 1484 8 (8/0/0) 10
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Fig. 1 has been designed. The complete process1 is described as
follows.
1.
wit

pap
800 different classification datasets are built as follows (these
are common to all noise filters):
� The 34 datasets shown in Table 2 have been selected from

the KEEL-dataset repository2 [42].
� 200 binary datasets – with more than 100 examples in each

one – are built from these 34 datasets. Multi-class datasets
are used to create other binary datasets by means of the
selection and/or combination of their classes. Only problems
with two classes are considered as the data complexity
measures are only well defined to work on binary problems.
The amount of examples of the two classes has been taken
1 T

h an

er.
2 h
he datasets used in this procedure and the performance results of 1-NN –

d without the usage of noise filters – can be found on the web page of this

ttp://www.keel.es/datasets.php.
into account in order to create the datasets; they are
intended to be as similar as possible. Let IR be the fraction
between the number of examples of the majority and the
minority class—formally known as imbalanced ratio [43].
In order to control the size of both classes, only datasets with
a low imbalanced ratio were created, specifically with
1r IRr2:25. Therefore, the size of both classes is suffi-
ciently similar. This prevents filtering methods from deleting
all the examples from the minority class, which can occur if
a high imbalanced ratio is present in the data since the
filtering methods used do not take into account the class
imbalance and may consider these examples to be noise.
� Finally, in order to study the behavior of the noise filters in

several circumstances, several noise levels x (0%, 5%, 10%
and 15%) are introduced into these 200 datasets, resulting
in 800 datasets. Noise is introduced in the same way as in
[3], a reference paper in the framework of noisy data in
classification. Each attribute Ai is corrupted separately: x%
of the examples are chosen and the Ai value of each of these

http://www.keel.es/datasets.php
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examples is assigned a random value of the domain of that
attribute following a uniform distribution. One must take
into account that these 200 datasets may contain noise, so
the real noise level after the noise introduction process may
be higher.
2.
 These 800 datasets are filtered with a noise filter, leading to
800 new filtered datasets.
3.
 The test performance of 1-NN [7,44,45] on each of the 800
datasets, both with and without the application of the noise
filter, is computed. The estimation of the classifier perfor-
mance is obtained by means of three runs of a 10-fold cross-
validation and their results are averaged. The AUC metric [46]
is used due it being commonly employed when working with
binary datasets and the fact that it is less sensitive to class
imbalance. The performance estimation is used to check which
datasets are improved in their performance by 1-NN when
using the noise filter.
4.
 A classification problem is created with each example being
one of the datasets built and in which:
� The attributes are the 11 data complexity metrics for each

dataset. The distribution of the values of each data com-
plexity measure can be found on the web page with
complementary material for this paper.
� The class label represents whether the usage of the noise

filter implies a statistically significant improvement of the
test performance. Wilcoxon’s statistical test [47] – with a
significance level of a¼ 0:1 – is applied to compare the
performance results of the 3�10 test folds with and with-
out the usage of the noise filter. Depending on whether the
usage of the noise filter is statistically better than the lack
of filtering, each example is labeled as positive or negative,
respectively.
5.
 Finally, similar to the method of Orriols-Puig and Casillas [20],
the C4.5 algorithm [6] is used to build a decision tree on the
aforementioned classification problem, which can be trans-
formed into a rule set. The performance estimation of this rule
set is obtained using a 10-fold cross-validation. By means of
the analysis of the decision trees built by C4.5, it is possible to
check which are the most important data complexity metrics
to predict the noise filtering efficacy, i.e., those in the top levels
of the tree and appearing more times, and their performance
examining the test results.
5. Experimental study

The experimentation is organized in five different parts, each
one in a different subsection and with a different objective:
1.
Table 3
Performance results of C4.5 predicting the noise filtering efficacy (11 data

complexity measures used).

Noise filter Training Test
To check to what extent the noise filtering efficacy can be

predicted using data complexity measures (Section 5.1). In order
to do this, the procedure described in Section 4 is followed
with each noise filter. Thus, a rule set based on all the data
complexity measures is learned to predict the efficacy of each
noise filter. Its performance, which is estimated using a 10-fold
cross-validation, gives a measure of the relation existing
between the data complexity metrics and the noise filtering
efficacy—a higher performance will imply a stronger relation.
CF 0.9979 0.8446

2.
CVCF 0.9966 0.8353

EF 0.9948 0.8176

ENNTh 0.9958 0.8307

ENN 0.9963 0.8300

IPF 0.9973 0.8670

NCNEdit 0.9945 0.8063

RNG 0.9969 0.8369

Mean 0.9963 0.8335
To provide a reduced set of data complexity metrics that best

determine whether to use a noise filter and do not cause the

prediction capability to deteriorate (Section 5.2). The decision
trees built in the above step by C4.5 are analyzed, studying
two elements:
� The order, from 1 to 11, in which the first node correspond-

ing with each data complexity metric appears in the
decision tree, starting from the root. This order is averaged
over the 10 folds.
� The percentage of nodes of each data complexity metric in
the decision tree, averaged over the 10 folds.
This analysis will provide the better discriminating metrics
and those appearing more times in the decision trees—they
are not necessarily placed in the top positions of the tree but
are still important to discriminate between the two classes. In
this way, the rule sets obtained in the above step are simplified
and thus become more interpretable.
3.
 To find common characteristics of the data on which the efficacy

of all noise filters depends (Section 5.3). Each noise filter may
depend on concrete values of the data complexity metrics, i.e.,
on concrete characteristics of the data, to work properly.
However, it is interesting to investigate whether there are
common characteristics of the data under which all noise
filters work properly. To do this, the rule set learned with each
noise filter will be applied to predict the efficacy of the rest of
the noise filters. The rule set achieving the highest perfor-
mance predicting the efficacy of the different noise filters will
have rules more similar to the rest of noise filters, i.e., the rules
will cover similar areas of the domain.
4.
 To provide the rule set which works best predicting the noise

filtering efficacy of all the noise filters (Section 5.4). The study
of the above point will provide the rule set which best
represents the characteristics under which the majority of
the noise filters work well. The behavior of these rules with
each noise filter will be analyzed in this section, paying atten-
tion to the coverage of each rule—the percentage of examples
covered, and its accuracy—the percentage of correct classifica-
tions among the examples covered.
5.
 To perform an additional validation of the chosen rule set

(Section 5.5). Even though the behavior of each rule set is
validated using a 10-fold cross-validation in each of the above
steps, a new validation phase with new datasets is performed
in this section. These datasets are used to check if the chosen
rule set is really more advantageous than the indiscriminate
application of the noise filters to all the datasets.

5.1. Data complexity measures and noise filtering efficacy

The procedure described in Section 4 has been followed with
each one of the noise filters. Table 3 shows the performance
results of the rule sets obtained with C4.5 on the training and test
sets for each noise filter when predicting the noise filtering
efficacy, i.e., when discriminating between the aforementioned
positive and negative classes.

The training performance is very high for all the noise
filters – it is close to the maximum achievable performance –
and there are no differences between the eight noise filters.
The test performance results, although not at the same level as



Table 4
Averaged order of the data complexity measures in the decision trees.

Metric CF CVCF EF ENNTh ENN IPF NCNEdit RNG Mean

F1 3.70 4.80 5.90 8.60 6.40 4.50 6.00 8.20 6.01
F2 1.40 1.00 1.00 1.00 1.00 1.00 1.50 1.00 1.11
F3 2.50 3.40 10.10 5.80 4.10 3.30 7.20 4.50 5.11
N1 10.50 9.90 9.10 10.30 8.40 7.10 8.10 8.50 8.99

N2 6.20 2.00 3.30 8.00 2.30 3.00 4.60 2.70 4.01
N3 8.80 8.50 7.80 11.00 7.00 9.50 7.90 8.70 8.65

N4 7.40 9.70 9.90 7.20 11.00 10.50 8.20 5.60 8.69

L1 9.20 10.00 7.90 9.70 11.00 6.00 9.40 9.60 9.10

L2 8.10 6.80 9.30 8.40 10.30 10.00 11.00 10.50 9.30

L3 7.80 8.70 4.60 8.60 11.00 5.90 7.80 8.40 7.85

T1 6.70 6.80 5.20 3.50 4.80 11.00 6.30 4.50 6.10
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the training results, are also noteworthy. All of them have more
than 0.8 success, with the averaged test performance of all the
noise filters higher than 0.83. These results show that noise
filtering efficacy can be predicted with a good performance by
means of data complexity measures. Therefore, a clear relation
can be seen between both concepts, i.e., data complexity metrics
and filtering efficacy.

5.2. Metrics that best predict the noise filtering efficacy

In order to find the subset of data complexity measures that
enables the best decision to be made of whether a noise filter
should be used, the decision trees built by C4.5 in the previous
section are analyzed. Table 4 shows the averaged order of each
data complexity measure in which it appears in the decision trees
built for each noise filter.

These results show that the three best measures are generally
F2, N2 and F3:
�
 F2 is the first measure for all noise filters.

�
 N2 is placed in six of the eight noise filters as the second

metric.

�
 F3 is placed between the second and third positions in another

six of the eight noise filters.

The following two measures in importance are T1 and F1:
�
 T1 appears in seven of the eight noise filters between the
second and fifth positions.

�

Table 5
Percentage of the number of nodes of each data complexity measure in the

decision trees.

Metric CF CVCF EF ENNTh ENN IPF NCNEdit RNG Mean

F1 22.45 21.24 14.94 8.47 17.07 20.66 18.67 5.71 16.15
F2 15.31 11.50 14.94 18.64 12.20 9.09 14.67 9.52 13.23
F3 16.33 23.01 2.30 13.56 20.73 23.14 12.00 18.10 16.15
N1 2.04 2.65 3.45 1.69 8.54 8.26 5.33 3.81 4.47

N2 8.16 11.50 17.24 6.78 19.51 9.92 16.00 19.05 13.52
N3 5.10 5.31 5.75 0.00 6.10 3.31 6.67 4.76 4.62

N4 8.16 3.54 2.30 13.56 0.00 0.83 6.67 12.38 5.93

L1 3.06 2.65 8.05 3.39 0.00 7.44 2.67 5.71 4.12

L2 6.12 7.08 5.75 8.47 1.22 2.48 0.00 0.95 4.01

L3 5.10 3.54 16.09 6.78 0.00 14.88 9.33 4.76 7.56

T1 8.16 7.96 9.20 18.64 14.63 0.00 8.00 15.24 10.23
F1 appears in six of the eight noise filters between the third
and fifth positions.

The rest of the measures have a lower discriminative power,
due their positions being worse. Averaged results for all noise
filters also support these conclusions. Therefore, the aforemen-
tioned measures (F2, N2, F3, T1 and F1) are the most important
for all the noise filters, even though the concrete order can vary
slightly from some filters to others.

From these results, the measures of overlapping among the
classes (F1, F2 and F3) are the group of metrics that most
influence predictions of the filtering efficacy. The filtering efficacy
is particularly dependent on the volume of the overlapping region
(F2) and, to a lesser degree, on the rest of the overlapping metrics
(F3 and F1) which, using different methods, compute the dis-
criminative power of the attributes. The dispersion of the exam-
ples within each class (N2) and the shape of the classes and the
complexity of the decision boundaries (T1) must also be taken
into account to predict the filtering efficacy. In short, all these
metrics provide information about the shape of the classes and
the overlapping among them, which may be key factors in the
success of any noise filtering technique.
Since the efficacy of the noise filters has been studied over the
results of the 1-NN classifier, one could expect a greater influence
of measures based on 1-NN, such as N3 and N4. These measures
are based on the error rate of the 1-NN classifier –the former is
computed on the training set whereas the latter is computed on
an artificial test set. It is important to point out that 1-NN is very
sensitive to the closeness of only one example to others belonging
to a different class [16,25] and a similar error rate may be due to
multiple situations where the filtering may be beneficial or not,
for example:
1.
 Existence of isolated noisy examples.

2.
 A large overlapping between the classes.

3.
 Closeness between the classes (although overlapping does not

exist).

A noise filtering method is likely to be beneficial in the first
scenario because isolated noisy examples are likely to be identi-
fied and removed, improving the final performance of the classi-
fier. However, the situation is not so clear in the other two
scenarios: the filtering may delete important parts of the domain
and disturb the boundaries of the classes or, on the contrary, it
may clean up the overlapping region and create more regular
class boundaries [1,48]. Therefore, the multiple causes on which
the error rate of 1-NN depends imply that measures based on it,
such as N3 and N4, are not always good indicators of the noise
filtering efficacy.

Table 5 shows the percentage of nodes referring to each data
complexity measure in the decision trees for each of the noise
filters. These results provide similar conclusions to those of the
order results, with the most representative measures again being
F1, F2, F3, N2 and T1, while the rest of the measures have lower
percentages.

The order and percentage results show that the measures F1,
F2, F3, N2 and T1 are the most discriminative and have a higher
number of nodes in the decision trees. It is aimed to attain a
reduced set, from among these five metrics, that enables filtering
efficiency to be predicted without a loss in accuracy with respect
to all the measures. In order to avoid the study of all the existing
combinations of the five metrics, the following experimentation
is mainly focused on the measures F2, N2 and F3, the most
discriminative ones—since the order results can be considered
more important than the percentage results. The incorporation
into this set of T1, F1 or both is also studied. The prediction
capability of the measure F2 alone, since is the most discrimina-
tive one, is also shown. All these results are presented in Table 6.

The training results of these combinations do not change with
respect to the usage of all the metrics. However, the test
performance results improve in many cases the results of using
all the metrics, particularly in the cases of F2–N2–F3–T1–F1 and



Table 6
Performance results of C4.5 predicting the noise filtering efficacy (measures used: F2, N2, F3, T1 and F1).

Noise filter F2 F2–N2–F3–T1–F1 F2–N2–F3–F1 F2–N2–F3–T1 F2–N2–F3

Training Test Training Test Training Test Training Test Training Test

CF 0.9991 0.7766 0.9975 0.8848 0.9986 0.8623 0.9983 0.8949 0.9972 0.8713

CVCF 1.0000 0.5198 0.9997 0.8102 0.9983 0.7943 0.9994 0.8165 0.9977 0.8152

EF 1.0000 0.7579 0.9993 0.8102 0.9991 0.8101 0.9997 0.8297 0.9997 0.8421

ENNTh 1.0000 0.8419 0.9996 0.8309 0.9996 0.8281 0.9907 0.8052 0.9992 0.8302

ENN 1.0000 0.7361 0.9928 0.8942 0.9935 0.8662 0.9966 0.8948 0.9967 0.7946

IPF 1.0000 0.7393 0.9975 0.8378 0.9989 0.8119 0.9986 0.8019 0.9985 0.7725

NCNEdit 0.9981 0.8024 0.9977 0.8164 0.9982 0.8231 0.9983 0.8436 0.9912 0.8136

RNG 0.9993 0.7311 0.9967 0.8456 0.9983 0.8086 0.9989 0.8358 0.9980 0.7754

Mean 0.9996 0.7381 0.9976 0.8413 0.9981 0.8256 0.9976 0.8403 0.9973 0.8144

Table 7
Ranks computed by Wilcoxon’s test Rþ/R� , representing the ranks obtained by the combination of the row and the column,

respectively. All refers to the usage of all the complexity metrics.

Metrics F2–N2–F3 F2–N2–F3–T1 F2–N2–F3–F1 F2–N2–F3–F1–T1 All

F2–N2–F3 – 6/30 12/24 8/28 11/25

F2–N2–F3–T1 30/6 – 30/6 19/17 20/16

F2–N2–F3–F1 24/12 6/30 – 3/33 13/23

F2–N2–F3–F1–T1 28/8 17/19 33/3 – 23/13

All 25/11 16/20 23/13 13/23 –
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F2–N2–F3–T1. This is because the unnecessary measures to
predict the filtering efficacy which can introduce a bias into the
datasets have been removed. However, the usage of the measure
F2 alone to predict the noise filtering efficacy with a good
performance can be discarded, since its results are not good
enough compared with the cases where more than one measure
is considered. This fact reflects that the usage of single measures
does not provide enough information to achieve a good filtering
efficacy prediction result. Therefore, it is necessary to combine
several measures which examine different aspects of the data.

In order to determine which combination of measures is
chosen as the most suitable one, Wilcoxon’s statistical test is
performed, comparing the test results of Tables 3 and 6 of each
noise filter. Table 7 shows the ranks obtained by each combina-
tion of metrics.

From these results, the combinations of metrics F2–N2–F3–T1
and F2–N2–F3–T1–F1 are noteworthy. Removing some data
complexity metrics improves the performance with respect to
all the metrics. However, it is necessary to retain a minimum
number of metrics representing as much information as possible.
Note that these two sets contain measures of three different
types: overlapping, separability of classes and geometry of the
dataset. Therefore, even though the differences are not significant
in all cases, the combination with more ranks and a lower number
of measures, i.e., F2–N2–F3–T1, can be considered the most
appropriate and will be chosen for a deeper study.

5.3. Common characteristics of the data on which the efficacy of the

noise filters depends

From the results shown in Table 6, the rules learned with any
noise filter can be used to accurately predict filtering efficacy
because they obtain good test performance results. However,
these rules should be used to predict the behavior of the filter
from which they have been learned.

It would be interesting to provide a single rule set, better
adapting the behavior of all the noise filters. In order to do this,
the rules learned to predict the behavior of one filter will be
tested to predict the behavior of the rest of the noise filters (see
Table 8). From these results, the prediction performance of the
rules learned for the RNG filter is clearly the more general, since
they are applicable to the rest of the noise filters obtaining the
best prediction results—see the last column with an average of
0.8786. Therefore, this rule set has rules that are more similar to
the rest of the noise filters and thus, it represents better the
common characteristics on which the efficacy of all noise filters
depends.

5.4. Analysis of the chosen rule set

The rule set chosen to predict the filtering efficacy of all the
noise filters is shown in Table 9. The analysis of such rules is
shown in Table 10, where the coverage (Cov) and the accuracy

(Acc) of each rule is shown.
These results show that the rules with the highest coverage in

predicting the behavior of all noise filters are R6, R5 and R10.
Moreover, the rules predicting the positive examples have a very
high accuracy rate, close to 100%. The rule R5 has the highest
coverage among the rules predicting the negative class, although
its accuracy is a bit lower than that of the rules R6 and R10. This
could be due to the fact that the datasets in which the application
of a noise filter implies a disadvantage are more widely dispersed
in the search space and, that being so, creating general rules is
more complex. The rest of the rules have a lower coverage,
although their accuracy is generally high, so they are more
specific rules.

The rules R6 and R10 are characterized by having a value of F2
higher than 0.43. Moreover, the rule R6 requires a value of T1
lower than 0.9854, i.e., a large part of the domain of the metric T1.
However, as reflected in the experimentation in [16] and also on
the web page with complementary material for this paper, a large
number of datasets have a T1 value of around 1. The incorpora-
tion, therefore, of the measure T1 into the rules and the multiple
values between 0.9 and 1 of this metric in the antecedents should
not be surprising.

By contrast, the rule R5 has a value of F2 lower than 0.43.
Other metrics are also included in this rule, such as N2 with a
value higher than 0.41 and F3 with a value higher than 0.1.



Table 8
Performance results of the rules learned with the method in the column predicting the efficacy of the noise filter in the row.

Noise filter CF CVCF EF ENN ENNTh IPF NCNEdit RNG

CF – 0.8848 0.8631 0.9049 0.8114 0.9230 0.8590 0.9172

CVCF 0.8030 – 0.7656 0.8884 0.7373 0.9024 0.7747 0.9115
EF 0.8756 0.8044 – 0.8597 0.8540 0.8425 0.8824 0.8901
ENN 0.7795 0.8588 0.7804 – 0.7512 0.8161 0.7804 0.8865
ENNTh 0.7900 0.7681 0.8176 0.8083 – 0.8114 0.8362 0.8267

IPF 0.8455 0.9092 0.7922 0.8680 0.7164 – 0.7915 0.8694

NCNEdit 0.8313 0.7644 0.8462 0.7897 0.8120 0.8333 – 0.8487
RNG 0.7959 0.7988 0.8069 0.8251 0.7538 0.8128 0.8130 –

Mean 0.8173 0.8269 0.8103 0.8491 0.7766 0.8488 0.8196 0.8786

Table 9
Rule set chosen to predict the noise filtering efficacy.

Rule F2 N2 T1 F3 Filter

R1 r0:439587 r0:264200 r0:995100 Positive

R2 r0:439587 r0:264200 40:995100 Negative

R3 r0:439587 (0.2642, 0.419400] Negative

R4 r0:439587 40:419400 r0:101900 Positive

R5 r0:439587 40:419400 40:101900 Negative

R6 40:439587 r0:985400 Positive

R7 40:439587 r0:298600 (0.985400, 0.994900] Positive

R8 40:439587 (0.298600, 0.344700] (0.985400, 0.994900] Negative

R9 40:439587 r0:344700 40:994900 Negative

R10 40:439587 (0.344700, 0.836984] (0.985400, 0.996005] Positive

R11 40:439587 (0.344700, 0.515300] 40:996005 r0:294916 Negative

R12 40:439587 (0.515300, 0.836984] 40:996005 r0:294916 Positive

R13 40:439587 (0.344700, 0.836984] 40:996005 40:294916 Negative

R14 40:439587 40:836984 40:985400 r0:011076 Negative

R15 40:439587 40:836984 40:985400 40:011076 Positive

Table 10
Analysis of the behavior of the chosen rule set, which comes from the RNG filter, with all the noise filters.

Rule CF CVCF EF ENN ENNTh IPF NCNEdit

Cov Acc Cov Acc Cov Acc Cov Acc Cov Acc Cov Acc Cov Acc

R1 4.05 100.00 6.47 100.00 3.24 100.00 4.46 100.00 3.72 66.67 5.58 100.00 3.50 85.71

R2 1.21 33.33 1.29 33.33 0.46 0.00 1.34 33.33 1.24 100.00 1.20 33.33 1.00 50.00

R3 1.21 33.33 1.72 25.00 0.46 100.00 1.79 75.00 2.48 100.00 1.59 25.00 2.50 100.00

R4 3.64 100.00 3.02 100.00 2.31 100.00 1.34 100.00 1.65 25.00 3.19 100.00 2.00 75.00

R5 12.96 75.00 8.19 57.89 11.11 62.50 18.30 75.61 23.14 85.71 11.95 60.00 21.00 80.95

R6 38.06 98.94 42.67 100.00 42.13 98.90 38.84 97.70 35.95 94.25 41.04 98.06 34.00 97.06

R7 3.24 100.00 3.02 100.00 2.78 100.00 2.68 100.00 2.48 100.00 1.99 100.00 2.00 100.00

R8 0.40 0.00 0.86 0.00 0.46 0.00 0.89 0.00 0.83 0.00 1.20 0.00 1.00 0.00

R9 4.05 10.00 3.45 25.00 3.70 0.00 5.80 69.23 4.55 18.18 3.19 25.00 4.00 12.50

R10 14.98 100.00 14.66 100.00 15.28 100.00 12.95 96.55 12.40 93.33 14.74 100.00 11.00 90.91

R11 0.81 50.00 0.86 50.00 0.93 0.00 1.34 100.00 2.07 40.00 1.20 33.33 0.50 0.00

R12 6.48 100.00 7.76 94.44 7.87 94.12 4.46 90.00 4.13 90.00 6.37 93.75 8.00 93.75

R13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R14 3.64 55.56 2.16 20.00 3.70 50.00 2.68 50.00 2.89 42.86 2.79 42.86 4.50 66.67

R15 4.45 100.00 3.88 100.00 5.56 100.00 2.68 83.33 1.65 75.00 2.79 100.00 4.00 87.50

Table 11
Base datasets used for the validation phase.

Dataset #INS #ATT (R/I/N) #CLA

abalone 4174 8 (7/0/1) 28

breast 277 9 (0/0/9) 2

dermatology 358 34 (0/34/0) 6

german 1000 20 (0/7/13) 2

page-blocks 5472 10 (4/6/0) 5

phoneme 5404 5 (5/0/0) 2

satimage 6435 36 (0/36/0) 7

segment 2310 19 (19/0/0) 7

vehicle 846 18 (0/18/0) 4

vowel 990 13 (10/3/0) 11
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From the analysis of these three rules, which are the most
representative, it can be concluded that a high value of F2
generally leads to a statistical improvement in the results of the
nearest neighbor classifier if a noise filter is used. If the classifica-
tion problem is rather simple, with a lower value of F2, the
application of a noise filter is generally not necessary. The high
values of the measure N2 in the rule R5 reflects the fact that the
examples of the same class are dispersed. Thus, when dealing
with complex problems with high degrees of overlapping, filter-
ing can improve the classification performance. However, if the
problem is rather simple, with low degrees of overlapping, and
moreover the examples of the same class are dispersed, e.g., if
there are many clusters with low overlapping among them, noise



Table 12
Ranks obtained applying the final rule set (Rþ) and the indiscriminate usage of the filter (R�).

Dataset CF CVCF EF ENN ENNTh IPF NCNEdit RNG

Rþ 32 132.5 26 865.5 28 103.5 33 297.5 37 238.0 30 871.5 31 497.5 30 718.5

R� 13 017.5 17 984.5 16 746.5 11 552.5 7612.0 14 278.5 13 352.5 14 431.5

p-Value 0.000001 0.002265 0.000089 0.000001 0.000001 0.000001 0.000001 0.000001
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filtering is not usually necessary—since the filtering may remove
any of those clusters and be detrimental to the test performance.

5.5. Validation of the chosen rule set

In order to validate the usefulness of the rule set provided in the
previous section to discern when to apply a noise filter to a concrete
dataset, an additional experimentation has been prepared consider-
ing the 10 datasets shown in Table 11. From these datasets, another
300 binary ones have been created in the same way as explained in
Section 4, but increasing the noise levels up to 25%.

For each noise filter, the test performance of 1-NN is computed
for these datasets in two different cases:
1.
 Indiscriminately applying the noise filter to each training
dataset.
2.
 Applying the noise filter to a training dataset only if the rule
set of Section 5.4 so indicates. Concretely, the rule set indicates
that noise filters must be applied in a 56% of the cases.

Then, the test results of both cases are compared using
Wilcoxon’s test. Table 12 shows the ranks obtained by case 1
(R�) and case 2 (Rþ) along with the corresponding p-values.

The results of this table show that, with some noise filters such
as ENNTh and ENN, the advantage of using the rule set is more
accentuated, whereas with others, such as CVCF and EF, this
difference is less remarkable. However, very low p-values have
been obtained in all the comparisons, which implies that the
usage of the rule set to predict when to apply filtering is clearly
positive with all the noise filters considered. Therefore, the
conclusions obtained in the previous sections are maintained in
this validation phase, even though a wider range of noise levels
have been considered in the latter.
6. Concluding remarks

This paper has studied to what extent noise filtering efficacy
can be predicted using data complexity measures when the
nearest neighbor classifier is employed. A methodology to extract
a rule set based on data complexity measures to predict in
advance when a noise filter will statistically improve the results
has been provided.

The results obtained have shown that there is a notable relation
between the characteristics of the data and the efficacy of several
noise filters, as the rule sets have good prediction performances.
The most influential metrics are F2, N2, F3 and T1. Moreover, a
single rule set has been proposed and tested to predict the noise
filtering efficacy of all the noise filters, providing a good prediction
performance. This shows that the conditions under which a noise
filter works well are similar for other noise filters.

The analysis of the rule set provided shows that, generally,
noise filtering statistically improves the classifier performance of
the nearest neighbor classifier when dealing with problems with
a high value of overlapping among the classes. However, if the
problem has several clusters with a low overlapping among them,
noise filtering is generally unnecessary and can indeed cause the
classification performance to deteriorate.

This paper has focused on the prediction of noise filtering
efficacy with the nearest neighbor classifier due it being perhaps
the most noise-sensitive learner and then, the true filtering
efficacy was checked. In future works, how noise filtering efficacy
can be predicted for other classification algorithms with different
noise-tolerance will be studied.
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