
FOCUS

On the use of evolutionary feature selection for improving
fuzzy rough set based prototype selection

J. Derrac • N. Verbiest • S. Garcı́a •

C. Cornelis • F. Herrera

Published online: 20 July 2012

� Springer-Verlag 2012

Abstract The k-nearest neighbors classifier is a widely

used classification method that has proven to be very

effective in supervised learning tasks. In this paper, a fuzzy

rough set method for prototype selection, focused on

optimizing the behavior of this classifier, is presented. The

hybridization with an evolutionary feature selection

method is considered to further improve its performance,

obtaining a competent data reduction algorithm for the

1-nearest neighbors classifier. This hybridization is per-

formed in the training phase, by using the solution of each

preprocessing technique as the starting condition of the

other one, within a cycle. The results of the experimental

study, which have been contrasted through nonparametric

statistical tests, show that the new hybrid approach obtains

very promising results with respect to classification accu-

racy and reduction of the size of the training set.

Keywords Prototype selection � Feature selection �
Data reduction � Fuzzy rough sets �
Evolutionary algorithms � Nearest neighbor

1 Introduction

Supervised classification is one of the most useful tech-

niques in machine learning (Mjolsness and DeCoste 2001;

Alpaydin 2010; Witten et al. 2011). Categorizing new

objects using data stored in a given training set has become

a critical task in many real-world applications of data

mining and pattern recognition.

The k-nearest neighbors classifier (k-NN) (Cover and

Hart 1967; Shakhnarovich et al. 2006) is one of the most

relevant algorithms in data mining (Wu and Kumar 2009).

It is a nonparametric classifier which simply uses the entire

input data set to establish the classification rule. Thus, the

effectiveness of the classification process performed by

k-NN relies mainly on the quality of the training data (Aha

et al. 1991). Furthermore, it is important to note that its

main drawback is its relative inefficiency as the size of the

problem increases, regarding both the number of instances

in the data set and the number of features which will be

used in the computation of the similarity (distance) func-

tion (Chen et al. 2009; Weinberger and Saul 2009).

However, the overwhelming amount of data available

nowadays in any field of research (Bell et al. 2009) poses

new problems when using the k-NN classifier. Gathering,

understanding and processing such data often requires the

use of advanced tools for managing the represented

knowledge in a suitable way. In this sense, many approa-

ches have been proposed to improve the performance of

k-NN (Triguero et al. 2010; Destercke 2012). Some of the

most effective ones work directly over the training data,

instead of modifying the computation of the k-NN rule.

They preprocess the initially available data, aiming to

improve the algorithms in terms of efficiency and efficacy.

Data reduction (Pyle 1999) is a data preprocessing task

whose main objective is to reduce the original training set.
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By removing noisy and irrelevant data—harmful for the

majority of machine learning methods—data reduction can

help to avoid excessive storage and time requirements,

easing and enabling machine learning techniques to deal

with large data sets. The best known data reduction pro-

cesses are feature selection (FS) (Liu and Motoda 2007),

feature generation/extraction (Guyon et al. 2006), attribute

discretization (Garcı́a et al. 2012b), prototype generation

(Triguero et al. 2012) and prototype selection (PS) (Garcı́a

et al. 2012a).

One of the most successful families of data reduction

methods has been originated by evolutionary computation

(Eiben and Smith 2003; Ghosh and Jain 2005). Evolutionary

algorithms, search algorithms inspired by natural popula-

tions to evolve solutions, have been applied to different data

reduction problems, modeling them as combinatorial prob-

lems (Freitas 2002; Cano et al. 2003; Pappa and Freitas

2009). A remarkable number of evolutionary data reduction

techniques have been focused on optimizing the k-NN rule.

Fuzzy sets (Zadeh 1965) and rough sets (Pawlak 1982;

Pawlak and Skowron 2007b) address two important, com-

plementary characteristics of imperfect data and knowl-

edge: the former model vague information by expressing

that objects belong to a set or relation to a given degree,

while the latter provide approximations of concepts in the

presence of incomplete information (Kusunoki and Inuig-

uchi 2010). A hybrid fuzzy rough set model was first pro-

posed in (Dubois and Prade 1990), later extended and/or

modified by many authors, being applied successfully in

various domains (Radzikowska and Kerre 2002; De Cock

et al. 2007; Tsang et al. 2008; He and Wu 2011; Zhai 2011).

Possibly, the most notable capability of these extensions is

that they enable practitioners to apply rough sets analysis

directly over data sets representing continuous data, in

contrast with pure rough sets methods, which cannot be

applied over continuous data sets without discretizing them

at a previous step.

In this paper, a hybrid model for data reduction com-

bining fuzzy rough sets and evolutionary algorithms is

proposed. A PS algorithm is developed by estimating the

quality of every training instance through a fuzzy rough set

based quality measure. The solutions obtained by this

method are used to adjust the search of an evolutionary FS

algorithm. Both the PS and the FS algorithms are applied in

succession, using the 1-NN classifier as a wrapper for

evaluating the solutions. At the end, the subsets of features

and prototypes selected are gathered to generate a final data

set, which is used in the classification phase as reference.

We have tested our approach (which we have termed

EFS-RPS, evolutionary feature selection for fuzzy rough

set based prototype selection) in a wide selection of

supervised classification domains, considering 38 different

problems. The results have been contrasted by using

several non-parametric statistical tests (Sheskin 2011),

reinforcing the conclusions obtained in the experiments.

The rest of the paper is organized as follows: Sect. 2

shows an introduction to the main topics of the study.

Section 3 describes EFS-RPS and its main characteristics.

Section 4 details the experimental study performed to test

the performance of the new technique. Finally, Sect. 5

sums up our main conclusions.

2 Data reduction preliminaries

This section gives some preliminaries on data reduction

techniques, fuzzy rough sets and evolutionary algorithms:

• Section 2.1 describes feature selection and its applica-

tion for enhancing the k-NN rule.

• Section 2.2 surveys prototype selection and some

notable characteristics of the field.

• Section 2.3 recalls some definitions of fuzzy rough sets

and various works related to data reduction.

• Section 2.4 reviews the use of evolutionary algorithms for

the reduction of training sets in k-NN based classifiers.

Throughout the section, the following definitions will be

used:

• The data set X consists of N instances which are defined

by a set A of M attributes (features) in an M-dimen-

sional space and a class (decision) attribute c. Attribute

values in M should be normalized in the interval

[0, 1].

• Each instance Xp is defined by Xp = (Xp1, Xp2, ..., XpM,

Xpc), where Xpi is the value of the i-th feature of the p-th

instance. The class attribute of the instance is deter-

mined by Xpc, which means that Xp belongs to the

class c.

• The data set is split into two different subsets: A

training set TR and a test set TS. After the application

of a data reduction algorithm (a PS or a FS one) over

TR, a reference set RS � TR is obtained.

2.1 Feature selection

One of the main data reduction techniques is FS. Its goal is

to select the most appropriate subset of features from the

initial data set. It aims to eliminate irrelevant and redundant

features to obtain a simple and accurate classification

system (Liu and Motoda 2007).

FS can be defined as follows: Given a data set composed

by TR and TS, a FS algorithm searches for a subset of fea-

tures B � A: The RS set is built from TR, considering only

the features selected in B. Instances from TS are then clas-

sified by a data mining algorithm using RS as reference.
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There are three main categories into which FS methods

can be classified:

• Wrapper methods, where the selection criterion is

dependent on the learning algorithm, being a part of the

fitness function (Kohavi and John 1997).

• Filtering methods, where the selection criterion is

independent of the learning algorithm. In these meth-

ods, the selection is guided by data related measures

(for example, separability measures) (Guyon and

Elisseeff 2003).

• Embedded methods, where the search for an optimal

subset of features is performed within the classifier

construction (Saeys et al. 2007).

The most popular algorithms for FS are the classical

sequential ones. Forward sequential and backward sequen-

tial selection (Liu and Motoda 1998) are the best-known

ones. They begin with a feature subset and sequentially add

or remove features if they improve the quality of the selec-

tion until the algorithm finishes. Other remarkable FS

methods are FOCUS (Almuallim and Dietterich 1991) and

the RELIEF family (Kira and Rendell 1992).

Despite the popularity of these classical methods, many

other approaches based on heuristic search can be found in the

literature (Stracuzzi and Utgoff 2004; Shie and Chen 2008).

Complete surveys, analyzing both classical and advanced

approaches to FS, can be found in the literature (Guyon and

Elisseeff 2003; Liu and Yu 2005; Saeys et al. 2007).

2.2 Prototype selection

PS methods are data reduction methods whose objective is to

isolate the smallest set of instances which enable the k-NN

classifier to predict the class of a query instance with the same

quality as the initial data set (Liu and Motoda 2001).

PS can be defined as follows: Given a data set composed

by TR and TS, a PS algorithm obtains prototypes as a

subset of instances RS � TR: Instances from TS are then

classified by the k-NN classifier using RS as reference.

Depending on the strategy followed, PS methods can be

categorized into three classes: preservation methods, which

aim to obtain a consistent subset from the training data,

ignoring the presence of noise; noise removal methods,

which aim to remove noise both in the boundary points

(instances near to the decision boundaries) and in the inner

points (instances far from the decision boundaries), and

hybrid methods, which perform both objectives simulta-

neously (Garcı́a et al. 2012a).

PS methods are sometimes dependent on the k value set

on the definition of the k-NN classifier. In (Wilson and

Martinez 2000), it is stated that setting k [ 1 decreases the

sensitivity of the algorithm to noise and tends to smooth the

decision boundaries. In some PS algorithms, a value k [ 1

may be convenient, when the interest lies in protecting the

classification task against noisy instances. Therefore, they

state that it may be appropriate to find a value of k to use

in the reduction process, and then recompute the best value

of k in the classification phase. In this work, we have

employed the value k = 1, to give the classifier the greatest

possible sensitivity to noise during the reduction process.

In this manner, an evolutionary PS algorithm can detect

better the noisy instances and the redundant ones present in

the training set.

Despite the variety of PS methods developed in the last

decades (with some remarkable proposals such as CNN

(Hart 1968), ENN (Wilson 1972) or the IB (Aha et al.

1991) and DROP (Wilson and Martinez 2000) families),

improvements in storage reduction, noise tolerance, gen-

eralization accuracy and time requirements are reported

still nowadays, with the development of new PS methods

(Garcı́a et al. 2008; Ferrandiz and Boullé 2010; Franco

et al. 2010; Quirino et al. 2010). They have become a proof

of the topical nature of this field, which continues to attract

the interest of many research communities in the search for

new ways to further improve the performance of the k-NN

classifier. More information about the PS field can be found

at the SCI2S thematic public website on Prototype

Reduction in Nearest Neighbor Classification.1

2.3 Fuzzy rough sets for data reduction

Rough set theory (Pawlak 1991; Pawlak and Skowron

2007a) provides a methodology for data analysis based on

the approximation of concepts in a decision system (X, A [
{c}), in which X is a set of instances, A is a set of condi-

tional attributes and c is the decision or class attribute.

The theory revolves around the notion of (in)discern-

ibility: the ability to distinguish between instances, based

on their attribute values. When fuzzy rough sets are used,

indiscernibility is typically modeled by means of a fuzzy

tolerance relation R in X. In this paper, R is defined as, for

Xx and Xy in Xðx; y 2 1; . . .; nf gÞ;
RðXx;XyÞ ¼TðRaðXx;XyÞ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

a2A

Þ ð1Þ

where T is a t-norm, which is an associative, commutative

mapping T : ½0; 1�2 ! ½0; 1�; increasing in both arguments

and such that 8s 2 ½0; 1� : Tðs; 1Þ ¼ s: In this paper we

will use the Łukasiewicz t-norm, defined as follows:

Tðs; tÞ ¼ maxð0; sþ t � 1Þ for s; t 2 ½0; 1�: Note that, as a

t-norm is associative and commutative, it can be extended

unambiguously for M arguments as in Eq. (1).

The indiscernibility for one attribute RaðXx;XyÞ is given by

1 http://sci2s.ugr.es/pr/.
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RaðXx;XyÞ ¼ 1� ðXxa � XyaÞ2 ð2Þ

if a is a quantitative (real) attribute, and

RaðXx;XyÞ ¼
1 if Xxa ¼ Xya

0 otherwise

�

ð3Þ

when a is nominal (discrete).

Given R, the fuzzy-rough positive region of X is defined

as the fuzzy set POSA in X

POSAðXxÞ ¼ min
Xy2X

IðRðXx;XyÞ;RcðXx;XyÞÞ ð4Þ

where I represents an implicator, which is a mapping I :

½0; 1�2 ! ½0; 1�; decreasing in the first and increasing in the

second argument, and for which Ið0; 0Þ ¼ 1;Ið1; 1Þ ¼
1;Tð0; 1Þ ¼ 1 and Ið1; 0Þ ¼ 0: In this paper we will use

the Łukasiewicz implicator, defined as follows: Iðs; tÞ ¼
minð1; 1� sþ tÞ for s, t [ [0, 1]. The indiscernibility

w.r.t. the decision class is defined as follows:

RcðXx;XyÞ ¼
1 if Xxc ¼ Xyc

0 otherwise

�

ð5Þ

The idea of the fuzzy-rough positive region is that

instances on the border of a class (that is, for which there

exists a similar instance in another class) will have a small

membership value to POSA compared to instances in the

center of a class. This makes the fuzzy-rough positive

region suitable to measure the quality of an instance as a

typical representative of its class. Most applications of

fuzzy rough sets for FS and PS data reduction are based on

this approach (Jensen and Shen 2007, 2009; Cornelis et al.

2010; Jensen and Cornelis 2010).

2.4 Evolutionary algorithms for data reduction

Recently, the use of evolutionary algorithms in data

reduction problems has become common in the machine

learning field. This subsection surveys some interesting

approaches for evolutionary FS and evolutionary PS.

In (Cano et al. 2003), a complete study on the use of

evolutionary algorithms for prototype selection is carried

out, highlighting four evolutionary methods to complete

this task: CHC adaptive search algorithm (Eshelman 1991),

steady-state genetic algorithm (SSGA) (Whitley 1989),

generational genetic algorithm and population-based

incremental learning. They concluded that the evolutionary

algorithms selected outperform classical algorithms both in

reduction rates and classification accuracy.

Other interesting evolutionary proposals for PS can be

found in (Garcı́a et al. 2008; Gil-Pita and Yao 2008;

Ishibuchi and Nakashima 1998; Kuncheva 1995; Derrac

et al. 2010a; Garcı́a-Pedrajas et al. 2010). For a detailed

survey on the field see (Derrac et al. 2010b).

Regarding FS, most of the evolutionary approaches are

based on genetic algorithms, using both filter and wrapper

approaches (Casillas et al. 2001; Gonzalez and Perez 2001;

Oh et al. 2004; Rokach 2008). Another interesting proposal

is (Inza et al. 2001), where an estimation of distribution

algorithm based on bayesian networks is presented.

It is also possible to find evolutionary applications of

simultaneous PS and FS. Both (Kuncheva and Jain 1999) and

(Ishibuchi et al. 2001) propose a genetic algorithm to perform

simultaneously the editing of the instance set and selection of

the feature set. Another popular dual method is IGA (Ho

et al. 2002), an intelligent genetic algorithm designed to

tackle both PS and FS problems simultaneously, by the

introduction of a special orthogonal crossover operator.

3 EFS-RPS: evolutionary feature selection for fuzzy

rough set based prototype selection

In this section we describe the main components of EFS-

RPS and its implementation details. The organization of

this section follows a bottom-up order in which:

• Firstly, in Sect. 3.1, the PS algorithm based on fuzzy

rough sets which forms the core of EFS-RPS is presented.

• Secondly, in Sect. 3.2, we describe the evolutionary

algorithm developed for performing the FS process.

• Thirdly, in Sect. 3.3, we detail the way in which the

subsets of features and prototypes obtained through the

above methods are combined for preprocessing refer-

ence sets for the 1-NN classifier.

• Finally, in Sect. 4.4, a full description on the EFS-RPS

is given, as a combination of all the components

described before.

Algorithm 1 A PS algorithm based on fuzzy rough set theory
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3.1 A fuzzy rough set PS procedure

The quality of the instances in the training set can be

assessed following the concepts of fuzzy rough set theory

defined before and the definition of the fuzzy positive

region of an instance x [ X. The membership of an instance

to the positive region with respect to the current subset of

features considered B � M can serve as a noise measure

for it.

In this fuzzy rough set PS procedure, instances are

ordered with respect to their fuzzy positive region, in

increasing order. Then, noisy instances are pruned itera-

tively, and the subsequently found prototype subsets are

evaluated with respect to classification accuracy (accuracy

is estimated by using a leave-one-out procedure with a

1-NN classifier, which we denote by 1-NNlooAccuracy).

Instances with the same fuzzy positive region value are

analyzed simultaneously, that is, marked for deletion at

the same time. The best subset found is then identified as

the subset of prototypes RS, which is the output of the

algorithm. Algorithm 3 shows the pseudocode of this

procedure.

Through the procedure, a list with the nearest neighbor

of each prototype in TR is maintained. These nearest

neighbors can only belong to the set RS; hence, every time

a prototype from RS is removed, the list of neighbors is

updated and the neighbor of every prototype of TR which

is now missing is recomputed.

This neighbors list is used for estimating the 1-NN

leave-one-out accuracy of the current RS set selected

[through the 1-NNlooAccuracy (RS) procedure]. It helps

the PS method to avoid the necessity of recomputing

the nearest neighbors of each prototype in TR every

time the procedure is used, thus saving computational

resources.

Thanks to this optimization, the cost of the PS procedure

can be computed by using the concept of partial evalua-

tions. Throughout the FS and PS process of EFS-RPS, the

computational resources spent are registered in the form of

solutions evaluations. Every time a full classification of the

TR is performed to estimate the accuracy of a solution, a

full evaluation is spent.

In the specific case of this PS procedure, the complete

cost is defined as follows:

• A full evaluation is spent the first time the nearest

neighbor list is computed.

• Every time a neighbor has to be updated (because the

old neighbor has been removed from RS) a partial

evaluation is spent:

partialEvaluation ¼ 1

#instances in TR
ð6Þ

Therefore, the total cost of the PS algorithm can be

redefined as

PSCost ¼ 1þ#neighborsupdated

#instances in TR
ð7Þ

This partial evaluations procedure, inspired by the one

developed in (Garcı́a et al. 2008), allows us to define a fair

computational cost measure for the PS algorithm, which

correctly represents the savings obtained through the use of

the list of neighbors.

3.2 Searching features using an evolutionary algorithm

The second key element of EFS-RPS is its search method

for selecting subsets of features. To accomplish this task,

we have chosen SSGA as the evolutionary algorithm to

perform the search.

A SSGA is a genetic algorithm in which only a reduced set

of offspring is produced in each generation (two, in most

cases). Parents are chosen to produce offspring and then a

decision is made as to which individuals in the population will

be selected for deletion in order to make room for the new

offspring. Algorithm 2 shows the pseudocode of SSGA.

Algorithm 2 SSGA pseudocode

The fitness function of our SSGA pursues a dual

objective: The main task of the method is to search for

subsets of features which increase the accuracy of the

1-NN classifier. However, a second task should be to

reduce the size of the subsets selected, if this does not harm

the accuracy rates obtained.

Hence, following the same set-up as in (Cano et al.

2003), where a similar approach is used in the core of

evolutionary PS methods, for a given solution J (chromo-

some) of the SSGA, we define two variables:
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• AccRate: The classification accuracy of a 1-NN clas-

sifier (1-NNAccuracy) when classifying the full train-

ing set using only the currently selected subset of

features as a reference (and leave-one-out as validation

scheme).

AccRateðJÞ ¼ 1-NNAccuracyðJÞ ð8Þ

• RedRate The rate of reduction achieved over the

currently selected (maintained) features.

RedRateðJÞ ¼ 1.0� #FeaturesSelected(J)

M
ð9Þ

Both variables are adjusted through a real-valued

weighting factor a to equalize the strength of each term

in the resulting fitness value. The final fitness function of

the SSGA can be defined as

FitnessðJÞ ¼ a � AccRateðJÞ þ ð1� aÞ � RedRateðJÞ ð10Þ

The a value should be kept very high (a = 0.99 turned

out to be the best choice in our preliminary experiments) in

order to avoid those cases in which an excessive deletion of

features could be favored too much by the fitness function,

resulting in a selection of an insufficient number of features

for the final classification stage.

The configuration details of the SSGA are as follows:

• Codification The SSGA will use binary chromosomes

to represent the solutions. Each bit will represent the

state of each feature in the training set (1 if the feature

is selected; 0 if it is deleted).

• Crossover operator A two-point crossover operator has

been considered. In each generation, this operator is

applied twice, obtaining two offspring.

• Mutation operator The bit-flip mutation operator

(changing the value of the selected allele from 0 to 1,

and vice versa) is applied to each offspring produced,

with a given probability per bit.

• Selection of parents A binary tournament procedure

will be used to select parents in each generation.

• Replacement strategy The two worst individuals of the

population are chosen for replacement, only if their

fitness value is lower than the offspring’s.

3.3 Simultaneous assessment of features

and prototypes through the 1-NN classifier

While the search process performed by EFS-RPS is carried

out, we will need to assess the quality of the solutions

obtained. Mostly, this operation will consist of gathering

two solutions (one representing a prototype subset, and

another one representing a subset of features), combining

them and estimating their quality through the 1-NN

classifier.

Once both solutions have been gathered, their assess-

ment is carried out by performing the following steps:

1. A copy of the training set is obtained and pruned,

keeping only those prototypes indicated by the PS

solution.

2. After the prototypes have been isolated, their features

are also pruned, keeping this time only those indicated

by the FS solution. The resulting subset is identified as

the reference subset.

3. The 1-NN classifier is used to classify all the original

training instances. This 1-NN classifier will use as

reference set only the data preprocessed in the previous

step.

4. The accuracy of this classification (that is, the ratio of

training instances correctly classified over the total

number of training instances), a value in [0, 1], will be

used as the quality of the solutions.

This simple method allows us to evaluate subsets of

features and prototypes within the general EFS-RPS

framework. Since it involves the classification of the full

training set, performing it has a cost associated of a full

evaluation.

3.4 EFS-RPS global model

The EFS-RPS is composed by the fuzzy rough set based PS

method and the SSGA FS algorithm defined before.

Through the procedure for evaluating simultaneously fea-

ture and prototype subsets (defined in the previous sub-

section), EFS-RPS can merge the two search processes

in an effective way, enabling the framework to obtain

improved results from the existing synergy between the

two basic data reduction methods on which it is based.

EFS-RPS begins by selecting a candidate set of proto-

types, bestPS. This subset of the training set is used as

reference for the SSGA, during a fixed number of evalua-

tions (Cycle Length). Every time this limit is reached, the

candidate set of prototypes is recomputed through the PS

method, but considering only the best subset of features

found so far, bestFS. If the new subset of prototypes

computed is better than the previous one (in terms of leave-

one-out accuracy), the latter is updated.

These processes are repeated until the algorithm is close

to its end (at that point, no further update of the bestPS

subset is allowed). Once the Evaluations limit is reached,

the best subsets of prototypes and features found so far,

bestPS and bestFS are used to prepare the final reference

set, RS, which is obtained as the output of the algorithm.

Algorithm 4 shows the EFS-RPS pseudocode.
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Algorithm 3 The global EFS-RPS model

The main steps of the algorithm are detailed as follows:

• Instructions 1–2 extract a preliminary set of prototypes

by applying the fuzzy rough PS procedure detailed in

Sect. 3.1. In this first application of the PS procedure,

all the features of the problem are considered.

• Instruction 3 initializes the population of the SSGA and

its chromosomes are evaluated (using the procedure

detailed in Sect. 3.3. The prototypes considered in this

step are those stored in bestPS. Instructions 4 and 5

initialize optimizePS and cycle variables.

• Instruction 7 performs a full generation of the SSGA

(again, the new chromosomes are evaluated using the

procedure detailed in Sect. 3.3).

• Instructions 8 and 9 check if the end of the algorithm is

close; that is, when more than c � Evaluations limit

evaluations have been spent (c should be set close to 1,

for example, c = 0.75). If that limit is reached, the set

of prototypes bestPS is no further optimized (see

Instructions 11–20). Disabling these instructions in the

last generations of the algorithms will help to improve

the convergence capabilities of the SSGA.

• Instruction 10 checks if the set of prototypes bestPS has

to be improved. If this phase is enabled (see Instruc-

tions 8 and 9) and Cycle Length evaluations have been

spent since the last time this phase was carried out, the

bestPS set can be improved.

• Instruction 13 generates a new candidate set of

prototypes, newPS (only the features of the best subset

found so far by the SSGA are considered in this case).

The accuracy obtained by using this new set of

prototypes is computed, newAcc. If it is higher than

bestAcc, then the set bestPS is updated (Instructions

14–17).

• Instruction 22 gathers the best solutions found by the

SSGA and the PS procedure, and creates a final

reference set RS with those prototypes and features

selected in the solutions.

The EFS-RPS algorithm loop is carried out until the

specified limit of evaluations is reached. Then, the RS

subset generated can be used as a reference set for the

1-NN classifier to classify new test instances.

4 Experimental study

This section describes the experimental study performed to

test the performance of EFS-RPS:

• Section 4.1 lists the supervised classification problems

considered and their main characteristics.

• Section 4.2 provides a description of the algorithms

considered in the comparison and a definition of their

parameter values.

• Section 4.3 describes the nonparametric statistical

procedures considered for contrasting the results of

the study.

• Section 4.4 shows the results obtained and analyzes

them.

4.1 Data sets

We have selected a set of 38 classification data sets for our

experimental study. These are well-known problems in the

area, taken from the KEEL-dataset repository (Alcalá-Fdez

et al. 2008, 2011)2 and the UCI repository (Frank and

Asuncion 2010). Table 1 summarizes their main charac-

teristics. For each data set, we provide its number of

instances (#Ins.), attributes (#At.) and classes (#Cl.).

The data sets considered are partitioned by using the

10-fold cross-validation (10-fcv) procedure (enabling us to

follow a 5x10-fold cross-validation set-up in the study),

and their values are normalized in the interval [0, 1] to

equalize the influence of attributes with different range

domains. In addition, instances with missing values have

been discarded before the execution of the methods over

the data sets.

2 http://www.keel.es/datasets.php.
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4.2 Algorithms and parameter settings

In order to show the capabilities of EFS-RPS as a data

preprocessor for 1-NN we have selected a representative

set of comparison methods, including several evolutionary

and fuzzy rough set based ones. The preprocessed training

sets obtained as a result of the application of all these

methods (including EFS-RPS) will be evaluated using a

1-NN classifier to classify the test (unseen) data. Euclidean

distance will be considered in all the methods, whereas the

overlap metric is considered for nominal attributes.

The comparison methods selected are the following:

• Evolutionary data reduction methods:

– FS-SSGA A steady-state genetic algorithm for FS.

This method follows the same design as the

evolutionary component of EFS-RPS, but without

including any kind of PS process. Hence, it is only

focused on searching the best possible subset of

features through a wrapper based evolutionary

search.

– PS-SSGA A steady-state genetic algorithm for PS.

This method shares the same set-up as FS-SSGA,

but it is focused on selecting prototypes, instead of

features (it also uses binary chromosomes). Its

objective is to find the most representative subset of

prototypes from the training set through the evolu-

tionary search process.

– FPS-SSGA A steady-state genetic algorithm for

simultaneous FS and PS. This method shares the

same set-up as FS-SSGA and PS-SSGA, but both

features and prototypes are encoded in the chromo-

somes. As output, this method will select a subset of

features and a subset of prototypes, which are

combined in the same way as the solutions of EFS-

RPS.

• Fuzzy rough set data reduction methods:

– PS-FRW A fuzzy rough set wrapper algorithm for

PS. This method follows the same design as the PS

component of EFS-RPS.

– FS-RST A fuzzy rough set based feature selection

method. It performs a heuristic search among the

features of the training data, choosing the best ones

according to how well they represent the full

training set (using a measure of discernibility to

evaluate the different subsets of features found).

More details can be found in (Cornelis et al. 2010).

• Other algorithms:

– EIS-RFS A hybrid data preprocessing method,

which incorporates FS-RST and PS-SSGA for

performing simultaneous FS and PS. A full descrip-

tion of this method can be found in (Derrac et al.

2012).

– 1-NN The 1-NN classifier is also included in the

comparison. Its results, unmodified by any data

preprocessing method, will give an insight of how

well the rest of algorithms are improving the

behavior of the base classifier, in terms of accuracy.

Table 1 Description of the 38 data sets used in the study

Data set #Ins. #At. #Cl. Data set #Ins. #At. #Cl.

Australian 690 14 2 Housevotes 435 16 2

Automobile 205 25 6 Iris 150 4 3

Balance 625 4 3 Led7Digit 500 7 10

Bands 539 19 2 Lymphography 148 18 4

Breast 286 9 2 Mammographic 961 5 2

Bupa 345 6 2 Monks 432 6 2

Car 1,728 6 4 New thyroid 215 5 3

Cleveland 303 13 5 Pima 768 8 2

Contraceptive 1,473 9 3 Saheart 462 9 2

Crx 690 15 2 Sonar 208 60 2

Dermatology 366 34 6 Spectfheart 267 44 2

Ecoli 336 7 8 Tae 151 5 3

Flare-solar 1,066 9 2 Tic-tac-toe 958 9 2

German 1,000 20 2 Vehicle 946 18 4

Glass 214 9 7 Vowel 990 13 11

Haberman 306 3 2 Wine 178 13 3

Hayes-Roth 160 4 3 Wisconsin 699 9 2

Heart 270 13 2 Yeast 1,484 8 10

Hepatitis 155 19 2 Zoo 101 16 7
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Many different configurations can be established for

each combination of domain and method. However, for the

sake of a fair comparison, we have selected a fixed set of

parameters for each method, which will be applied for all

the data sets. Table 2 summarizes them.

Essentially, 10,000 evaluations are allowed for every

method. SSGA base parameters are set-up to a classical

configuration, and the a value in the fitness function is set

to 0.5 if the reduction rate is computed over instances [as

recommended in Cano et al. (2003)] and to 0.99 if it is

computed over features [as recommended in Derrac et al.

(2010a)]. The rest of parameters are set to the values rec-

ommended by the authors of each technique.

4.3 Statistical procedures

We have considered the use of hypothesis testing tech-

niques to provide statistical support for the analysis of the

results of the experimental study. Concretely, we will use

nonparametric tests (Sheskin 2011), since the initial con-

ditions that guarantee the reliability of the parametric tests

(independence, normality and homocedasticity) may not be

satisfied, causing the statistical analysis to lose credibility

(Garcı́a and Herrera 2008; Garcı́a et al. 2009).

Throughout the study, we perform several multiple

comparisons between the algorithms considered. To do so,

we will use the Friedman test in order to detect statistical

differences among a group of results. A second property of

this test is that the ranks computed for obtaining the

Friedman statistic can be also considered to sort the algo-

rithm by its relative performance (where the lower the rank

obtained, the better the performance of the algorithm). The

process followed to compute the final ranks is as follows:

1. Gather observed results for each pair algorithm/data

set (for example, average the results obtained after the

cross-validation process).

2. For each data set, rank the values from 1 (best result)

to n (worst result), where n is the number of algorithms

considered in the comparison. If ties appear, assign

midranks.

3. Average the ranks obtained in all data sets to obtain the

final rank.

After computing the ranks, if the p-value of the Fried-

man test is significantly low (at a 0.05 level of signifi-

cance), the existence of significant differences between the

algorithms evaluated is assumed. From this point, a control

algorithm can be chosen (the one with the lowest rank, that

is, the best performing one), and post-hoc procedures (in

our case the Holm and Finner procedures (Garcı́a et al.

2010)) can be applied to determine which algorithms are

significantly outperformed by the control one.

More information about these tests and other statistical

procedures specifically designed for use in the field of

machine learning can be found at the SCI2S thematic

public website on Statistical Inference in Computational

Intelligence and Data Mining.3

4.4 Results and analysis

In this subsection we report the results obtained in the full

experimental study. Table 3 shows the average accuracy

results obtained in the test phase (considering a 5x10-fold

cross-validation set-up, that is, averaging the results of

five independent schemes of 10-fold cross-validation). For

each algorithm and data set, the average accuracy and

standard deviation are provided. The best result in each

data set is highlighted in bold. Moreover, the table also

provides average results over all data sets and the number

of times that each algorithm obtains the best result for a

single data set.

Table 2 Parameter specification for the algorithms tested in the experimentation

Algorithm Parameters

EFS-RPS Evaluations: 10,000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit, a: 0.99

Cycle Length: 100, c: 0.75

PS-SSGA Evaluations: 10,000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit, a: 0.5

FS-SSGA Evaluations: 10,000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit, a: 0.99

FPS-SSGA Evaluations: 10,000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit

a (instances): 0.5, a (features): 0.99

PS-FRW –

FS-RST MaxGamma: 1.0

EIS-RFS Evaluations: 10,000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit, a: 0.5

MaxGamma: 1.0, UpdateFS: 100, b: 0.75

1-NN –

3 http://sci2s.ugr.es/sicidm/.
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Table 3 Accuracy results in test phase

Data set EFS-RPS FS-SSGA PS-SSGA FPS-SSGA PS-FRW FS-RST EIS-RFS 1-NN

Australian 85.12 ± 4.53 85.07 ± 3.49 85.65 ± 2.77 85.36 ± 3.31 84.64 ± 3.15 81.45 ± 4.52 85.66 ± 2.27 81.45 ± 4.29

Automobile 82.05 ± 8.55 79.61 ± 6.87 63.78 ± 14.84 69.38 ± 6.33 76.07 ± 7.48 78.97 ± 10.32 61.17 ± 11.58 77.93 ± 6.68

Balance 85.04 ± 6.81 70.89 ± 9.80 86.40 ± 3.08 84.31 ± 4.85 90.56 ± 1.57 79.04 ± 6.81 85.92 ± 2.62 79.04 ± 6.46

Bands 74.42 ± 5.45 72.35 ± 6.70 69.77 ± 9.22 64.95 ± 8.69 72.01 ± 9.66 66.61 ± 6.32 64.57 ± 5.91 74.04 ± 6.94

Breast 69.94 ± 7.01 70.98 ± 5.72 70.94 ± 4.63 73.42 ± 8.34 66.03 ± 6.96 60.97 ± 10.44 69.29 ± 5.73 65.35 ± 6.39

Bupa 63.98 ± 6.82 59.91 ± 10.19 61.14 ± 9.37 62.72 ± 8.40 59.59 ± 9.97 62.51 ± 7.78 65.72 ± 8.79 61.08 ± 6.88

Car 90.68 ± 1.31 90.68 ± 1.51 89.29 ± 2.55 93.34 ± 1.37 85.65 ± 3.03 70.02 ± 0.17 91.67 ± 3.31 85.65 ± 1.91

Cleveland 53.81 ± 7.66 51.47 ± 9.47 52.82 ± 4.47 56.13 ± 6.07 56.82 ± 8.87 52.51 ± 9.49 55.16 ± 5.82 53.14 ± 7.45

Contraceptive 43.31 ± 4.21 41.96 ± 3.57 44.54 ± 4.61 45.15 ± 2.32 44.47 ± 2.57 42.63 ± 3.73 45.42 ± 5.14 42.77 ± 3.69

Crx 85.07 ± 3.75 81.16 ± 7.61 84.64 ± 4.22 84.64 ± 5.08 83.04 ± 4.64 81.30 ± 6.28 84.93 ± 5.72 79.57 ± 5.12

Dermatology 95.65 ± 4.07 96.71 ± 2.85 94.84 ± 4.66 95.36 ± 3.83 95.92 ± 3.43 91.59 ± 3.69 94.81 ± 4.18 95.35 ± 3.64

Ecoli 79.79 ± 7.51 78.90 ± 7.30 80.38 ± 5.69 77.70 ± 5.52 83.33 ± 6.13 76.58 ± 14.73 82.14 ± 8.42 80.70 ± 7.51

Flare-solar 63.61 ± 3.12 62.76 ± 3.65 64.82 ± 3.37 67.35 ± 4.12 66.70 ± 3.61 63.23 ± 5.56 66.32 ± 2.94 55.54 ± 3.20

German 72.00 ± 3.40 69.50 ± 2.68 70.40 ± 3.24 70.10 ± 3.48 70.30 ± 4.57 67.90 ± 3.41 70.80 ± 4.24 70.50 ± 4.25

Glass 71.52 ± 14.45 71.80 ± 14.30 67.10 ± 14.74 71.23 ± 10.64 73.20 ± 14.31 74.50 ± 13.17 67.35 ± 11.83 73.61 ± 11.91

Haberman 72.81 ± 5.62 72.81 ± 6.15 71.23 ± 5.40 72.83 ± 5.99 67.65 ± 4.73 65.68 ± 6.58 71.56 ± 7.34 66.97 ± 5.46

Hayes-Roth 83.93 ± 9.03 83.93 ± 8.33 69.15 ± 11.69 79.80 ± 11.65 75.46 ± 10.29 76.07 ± 14.07 80.86 ± 11.70 35.70 ± 9.11

Heart 78.89 ± 6.77 76.67 ± 6.06 81.11 ± 7.90 82.59 ± 6.31 82.22 ± 5.18 78.89 ± 6.77 80.74 ± 6.34 77.04 ± 8.89

Hepatitis 81.92 ± 10.03 76.21 ± 7.89 79.33 ± 8.71 80.67 ± 6.13 82.04 ± 10.26 79.50 ± 7.95 82.58 ± 7.99 82.04 ± 11.09

Housevotes 96.31 ± 3.65 94.01 ± 4.53 93.79 ± 3.43 94.46 ± 4.37 92.38 ± 5.79 90.78 ± 6.47 94.48 ± 3.67 91.24 ± 5.41

Iris 96.00 ± 4.66 95.33 ± 4.50 94.67 ± 2.81 94.67 ± 4.22 95.33 ± 5.49 93.33 ± 5.44 96.00 ± 4.92 93.33 ± 5.16

Led7Digit 63.00 ± 7.54 63.00 ± 6.94 73.40 ± 2.84 71.40 ± 4.81 63.20 ± 3.43 63.60 ± 5.87 73.20 ± 4.99 40.20 ± 9.48

Lymphography 75.21 ± 9.75 78.49 ± 9.12 77.92 ± 9.39 74.92 ± 10.79 73.87 ± 9.17 77.38 ± 11.21 77.15 ± 12.15 73.87 ± 8.77

Mammographic 79.42 ± 4.26 75.86 ± 6.07 79.50 ± 3.85 80.15 ± 6.23 79.09 ± 3.80 75.76 ± 4.97 80.65 ± 4.51 76.38 ± 5.67

Monks 100.00 ± 0.00 100.00 ± 0.00 83.53 ± 6.21 98.64 ± 3.07 77.70 ± 5.37 77.91 ± 5.71 100.00 ± 0.00 77.91 ± 5.42

New thyroid 96.75 ± 2.24 96.30 ± 1.95 98.16 ± 3.20 96.32 ± 3.60 96.73 ± 3.18 97.23 ± 2.39 96.77 ± 4.83 97.23 ± 2.26

Pima 73.35 ± 5.21 67.70 ± 4.59 72.26 ± 4.44 73.83 ± 3.15 74.49 ± 3.49 70.33 ± 3.71 74.80 ± 3.71 70.33 ± 3.53

Saheart 69.05 ± 6.69 61.24 ± 3.91 69.27 ± 3.70 67.99 ± 5.69 71.66 ± 6.12 64.49 ± 4.21 68.82 ± 7.16 64.49 ± 3.99

Sonar 89.43 ± 6.65 84.62 ± 8.65 75.45 ± 11.74 75.50 ± 12.59 85.57 ± 7.14 81.69 ± 9.83 80.76 ± 7.88 85.55 ± 7.51

Spectfheart 74.56 ± 8.79 74.17 ± 6.34 75.31 ± 5.96 75.34 ± 7.31 78.36 ± 7.22 70.04 ± 8.00 76.82 ± 7.07 69.70 ± 6.55

Tae 62.38 ± 13.09 62.37 ± 14.17 54.42 ± 11.63 55.62 ± 13.70 61.08 ± 15.09 60.42 ± 14.29 52.08 ± 11.22 40.50 ± 8.89

Tic-tac-toe 83.20 ± 3.25 83.51 ± 3.10 78.71 ± 3.36 77.87 ± 5.25 73.07 ± 2.28 73.07 ± 2.70 78.29 ± 5.07 73.07 ± 2.56

Vehicle 72.70 ± 5.40 70.58 ± 4.92 66.91 ± 4.38 70.92 ± 3.84 68.20 ± 5.65 65.56 ± 6.14 65.37 ± 6.71 70.10 ± 5.90

Vowel 99.19 ± 0.90 99.19 ± 0.80 91.62 ± 3.01 89.60 ± 3.96 99.09 ± 1.00 91.58 ± 4.29 98.81 ± 2.10 99.39 ± 0.85

Wine 95.52 ± 3.53 94.90 ± 3.30 92.68 ± 7.91 94.93 ± 3.17 95.52 ± 6.84 95.49 ± 4.40 97.19 ± 5.09 95.52 ± 4.85

Wisconsin 95.85 ± 1.25 95.14 ± 2.62 96.13 ± 2.95 95.86 ± 2.47 96.86 ± 2.41 95.57 ± 2.73 96.42 ± 1.55 95.57 ± 2.59

Yeast 54.23 ± 4.01 52.30 ± 3.94 54.18 ± 4.38 53.50 ± 3.77 52.90 ± 3.62 52.23 ± 4.39 53.37 ± 3.36 50.47 ± 3.91

Zoo 98.33 ± 3.60 95.42 ± 6.00 94.22 ± 7.94 90.72 ± 7.09 98.33 ± 3.60 96.50 ± 4.61 96.39 ± 4.80 92.81 ± 6.57

Average 79.16 ± 5.65 77.30 ± 5.78 76.56 ± 6.01 77.61 ± 5.83 77.61 ± 5.82 74.81 ± 6.66 78.00 ± 5.86 73.56 ± 5.81

Best result (of 38) 13 4 2 5 6 1 9 1

Table 4 Results of Friedman,

Holm and Finner tests
Algorithm Friedman ranking Holm p-value Finner p-value

FS-RST 7.4211 0.000002 0.000002

1-NN 7.0263 0.000030 0.000017

FS-SSGA 6.2368 0.003437 0.001472

PS-SSGA 5.4605 0.089441 0.031968

FPS-SSGA 5.1053 0.242954 0.089710

PS-FRW 5.0132 0.242954 0.094809

EIS-RFS 4.2368 0.544390 0.544390

EFS-RPS 3.8158 – –

Friedman p-value \10-6
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Table 4 summarizes the results of the Friedman test,

and the post-hoc procedures (Holm and Finner), per-

formed to contrast the results obtained concerning clas-

sification accuracy. Average rankings and p-value are

reported for the Friedman test, and the best (lowest) rank

is highlighted in bold. Regarding the post-hoc methods,

adjusted p-values are provided, highlighting in bold those

which represent significant differences (at a 0.1 level of

significance).

Table 5 shows the average reduction rates achieved

through the application of every data reduction method. On

the left-hand side it shows the reduction achieved over the set

of features (that is, the ratio of features selected over the

original number of features of the problem) and, on the

Table 5 Average reduction results over features and instances

Data set Features Instances

EFS-RPS FS-SSGA FPS-SSGA FS-RST EIS-RFS EFS-RPS PS-SSGA FPS-SSGA PS-FRW EIS-RFS

Australian 0.7500 0.8071 0.7929 0.0000 0.1571 0.4288 0.8799 0.8808 0.4032 0.8872

Automobile 0.6760 0.7560 0.7160 0.3265 0.3560 0.0727 0.8444 0.8309 0.0640 0.8531

Bal 0.0000 0.3000 0.0000 0.0000 0.0000 0.5329 0.8686 0.8085 0.5846 0.8464

Bands 0.4842 0.6526 0.5526 0.3750 0.4263 0.3153 0.8472 0.8363 0.3267 0.8689

Bre 0.5444 0.6667 0.7111 0.2111 0.2111 0.0454 0.9441 0.9779 0.0408 0.9476

Bupa 0.4000 0.3667 0.4333 0.1274 0.0000 0.3838 0.8644 0.8644 0.3316 0.8502

Car 0.1667 0.1667 0.1667 0.1667 0.1667 0.0000 0.7681 0.7592 0.0000 0.8279

Cleveland 0.5462 0.7385 0.6077 0.3908 0.0462 0.7141 0.9171 0.9289 0.7352 0.9014

Contraceptive 0.4444 0.4556 0.5889 0.0360 0.0667 0.4133 0.7530 0.7530 0.4463 0.7637

Crx 0.4733 0.5667 0.5533 0.2000 0.1800 0.1685 0.8816 0.8805 0.1750 0.8914

Dermatology 0.5500 0.6676 0.4735 0.4354 0.3854 0.1520 0.9448 0.9414 0.1332 0.9502

Ecoli 0.1571 0.1714 0.1857 0.2286 0.1286 0.3179 0.9077 0.9130 0.3201 0.8882

Flare-solar 0.4778 0.5111 0.5778 0.1556 0.0556 0.8093 0.8391 0.8005 0.7963 0.8122

German 0.6800 0.5150 0.7450 0.1450 0.2350 0.0423 0.7914 0.7928 0.0022 0.8014

Glass 0.4222 0.4444 0.4556 0.0168 0.0444 0.1322 0.8791 0.8791 0.1422 0.8718

Haberman 0.6667 0.6667 0.5333 0.0254 0.0000 0.6560 0.9379 0.9379 0.6385 0.9306

Hayes-Roth 0.2500 0.2500 0.2500 0.1000 0.2500 0.2343 0.8384 0.8452 0.2172 0.8544

Heart 0.6231 0.4538 0.5692 0.1846 0.2308 0.6523 0.9506 0.9230 0.6617 0.9255

Hepatitis 0.6000 0.6684 0.5421 0.4263 0.5368 0.0471 0.9226 0.9355 0.0229 0.9262

Housevotes 0.6313 0.7000 0.7313 0.0188 0.3500 0.0389 0.9410 0.9653 0.0128 0.9387

Iris 0.4000 0.4000 0.4500 0.0000 0.1250 0.3415 0.9481 0.9481 0.1978 0.9511

Led7Digit 0.0143 0.0143 0.0000 0.0143 0.0000 0.5122 0.9071 0.9491 0.5122 0.9416

Lym 0.5111 0.6500 0.6500 0.2611 0.4444 0.0000 0.8994 0.9234 0.0000 0.9257

Mammographic 0.6600 0.5000 0.6200 0.3396 0.0000 0.4644 0.8229 0.7829 0.4722 0.8322

Monks 0.5000 0.5000 0.5333 0.0000 0.5000 0.3922 0.8570 0.9406 0.3760 0.9342

New thyroid 0.3200 0.3000 0.3800 0.0000 0.0600 0.6481 0.9571 0.9571 0.6652 0.9473

Pima 0.5500 0.5750 0.4375 0.0000 0.0000 0.5382 0.8187 0.8187 0.5298 0.7911

Saheart 0.4556 0.6333 0.5778 0.0000 0.0000 0.7245 0.8841 0.8778 0.6857 0.8668

Sonar 0.5767 0.6633 0.6600 0.7183 0.2900 0.0422 0.8595 0.8974 0.0283 0.8899

Spectfheart 0.4977 0.6750 0.6614 0.2750 0.2727 0.5428 0.9426 0.9409 0.5331 0.9497

Tae 0.3000 0.4000 0.2200 0.1183 0.1291 0.1902 0.8727 0.8992 0.1847 0.8764

Tic-tac-toe 0.2444 0.2444 0.2889 0.0000 0.0000 0.0000 0.7917 0.8047 0.0000 0.8655

Vehicle 0.4722 0.4833 0.4778 0.2944 0.2549 0.3256 0.7895 0.7927 0.3082 0.8211

Vowel 0.3077 0.3077 0.3538 0.2894 0.2640 0.0162 0.7201 0.7366 0.0091 0.7552

Wine 0.4846 0.4538 0.4538 0.5231 0.3308 0.6593 0.9538 0.9557 0.5905 0.9451

Wisconsin 0.4556 0.3889 0.3222 0.0000 0.0444 0.3672 0.9027 0.9048 0.4036 0.9103

Yeast 0.1000 0.0875 0.1625 0.1256 0.0375 0.4428 0.7485 0.7485 0.4272 0.7550

Zoo 0.7063 0.7125 0.3750 0.2750 0.2125 0.2349 0.8714 0.8468 0.2150 0.8634

Average 0.4500 0.4872 0.4687 0.1791 0.1787 0.3316 0.8702 0.8731 0.3209 0.8779
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right-hand side, the reduction achieved over the set of

instances (the ratio of prototypes selected over the total

number of instances of the original training set).

Finally, Table 6 reports the time elapsed for the methods

in training phase (in seconds).4 Note that the running times

in the test phase are not reported since they are too low to

show interesting differences. Furthermore, the efficiency in

the test phase is already reflected by the reduction rates

achieved (the higher the reduction rates are, the less run-

ning time will be needed).

We can draw the following conclusions:

• The new hybrid approach, EFS-RPS, obtains the best

results in accuracy. As Table 3 shows, it achieves the

Table 6 Average time elapsed (training phase), in seconds

Data set EFS-RPS FS-SSGA PS-SSGA FPS-SSGA PS-FRW FS-RST EIS-RFS

Australian 111.35 161.39 79.16 48.14 21.53 0.70 82.54

Automobile 16.80 50.27 14.40 8.55 0.40 0.36 30.48

Bal 29.27 88.56 38.71 38.33 0.21 0.03 54.44

Bands 85.28 287.05 75.96 63.93 13.09 1.41 116.68

Bre 13.77 43.73 8.86 5.67 0.13 0.09 12.32

Bupa 13.60 32.65 13.70 11.33 1.25 0.04 20.71

Car 475.93 1619.67 442.19 520.30 1.17 0.20 560.60

Cleveland 20.25 33.37 11.89 9.04 1.61 0.10 19.29

Contraceptive 352.47 704.06 348.66 306.52 9.09 1.32 316.30

Crx 114.32 220.59 79.72 70.56 6.73 0.46 86.38

Dermatology 66.46 186.50 35.90 27.80 2.33 0.30 60.20

Ecoli 14.63 37.50 10.92 11.17 1.36 0.05 20.68

Flare-solar 183.55 349.09 160.00 123.76 0.95 0.01 183.44

German 448.56 591.00 252.59 167.51 1.63 2.07 304.94

Glass 6.95 15.93 5.39 5.18 0.53 0.05 10.30

Haberman 7.39 13.63 7.09 6.06 0.22 0.01 9.41

Hayes-Roth 1.79 5.00 2.68 2.52 0.09 0.02 3.86

Heart 15.19 32.98 8.03 7.01 1.18 0.06 14.57

Hepatitis 7.89 13.08 3.83 3.21 0.11 0.04 8.50

Housevotes 50.86 82.91 24.98 17.38 0.31 0.02 39.42

Iris 1.64 5.22 2.44 2.33 0.17 0.02 4.40

Led7Digit 36.43 88.31 25.05 28.87 0.18 0.01 40.50

Lym 6.44 11.77 3.97 3.23 0.09 0.02 8.14

Mammographic 123.48 205.34 116.67 77.57 1.62 0.20 127.75

Monks 18.91 46.18 20.72 14.22 0.16 0.02 27.92

New thyroid 3.93 11.76 3.68 3.63 0.40 0.01 8.03

Pima 88.43 175.95 85.38 72.09 17.65 0.29 96.68

Saheart 34.33 62.64 25.98 22.45 4.25 0.15 33.45

Sonar 39.49 66.79 17.12 13.86 0.78 0.40 136.71

Spectfheart 38.13 80.53 15.14 15.25 3.98 0.27 40.33

Tae 2.48 9.41 2.42 2.37 0.11 0.03 3.27

Tic-tac-toe 144.63 348.57 150.31 132.37 0.59 0.06 176.75

Vehicle 409.15 671.39 220.63 183.52 47.11 6.13 495.09

Vowel 495.70 867.64 270.26 241.58 60.75 4.39 461.71

Wine 3.77 14.80 3.62 3.34 0.48 0.03 7.67

Wisconsin 70.02 159.05 55.66 50.62 2.81 0.10 73.61

Yeast 295.60 825.97 354.55 364.96 109.57 1.47 420.58

Zoo 2.43 5.12 2.52 2.46 0.05 0.01 5.31

Average 101.35 216.46 78.97 70.75 8.28 0.55 108.50

4 The experiments have been carried out on a machine with a Dual

Core 3,20 GHz processor and 2GB of RAM, running under the

Fedora 4 operating System.
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best average result, and the best result for 13 out of 38

data sets. The introduction of fuzzy rough set theory to

improve the evolutionary techniques turns out to be

very effective when its results are compared with the

basic techniques considered in isolation.

• All the data reduction methods considered in the study

outperform the basic 1-NN accuracy, PS-FRW being

the best non-hybrid technique when the average

ranking is considered. FS and PS, when performed in

an effective way—such as using the preprocessing

methods considered in the study—are able to improve

the accuracy of the 1-NN classifier (sometimes provid-

ing a substantial improvement, such as in the case of

EFS-RPS, with an average accuracy increase of more

than 5 %. This aspect is further reflected by the starplot

represented in Fig. 1).

• The hybridization performed to design EFS-RPS has

not damaged the reduction power of the base tech-

niques on which it is based: as Table 5 reports, its

reduction rate over features is similar to the one

obtained by FS-SSGA, the evolutionary FS method

which guides its search; its reduction rate over

instances is also similar to the one obtained by PS-

FRW, its basic PS inner procedure. Hence, the hybrid-

ization has shown to be effective for increasing the

accuracy of the preprocessing technique without dam-

aging the reduction capabilities of the standalone

procedures.

• Concerning running time, Table 6 shows that EFS-RPS

has an average behavior: it is somewhat slower than the

evolutionary methods with high prototype reduction

power (PS-SSGA, FPS-SSGA), but faster than the

evolutionary methods that focus only on performing FS

(FS-SSGA). It is also faster than the hybrid preprocessing

method considered in the comparison (EIS-RFS).

The statistical study, performed to contrast the results

obtained in accuracy, confirms our analysis: the Friedman

Fig. 1 Starplot depicting the enhancement in accuracy of the 1-NN classifier when EFS-RPS is used for preprocessing the data. The differences

between the areas of the star represent absolute differences between the precision of both classifiers classifying unseen instances in test phase
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test detects significant differences among the methods

(with a p-value\10-6) and highlights EFS-RPS as the best

performing one, with a rank of 3.8158 (the lowest; see

Table 4). The Holm test establishes the existence of sig-

nificant differences between EFS-RPS and FS-RST, 1-NN,

FS-SSGA and PS-SSGA, which are further expanded by

the Finner test, marking as significant the comparisons

between EFS-RPS and FPS-SSGA and PS-FRW. Only the

differences between EFS-RPS and EIS-RFS are not strong

enough to be marked as significant.

Differences between the behavior of EIS-RFS and EFS-

RPS can be found if a smaller subset of problems is con-

sidered (instead of the large set of domains chosen in this

study); thus, a suitable choice may depend upon the spe-

cific problem to tackle. However, we can point out that the

small difference found between both hybrid methods can

be caused due to the lower variation in the possible feature

sets selected by EIS-RPS, which is not an issue for the

evolutionary FS part of EFS-RPS.

In summary, EFS-RPS can be highlighted for being a highly

accurate method for performing dual data reduction (including

FS and PS) for the 1-NN classifier. It improves the accuracy of

evolutionary and fuzzy rough set based data reduction

approaches without losing reduction power and without

increasing the time complexity of the procedures considered.

Therefore, it is a competent method for performing data

reduction which can be applied for improving the performance

of the 1-NN in any standard supervised classification domain.

5 Conclusions

In this work, we have proposed a new approach based on

fuzzy rough sets and evolutionary algorithms for per-

forming a simultaneous process of FS and PS. This data

reduction process is specifically designed to improve the

performance of the 1-NN classifier, both regarding test

accuracy and computational complexity.

The results achieved by EFS-RPS in the experimental

study performed have shown that it offers the best results

among all the related techniques selected for the compar-

ison; that is, the hybrid approach outperforms those

methods based only in either evolutionary techniques or

fuzzy rough set ones. Nonparametric statistical procedures

have been used to contrast this results, supporting the

conclusions arrived at.

These promising results allow us to point out further

extensions of the EFS-RPS model, and new directions of

research related. One of them would be to test the behavior

of the model when considering other base classifiers. That

is, to apply the model and preprocess the data using other

classifiers different than 1-NN. This extension would put

our approach in the field of Training Set Selection (see

(Kim 2006; Cano et al. 2007, 2008) for some promising

applications, and (Derrac et al. 2010b; Garcı́a-Pedrajas

2011) for two reviews on evolutionary approaches to the

field), analogous to PS, providing more generality in the

range of domains in which EFS-RPS can be applied.

Another interesting trend of research can be focused on

particular traits of the data. Imbalanced data sets (He and

Garcia 2009) pose a problem nowadays in many applications

of research. This tough problem requires the definition

of specific methods, measures and evaluation procedures;

however, the application of evolutionary preprocessing

methods for nearest neighbor classifiers and rough set theory

with success is still possible (see Garcı́a and Herrera 2009;

Ramentol et al. 2012, respectively). Hence, further research on

extensions of EFS-RPS could be focused on obtaining a

new version of the model, suitable for tackling imbalanced

domains.
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