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Abstract No free lunch theorems for optimisation sug-

gest that empirical studies on benchmarking problems are

pointless, or even cast negative doubts, when algorithms

are being applied to other problems not clearly related to

the previous ones. Roughly speaking, reported empirical

results are not just the result of algorithms’ performances,

but the benchmark used therein as well; and consequently,

recommending one algorithm over another for solving a

new problem might be always disputable. In this work, we

propose an empirical framework, arbitrary function opti-

misation framework, that allows researchers to formulate

conclusions independent of the benchmark problems that

were actually addressed, as long as the context of the

problem class is mentioned. Experiments on sufficiently

general scenarios are reported with the aim of assessing

this independence. Additionally, this article presents, to the

best of our knowledge, the first thorough empirical study

on the no free lunch theorems, which is possible thanks to

the application of the proposed methodology, and whose

main result is that no free lunch theorems unlikely hold on

the set of binary real-world problems. In particular, it is

shown that exploiting reasonable heuristics becomes more

beneficial than random search when dealing with binary

real-world applications.

Keywords Empirical studies � No free lunch theorems �
Real-world problems � General-purpose algorithms �
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1 Introduction

Wolpert and Macready (1997) presented the No Free

Lunch (NFL) theorems for optimisation, which, roughly

speaking, state that every non-revisiting algorithm per-

forms equally well on average over all functions [or closed

under permutations (c.u.p.) sets (Schumacher et al. 2001)].

This result had a profound impact on researchers that were

seeking a superior general-purpose optimiser, because

none would be better than random search without

replacement. In particular, the evolutionary computation

community was shocked among the most in the 1980s,

because evolutionary algorithms were expected to be

widely applicable and to have an overall superior perfor-

mance than other methods (Jiang and Chen 2010). From

then on, most effort was concentrated on solving concrete

problem classes with specific-purpose optimisers, where

performance superiority might really be attained.

One of the most critical aspects of NFL is that it inevitably

casts doubts on most empirical studies. According to the NFL

theorems, empirically demonstrated performance superiority

of any algorithm predicts performance inferiority on any

other problem whose relationship to the first is unknown

(Marshall and Hinton 2010). Thus, several researchers have

warned that ‘‘from a theoretical point of view, comparative

evaluation of search algorithms is a dangerous enterprise’’

(Whitley and Watson 2005). At the bottom, reported
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empirical results are not just the product of algorithms’ per-

formances, but the benchmark (and running conditions) used

therein as well; and consequently, recommending one algo-

rithm over another for solving a problem of practical interest

might be always disputable. Whitley and Watson (2005)

encourage researchers to prove that test functions applied for

comparing search algorithms (i.e., benchmarks) really cap-

ture the aspects of the problems they actually want to solve

(real-world problems). However, this proof is usually missed,

leading to a research deterioration that has favoured the

apparition of too many new algorithms, ignoring the question

whether some other algorithm could have done just as well, or

even better. For the sake of research, it is crucial that

researchers ‘‘consider more formally whether the methods

they develop for particular classes of problems actually are

better than other algorithms’’ (Whitley and Watson 2005).

In this work, we propose an empirical framework,

arbitrary function optimisation framework, that lightens

the dependence between the results of experimental studies

and the actual benchmarks that are used. This fact allows

the formulation of conclusions more general and interest-

ing than ‘‘Algorithm A performs the best on this particular

testbed’’. In fact, we have applied our framework on suf-

ficiently general scenarios, the realms of the NFL theorems

in particular, by a thorough experimentation (375.000

simulations, consuming 5 months of running time on eight

computing cores, on a potentially infinite set of problem

instances from many and different problem classes), which

allows us to formulate the following conclusions:

1. Our framework certainly allows to formulate signifi-

cant conclusions regardless of the actual problem

instances addressed.

2. NFL theorems do not hold on a representative set of

instances of binary problems from the literature.

3. Our framework is consistent with the NFL implica-

tions, providing the corresponding empirical evidence

for c.u.p. set of problems.

4. NFL theorems unlikely hold on the set of binary real-

world problems. In fact, we approximate the proba-

bility of the opposite to the value 1.6e-11. In

particular, it is shown that exploiting any reasonable

heuristic, the evolutionary one among them, becomes

more beneficial than random search when dealing with

binary real-world applications.

Thus, this work additionally presents a clear and innova-

tive depiction of the implications and limitations of NFL

theorems that is interesting for researchers that are not used to

the theoretical perspective of most NFL works. In particular,

this work becomes very useful, especially in the light of

incorrect interpretations that appear in some recent papers

that suggest that ensembles, hybrids, or hyper-heuristics

might overcome NFL implications [Dembski and Marks

(2010) prove that this idea is incorrect]. In addition, our

empirical methodology assists researchers to make progress

on the development of competitive general-purpose strate-

gies for real-world applications, evolutionary algorithms in

particular, as well as providing scientific rigour to their

empirical studies on particular problem classes.

Regarding our results, it is important to notice that it is

not our intention to deny or faithfully support the NFL

theorems on any scenario, propose or defend the applica-

tion of one algorithm as the universal general-purpose

solver, nor underestimate the utility of exploiting problem

knowledge. On the contrary, our results just show that the

hypothesis of NFL hardly holds on the set of interesting

binary problems and that knowledge exploitation should be

evaluated with regard to the performance of competitive

general-purpose strategies.

An interesting added feature of this work is that it is

accompanied by an associated website (Garcı́a-Martı́nez

et al. 2011a) where source codes, results, and additional

comments and analysis are available to the specialized

research community. Proper references are included along

this work. Readers can access this material by appending

the given section names to the website url.

This work is structured as follows: Section 2 overviews the

literature about the NFL theorems relevant for the rest of the

paper. Section 3 depicts the proposed arbitrary function

optimisation framework. Section 4 analyses the conclusions

that can be obtained from the application of our framework

when comparing several standard algorithms on a large set

(potentially infinite) of representative binary problems found

in the literature. Section 5 studies the scenario where standard

algorithms and their non-revisiting versions are applied on

c.u.p. set of functions. Section 6 analyses the probability for

the NFL to hold on the set of binary real-world problems.

Section 7 discusses the lessons learned, and Sect. 8, the new

challenges on analysing algorithms’ performances. Section 9

presents the conclusions.

2 Revision on no free lunch theorems and their

implications

This section overviews the intuitive interpretations and

implications of NFL. The corresponding formal notation

can be consulted at the webpage (Garcı́a-Martı́nez et al.

2011a, http://www.uco.es/grupos/kdis/kdiswiki/index.php/

AFO-NFL#NFL_theorems).

2.1 No free lunch theorems

The original ‘‘No Free Lunch Theorems for Optimization’’

(Wolpert and Macready 1997) can be roughly summarised

as follows:
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For all possible metrics, no (non-revisiting) search

algorithm is better than another (random search

without replacement among others) when its perfor-

mance is averaged over all possible discrete

functions.

The formal definition of this theorem is provided at the

webpage (Garcı́a-Martı́nez et al. 2011a, http://www.uco.es/

grupos/kdis/kdiswiki/index.php/AFO-NFL#Original_NFL_

theorem).

Later, Schumacher et al. (2001) sharpened the NFL the-

orem by proving that it is valid even in reduced set of

benchmark functions. More concretely, NFL theorems apply

when averaging algorithms’ performances on a set of func-

tions F if and only if F is closed under permutations (c.u.p.)

[Whitley and Rowe (2008) reduced even more the set of

functions by analysing concrete sets of algorithms]. F is said

to be c.u.p. if for any function f 2 F and any permutation p of

the search space, f�p is also in F. The formal definition can be

consulted at (Garcı́a-Martı́nez et al. 2011a, http://www.uco.

es/grupos/kdis/kdiswiki/index.php/AFO-NFL#Sharpened_

NFL_theorem). Notice, as an example, that the number of

permutations of the search space of a problem with N binary

variables is the factorial number 2N!

This redefinition of the NFL theorem incorporates two

direct implications:

1. The union of two c.u.p. sets of functions (or the union

of two sets of functions for which NFL holds) is c.u.p.

This implication is deeper analysed by Igel and

Toussaint (2004) leading to a more general formula-

tion of the NFL theorem. In particular, NFL theorems

are independent of the dimensions of the used

functions if NFL holds at every particular dimension.

This is formally shown at (Garcı́a-Martı́nez et al. 2011a,

http://www.uco.es/grupos/kdis/kdiswiki/index.php/AF

O-NFL#Sharpened_NFL_theorem).

2. Given any two algorithms and any function from a set

c.u.p., there exists a counter-acting function in the

same set for which the performances of the first

algorithm on the first function and the second

algorithm on the second function are the same (the

inverse relation with the same two functions does not

need to be true).

It is interesting to remark that the application of non-

revisiting search algorithms on problems with many

variables usually involves impossible memory and/or

computation requirements (as an example, an unknown

problem with n binary variables requires 2n evaluations to

guarantee to be solved to optimality), and therefore revis-

iting solutions is allowed for most approaches. Recently,

Marshall and Hinton (2010) have proved that allowing

revisiting solutions breaks the permutation closure, and

therefore, performance differences between real algorithms

may really appear. Moreover, they presented an approach

to quantify the extent to which revisiting algorithms differ

in performance according to the amount of revisiting they

allow. Roughly speaking, one algorithm is expected to be

better than another on a set of arbitrary functions if its

probability for revisiting solutions is lower than that of the

second algorithm. Subsequently, this idea allowed them to

affirm that random search without replacement is expected

to outperform any non-minimally revisiting algorithm on

an unknown set of functions. Even when allowing revisit-

ing solutions is a necessity (and the available number of

evaluations is considerably inferior to the search space’s

size), we may intuitively suppose that random search (with

replacement) is still expected to outperform any non-min-

imally revisiting algorithm, because its probability for

revisiting solutions is usually very low. Therefore, random

search seems to theoretically become always a competitor

that general-purpose methods cannot outperform, whether

NFL do or do not apply.

2.2 The role of knowledge

As a conclusion from NFL theorems, researchers have to

acknowledge that any performance superiority shown by

one algorithm on a certain problem class must be due to the

presence of specific knowledge, of that problem class, this

algorithm disposes and manages more fruitfully than the

other algorithms (Whitley and Watson 2005; Wolpert and

Macready 1997). Then:

...the business of developing search algorithms is one

of building special-purpose methods to solve appli-

cation-specific problems. This point of view echoes a

refrain from the Artificial Intelligence community:

‘‘Knowledge is Power’’ (Whitley and Watson 2005).

Once more, we realise that the existence of a general-pur-

pose search method (one that does not apply specific problem

knowledge) is impossible (at least none better than random

search without replacement) (Whitley and Watson 2005).

2.3 The set of interesting functions

Droste et al. (1999, 2002) claim that classical NFL requires

un-realistic scenarios because the set containing all func-

tions cannot be described or evaluated with available

resources. Then, they analyse a more realistic scenario that

contains all the functions whose complexity is restricted,

and they regard time, size, and Kolmogoroff complexity

measures. For the analysed situations they proved that,

though NFL does not hold on these restricted scenarios,

one should not expect much by well-chosen heuristics, and
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formulated the almost-NFL theorem. In particular, they

describe a simple non-artificial problem that simulated

annealing or an evolution strategy would hardly solve.

Igel and Toussaint (2003) define some additional quite

general constraints on functions that they claim to be

important in practice, which induce problem classes that

are not c.u.p. In particular, they prove that when the search

space has some topological structure, based on a nontrivial

neighbourhood relation on the solutions of the search

space, and the set of functions fulfils some constraints

based on that structure, the problem set cannot be c.u.p.

The basic idea is that the permutation closure of any set of

functions breaks any nontrivial neighbourhood relation on

the search space, and therefore no constraint is fulfilled by

every function of the set.

One of those constraints that is largely accepted in most

real-world problems is that similar solutions often have

similar objective values, which is related with the steepness

concept used in Igel and Toussaint (2003), the strong

causality condition mentioned therein, and the continuity

concept from mathematics. This fact is particularly inter-

esting because it implies that NFL does not apply on the

mentioned problems, which leads to algorithms potentially

having different performances, as noted by Droste et al.

(1999), Igel and Toussaint (2003), Jiang and Chen (2010),

and Schumacher et al. (2001). In particular, it leaves open

the opportunity to conceive (almost-) general-purpose

search algorithms for the set of objective functions that are

supposed to be important in practice.

In fact, most general-purpose solvers usually make the

previous assumption, i.e., they assume that similar solutions

(similar codings in practise, at least under a direct encoding

(Garcı́a-Martı́nez et al. 2011a, http://www.uco.es/grupos/

kdis/kdiswiki/index.php/AFO-NFL#Some_Considerations))

are often expected to lead to similar objective values. In

particular, in Dembski and Marks II (2009) it is pointed out

that ‘‘...problem-specific information is almost always

embedded in search algorithms. Yet, because this information

can be so familiar, we can fail to notice its presence’’. As

some typical examples, we may annotate that knowledge may

come from the encoding of solutions or the preference for

exploring the neighbourhood of previous good solutions.

Besides, we may point out that biology researchers used to

admit that similar DNA sequences tend to produce similar

transcriptions and finally, similar environmentally attitudinal

characteristics. This has led them to suggest that NFL theo-

rems do not apply to the evolution of species (Blancke et al.

2010).

Unfortunately, that assumption has not been proven for

the whole set, or a minimally significant portion, of func-

tions with practical interest. By now, one option is to take

record of the interesting functions we know that fulfil that

assumption (whose counter-acting functions are supposed

to be of no practical interest), and approximate the prob-

ability of the statement: ‘‘The set of real-world problems is

not c.u.p.’’ according to the Laplace’s succession law

(Laplace 1814), originally applied to the sunrise certainty

problem.

It is worth noting that the possibility of conceiving

minimally interesting general-purpose search algorithms

for the set of real-world problems is not against the

aforementioned almost-NFL theorem (Droste et al. 2002).

On the one hand, the set of real-world problems might be

even smaller than complexity-restricted scenarios this

theorem refers to. And on the other hand, the presence of

simple but hard problems with regard to a kind of opti-

misers does not prevent them to be minimally interesting

for the general class of real-world problems.

3 Arbitrary function optimisation framework

This section presents our arbitrary function optimisation

framework. Section 3.1 provides its definition and Sect. 3.2

describes three instantiations used for the following

experiments.

3.1 Definition

We define arbitrary function optimisation framework as an

empirical methodology, where a set of algorithms J are

compared according to their results on a set of functions

F, with the following properties:

– F must be sufficiently large and represents all the

characteristics of the problem classes we want to draw

conclusions from, by means of proofs or sufficient

arguments. This way, biased conclusions are avoided as

long as the context of the problem class is mentioned.

Ideally, F should be infinite.

– A significant number of simulations of the algorithms

in J on uniform randomly chosen functions of F are

performed (see Fig. 1). In fact, if F is considerably

large, an every algorithm-instance simulation method-

ology is not viable for finite studies. Therefore, a

random selection of the functions to be optimised may

avoid possible bias on conclusions practitioners may

draw. We suggest practitioners to assure that all the

algorithms in J tackle exactly the same functions, due

to the limitations of random number generators. In

Sect. 4.4.3, we address the issue of determining the

actual number of necessary simulations.

– Simulation repetitions (to run an algorithm on the same

problem instance more than once, with different seeds

for the inner random number generators) are not

necessary as long as the usage of random number
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generators can be assumed to be correct. That means

that the result of just one run (with a non-faulting

initialising seed for the random number generator) of

the algorithm A on the randomly chosen problem

instance is sufficient, when the average performance on

the problem class F is the subject of study. This

assumption is empirically checked below. Neverthe-

less, practitioners should be advised of the limitations

of random number generators they use and therefore,

repetitions, with new randomly chosen functions, are

always recommended.

Though the basic idea of this framework is simple,

arbitrary function optimisation (Fig. 1), it has not been

proposed earlier for comparison studies according to the

best of our knowledge. There is only one recent work (Jiang

and Chen 2010) that empirically and implicitly generates

functions randomly from a mathematically defined class of

problems. Our innovation is the explicit proposal of a new

comparison methodology for any empirical study and an

extensive analysis of the framework with regard to the

terms of NFL and functions with practical interest.

3.2 Instantiations

In this work, we develop several experiments where dif-

ferent algorithms are analysed on different situations under

the proposed framework’s rules. These situations are par-

ticular instantiations of our framework with concrete

problem classes and additional empirical details with the

aim of inspecting the possibilities that it is able to provide:

– Experiment I: A potentially infinite set of representative

binary problems from the literature (Sect. 4). Perfor-

mance differences between the tested algorithms,

independent of the problem instances actually

addressed, may appear here.

– Experiment II: The permutation closure of the previous

set (Sect. 5). This is performed to validate our

framework, because it should provide empirical evi-

dence of the NFL theorems, the first one reported so far

to the best of our knowledge (regarding the permutation

closure of a potentially infinite set of representative

problems from the literature).

– Experiment III: Real-world binary problems (Sect. 6).

The aim is to find objective evidence of the significance

of the NFL theorems on real-world binary problems.

Since this set is extremely large and unknown, the use

of our framework becomes essential for obtaining

results independent of the problem instances actually

addressed.

As mentioned earlier, it is not our intention to deny or

faithfully support the NFL theorems on any scenario,

propose or defend the application of one algorithm as the

universal general-purpose solver, nor underestimate the

utility of exploiting problem knowledge. On the contrary,

our results will just show that: (1) NFL hardly holds on the

set of interesting binary problems, (2) performance dif-

ferences between general-purpose algorithms may appear

on that set, and most importantly (3) knowledge exploita-

tion should be evaluated with regard to the performance of

competitive general-purpose strategies.

4 Experiment I: standard algorithms and binary

problems from the literature

In this first experiment, our aim is to evaluate the possi-

bility of formulating conclusions from an empirical study

under the arbitrary function optimisation framework, which

are expected to be independent of the actual instances on

which algorithms are simulated.

4.1 Benchmark problems

We have analysed a well-defined set of problem classes for

this study, static combinatorial unconstrained single-

objective single-player simple-evaluation optimisation

problems whose solutions can be directly encoded as arrays

of binary variables, for now on, binary problems. Descrip-

tions for previous terms are provided at (Garcı́a-Martı́nez

et al. 2011a, http://www.uco.es/grupos/kdis/kdiswiki/

index.php/AFO-NFL#Benchmark_Problems).

We have taken into account all the binary problem classes

we found in the literature at the beginning of our study. Notice

that the whole set of binary problems is c.u.p., whereas this is

not clear for those appearing in the literature. Table 1 lists

their names, references for a detailed definition, problem

instances’ dimensions, i.e., number of binary variables, and an

approximation of the number of potential different instances

that could be generated. More detailed comments on the

problems are provided in Garcı́a-Martı́nez et al. (2011a,

http://www.uco.es/grupos/kdis/kdiswiki/index.php/AFO-NF

L#Benchmark_Problems). The code is as well available at

http://www.uco.es/grupos/kdis/kdiswiki/index.php/AFO-NF

L#Benchmark_Problems. Of course, it is likely that there existFig. 1 A simulation of an algorithm on the problem class that

F represents
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relevant problem classes that have not been included in this

study (because we did not know about their existence in the

literature). We are aware of that and in Sect. 6 we analyse the

dependence between our results and the existence of those

binary problems. Nevertheless, it is worth of mentioning that,

according to the best of our knowledge, most research papers

use an inferior number of problem classes and even a much

smaller number of instances in their experiments.

4.2 Algorithms

We have selected five standard algorithms with clear dis-

tinctions among each other, to analyse whether our

framework is able to detect performance differences among

them and allows us to formulate interesting conclusions

such as pointing out the reasons for these differences.

It is important to know that our intention is to assess the

possibility of presenting clear results on the issue of gen-

eral-purpose benchmarking for binary problems. It is not

our intention to present a winning proposal, nor to identify

the best presented algorithm ever for binary optimisation.

Thus, neither algorithms’ parameters have been tuned at

all, nor every presented algorithm or the current state-of-

the-art has been applied. Instead of that, standard and well-

known algorithms have been applied with reasonable

parameter settings. We are sure that better results can be

obtained. We think that our framework may be indeed

excellent for studies intending to show that concrete opti-

misation methods are generally better than others or that

particular parameter settings outperform some others.

However, this is out of the scope of this study.

The selected algorithms are:

– Random Search (RS) It just samples random solutions

from the search space (with replacement) and returns

the best sampled solution. When the search space is

sufficiently large, RS rarely revisits solutions in limited

simulations, and thus, its search process can be

regarded similar to the one of RS without replacement.

Therefore, we cannot expect significant averaged

performance differences between RS and any other

algorithm on set of problems c.u.p., as long as

revisiting solutions is unlikely.

– Multiple Local Search (MLS) Local search algorithms

exploit the idea of neighbourhood to iteratively

improve a given solution (continuity), and they are

extensively applied for combinatorial optimisation.

When dealing with arrays of binary variables, the most

widely applied neighbourhood structure is that pro-

duced by the one-flip operator, i.e., two binary solutions

are neighbours if the second one can be obtained by

flipping just one bit of the first one. We will apply a

first-improvement strategy when exploring the neigh-

bourhood of the current solution of the local search.

MLS starts applying local search on a random sampled

solution of the search space. Then, another local search

is launched every time the current one gets stuck on a

local optimum. At the end of the run, the best visited

solution is returned.

Table 1 Binary problems

Problem Name n Instances

1 Onemax (Schaffer and

Eshelman 1991)

f20; . . .; 1;000g
P

L 2L

2.a Simple deceptive (Goldberg

et al. 1989)

f20; . . .; 1;000g; L � 0 (mod 3)
P

L 2L

2.b Trap (Thierens 2004) f20; . . .; 1;000g; L � 0 (mod 36)
P

L 2L

2.c Overlap deceptive (Pelikan

et al. 2000)

f20; . . .; 1;000g; L � 1 (mod 2)
P

L 2L

2.d Bipolar deceptive (Pelikan

et al. 2000)

f20; . . .; 1;000g; L � 0 (mod 6)
P

L 2L

3 Max-sat (Smith et al. 2003) f20; . . .; 1;000g \
P

L;Cl ;Nc
ð2LÞCl �Nc ; Cl 2 f3; . . .; 6g; Nc 2 f50; . . .; 500g

4 NK-land (Kauffman 1989) f20; . . .; 500g \\
P

L;k;r rð2
kÞ�L; r 2 ½0; 1�; k 2 f2; . . .; 10g

5 PPeaks (Kauffman 1989) f50; . . .; 500g \
P

L;Np
2L�Np ; Np 2 f10; . . .; 200g

6 Royal-road (Forrest and

Mitchell 1993)

f20; . . .; 1; 000g; L � 0 (mod LBB),

LBB 2 f4; . . .; 15g

P
L,L_BB 2L

7 HIFF (Watson and Pollack

1999)

f4:. . .; 1; 024g, L = kp, k 2 f2; . . .; 5g,
p 2 f4; 5g

P
L L! � 2L

8 Maxcut (Karp 1972) f60; . . .; 400g 178

9 BQP (Beasley 1998) f20; . . .; 500g 165

10 Un-knapsack (Thierens 2002) f10; . . .; 105g 54
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– Simulated Annealing (SA) (Kirkpatrick et al. 1983) is

commonly said to be the first algorithm extending local

search methods with an explicit strategy to escape from

local optima. The fundamental idea is to allow moves

resulting in solutions of worse quality than the current

solution to escape from local optima. The probability of

doing such a move is managed by a temperature

parameter, which is decreased during the search

process. We have applied a standard SA method with

the logistic acceptance criterion and geometric cooling

scheme. The temperature is cooled every a hundred

iterations by the factor 0.99. The initial temperature is

set in the following manner for every simulation: first,

two random solutions are generated; we set a desired

probability of accepting the worst solution from the

best one, in particular, 0.4; then, we compute the

corresponding temperature according to the logistic

acceptance criterion. We shall remark that, though this

temperature initialisation mechanism consumes two

fitness evaluations, they have been disregarded when

analysing the performance of the algorithm. This way,

the subsequent analysis becomes a bit clearer.

– Tabu Search (TS) (Glover and Laguna 1997) is among

the most cited and used metaheuristics for combinato-

rial optimisation problems. TS propitiates the applica-

tion of numerous strategies for performing an effective

search within the candidate solution space, and the

interested reader is referred to the previous reference.

Our TS method implements a short-term memory that

keeps trace of the last binary variables flipped. The tabu

tenure is set to n/4. Its aspiration criterion accepts

solutions better than the current best one. In addition, if

the current solution has not been improved after a

maximum number of global iterations, which is set to

100, the short-term memory is emptied and TS is

initiated from another solution randomly sampled from

the search space.

– Cross-generational elitist selection, Heterogeneous

recombination, and Cataclysmic mutation (CHC) (Esh-

elman and Schaffer 1991) It is an evolutionary

algorithm involving the combination of a selection

strategy with a very high selective pressure and several

components inducing diversity. CHC was tested against

different Genetic Algorithms, giving better results,

especially on hard problems (Whitley et al. 1996). So,

it has arisen as a reference point in the literature of

evolutionary algorithms for binary combinatorial opti-

misation. Its population consists of 50 individuals.

Source codes are provided at (Garcı́a-Martı́nez et al.

2011a, http://www.uco.es/grupos/kdis/kdiswiki/index.php/

AFO-NFL#Algorithms_2). These algorithms are stochastic

methods, and therefore, they apply random number

generators initialised with a given seed. We shall remark

that the initial seed of the algorithms is different from the

seed used to randomly sample the problem instance from

our testbed.

4.3 Comparison methodology

In this work, our comparison methodology will consist in

comparing the best sampled solution after a given limited

number of evaluations; however, other methodologies such

as the best result after a maximal computation time are

valid as well (out of the NFL context in this case). Every

algorithm, for each simulation, will be run with the same

budget of fitness evaluations (106). For every simulation,

we will keep trace of the best visited solution and the

instant when it is improved (number of consumed evalua-

tions so far) along the whole run, which lets us to carry out

performance differences analysis at different phases of the

search process.

Non-parametric tests (Garcia et al. 2009a, b) have been

applied for comparing the results of the different algo-

rithms. In particular, mean ranking for each algorithm is

firstly computed according to the Friedman test (Friedman

1940; Zar 1999). This measure is obtained by computing,

for each problem, the ranking rj of the observed result for

algorithm j assigning to the best of them the ranking 1,

and to the worst the ranking |J| (J is the set of algorithms,

five in our case). Then, an average measure is obtained

from the rankings of this method for all the test problems.

Clearly, the lower the ranking, the better the associated

algorithm. Second, the Iman and Davenport test (Iman

and Davenport 1980) is applied for checking the existence

of performance differences between the algorithms, and

finally, the Holm test (Holm 1979), for detecting perfor-

mance differences between the best ranked algorithm and

the remainder. These two last statistical methods take as

inputs the mean rankings generated according to the

Friedman test and will be applied with 5 % as the sig-

nificance factor.

At this point, we might wonder if NFL theorems still

hold on c.u.p. sets when this performance comparison is

applied. The doubt may come from the fact that we are

applying a performance measure that use relative perfor-

mance differences of more than one algorithm, whereas the

original NFL theorems were proved for absolute perfor-

mance measures of the algorithms, one by one. In fact,

Corne and Knowles (2003) showed that NFL does not

apply when applying comparative measures for multiob-

jective optimisation. To solve this issue we have proved the

following theorem and corollary at (Garcı́a-Martı́nez et al.

2011a, http://www.uco.es/grupos/kdis/kdiswiki/index.php/

AFO-NFL#NFL\Holds\on\Friedman\Ranking\Assignment).
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Theorem 1 Given a set of functions c.u.p., and two non-

revisiting algorithms A and B, the number of functions

where the best result of A is cA and the one of B is cB is

equal to the number of functions where the best result of

A is cB and the one of B is cA).

Corollary 1 The Friedman ranking value is the same for

all the compared non-revisiting algorithms, and equal to

half the number of algorithms plus one, if the function set is

c.u.p.

A maximum of 1,000 simulations per algorithm will be

executed, each one with a random problem instance. Every

i-th simulation of any algorithm tackles exactly the same

problem instance, and probabilistically different from the

j-th simulation with i = j. That is because the sequence of

seeds for the different simulations is generated by another

random generator instance whose seed is initially fixed and

unique per whole experiment. Since our results might be

influenced by this initial seed, we will repeat the whole

experiment with different initial seeds. We shall remark

that some researchers discourage the application of an

elevated number of simulations when results are statisti-

cally analysed (Derrac et al. 2011). Their claim is that

increasing the number of simulations (problems, in case of

non-arbitrary function optimisation) usually decreases the

probability of finding real performance differences. In our

case, under the arbitrary function optimisation framework,

we think that performing as many simulations as possible

actually decreases the probability of finding performance

differences if and only if performance differences do

actually not exist, as well as it increases that probability if

performance differences actually exist. Therefore, our

framework would help researchers to observe the reality

through the obtained results. In particular, these claims are

tested in two of the experiments in this paper, when per-

formance differences seem to (Sect. 4) and not to appear

(Sect. 5).

We may point out that all the experimentation devel-

oped in this paper took more than 5 months of running time

on a hardware that allowed parallel execution of eight

sequential processes. We may even include that memory

was another limitation since some processes, those corre-

sponding to Sect. 6, needed in some cases more than three

gigabyte of RAM memory. Of course, we do not intend

that researchers applying our methodology spend this

excessive time on experiments before submitting their

papers. In fact, our opinion is that conclusions and exper-

iments must be properly balanced. We just encourage

practitioners to support their conclusions under the arbi-

trary function optimisation framework, i.e., with a large

number of problem instances (characterising the subject of

study) and a limited number of simulations, each one with

a random instance. In our case, we think that our claims

and conclusions demanded this thorough study and exten-

sive empirical study.

4.4 Results

This section collects the results of the first experiment and

analyses them from different points of view.

All the results are presented in the form of summarising

statistical analysis and graphs. In particular, no tables are

reported. The main reason is that the raw data relevant for

the subsequent analysis and graphs, available at (Garcı́a-

Martı́nez et al. 2011a, http://www.uco.es/grupos/kdis/kdis

wiki/index.php/AFO-NFL#Results_3), extended to 3GB of

plain text files.

4.4.1 First analysis

Table 2 shows the mean ranking of the algorithms when

the best results at the end of the runs (after 106 evaluations)

are averaged over the 1000 simulations. The Iman Dav-

enport test finds significant performance differences

between the algorithms because its statistical value

(756.793) is greater than its critical one (2.374) with p

value = 0.05. Then, we apply the Holm test to find sig-

nificant performance differences between the best ranked

method (TS) and the others. A plus sign (?) in the corre-

sponding row of Table 2 means that the Holm test finds

significant differences between the best ranked algorithm

and the corresponding one. As it is shown, TS gets the best

ranking and the Holm test finds significant performance

differences with regard to all other algorithms.

4.4.2 Dependence with regard to the initial seed

Since these results may be influenced by the initial seed

that generates the sequence of 1,000 test problems to be

addressed, we have repeated exactly the same experiment

with different initial seeds 50 times, i.e., each experiment

has used a different sequence of 1,000 test problems

involving the same or new problem instances. Figure 2

represents the ranking distributions of the algorithms over

the 50 experiments by boxplots, which show the maximum

and minimum rankings along with the first and third

quartiles.

It can be seen that the rankings of the different algo-

rithms are almost constant values and therefore, their

dependence with regard to the initial seed that generates

the sequence of problems is very small. This fact indicates

that developing experiments on 1,000 random problem

instances is more than enough to perceive the real perfor-

mance differences of the algorithms. In addition, we may

point out that the corresponding Iman-Davenport and Holm

analysis always found significant differences between the
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best ranked algorithm and every other algorithm. Accord-

ing to this result, we may conclude that practitioners fol-

lowing our proposed methodology do not need to repeat the

whole experiment many times, though a minimal number

of repetitions (from two to five) is convenient to check the

independence with regard to the initial seed.

4.4.3 Dependence with regard to the number

of simulations

We address now the number of simulations needed to

obtain the results in previous experiments. Since every

previous experiment executed a total of 1,000 simulations

per algorithm, we wonder if similar results can be obtained

with a reduced number of simulations. Figure 3a presents

the ranking evolution of the algorithms as long as the

number of simulations is increased. Each line corresponds

to the averaged value of the ranking of the algorithm over

the previous 50 experiments. The areas that go with the

lines cover every ranking value of each algorithm over the

50 experiments, from the highest ranking ever obtained to

the lowest on these 50 experiments.

We can see that at the left of the graph, when very few

simulations have been performed (less than 5), the areas

are wide and overlap one another, meaning that the rank-

ings of the algorithms are very changeable across the dif-

ferent 50 experiments. That is due to the initial seed of each

experiment generates different sequences of problems to be

solved. In some cases, some algorithms are favoured

because they deal well with the selected problems, getting

good rankings, whereas the other algorithms do not; and in

some other cases, the opposite occurs. As long as more

simulations are carried out per experiment, areas get nar-

rower, which means that rankings become more stable

leading to the appearance of significant differences on the

previous statistical analysis. In addition, we may observe

that there is no necessity of many simulations to visually

appreciate performance differences: TS is clearly the best

ranked algorithm from 100 simulations onward, and RS is

clearly the worst ranked one from ten simulations onward

(just the number of problem classes). Ranking evolution

inspection is suggested for practitioners applying our

framework to be able to reduce the number of simulations.

4.4.4 Online analysis

Finally, we study the averaged performance of the algo-

rithms along the runs, i.e., according to the number of

consumed evaluations. We will call this measure the online

performance. Figure 3b shows the mean rankings (over

1,000 simulations) of the online performance of the algo-

rithms. As done previously, lines are for the averaged value

of the mean rankings over 50 experiments, and areas cover

all the mean rankings values, from the highest to the lowest

on these 50 experiments. Notice that the online ranking

value is not monotonous as convergence graphs use to be.

That is because ranking is a relative performance measure,

and thus, if all the algorithms improve their results except

the algorithm A, then, the ranking value of A deteriorates.

The first noticeable observation is that areas that go with

the averaged mean ranking values are extremely narrow

from the very beginning (even the first ten evaluations)

until the end of the runs. That means that averaged online

performances (mean over 1,000 simulations) are almost

always the same, i.e., the general online performance

depends solely on the algorithms’ heuristics, and not on the

sequence of problems actually tackled (considering our

testbed).

All the algorithms start with the same averaged ranking

value, 3, because we forced every algorithm to start with

the same initial solution, generated randomly according to

the random number generator and the same seed. Subse-

quently, algorithms seem to go through the following three

stages (a much deeper analysis is provided at (Garcı́a-

Martı́nez et al. 2011a, http://www.uco.es/grupos/kdis/

kdiswiki/index.php/AFO-NFL#Online_analysis).

– Beginning Algorithms perform their initial steps, which

are deeply influenced by their base characteristics, and

are not expected to provide high-quality solutions. At

this stage, algorithms have not developed their full

potential yet. We may summarise this state as follows:

Table 2 Rankings and Holm test results

Algorithm Ranking Sig

TS 2.052 Winner

SA 2.546 ?

MLS 2.758 ?

CHC 2.874 ?

RS 4.769 ?

Fig. 2 Rankings distributions on 50 experiments
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sampling random points from the search space (RS and

CHC) is better than exploring the neighbourhood of one

solution (MLS, SA, and TS).

– Thorough Search Algorithms start applying their

heuristics continuously (notice the logarithmic scale)

looking for better solutions. At this point, efficient

heuristics attain the best rankings (MLS, CHC, ‘‘and

SA’’), and the application of no heuristic (RS) leads to

worse results.

– Burnout Algorithms have already developed all their

potentials and have reached good solutions. This fact

makes the subsequent progress more difficult, and

algorithms burn their last resources on the event, each

time more unlikely, of finding a new best solution.

Thus, their ranking values use to deteriorate or remain

constant. Notice that the logarithmic scale implies that

the mentioned last resources are still very large, in

particular, around the 90 % of the run. The diversifi-

cation biased search of TS is the only algorithm that

seems to avoid a burnout state, still improving its

results. On the other hand, the lack of heuristic of RS

prevents it to attain the quality of the solutions of its

competitors, though it unlikely revisits solutions.

4.5 Discussion

Based on the previous results, we may conclude that there

exists empirical evidence that suggests that NFL theorems

do not hold on our set of problems. It has been clear that

performance differences between the algorithms may and

do appear on the randomly selected problem instances.

However, since our testbed is not c.u.p., performance dif-

ferences were certainly expected.

According to our results, TS generally attains the best

results at 106 evaluations. However, we observed that other

algorithms achieved better results at an inferior number of

evaluations. What should we expect for simulations longer

than 106 evaluations? On the first hand, we shall remind

that Fig. 3b used a logarithmic scale, and therefore, TS

dominated the best ranking values from around the 105th

evaluation, i.e., the 90 % of the run. So, if rankings might

change, they would unlikely occur on simulations with a

reasonable number of evaluations (let us say that more than

106 evaluations starts becoming unreasonable). On the

other hand, having analysed the behaviour of the algo-

rithms in Sect. 4.4.4, it seems difficult for algorithms that

begin to revisit solutions to overtake TS. To the best of our

knowledge, we might only forecast ranking changes in the

rare event that the probability of randomly sampling the

global optimum (by RS) was higher than the probability for

TS to iteratively avoid revisiting solutions. In that case, the

ranking of RS might become equal or even better than the

one of TS. However, we strongly think that this event

would happen on unreasonably long simulations.

Much more relevant than previous conclusions is the

fact that they have been formulated without knowing the

actual set of problems addressed. Therefore, we may cer-

tainly conclude that our arbitrary function optimisation

framework allows researchers to formulate significant

conclusions that are independent of the particular set of

functions used, as long as the context of the problem class

is mentioned (in our case, static combinatorial uncon-

strained single-objective single-player simple-evaluation

binary optimisation problems).

Finally, we end this discussion providing some guide-

lines for practitioners dealing with problem solving by

means of metaheuristics. Recently, some researchers have

claimed that ‘‘many experimental papers include no com-

parative evaluation; researchers may present a hard

problem and then present an algorithm to solve the prob-

lem. The question as to whether some other algorithm

could have done just as well (or better!) is ignored’’

(Whitley and Watson 2005). It is supposed that this is not

the way to go. We propose that researchers presenting a

new general-purpose method develop an empirical study

similar to ours and always applying the corresponding

state-of-the-art approach as the baseline. However, new

approaches incorporating knowledge for concrete problems

should be compared with the corresponding state-of-the-art

general-purpose algorithm as well. In fact, researchers

must prove that the problem knowledge their proposal

Fig. 3 Evolution of ranking

values: a as the number of

simulations increases and b
according to the consumed

evaluations
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exploits lets it to attain better results than the general-

purpose solver, which is supposed to exploit less problem

knowledge. Otherwise, the specialisation by using that

problem knowledge is useless. In the case of binary opti-

misation, either context-independent or problems with a

natural binary encoding, researchers should, from now on,

compare their approaches with regard to CHC, SA, and TS

at different search stages (and if it is possible, some more

recent context-independent solvers claimed to be compet-

itive (Garcı́a-Martı́nez and Lozano 2010; Garcı́a-Martı́nez

et al. 2012; Gortázar et al. 2010; Rodriguez et al. 2012),

although our empirical framework had not been followed),

until a new better general-purpose method is found. In any

case, we claim that our empirical framework should be

followed, i.e.,

1. The number of problem instances must be as large as

possible.

2. Simulations should deal with randomly selected prob-

lem instances.

3. Enough simulations and repetitions with different

sequences of problems (initial seed) should be

performed.

4. Performance differences analysis at different search

stages are recommended.

5. Care on the independence between the seeds of

algorithms, problem generators, simulations, and

experiments must be taken.

5 Experiment II: NFL on a closed under permutations

problem set

In this section, we validate our empirical framework with

regard to the NFL implications for c.u.p. problem sets, i.e.,

we expect the framework to make experiments to show that

the performance of any two algorithms is the same when

c.u.p. sets are analysed (at least, for non-revisiting algo-

rithms). This kind of empirical NFL evidence poses a real

challenge because c.u.p. sets are usually excessively large

(and so experiments would be). In fact, it has not been

reported previously, to the best of our knowledge, at least

for standard problem sizes [Whitley and Watson (2005)

present some results for a problem with three different

candidate solutions].

To carry out our goal, we will repeat our previous

experiments on a pseudo-closed under permutations

(PCUP) set of problems. In particular, we have devised a

procedure to obtain a PCUP set from any set of binary

problems. This procedure samples a random problem from

the original set and wraps a function implementing a ran-

dom permutation of the search space around it. Detailed

considerations about the PCUP procedure are provided at

(Garcı́a-Martı́nez et al. 2011a, http://www.uco.es/grupos/

kdis/kdiswiki/index.php/AFO-NFL#Some_Considerations).

The concrete procedure performs the following steps:

1. First, seeds for the PCUP procedure and the original

problem are provided.

2. Second, the new PCUP problem is given to the solver.

3. Each time a solution must be evaluated, a new random

solution is sampled from the search space according to

the seed of the PCUP procedure and the original

solution, i.e., given a particular seed, the PCUP

procedure defines a deterministic function that maps

original solutions to random solutions.

4. The random solution is evaluated according to the

original problem.

5. The fitness obtained is provided to the algorithm as the

fitness value of the original solution.

5.1 Empirical framework

We have performed experiments on a PCUP set of prob-

lems where original ones are taken from the set described

in Sect. 4.1. However, the number of binary variables had

to be limited to 32, because of the time and memory

requirements of the PCUP procedure. In particular, each

time a problem instance was selected, it was automatically

reduced by optimising the first n0 variables, with n0 ran-

domly selected from f20; . . .; 32g: When needed, restric-

tions on the length of the binary strings were imposed. The

empirical methodology is the one depicted in Sect. 4.3

(under the arbitrary function optimisation framework), but,

in this case, global experiments repetitions have been

limited to 10.

In this case, two set of algorithms have been used sep-

arately. On the one hand, we have applied the same algo-

rithms presented in Sect. 4.2, referenced to as original

algorithms. On the other hand, we have applied previous

algorithms having incorporated a memory mechanism that

lets them avoid revisiting solutions. In particular, every

new candidate solution is first tested against the memory

mechanism. If that solution was previously visited, a

completely new solution is provided to the algorithm, until

the search space has not completely been explored.

Otherwise, the original candidate solution is returned to the

algorithm. These algorithms will be referenced to as non-

revisiting ones. The reader must realise that the applied

memory mechanism alters the behaviour of the algorithms

slightly. For instance, regarding the original SA, a rejection

of solution sj from solution si does not prevent the algo-

rithm accepting sj in the future. However, when SA applies

our memory mechanism, the first rejection of any solution

sj prevents the algorithm for evaluating that solution again

in any future event.
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5.2 Results

Figure 4 presents the results on the PCUP set of problems:

Fig. 4a and c shows the ranking evolution of both sets of

algorithms, original and non-revisiting ones, respectively,

as long as the number of simulations per experiment, i.e.,

problems, is increased; Fig. 4b and d depict the online

performance of both sets of algorithms, i.e., the averaged

value of the mean rankings along the number of consumed

evaluations. Each line corresponds to the averaged value of

the rankings of the algorithms and the areas that go with the

lines cover every ranking value, both over ten experiments

with different initial seeds.

Analysing these figures, we may remark that

– when averaging over many PCUP problem instances

(Fig. 4a, c), there seems to exist performance differ-

ences between the original algorithms and there have

not between the non-revisiting versions. In fact, the

corresponding statistical analysis (not reported here),

by means of the Iman-Davenport and Holm tests,

supported these impressions.

– Online performance is almost constant and equal for

every algorithm, except SA and CHC (this latter from

105 evaluations).

5.3 Discussion

The fact that the online performance of the algorithms are

constant and equal (Fig. 4d and RS, MLS, and TS in 4b)

means that there seems not to exist any moment along the

run, i.e.,any search stage characterised by the operations

carried out by the solvers (see Sect. 4.4.4), at which

performance differences appear. In other words, no matter

the heuristics that solvers implement and apply at any

event, averaged superiority is impossible. In fact, NFL

theorems do not just deal with the performance of the

algorithms at the end of the runs, but with the complete

sequence of discovered points, i.e., no matter the analysed

length of the traces (output of visited fitness values), the

averaged performance is the same for any two algorithms.

The performance differences of CHC and SA with

regard to TS, MLS, and RS (Fig. 4a, b) may be explained

by the hypothesis that says that the probability of revisiting

solutions of these two methods is higher, and thus, their

performances are expected to be inferior (Marshall and

Hinton 2010). More details on this hypothesis are provided

at (Garcı́a-Martı́nez et al. 2011a, http://www.uco.es/

grupos/kdis/kdiswiki/index.php/AFO-NFL#Discussion).

It should be clear that these experiments give the

empirical NFL evidence we expected initially. Therefore,

we may conclude that our arbitrary function optimisation

framework is really able to approximate the real averaged

performance of different search algorithms, either when

there are or there are no differences between them (Sects.

4.4 and 5.2, respectively) and even when the testbed is

much larger than the allowed number of simulations, or the

problem instances actually addressed are not known.

Finally, the interested reader might like an explanation

for the thin line in Fig. 4d connecting evaluations 1 and 2.

The reason is that, our memory mechanism was initialised

with two solutions, the initial one, which is forcedly the

same for every algorithm, and its bit-level complement.

These two solutions are evaluated and reported. Therefore,

this fact makes every implemented non-revisiting algo-

rithm to sample the same two first solutions, and

Fig. 4 Results on the PCUP set

of problems: a and c show the

ranking evolution of both sets of

algorithms, original and non-

revisiting ones, respectively, as

long as the number of problems

is increased; b and d depict the

corresponding online

performance of both sets of

algorithms
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consequently, to get exactly the same ranking values at

these two steps.

6 Experiment III: NFL hardly holds on the set

of interesting binary problems

In this section, we focus the study on the set of interesting

binary problems. Our aim is to assess if our arbitrary

function optimisation framework is able to shed some light

on the possible validity of the NFL implications on the set

of real-world binary problems. Many researchers have

suggested that these theorems do not really hold on real-

world problems (Igel and Toussaint 2003; Jiang and Chen

2010; Koehler 2007). However, sententious proofs have

not been given so far, or they have analysed a very reduced

class of problems.

Due to the limitation that we cannot perform experi-

ments on the whole set of interesting binary problems

(because none really knows it), we apply the following

methodology:

1. To perform experiments, under the arbitrary function

optimisation framework, on a subset of problems that is

supposed to be representative of the real set that we want

to analyse, i.e., interesting binary problems (Sect. 6.1).

2. Given the results on the subset of problems, to analyse

the implications for the NFL theorems to hold on the

real set we want to draw conclusions from (Sect. 6.2).

3. Finally, to compute the probability for the NFL to hold by

means of Laplace’s succession law (Laplace 1814), i.e.,

according to the number of elements in the subset that do

or do not support the NFL implications (Sect. 6.3).

6.1 Experiments on a subset of problems

At this point, we have to assume that binary problems

appearing in the literature, those with an a priory definition,

may represent the real set of binary functions with practical

interest, at least with a minimally sufficient degree. The

reader may understand that this assumption, though

unproven, is completely necessary. The contrapositive

argument means that binary problems appearing in the

literature do not represent binary real-world problems at

any degree, and therefore, research by now would have

been just a futile challenging game. It is worth remarking

that there exist several problems in the literature that were

artificially constructed to give support to the NFL (like

those in the study of Sect. 5); however, these functions lack

of a definition out of the NFL context and a clear under-

standing on their own.

Therefore, we perform simulations of the non-revisiting

algorithms on the original set of problems described in

Sect. 4.1 and under the methodology described in Sect. 4.3.

Due to excessive running times, the dimension of the

problems were limited to f20; . . .; 32g as for the experi-

ments of Sect. 5. Besides, 500 simulations were performed

per experiment, 10 experiment repetitions, and each sim-

ulation was given a maximum of 200.000 evaluations.

Figure 5a depicts the online performance of the algorithms.

As a minor comment, notice that, with the exception of SA,

Figs. 5a and 3b are quite similar, i.e., the memory mech-

anism does not change the characterising conduct of the

methods. A possible explanation for the slightly different

performance of SA was commented in Sect. 5.1.

6.2 Analysis of the NFL implications

Assuming NFL theorems on the set of binary real-world

problems implies that the real averaged online performance

of the compared non-revisiting algorithms resembles the

graph in Fig. 4d. It is clear that Figure 5a differs from the

expected behaviour. Therefore, if NFL is assumed there must

exist a set of interesting counter-acting binary problems that

balances the behaviour shown in Fig. 5a, i.e., the online

performance of the algorithms on the counter-acting prob-

lems can be deduced (no experiments were performed) as that

presented in Fig. 5b. Though we do not know the set of

counter-acting problems, we can analyse the performance of

the algorithms’ heuristics on them, and get characterising

features of this set. Among others, we notice that:

– First, if you are given too few evaluations, exploring

the neighbourhood of a completely random solution

(MLS, SA, and TS) should be probabilistically better

than sampling random solutions from the whole search

space (RS and initialisation in CHC). In addition, you

would do better by exploring the whole neighbourhood

of that solution (which is what best-improvement

strategy does in TS), than exploring the neighbour-

hoods of new solutions you may find during that

process (which is what SA and first-improvement

strategy of MLS do). Even more, exploring iteratively

the neighbourhoods of better solutions you find (MLS)

seems to be the worst thing you can do, and you would

do better by exploring neighbourhoods of randomly

picked solutions (SA).

– As soon as you dispose of enough evaluations, ignore

everything and just apply RS. Any other heuristic

similar to the ones in this work leads to worse results.

In fact, according to the NFL, the heuristics that helped

the algorithms to produce a fruitful search on the

original problems are the ones responsible for the

ineffective performance on the counter-acting ones. This

is the main reason for RS attaining the best ranking

values. Additionally, it is interesting to see that SA makes
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a good progress while its temperature is high, i.e., while it

is randomly wandering through the search space. As soon

as that temperature comes down, i.e., the wandering is

biased towards better solutions (approximately after 105

evaluations), the ranking gets worse.

– Ignore everything about population diversity and search

diversification (though this idea, which is a particular

interpretation of Fig. 5b, may be certainly criticised, it

is mentioned here with the aim of showing researchers

that NFL theorems may profoundly shake the founda-

tions of any heuristic). In fact, we may see that CHC

makes good progress when it is supposed to be fighting

the genetic drift problem (although that event might not

be really occurring on that testbed). And, on the other

hand, the metaheuristic aimed at carrying out a

diversified intelligent search process (TS) is never

making its ranking better.

6.3 Application of Laplace’s succession law

Next, we compute the probability of finding one problem

class belonging to such a counter-acting testbed. Since we

have used a wide set of binary problem classes, we should

expect our testbed to contain one or several classes

belonging to such a counter-acting one. Even though all

these problem classes have been regarded for computing

the averaged online performance in Fig. 5a, it should not

be strange to find outlier classes differing from the mean

behaviour and resembling Fig. 5b, if the NFL really

applies. In particular, we look for problem classes for

which RS gets poor ranking values at the beginning and

becomes one of the best at the end.

Figure 6 shows the online performance of non-revisiting

algorithms on previous simulations, but separately

according to the problem class tackled. We notice that, the

online performance graphs of every problem class is more

similar to the one in Fig. 5a than the one in Fig. 5b, i.e.,

none of the problem classes facilitates the emergence of

algorithms’ conducts similar to the ones for the counter-

acting problems. Even the one corresponding to the royal-

road class, which differs the most, shows that RS is good at

the beginning and the worst at the end.

Therefore, given the fact that we have not found any

binary problem class from the literature that shows the

counter-acting behaviour, and we do not know the com-

plete set of interesting binary problems (which may contain

Fig. 5 Online performance

(a) on a representative subset of

problems and (b) on the

corresponding counter-acting

one

Fig. 6 Online performance per problem class
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counter-acting and non-counter-acting problem classes),

we may approximate the probability for finding a counter-

acting problem class according to the Laplace’s succession

law (Laplace 1814), i.e., (Nc ? 1)/(N ? 2) = 1/(N ? 2) =

1/12 ^ 8 % (Nc is the number of counter-acting problems

found, 0, and N is the number of problem classes used, 10).

Besides, if we tried to prove the NFL theorem by adding

new problems to our testbed, we should make the proba-

bility of sampling a counter-acting problem equal to the

probability of sampling one of the original problems (Igel

and Toussaint 2004). Since the probability of sampling any

problem class is the same, we would need to include ten

counter-acting problem classes. Then, we can approximate

the probability of finding empirical evidence for the NFL

theorems on the real-world problems, as the probability of

finding ten interesting and counter-acting problem classes,

i.e., 1/1210 ^ 1.6e-11.

Therefore, we may conclude that it is almost impossible

for the NFL to hold on the set of binary problems from the

literature. Subsequently, having made the assumption that

binary problems from the literature are representative of

the real interesting binary problems set, then, we conclude

that it is almost impossible for the NFL to hold on the set of

interesting binary problems. Finally, we may appoint that,

according to our experience, performing more experiments

on new binary problem classes that likely promote the

algorithms’ conducts shown in Fig. 5a (instead of those

shown in Fig. 5b), either because a direct encoding is

available, similar solutions are expected to have similar

objective values, or any other reason, would simply make

the above probability much smaller.

7 Lessons learned

The application of our arbitrary function optimisation

framework in this work has allowed us to better understand

the implications and limitations of the NFL theorems. This

has been possible thanks to the advantage of our frame-

work of letting researchers to formulate conclusions less

dependent on the actual set of benchmark functions. In

particular, we may appoint the following main results:

– NFL theorems do not likely apply on the set of

interesting binary problems We have shown that it is

necessary, for the NFL to hold, the existence of a set of

counter-acting functions, whose implications on the

online performance of the algorithms has been

described in Sect. 6.2. However, we have not found

any binary problem class from the literature, out of 10,

that promoted such kind of conditions. Therefore, we

have applied Laplace’s methodology for computing the

probability for the sun to rise once again and have

approximated the probability of finding a counter-

acting (non-NFL-biased) binary problem as 8 %.

Finally, we have computed the probability for the

NFL to hold as the probability of finding ten counter-

acting problem classes, which is 1.6e-11.

– General-purpose search algorithms really apply com-

mon problem knowledge This is a fact that other

authors had pointed out previously (Dembski and

Marks II 2009). However, it was still unproven if that

problem knowledge was effective on large sets of

common problem classes. According to our experience,

there are two sources of knowledge, not to be

underestimated, that general-purpose algorithms may

effectively apply (at least on the set of interesting

binary problems):

– Natural encoding It is the assumption that the

communication rules for the algorithm and the

problem are the same, so that variables on which

the algorithm works on are actually the relevant

variables of the problem, and there is a certain

independence degree between them. For further

discussion on natural encoding, please refer to

(Garcı́a-Martı́nez et al. 2011a, http://www.uco.

es/grupos/kdis/kdiswiki/index.php/AFO-NFL#Some\

Considerations). We can summarise this idea with the

question, ‘‘do algorithm and problem speak the same

language’’?

– Continuity It is the classic assumption that similar

inputs produce similar outputs, so similar solutions

are expected to have similar objective values. In

fact, every metaheuristic applying neighbourhood-

based operators (such as local search approaches or

TS) strongly relies on this assumption. From this

study, it has been clear that not every general-

purpose method exploits that knowledge equally

well, and therefore, performance differences may

really appear on the set of real-world problems.

This fact is due to each metaheuristic incorporating

some other kinds of knowledge that may be

relevant as well, such as population diversity is

important, high-quality solutions are usually clus-

tered in prominent regions of the search space, or to

reach the global optimum it is necessary to scape

from local optima, among others.

– The permutation closure of a problem class invalids

the common sources of knowledge Igel and Tous-

saint (2003) showed that the permutation closure of

a problem class breaks the continuity hypothesis on

the one hand. On the other hand, it involves some

considerations on the encoding scheme for candi-

date solutions that are discussed at (Garcı́a-Martı́-

nez et al. 2011a, http://www.uco.es/grupos/kdis/
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kdiswiki/index.php/AFO-NFL#Some_Considerations).

In fact, any permutation of the search space, except

the identity, implies that natural encoding is not

available because the problem speaks a different

language. Knowing that language would become a

source of information that allowed the algorithm to

use the natural encoding, but it would not be a gen-

eral-purpose method anymore.

– To revisit previous solutions, when that implies

re-evaluations, should be avoided in general At

least in static problems, our results provide empir-

ical evidence that revisiting solutions makes the

algorithm’s progress slower, on either set of

representative problems (Sect. 4.4.4) or PCUP sets

(Sect. 5.2). This evidence is in part in agreement

with the results of Marshall and Hinton (2010). The

main difference is that we have covered set of

problems not c.u.p. as well, where we have

concluded that RS may not be the best approach.

– Random search is not an option for most real-world

problems Several publications from the context of

NFL claim that practitioners should apply RS along

with any other approach for solving particular

problems, at least for comparison issues. As it is

shown in Sect. 4, when natural encoding availabil-

ity and continuity are reasonable assumptions, the

application of no heuristic (RS) is probably worse

than the application of any rational heuristic, such

as neighbourhood-based explorations. This fact

does not mean that new proposals do not have to

be evaluated with regard to RS, and even less with

regard to existing competitive approaches, but that

none should expect RS to provide competitive

results in this case.

– Specialised methods must be critically analysed:

Some researchers claim that ‘‘too many experimen-

tal papers (especially conference papers) include

no comparative evaluation; researchers may pres-

ent a hard problem (perhaps newly minted) and

then present an algorithm to solve the problem. The

question as to whether some other algorithm could

have done just as well (or better!) is ignored’’

(Whitley and Watson 2005), and the suspicion is

certainly not new (Barr et al. 1995; Hooker 1995).

With the aim of promoting an interesting research

progress, authors should prove somehow that the

proposals they present are characterised by the

effective and efficient usage of the knowledge they

are supposed to be exploiting. Thus, we think that

specialised approaches must precisely show advan-

tages against the application of general-purpose

(state-of-the-art) methods. In fact, when no advan-

tages are found, we have to question if the problem

knowledge the method is supposed to be exploiting

is or is not more relevant than the little knowledge

the general-purpose method uses.

8 Future challenges

We think that this line of research is really worth studying

further. In fact, questions addressed in this work are not

solved in other fields, where they pose complex challenges.

We may appoint the following:

– Real parameter optimisation In the past years, many

methods for this kind of problems have been devised,

and different benchmarks have been proposed with the

aim of clarifying the knowledge of the field (Garcı́a-

Martı́nez et al. 2011b, Hansen 2005; Herrera et al.

1998; Lozano et al. 2011). Though deterministic sim-

ulations on standard set of benchmark functions have

promoted some consensus among this research com-

munity, there are still some others that dare question

the independence between the conclusions formulated

and the benchmark tackled. We think that our arbitrary

function optimisation may become an excellent tool for

dispelling those doubts. On the other hand, though NFL

theorems are not valid in pure real-parameter optimi-

sation (Auger and Teytaud 2007, 2008) because the

search space is infinite, they may still hold for the way

it is usually dealt with. As Whitley and Watson (2005)

claim, ‘‘As soon as anything is represented in a

computer program it is discrete. Infinite precision is a

fiction, although it is sometimes a useful fiction’’.

– Integer programming This field is very large and covers

problems of very different nature (Chen et al. 2010;

Jünger et al. 2009). It has been proved that some

heuristics are powerful on some kind of problems

whereas they perform poorly with regard to others in

other scenarios (though there may exist polynomial

procedures that map one problems into others). These

results support the idea that good performance unavoid-

ably requires the exploitation of some specific problem

knowledge, and thus, no sufficiently effective general-

purpose approach exists in this field. On the other hand,

it has been proved that NFL theorems are not valid for

many particular problem classes of this kind (Koehler,

2007). Therefore, NFL theorems might not hold on

more general sets of this kind of problems. This latter

hypothesis does not suggest that there certainly exists

an effective general-purpose solver, but that several

minimally general-purpose approaches might provide

reasonable results for different groups of problems of

this kind. We devise that this possibility could be really

interesting in at least two different situations:
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– If you are given a new integer programming

problem you know little information about, you

could develop a first approximation by applying this

kind of general-purpose approaches. Then, results

could help you to analyse the problem and locate

the specific pieces of problem knowledge that lead

to success.

– If you think you already know the problem

knowledge that can be exploited to effectively and

efficiently solve the problem, you can prove your

certainty by comparing your results with regard to

those of more general effective approaches.

In any case, we suggest our arbitrary function

optimisation framework to be assumed in order to

formulate conclusions as less dependent on the problem

instances as possible.

– Multiobjective optimisation Several researchers have

already pointed out that multiobjective optimisation

problems are not out of the NFL concerns (Corne and

Knowles 2003; Service, 2010). However, the particular

case of dealing only with multiobjective problems with

practical interest has not been studied yet. We may

think that a study similar to the one in Sect. 6, but with

multiobjective problems, may shed some light for this

case.

– Hybrid algorithms, ensembles, hyper-heuristics, and

others Many researchers have presented search models

that combine several approaches in an attempt to

overcome their individual limitations and benefit from

their respective advantages (Blum et al. 2011; Lozano

and Garcı́a-Martı́nez 2010; Talbi 2002). Interestingly,

some publications argue the combination as a medium

for escaping from the NFL’s claws (and in some cases,

the combination is not even analysed with regard to the

sole application of one of the approaches). Recently,

Dembski and Marks II (2010) showed that NFL

theorems apply to the concept of higher-level searchers,

and thus, to combinations of algorithms as well. As for

the multiobjective case, designing new algorithms as

the combination of previous ones that perform more

effectively and efficiently is still a possibility when

regarding just the set of problems with practical

interest.

– Empirical studies in general Finally, we may assume

that our proposed framework is sufficiently general to

be applicable on almost any empirical context, such as

biological or industrial ones, as long as resources allow

so. The general idea is, given two or more models to be

compared,

– it is desirable to dispose of an elevated number of

scenarios (potentially infinite).

– Sufficient simulations of the models are performed.

– Each simulation applies one of the models on an

uniform randomly sampled scenario.

9 Conclusion

In this paper, we have presented the arbitrary function

optimisation framework as an empirical methodology for

comparing algorithms for optimisation problems.

We have proved that the application of our arbitrary

function optimisation framework allows researchers to for-

mulate relevant conclusions that are independent of the

problem instances actually addressed, as long as the context

of the problem class is mentioned. In fact, our framework has

allowed us to develop the first thorough empirical study on

the NFL theorems, to the best of our knowledge, which has

shown that NFL theorems hardly hold on the set of binary

real-world problems. In fact, we have approximated the

probability of the opposite to the value 1.6e-11.

Finally, we have collected the lessons learned from our

study and presented challenges for other connected

research fields.
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