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Abstract. The nearest neighbor rule is one of the most representative
methods in data mining. In recent years, a great amount of proposals
have arisen for improving its performance. Among them, instance selec-
tion is highlighted due to its capabilities for improving the accuracy of
the classifier and its efficiency simultaneously, by editing noise and reduc-
ing considerably the size of the training set. It is also possible to remark
the role of feature and instance weighting as outstanding methodologies
for improving further the performance of the nearest neighbor rule.

In this work we present a new co-evolutionary algorithm for combining
the former techniques. Its performance is compared with evolutionary
approaches performing instance selection, instance weighting and feature
weighting in isolation, as well as with the nearest neighbor classifier.
The results obtained, contrasted through nonparametric statistical tests,
supports the capabilities of co-evolution as a outstanding strategy for
joining several proposals for enhancing the nearest neighbor rule.

Keywords: Co-evolution, Instance Selection, Instance Weighting, Fea-
ture Weighting, Evolutionary Algorithms, Nearest Neighbor Classifier.

1 Introduction

The k-nearest neighbor classifier (k-NN) is one of the best known techniques in
data mining. It is one of the most used algorithms in supervised classification.
Due to its simplicity, effectiveness and precision, it has attracted a great interest
by the research community [16].

Instance selection is a well-known proposal for improving the performance of
the k-NN classifier [10,8]. Its application allows us to reduce the spatial com-
plexity of the classifier and to improve its efficiency, by the deletion of irrelevant
instances in the training set, and its precision, by removing noisy instances.

Another interesting proposal is the use of weighting schemes for adjusting
the distance function of the k-NN. These schemes can be applied both to the
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instances [3] and the features [14] of the training set. A proper set of weights
for adjusting the distance function can help to train the classifier to the specific
domain of the problem considered, enhancing its generalization capabilities.

A great number of the approaches proposed in recent years for improving
data mining processes are related to evolutionary computation [9]. Given that
the processes of performing instance selection and obtaining proper weights can
be defined as search problems, evolutionary algorithms can be applied to tackle
them, with promising results [4,13].

Recently, the joint application of several preprocessing techniques over a single
classifier has been considered through the use of co-evolutionary algorithms [5].
The field of cooperative co-evolution [11] offers a useful framework in which
several optimization techniques can be applied simultaneously, obtaining better
results than those expected by using the same techniques in isolation.

In this work we present a co-evolutionary model for instance selection and
instance and feature weighting, applied to the k-NN classifier (CIW-NN). This
model is composed by 3 populations, where each one is focused on a specific task
for improving a 1-NN classifier (instance selection, feature weighting and instance
weighting). After its description, we present a full experimental study where the
improvements of the model over the preprocessing techniques applied in isolation
is shown. These improvements are contrasted by using nonparametric statistical
tests [7], which are highly recommended for analyzing the results obtained in
data mining experiments such as this one.

The rest of the work is organized as follows: Section 2 presents some prelim-
inary concepts about the techniques used in this work. Section 3 describes the
proposed model. Section 4 presents the experimental study performed for test-
ing the behavior of CIW-NN when compared with several non-co-evolutionary
techniques. Finally, Section 5 shows the conclusions arrived at.

2 Background

This section surveys some necessary preliminary concepts for describing CIW-
NN. Section 2.1 presents co-evolution and some of its most interesting character-
istics. Section 2.2 describes the use of instance selection in classification. Finally,
Section 2.3 shows how the weighting schemes can be used for improving the
precision of the classifiers.

2.1 Co-evolution

Co-evolution is the area of evolutionary computation related to techniques able
to manage several different populations simultaneously. Its application consists
of splitting the domain of the problem using a divide and conquer strategy where
each population is focused on tackling a single part of the problem.

Within this field, cooperative co-evolution [11] defines how the different pop-
ulation can cooperate. In general, this is met by using global fitness functions
which require an individual of each population for being evaluated. This allows
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to benefit those individuals who behave well in cooperation with the rest of pop-
ulations, in contrast with the classical fitness functions which only considers the
quality of individuals in isolation.

Thus, the main motivation for using cooperative co-evolution lies in its de-
composition capabilities, which can be used under several assumptions to break
the No Free Lunch barrier present in most optimization problems [15].

2.2 Instance Selection

The main goal of instance selection [10,8] is to isolate the smallest set of instances
which enable a data mining algorithm to predict the class of a query instance with
the same quality as the initial data set. By minimizing the data set size, space
complexity and computational cost of the subsequent data mining algorithms
are reduced, improving their generalization capabilities.

It can be defined as follows: Let X be an instance where X = (x1, x2,
· · · , xM , xc), with X belonging to a class c, given by Xc, and an M-dimensional
space in which xi is the value of the i-th feature of the sample X . Then, let us
assume that there is a training set TR composed by N instances, and a test set
TS composed by T instances. Let RS ⊆ TR be the subset of selected samples
that result from the execution of an instance selection algorithm. Then, each new
instance T from TS can be classified by from a data mining algorithm acting
over the instances of RS.

2.3 Weighting Schemes

The use of weighting schemes is another interesting enhancement for the clas-
sifiers’ behavior. Although there are many different approaches for this, in this
work we will focus our interest in using the weights for modifying the distance
function used by the classifier.

Therefore, it is possible to define weights associated both to the features (that
is, real values to weight the importance of each feature in the computation of
the similarity between two instances) and to the instances (that is, real values to
modify the effective distance between two instances with respect to some related
properties, such as, for example, its class attribute). Both schemes have been
widely studied in the past [14,3].

The final goal of the inclusion of these schemes is to improve as further as
possible the precision of the classifier. Hence, most of these methods are applied
through an optimization process using the original training set as reference.

3 Proposed Model

In this section we present the CIW-NN co-evolutionary model. Section 3.1 de-
scribes the different subcomponents of the model. Section 3.2 shows the fit-
ness function designed. Finally, Section 3.3 describes the general co-evolutionary
model.
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3.1 CIW-NN Subcomponents

CIW-NN is based on the simultaneous search of the best possible subset of training
instances, and the best possible weighting schemes for instances and features. To
do so, three populations are defined and focused on three specific goals:

– Instance selection (IS): Search the best subset of training instances.
– Instance weighting (IW): Search the best weighting scheme for instances.
– Feature weighting (FW): Search the best weighting scheme for features.

Although the three populations perform a search task, they can be discriminated
by several characteristics. Table 1 summarizes them:

Table 1. CIW-NN population’s characteristics

Topic IS population IW population FW population

Scope Instances Instances Features
Codification Binary Real Real
Granularity Individual Class Individual
Epoch length Simple Multiple Multiple
Objective Acc./Red. Accuracy Accuracy

– Scope: Each population is focused on optimizing either instances or features.
– Codification: Depending on the concrete enhancement task performed, the

individuals of each population will employ binary (0, 1) or real ([0, 1]) codi-
fication. This feature will define the kind of basic search method which the
population will carry out, and also has a strong effect on the difficulty of the
search task itself, due to real coded search spaces usually being wider and
harder to explore.

– Granularity: CIW-NN uses two schemes of assignation of weights. Indi-
vidual weights (one for each instance/feature) are assigned to IS and FW
chromosomes, whereas Class weights, shared by instances of the same class,
are assigned to IW chromosomes.

– Epoch length: CIW-NN defines how the evolution process of its popula-
tions will be scheduled, by assigning epochs of different length: Simple, that
is, one generation per cycle of the global model, or Multiple, considering more
than one generation. This way, CIW-NN equalizes the number of evaluations
spent by each population.

– Objective: It refers to the objective which each population pursues. A pop-
ulation can cope with maximizing the accuracy obtained by the classifier,
or to maximize simultaneously this accuracy and the reduction rate, that
is, the ratio between the number of instances discarded and the ones that
composed the original training set.

The IS population performs the search using the CHC algorithm [6], considering
the configuration shown in [4], where it is highlighted as a proficient method for
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this task. For improving its reduction capabilities their binary chromosomes are
initialized with a certain bias, where only prob1 instances are selected (initialized
to 1). Moreover, we have modified the original HUX crossover operator, so it only
maintains prob0to1 instances selected after its application.

In the IW and FW populations the search is guided by a real coded steady-
state genetic algorithm. A crossover operator with multiple descendants has been
selected due to its good convergence capabilities [12]. Among all the models
suggested in that study, the best results have been obtained with the operator
2BLX0.3-4BLX0.5-2BLX0.7, based on the operator BLX-α. Figure 1 depicts
its application, performing 4 crossing operations with different values of the
α parameter, and selecting the best offspring found. The mutation operator
selected is the non-uniform one, following the recommendations of [12].

Fig. 1. Crossover operator with multiple descendants

3.2 Fitness Function

The CIW-NN fitness function is composed by two different components:

– Accuracy: Precision of the baseline classifier (1-NN) over the training set
(using leave-one-out with the configuration of instances and weights which
is evaluated).

– Reduction: Reduction rate of the subset of instances evaluated, over the
full training set.

When performing an evaluation of the fitness function, it is required to use a
chromosome from each population. If we define H as a IS population chromo-
some, I as a IW population chromosome, and J as a FW population chromosome,
the fitness value assigned to each one is the following

Fitness(H) = α · Ac(H, I, J) + (1− α) ·Red(H)

Fitness(I) = Ac(H, I, J)

Fitness(J) = Ac(H, I, J)

(1)
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where Ac(H, I, J) is the accuracy estimated by the classifier, Red(H) is the
reduction rate obtained and α is a real value [0, 1] used for weighting both
objectives (we have set this value to α = 0.5, following the recommendations
given in [4]).

Fig. 2. Fitness function evaluation

Figure 2 shows an scheme of a fitness function evaluation. Accuracy is esti-
mated by preprocessing the training set selecting the instances indicated by the
chromosome of the IS population H , and weights defined by the IW and FW
chromosomes I and J are attached to obtain the resulting set RS. This set is
used as reference for the 1-NN classifier, whose accuracy Ac(H, I, J) is estimated
by classifying the original training set.

The similarity function used by the 1-NN classifier used to estimate the ac-
curacy is the euclidean one. CIW-NN defines a modified version of it

D(x, y) = IWc(y) ∗
M∑

i=0

FWi ·
√
(xi − yi)2 (2)

where x is the instance to classify, y a instance from the resulting set TS, IWc(y)

denotes the weight assigned to the class attribute of the instance y, and FWi

denotes the weight assigned to the feature i.

3.3 Co-evolutionary Model

CIW-NN merges all the components described in the former sections in a single
framework. The three populations evolves in a cycle, consuming an epoch (a
fixed number of generations/evaluations) each one before passing the turn to
the next population.

Figure 3 depicts the co-evolutionary scheme: The cycle is started by the IS
population, performing a single generation (simple epoch). Then, the IW popu-
lation performs a fixed number of generations (multiple epoch). Afterwards, the
FW population performs another multiple epoch, finishing the cycle.
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Fig. 3. CIW-NN populations scheme

Initialize IS, IW and FW populations;

Select the best individuals of each population;

While the limit of evaluations is not met:

Perform an IS epoch;

Perform an IW epoch;

Perform an FW epoch;

Update the best individuals found;

End

Return the best individuals found;

Fig. 4. CIW-NN general co-evolutionary scheme

Figure 4 summarizes the general scheme of the model. At the end of each cycle,
the best individuals of each population are selected (the very first individuals -
line 2 of Figure 4 - are selected according to their individual fitness). Their task
will be to complement the evaluations of the new individuals generated by the
search process. In this way, when a new individual must be evaluated, the best
individuals selected at the two other populations are gathered, obtaining then
the 3 chromosomes required by the fitness function.

This is an optimal configuration for modeling the cooperation between pop-
ulations. The joint evaluation of each individual with the best individuals of
the other populations allows to guide the search to more promising areas of the
search space, which represent the most desirable properties of each enhancement
technique. The use of the epoch model and the common fitness function allows
to control how the search progresses in each component, preventing premature
convergence and/or a faster convergence process of a given population to the
detriment of the rest (which may lead to optimal solutions from the single point
of view, but suboptimal in the cooperative sense).
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Table 2. Data sets considered in the experimental study

Data set #In. #Ft. #Cl. Data set #In. #Ft. #Cl.

Australian 690 14 2 Monk-2 432 6 2
Balance 625 4 3 Movement 360 90 15
Bands 539 19 2 New Thyroid 215 5 3
Breast 286 9 2 Pima 768 8 2
Bupa 345 6 2 Saheart 462 9 2
Car 1728 6 4 Sonar 208 60 2
Cleveland 303 13 5 Spectfheart 267 44 2
Contraceptive 1473 9 3 Tae 151 5 3
Dermatology 366 34 6 Tic-tac-toe 958 9 2
German 1000 20 2 Vehicle 846 18 4
Glass 214 9 7 Vowel 990 13 11
Hayes-roth 160 4 3 Wine 178 13 3
Housevotes 435 16 2 Wisconsin 699 9 2
Iris 150 4 3 Yeast 1484 8 10
Lymphography 148 18 4 Zoo 101 16 7

4 Experimental Study

In this section, we describe the experimental study performed to characterize
the behavior of CIW-NN in supervised classification problems. Section 4.1 de-
scribes the data sets used. Section 4.2 enumerates the algorithms selected for
the comparison and describes their parameters. Section 4.3 presents and analyze
the results obtained. Finally, Section 4.4 shows the statistical study performed
for contrasting the results of the experiment.

4.1 Data Sets

We have selected 30 supervised classification data sets for this study. They have
been taken from the UCI Machine Learning Repository1 and KEEL-dataset
Repository2. Table 2 shows their main characteristics: Name, number of instances
#In. (examples) , number of features #Ft. and number of classes #Cl..

Every data set has been partitioned using a 10-folds cross validation proce-
dure. Moreover, the attribute values have been normalized into the interval [0, 1].
This will help in equalizing the influence of every attribute with respect to the
distance measure selected for the classifiers.

4.2 Algorithms and Parameters

In addition to CIW-NN, in this study we have used as comparison algorithms
the three baseline methods of the populations of the co-evolutionary model:

1 http://www.ics.uci.edu/~mlearn/MLRepository.html
2 http://www.keel.es/datasets.php

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.keel.es/datasets.php
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Table 3. Parameters of the methods

Method Parameters

CIW-NN α: 0.5, prob0to1: 0.25, prob1: 0.25, Epoch length: 40 evaluations
Mutation probability: 0.05 per chromosome

CHC-IS α: 0.5, prob0to1: 0.25, prob1: 0.25
SSGA-FW Mutation probability: 0.05 per chromosome
SSGA-IW Mutation probability: 0.05 per chromosome
Common parameters Crossover operator (real): 2BLX0.3-4BLX0.5-2BLX0.7,

Crossover operator (binary): Modified HUX
Evaluations: 10000, Population size: 50, Base classifier: 1-NN

The CHC algorithm for IS (CHC-IS), a Steady-State Genetic Algorithm with
multiple descendants for feature weighting (SSGA-FW) and a Steady-State Ge-
netic Algorithm with multiple descendants for instance weighting (SSGA-IW).
Moreover, we have included the 1-NN rule as a basic classifier for reference.

All these methods have been coded in Java, using the KEEL Software [1,2]3. In
the experimental study, we have applied a 5x10-folds cross validation procedure
for evaluating their behavior. Table 3 shows the parameters considered.

4.3 Results Obtained

In the experimental study we have considered as performance measures the ac-
curacy in test phase (accuracy when classifying new examples unseen by the
classifier at the training phase) and the reduction rate obtained over the in-
stances of TR, for those methods which are able to perform it (CIW-NN and
CHC-IS).

Table 4 shows the results obtained. For each data set, the table shows the
average value obtained in each performance measure. Moreover, the best result
obtained in each data set is highlighted in bold.

Using the results of the table, we can get the following conclusions:

– The proposed approach, CIW-NN, obtains the best average accuracy. Fur-
thermore, it outperforms all the comparisonmethods in 18 out of 30 problems
considered.

– All the methods selected in the study greatly improves the accuracy of the
1-NN classifier.

– Both CIW-NN and CHC-IS are able to reduce the size of the training sets
to less of the 10% of its original size, without harming the accuracy of the
classifier.

These results supports the capabilities of instance selection and the weighting
techniques for improving the performance of the 1-NN classifier. In the case

3 http://www.keel.es

http://www.keel.es
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Table 4. Results obtained

Performance Accuracy (%) Reduction (%)

Data set CIW-NN CHC-IS SSGA-FW SSGA-IW 1-NN CIW-NN CHC-IS

Australian 81.74 81.45 81.01 80.87 81.45 93.66 97.67
Balance 85.75 79.04 73.76 80.33 79.04 94.24 96.62
Bands 75.52 74.04 72.75 72.92 74.04 95.49 97.28
Breast 70.62 66.04 63.06 69.98 65.35 97.86 97.71
Bupa 60.95 62.51 62.91 62.29 61.08 95.36 96.55
Car 95.89 85.65 94.91 86.34 85.65 83.78 95.87
Cleveland 56.43 53.14 52.48 56.45 53.14 97.14 98.13
Contraceptive 45.22 42.63 44.06 44.61 42.77 84.36 97.04
Dermatology 96.72 95.35 96.45 94.26 95.35 96.02 96.45
German 72.10 70.50 69.50 71.90 70.50 89.13 97.99
Glass 75.72 74.50 72.36 69.35 73.61 93.25 93.51
Hayes-roth 72.15 71.01 69.96 73.03 35.70 91.92 92.34
Housevotes 94.93 91.24 93.78 91.23 91.24 97.80 98.24
Iris 93.33 93.33 94.00 94.00 93.33 96.37 95.93
Lymphography 79.30 73.87 76.54 77.34 73.87 94.23 94.67
Monk-2 100.00 95.32 100.00 75.09 77.91 93.29 95.40
Movement 83.06 86.39 86.67 88.06 81.94 74.69 88.09
New Thyroid 95.82 97.23 96.28 95.84 97.23 96.95 97.62
Pima 71.24 70.33 70.71 70.59 70.33 92.09 97.09
Saheart 65.37 64.49 64.06 64.28 64.49 96.34 97.88
Sonar 87.00 85.55 85.07 86.02 85.55 91.67 93.11
Spectfheart 77.92 69.70 74.63 78.68 69.70 98.17 97.96
Tae 65.71 65.04 68.38 63.04 40.50 93.82 94.41
Tic-tac-toe 87.37 82.07 91.33 73.07 73.07 88.67 95.62
Vehicle 71.28 70.10 71.16 66.55 70.10 90.28 94.48
Vowel 98.28 99.39 99.29 98.38 99.39 74.97 84.01
Wine 97.16 95.52 96.63 97.75 95.52 96.88 96.69
Wisconsin 96.00 95.57 95.57 96.42 95.57 94.74 99.21
Yeast 52.76 52.23 50.81 52.63 50.47 83.49 97.19
Zoo 97.50 96.83 96.83 95.58 92.81 89.99 89.34

Average 80.09 78.00 78.83 77.56 74.69 91.89 95.47

of the co-evolutionary model, this improvement is considerable, since it offers
simultaneously the best results on accuracy and very high reduction rates over
the training sets (which means a great improvement in the efficiency of the
classifier, in terms of both storage requirements and running time).

4.4 Statistical Study

Nonparametric statistical tests for multiple comparisons may be used to con-
trast the experimental results achieved. Their use in data mining is specially
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Table 5. Ranks of the Friedman test and p-values of the post-hoc methods

Control method: CIW-NN (Rank: 1.850)

Method Rank Holm Hochberg Finner

CHC-IS 3.267 0.00156 0.00156 0.00104
SSGA-FW 3.117 0.00384 0.00384 0.00256
SSGA-IW 2.967 0.00623 0.00623 0.00623
1-NN 3.800 0.00001 0.00001 0.00001

recommended in those cases in which it is necessary to contrast the results of a
new proposal with several comparison methods [7].

In this study, we will use the Friedman test for detecting significant differences
between accuracy results. Holm, Hochberg and Finner procedures will be used
as post-hoc tests for characterizing the differences found.4

After the application of the Friedman test, significant differences among the
algorithms (p = 0.00006) are found. Hence, CIW-NN is selected as the control
method (the one with the lowest rank) for the post-hoc procedures.

Table 5 summarizes the results obtained. CIW-NN improves statistically the
results of the comparison methods at a α = 0.01 level of significance (the three
post-hoc methods obtain p-values lower than 0.01 in every case). Hence, the study
contrast that the improvement of CIW-NN over CHC-IS, SSGA-FW, SSGA-IW
and 1-NN is significant.

5 Conclusions and Future Work

In this work it is proposed a new approach hybridizing several data preprocessing
and adjusting methods for the k-NN classifier, within a co-evolutionary frame-
work. The experimental study performed supports the use of co-evolution as a
practical tool for improving the results of the selected techniques.

Several ideas arise as future work, including the comparison of the model with
a set of representative data reduction and weighting approaches of the state of
the art, and the evaluation of the performance of CIW-NN in large classification
domains. Moreover, the efficacy of the method could be further improved if more
accurate fitness functions are developed.
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4 More information can be found at the SCI2S thematic website on Statistical Inference
in Computational Intelligence and Data Mining http://sci2s.ugr.es/sicidm/

http://sci2s.ugr.es/sicidm/
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5. Derrac, J., Garćıa, S., Herrera, F.: IFS-CoCo: Instance and feature selection based
on cooperative coevolution with nearest neighbor rule. Pattern Recognition 43(6),
2082–2105 (2010)

6. Eshelman, L.J.: The CHC adaptative search algorithm: How to have safe search
when engaging in nontraditional genetic recombination. In: Rawlins, G.J.E. (ed.)
Foundations of Genetic Algorithms, pp. 265–283. Morgan Kaufmann, San Mateo
(1991)
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