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Integrating Instance Selection, Instance Weighting,
and Feature Weighting for Nearest Neighbor
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Abstract—Cooperative coevolution is a successful trend of evo-
lutionary computation which allows us to define partitions of
the domain of a given problem, or to integrate several related
techniques into one, by the use of evolutionary algorithms. It is
possible to apply it to the development of advanced classification
methods, which integrate several machine learning techniques into
a single proposal. A novel approach integrating instance selection,
instance weighting, and feature weighting into the framework of
a coevolutionary model is presented in this paper. We compare
it with a wide range of evolutionary and nonevolutionary related
methods, in order to show the benefits of the employment of
coevolution to apply the techniques considered simultaneously.
The results obtained, contrasted through nonparametric statistical
tests, show that our proposal outperforms other methods in the
comparison, thus becoming a suitable tool in the task of enhancing
the nearest neighbor classifier.

Index Terms—Cooperative coevolution, feature weighting
(FW), instance selection (IS), instance weighting (IW), nearest
neighbor rule.

I. INTRODUCTION

C LASSIFICATION is one of the most well-known tasks
in machine learning [1]–[4]. Starting from an already

processed training set, machine learning methods are able to
extract knowledge from the data, which can be used to char-
acterize new samples and classify them into classes already
specified by the domain of the problem. Although most of
these methods store and represent this knowledge by building a
model during their execution, there are some approaches where
the construction of this model is not necessary. They are known
as lazy learning methods [5].

The most well-known lazy classifier is the k-nearest neigh-
bors (k-NNs) [6], which is one of the most relevant algorithms
in data mining [7]. It is a nonparametric classifier which simply
uses the entire input data set to establish the classification rule.
Thus, the effectiveness of the classification process performed
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by k-NN relies mainly on the quality of the training data. Also,
it is important to note that its main drawback is its relative
inefficiency as the size of the problem increases, regarding
both the number of examples in the data set and the number
of attributes which will be used in the computation of the
similarity function (distance) [8].

Many approaches have been proposed to improve the per-
formance of k-NN [9]–[14]. Some of the most effective have
been developed for data preparation [15]. Their task is to
assess, prepare, and preprocess the initially available data in
data mining processes. Their main goal is the improvement of
the algorithms in terms of efficiency and efficacy.

One way to prepare a suitable training set is to reduce it.
In this sense, data reduction [15] techniques try to obtain a
reduced version of the original training set, removing noisy
and irrelevant data (which may be harmful to the majority of
machine learning methods). Instance selection (IS) [16], which
consists of selecting the most appropriate examples (instances)
in the training set, will be used in this study.

Another way to improve the performance of k-NN is through
the use of weighting schemes. Feature weighting (FW) [11] is
a well-known technique which consists of assigning a weight
to each feature of the domain of the problem, modifying the
way in which distances between examples are computed. The
definition of weights associated with the instances [instance
weighting (IW)] is also possible. This approach, which has been
used to improve the results of some machine learning methods,
can also be used to modify the computation of the distance
function [17].

Evolutionary algorithms (EAs) [18] are search algorithms
that use principles inspired by natural populations to evolve
solutions. They have been applied to different data mining
problems [19]–[22]. Given that IS, IW, and FW tasks can
be defined as combinatorial problems, it is possible to carry
them out using EAs [23]. In fact, many successful evolutionary
proposals have been developed to tackle them [23]–[28].

Coevolutionary algorithms (CAs) [29] are also able to tackle
these problems. They are EAs composed of two or more
populations which evolve simultaneously, allowing interactions
between their individuals. In a CA, it is possible to assign
different objectives or search methods to each population, try-
ing to obtain a global solution improved by the simultaneous
application of several techniques.

In recent years, coevolution has allowed many successful
techniques to develop in a large number of fields. Several
proposals applying CAs in classification [30], clustering [31],
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function optimization [32], training neural networks [33], or the
design of ensembles [34] can be found in the literature.

CAs have also been applied in the development of data
preprocessing methods to enhance the k-NN classifier. The
most recent are [35] and [36], where two different approaches
for data reduction (focused only on IS or combining it with fea-
ture selection, respectively) are presented. In both approaches,
results improve upon those obtained by applying these data
preprocessing techniques in isolation.

In this paper, we propose a new CA in a different line to the
former proposals. FW and IW will be its main focus, aiming to
obtain a suitable set of weights to tune the distance function
while another population selects the best possible subset of
instances of the training set. This tuning process will allow the
k-NN rule to achieve a high classification performance, taking
advantage of the existing synergy between the IS, IW, and FW
techniques. We have named it Coevolution of Instance selec-
tion and Weighting schemes for Nearest Neighbor classifiers
(CIW-NN).

To accomplish these tasks, three populations (one for each
process) are defined within a cooperative framework. The first
one performs an IS process (binary codification), aiming to
select a suitable subset of instances to enhance the classification
performance of the k-NN classifier. It also will try to reduce the
size of the subset as much as possible, in order to increase the
speed of the final classification process.

The second and third ones perform an FW and an IW process
(real codification), respectively. Both are used to select the best
possible weights to further increase the leave-one-out classifi-
cation performance of the k-NN classifier. To do so, their search
processes are guided by a steady-state genetic algorithm (GA)
(SSGA) with a crossover operator with multiple descendants
[37]. This operator is used to increase the convergence capabil-
ities of the standard SSGA, which is a necessary improvement
in the global behavior of the CA.

We have tested our proposal in a wide comparison consid-
ering several evolutionary and nonevolutionary techniques in a
large number of classification domains (30 small data sets and
8 larger data sets). The results have been contrasted by using
several nonparametric statistical tests for multiple comparisons,
reinforcing the conclusions arrived at.

The approach presented in this paper, i.e., CIW-NN, can
be used as a competent hybrid method for improving the
k-NN classifier. This method combines the storage reduction
and accuracy enhancement capabilities of the IS methods with
the accurate definition of weights performed by IW and FW
techniques, used to further improve the accuracy of the base
classifier (to the best of our knowledge, this is the first method
in the literature that is able to combine the three different
techniques into a single approach).

Owing to cooperative coevolution and the new epoch scheme
devised for managing the different populations of the model,
CIW-NN is able to use cutting-edge EAs specifically adapted
to the three problems, using binary and real codifications si-
multaneously. The joint use of the three techniques and all these
elements allow CIW-NN to achieve a satisfactory performance,
improving the results of all the state-of-the-art techniques con-
sidered in the study.

The rest of this paper is organized as follows. Section II gives
an overview of coevolution and the data preparation techniques
in the scope of this approach. Section III describes our proposal
in depth. Section IV deals with the experimental framework
defined. Section V shows the results obtained and discusses
them. Finally, Section VI concludes the study.

II. BACKGROUND: COEVOLUTION AND EVOLUTIONARY

PROPOSALS FOR IS AND WEIGHTING SCHEMES

This section covers the background information necessary
to define and describe our proposal. Section II-A gives back-
ground information about coevolution and some related core
issues. Section II-B describes IS as a tool to enhance the k-NN
classifier. Section II-C shows the weighting schemes employed.
Finally, Section II-D briefly describes some evolutionary pro-
posals already developed to perform those techniques.

A. Coevolution: Main Trends and Key Issues

Coevolution is the field of evolutionary computation which
deals with EAs that are able to manage two or more populations
simultaneously. These populations coexist during the execution
of the EA, interacting and evolving simultaneously.

The most important benefit of the use of coevolution is
the possibility of defining several components to represent a
problem and assigning them to several populations to handle
each one separately. This allows the EA to employ a divide-and-
conquer strategy, where each population can focus its efforts
on solving a part of the problem. If the solutions obtained
by each population are joined correctly, and the interaction
between individuals is managed in a suitable way, the use of
coevolution can lead to high-quality solutions, often improving
those obtained by noncoevolutionary approaches.

The interaction between individuals of different populations
is the core issue of coevolution techniques. In the literature,
coevolution approaches are often divided into three classes,
according to the type of interaction employed.

1) Cooperative coevolution: In this trend, each population
evolves individuals representing a component of the final
solution. Thus, a full solution is obtained by joining an
individual chosen from each population. In this way, in-
creases in a collaborative fitness value are shared between
individuals of all the populations of the algorithm [29].

2) Competitive coevolution: In this trend, the individu-
als of each population compete with each other. This
competition is usually represented by a decrease in the
fitness value of an individual when the fitness value of its
antagonist increases [38].

3) Competitive–cooperative coevolution: Both coopera-
tive and competitive approaches can be merged, allow-
ing the existence of a potential arm race among the
species to improve their contributions in the associated
subcomponents. This paradigm, which tries to achieve the
advantages of cooperation and competition at different
levels of the model, has been successfully employed in
dynamic multiobjective optimization [39].
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In this paper, we will focus our attention on cooperative
coevolution. Its management will require the definition of an
adequate problem decomposition, regarding its domain or the
set of techniques employed. When this decomposition is fully
defined, it will be possible to assign a baseline EA to each
population, to evolve each component separately. Finally, the
cooperation scheme has to be defined, analyzing the existing
interdependences between the subcomponents of the model.

Although this is the general scheme when designing a coop-
erative coevolution approach, several key issues must be studied
to understand how cooperative coevolution works and what
features and disadvantages that it has.

1) The main problem of cooperative coevolution is the loss
of gradient problem [40] in which one population comes
to severely dominate the others, creating a situation where
the populations have insufficient information from which
to learn, due to the high degree of domination present.

2) Another problem that arises with the use of cooperative
coevolution is the issue of variable interdependence. The
decomposition of the domain of the problem into several
parts and its assignation to the subpopulations of the
model must be performed with care. Otherwise, existing
interdependences between variables may severely de-
grade the performance of search methods.

This issue has been studied in depth in the field of
continuous optimization. Since the first cooperative co-
evolutionary approaches did not show satisfactory be-
havior in the presence of nonseparable problems, several
proposals have been presented to tackle them. A rep-
resentative example is shown in [32], where a random
grouping strategy and a weighting scheme are presented.
This framework, designed for differential evolution, has
been extended to be employed with other techniques,
such as particle swarm optimization [41].

In other fields, this issue can be overcome by avoiding
the breaking of interdependences. For example, an inter-
esting way of decomposing the domain for IS problems
is presented in [35]. In that study, several populations
of selectors and a population of combinators are used
to effectively split the domain of the IS problem, with
the objective of improving the scalability of the model
without harming its accuracy. In this work, a similar
strategy will be followed, avoiding the breaking of in-
terdependences not by decomposing the domain but by
splitting the specific preprocessing technique assigned to
each population.

3) An interesting question about the coevolutionary model
is to define how the algorithm should manage its popu-
lations. Common answers are to manage them by using
either a sequential scheme (update the status of the model
each time a population completes a generation) or a
parallel scheme (update the global status only when a
generation is complete for every population). A compari-
son between both approaches can be found in [42].

4) These schemes can be further adjusted by using an epoch
scheme [43]. Hence, a population may carry out more
than one generation while the rest of the populations are
stopped. This scheme can help the designer to give more

importance to a given population (for example, the one
with the most difficult task assigned to it) in order to
keep the search balanced. If they are employed properly,
epochs can help to ease the loss of gradient problem.

5) Researchers have also tackled the question of how to
select the members to evaluate the fitness function. One
way is to evaluate an individual against every single
member of the other populations. However, this would
consume a very high number of evaluations. To reduce
this number, there are other options, such as the use of
just a random individual or the use of the best individual
from the previous generation [44].

In this paper, all these issues have been considered and tack-
led during the designing process of CIW-NN. More information
can be found in Section III.

B. IS

IS is one of the main data reduction techniques for which
many proposals have been developed (see [12] or [45] for a
recent review). Its goal is to isolate the smallest set of instances
which enable a data mining algorithm to predict the class of a
query instance with the same or better proficiency than using
the initial data set [16]. By minimizing the data set size, the
space complexity and computational costs of the subsequent
data mining algorithms are reduced, improving their general-
ization capabilities.

IS can be defined as follows: Let X be an instance where
X = (x1, x2, . . . , xM , xc), with X belonging to a class c given
by Xc, and an M -dimensional space in which xi is the value
of the ith feature of the sample X . Then, let us assume that
there is a training set TR which consists of N instances, and
a test set TS composed of T instances. Let RS ⊆ TR be the
subset of selected samples that result from the execution of an
IS algorithm; then, we classify a new pattern T from TS from
a data mining algorithm acting over the instances of RS.

We focus our efforts on enhancing the 1-NN rule. The reason
for not employing a value k > 1 for the k-NN is to give the
classifier the greatest possible sensitivity to noise during the
reduction process. In this manner, an evolutionary IS algorithm
can better detect the noisy instances and the redundant ones
presented in the training set.

C. Weighting Schemes

In this section two different weighting schemes, i.e., FW and
IW, will be reviewed.

a) FW: FW is a successful approach used to improve the
k-NN classifier [11]. The FW methods’ main objective is to
reduce the sensitivity of redundant or noisy features in the
k-NN rule by modifying its distance function.

The most well-known dissimilarity measure for the k-NN
rule is the Euclidean distance [(1), where X and Y are two
instances and M is their number of features]. It has been widely
used in the instance-based learning field [9].

EuclideanDistance(X,Y ) =
M∑

i=0

√
(xi − yi)2. (1)
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FW methods often extend this equation to apply different
weights to each feature (Wi) which modify the way in which
the distance measure is computed

FWDist(X,Y ) =
M∑

i=0

Wi ·
√

(xi − yi)2. (2)

This technique has been widely used in the literature. To the
best of our knowledge, the most complete study performed can
be found in [11], where a review of several FW methods for lazy
learning algorithms is presented (with most of them applied to
improve the performance of the 1-NN rule).

A large number of FW techniques for improving the k-NN
rule have been proposed [11], [46]. The most well known form
the family of Relief-based algorithms. The Relief algorithm has
been widely studied and modified, producing some interesting
versions such as that in [47].

b) IW: The second interesting weighting scheme is IW. This
scheme consists of applying weights to the instances of the
training set, modifying the distance measure between them and
any other instance (the following equation, where IW (X) is
the weight assigned to the training instance X):

IWDist(X,Y ) = IW (X)
M∑

i=0

√
(xi − yi)2. (3)

The concrete definition of the weights differs in each ap-
proach, but most of the existing ones are focused on modifying
the way in which distances are measured, depending on the
positions of the instances in the training set (a representative
example that appeared recently is [17]).

Other interesting approaches apply the weights in a lazy way:
Weights are assigned to instances only when the query instance
(i.e., a test instance) has been presented to the classifier. In this
way, only instances which are in the immediate environment
of the query instance are weighted, thus performing an ad
hoc local modification directly focused on the concrete query
instance presented [10].

Although the number of existing proposals for IW is less
than that for FW, several interesting approaches have appeared
in recent years, mostly focused on the application of weights
to find a suitable local metric to improve the generalization
accuracy of the basic 1-NN [48].

D. Existing Evolutionary Approaches Used to Improve the
k-NN Rule

In recent years, EAs have been widely employed to carry
out data preparation tasks, improving the behavior of the k-NN.
This section will review some interesting examples in the scope
of this study, most of them applied to IS tasks.

The first use of EAs in IS can be found in [24]. Kuncheva
applied a GA to select a reference set for the k-NN rule. Her
GA maps the training set onto a chromosome structure, using a
binary representation and computing as the fitness function the
error rate of the k-NN rule.

In [23], a complete study of the use of EAs in IS is
made, highlighting four EAs to complete this task: Cross-

generational elitist selection, Heterogeneous recombination,
and Cataclysmic mutation (CHC) adaptive search algorithm
[49], SSGA, generational GA, and population-based incre-
mental learning. They conclude that EAs outperform classical
algorithms in both reduction rates and classification accuracy,
highlighting CHC as an outstanding method for this task.
Following this line, other successful proposals have appeared
recently [26].

In [50], a GA is used to learn continuous feature weights for
the k-NN classifier, by defining five genetic operators and a
fitness function based on the number of misclassified training
instances and their relevance. Furthermore, it is possible to
find other approaches that combine several techniques in the
same method. For example, [25] is a representative proposal
combining IS and feature selection to improve k-NN classifiers.
FW and IS are also tackled simultaneously in [51].

Cooperative coevolution has also been used to improve the
k-NN rule in [35], integrating several populations of selectors
and a population of combinators to effectively split the domain
of the IS problem, and [36], in which cooperative coevolution
is adopted as a tool to integrate several binary preprocessing
techniques in the coevolutionary model (by defining a multi-
classifier composed of three 1-NN classifiers which are tuned
by each population), which are representative examples. How-
ever, these two approaches neither define specific mechanisms
to adjust the search performed in each population (different
basic EAs and codification, fine-tuned operators, and so on) nor
consider the definition of weighting schemes to further improve
the classification accuracy.

III. CIW-NN

In this section, we describe CIW-NN in depth. We show
the details of the architecture of the coevolutionary model and
its basic components, justifying the decisions taken during its
development. Section III-A shows the scheme of populations
of CIW-NN. Section III-B gives an overview of the full co-
evolutionary model and describes the basic techniques used to
conduct the search. Section III-C describes how the coopera-
tion between individuals belonging to different populations is
achieved, through the fitness function. Finally, Section III-D
states how the fitness value is assigned to each chromosome.

A. Population Scheme

CIW-NN is composed of three populations, which coexist
and evolve simultaneously. We denote each one by the name
of its assigned task. Therefore, our model is composed of an
IS population, an IW population, and an FW population, which
will follow a sequential scheme of cooperation.

In order to characterize and describe them, several aspects of
their structure and behavior must be discussed.

1) Scope: Each population is focused on optimizing either
instances or features.

2) Codification: Depending on the concrete assessing task
performed, the individuals of each population will em-
ploy binary (0, 1) or real ([0, 1]) codification. This feature
will define the kind of basic search method which the
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TABLE I
CIW-NN POPULATION’S CHARACTERISTICS

population will carry out and also has a strong effect on
the difficulty of the search task itself, due to real coded
search spaces usually being wider and harder to explore.

3) Granularity: CIW-NN uses two schemes of assigna-
tion of weights. Individual weights (one for each in-
stance/feature) are assigned to IS and FW chromosomes,
whereas class weights, shared by instances of the same
class, are assigned to IW chromosomes.

4) Epoch length: CIW-NN defines how the evolution
process of its populations will be scheduled, by assigning
epochs of different lengths: Simple, i.e., one generation
per cycle of the global model, or Multiple, considering
more than one generation. In this way, CIW-NN equalizes
the number of evaluations spent by each population.

5) Objective: This refers to the objective that each popula-
tion pursues. A population can cope with maximizing the
accuracy obtained by the classifier, or to simultaneously
maximize this accuracy and the reduction rate, i.e., the
ratio between the number of instances discarded and the
ones that composed the original training set.

Table I summarizes the setup of each population. As can be
seen in this table, the objective of obtaining a reduced subset
is assigned to the IS population, while the rest tune the way in
which distances to the instances are computed, accomplishing
the objective of increasing the accuracy of the classifier.

Owing to this structure, our model is expected to achieve
reduction rates close to those obtained by the most successful
evolutionary IS techniques and simultaneously obtain better
results in accuracy due to the double tuning process performed
by IW and FW populations. Furthermore, the tuning process
performed by the weighting populations can positively influ-
ence the behavior of IS, for example, by selecting weights to
make up instances that, without this weighting process, could be
marked as irrelevant—or even noisy—by the selection process.
Fig. 1 symbolizes the feedback between populations existing in
CIW-NN.

It is important to note that we have not considered the use of
feature selection in CIW-NN (for example, as a new population
of the model). The reason for this is that the weights of the FW
population can simulate this behavior just by using weights very
near to 0.0 or 1.0. The rejection of the use of feature selection
prevents CIW-NN from achieving even greater reduction rates
than those it achieves as it is currently defined. However, this
is compensated for by the increase of the search space of
the features, which should lead CIW-NN to tune the distance
function better. This capability should help in increasing the
accuracy of the model.

On the other hand, one should not expect similar behavior
if weights were applied to every instance to simulate IS. This

Fig. 1. Evolutionary cycle of CIW-NN. IS, FW, and IW populations evolve
simultaneously, spending an epoch in turns. IS epochs only spend one genera-
tion, while FW and IW epochs spend several. Individuals of every population
cooperate through the fitness function (a 1-NN classifier).

Fig. 2. Coevolutionary model.

is because, in most of the standard classification problems, the
number of instances is far higher than the number of features.
Therefore, a reasonable way to work with instances would be
to apply a procedure to quickly select them, and another one is
to tune them in a fast and effective way (for example, grouping
them by their class). This is the reason behind the decision to
use class weights in the IW population.

B. Coevolutionary Model

The coevolutionary model consists of the three populations
carrying out their respective search processes at the same time:
In each cycle, each population performs a fixed number of gen-
erations, depending on their concrete setup, but their state is not
updated until the generations of the rest of the populations have
finished. Populations with Simple epoch length (IS population)
will perform only a single generation, while populations with
Multiple epoch length (IW and FW populations) will perform
several generations. When the fixed number of evaluations
runs out, the best individuals found are taken as the output of
the method. Then, they are used to build a final preprocessed
training set, which will be ready to be used by a 1-NN classifier
to classify the test set or any new example. Fig. 2 shows a
pseudocode of the full model.

CIW-NN only selects one individual per population (the best)
as a collaborator. Although other schemes, such as selecting
a set of collaborators per population, could be defined, the
employment of just one collaborator has a unique advantage:
The evaluation of any new individual only consumes one
evaluation of the fitness function. By contrast, employing any
other scheme would lead to a quadratic increase in the num-
ber of evaluations needed to characterize a new individual
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(if Z collaborators per each of the three populations are se-
lected, a new individual will require Z2 evaluations to consider
all the possible combinations). Given the nature of the problems
tackled by CIW-NN, which are characterized by a costly fitness
function, computationally speaking (more costly, by far, than,
for example, the ones usually considered in function optimiza-
tion problems; see Section III-C), this decrease in the evaluation
requirements is indispensable.

The use of a parallel scheme of coevolution, where the
global status of the model is updated only when a generation is
complete for every population, and Simple and Multiple epoch
schemes allows CIW-NN to effectively combine different kinds
of EAs. In this way, different basic evolutionary techniques
can be assigned to each population, selecting for each task and
codification the most suitable technique.

Concretely, CIW-NN uses an adapted version of the CHC
algorithm [49] in the IS population, whose reliability in its
application to IS problems has already been studied in [23]. In
that study, the authors concluded that the CHC algorithm is a
very suitable evolutionary approach to perform IS processes in
order to enhance the performance of the 1-NN classifier.

In FW and IW populations, CIW-NN uses an SSGA with
multiple descendants [37]. We have selected it since it has
shown a good performance when applied to continuous op-
timization problems with a high number of variables. Fur-
thermore, the use of multiple descendants gives a strong
convergence capability to the SSGA, which is the most desired
quality for the search process of the FW and IW populations.

Both basic methods evolve each population within the evo-
lutionary cycle. Since the number of evaluations spent in one
generation of the IS population can be much greater than that
in one generation of the FW and IW populations (CHC is a
generational GA which can spend as many evaluations as the
population size to perform a generation, whereas the SSGA
only spends a much smaller amount per generation), CIW-NN
introduces the use of a Multiple epoch scheme. In this way,
NGens generations are carried out for FW and IW populations
in each epoch, whereas only one is carried out for the IS
population. This will help to equalize the number of evaluations
spent, regardless of the search method used.

In order to adjust the behavior of both search methods,
several modifications to the original algorithms have been
considered.1 The main drawback of the application of CHC
in the IS problem is that the efficiency of its fitness function
depends on the phenotype of the chromosome. If there are many
1’s in the binary chromosome, many instances will be selected,
increasing the cost of the 1-NN classification performed to
compute its fitness value (Section III-C).

Therefore, we have applied two modifications to the original
algorithm to increase the speed of the IS population.

1) We have modified the definition of the half uniform
crossover (HUX) operator. When a gene representing an
instance is going to be set from 0 to 1 by the crossing
procedure, it is only set to 1 with a defined probability
(prob0to1 parameter). No modifications are applied to

1A wide description of them can be found at http://sci2s.ugr.es/ciw-nn.

Fig. 3. HUX crossover operator exchanges exactly half of the nonmatching
alleles, selected randomly. In our modified version of HUX, an allele valued
with 1 has a probability prob0to1 of maintaining its value when it is selected
to be exchanged.

changes from 1 to 0. For example, if one chromosome,
1100000000, and another chromosome, 1111111111, are
crossed by the HUX operator, the offsprings may be
1111110000 and 1100001111. In the same scenario, a
run of our HUX modified operator, with a probability
of change prob0to1 = 0.5, would give the offsprings
1100110000 and 1100001111 as the output. Fig. 3 shows
its application.

2) The initialization of the individuals is made randomly, but
only a small fixed number of genes are set to 1. Therefore,
in the initialization of a chromosome, each gene has a
probability prob1 to be set to 1.

The prob0to1 parameter does not have a great impact on
the results if it is kept in the interval (0.2–0.5). A value
lower than 0.2 may bias the search, making it very difficult
for CHC to preserve the quantity of 1’s in the chromosomes.
This may force the algorithm to produce solutions with high
reduction rates but very low performance in accuracy due to
the impossibility of selecting enough instances to represent the
initial training set properly. On the other hand, a value higher
than 0.5 will diminish the effect of the operator, producing
solutions with lower reduction rates. Consequently, we have
defined prob0to1 = 0.25 as an optimal setup. The prob1 also
does not have a great impact on the results, as long as it is set to
a low value. Defining a value of 0.5 will be the same as defining
just a random initialization. Thus, this value has to be lower. In
our experiments, we have found that prob1 = 0.25 is an optimal
setup for this value, which helps CHC to quickly obtain reduced
solutions without biasing the search process.

The SSGA has the following features.
1) Initialization of individuals is made randomly, assigning

to each gene weights valued in the interval [0, 1].
2) Binary tournament is used to select the parents (two indi-

viduals are randomly taken from the population. Then,
the one with the best fitness value is selected. This
procedure is carried out twice to obtain the two parents
required).

3) The offspring is obtained using a crossover operator
with multiple descendants. It consists of repeatedly
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Fig. 4. Scheme of application of the 2BLX0.3–4BLX0.5–2BLX0.7 multiple-
descendant crossover operator.

applying one or more standard crossover operators to
obtain several new individuals (six or eight are common
numbers). Then, the best two are selected as the new
offsprings. From all the options suggested in [37], we
have selected the blend crossover operator (BLX-α),
applying it four times with values 0.3, 0.5, 0.5, and 0.7
for α (2BLX0.3–4BLX0.5–2BLX0.7). Fig. 4 shows its
application.

4) A mutation operator is applied to every descendant ob-
tained during the multiple-descendant crossing process.
Following [37], we have used the nonuniform mutation
operator [52]. Mutation probability is set to a low value,
i.e., 0.05 per chromosome, to avoid harming the conver-
gence capabilities of the crossover operator.

5) The two individuals of the current population with the
worst fitness value are replaced by the new offsprings.

C. Cooperation in CIW-NN: The Fitness Function

In CIW-NN, the cooperation between individuals is achieved
by merging three chromosomes (one from each population:
IS, IW, and FW). Basically, they are used to generate a pre-
processed version of the training set (i.e., a reduced version
of the training set by the application of the IS process, and
an assignation of weights to instances and features by the
application of the FW and IW processes) whose quality will
be evaluated by a 1-NN classifier.

Therefore, we define the fitness function of CIW-NN [the fol-
lowing equation, where J , K, and L are the three chromosomes
selected] as the accuracy rate estimated when classifying the
original training set, using the preprocessed one as a reference
set and using leave-one-out as a validation scheme

Fitness(J,K,L) = AccuracyRate(J,K,L). (4)

When a new chromosome is evaluated, two collaborators,
from the other populations, are merged with it to create a full
solution. The process performed to obtain the preprocessed
training set from the original one is the following.

1) Instances marked as “0” by the IS chromosome are re-
moved. Thus, only instances marked as “1” will remain
in the preprocessed set.

2) Weights described by the FW chromosome are assigned.
3) Weights described by the IW chromosome are assigned

to the remaining instances, depending on their class.

As a result of these operations, the computation of the
distance measure in the 1-NN classifier is performed as is
described in (5), where X is an instance of the preprocessed
set, Y is a new instance to classify (from the original training
set or from the test set), and IWc(X) is the weight assigned by
the IW chromosome

Distance(X,Y ) = γ ·
(
1.0 − IWc(X)

)
· FWDist(X,Y )

+(1.0 − γ) · FWDist(X,Y ) (5)

where γ ∈ [0, 1] is a weighting value for controlling the impact
of the IW weights in the Euclidean weighted distance (2).
Consequently, we have the following.

1) The distances computed from instances belonging to
classes marked with maximum weights (IWc(X) = 1.0)
will be very small (a (1.0 − γ) factor of their former
value).

2) The distances computed from instances marked with
minimum weights (IWc(X) = 0.0) will not change.

3) The remaining possible values will keep the distance
computed within this range.

Following this scheme, we allow the IW population to set
weights which highlight the appearance of certain classes in the
domain, diminishing the importance of the rest. The distances
computed from instances belonging to the former classes will
be very low, thus increasing the chances of selecting them as
the nearest neighbors of a new test instance. Furthermore, the
inclusion of the γ weight allows the appearance of very low
final weights (very near to 0.0) to be avoided, which may nullify
the distance measure, degrading the behavior of the classifier.

With the simultaneous application of IS and both weighting
schemes, the preprocessed subset can be tuned to obtain the
most accurate possible reference set. IS chromosomes will se-
lect only those instances which are truly relevant in the training
set, whereas FW weights will emphasize those features which
better discriminate the examples with respect to their class.
Finally, IW weights will increase or decrease the magnitude
of the distance from every instance, depending on its class,
modifying its relevance inside the domain, further improving
the global accuracy of the classifier.

A final consideration about the fitness function of CIW-
NN must be noted: The computation of the AccuracyRate
involves the classification of the entire training set by the 1-NN
classifier. This is a costly operation (O(N∗S), where N is the
size of the training set and S is the number of instances selected
by the IS chromosome) and computationally heavier than the
fitness function usually employed as a benchmark in existing
approaches for function optimization. However, this cost will
be alleviated as the search processes progress, as long as the IS
chromosomes reduce the number of instances selected.
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Fig. 5. Example fitness assignment for an IS individual. RedRate is com-
puted directly. To compute AccRate, IS, FW, and IW chromosomes are applied
to the training set TS, obtaining the reference set RS, which is employed by
the 1-NN classifier to estimate accuracy.

D. Fitness Assignment

As we mentioned before, the populations of CIW-NN have
different objectives, depending on their task. Therefore, two
different methods for fitness assignment need to be defined.

The fitness value for IS individuals must pursue both re-
duction and accuracy objectives. To do so, we follow the
proposal given in [23]. Cano et al. defined AccRate as the
accuracy achieved by the 1-NN rule over the training set, using
the currently selected subset as a reference and leave-one-out
as a validation scheme. They also defined RedRate as the
reduction rate achieved over the currently selected instances,
and a weighting factor α, to adjust the strength of each term
in the resulting fitness value. The following equation defines it,
where J is an IS chromosome to be evaluated:

Fitness(J)=α·AccRate(J)+(1 − α)·RedRate(J). (6)

Following the recommendations given in [23], CIW-NN em-
ploys a value α = 0.5, which should offer an adequate tradeoff
between accuracy and reduction.

Obtaining a fitness value for the IW and FW is straightfor-
ward, since their objective is to maximize only the accuracy
of the classifier. The following equation, where K is a chro-
mosome belonging to FW or IW populations, can be defined
by considering only the AccRate term of the last equation,
keeping their former meaning:

Fitness(K) = AccRate(K). (7)

These equations are used to assign a fitness value to any chro-
mosome of CIW-NN. When the fitness function is computed by
using a chromosome in combination with its two collaborators,
the fitness value obtained is assigned as its AccRate. On the
other hand, if the chromosome belongs to the IS population,
its RedRate can be computed directly from the chromosome
itself. Fig. 5 shows an example of a fitness assignment for an IS
individual.

TABLE II
SUMMARY DESCRIPTION OF SMALL DATA SETS

TABLE III
SUMMARY DESCRIPTION OF LARGE DATA SETS

IV. EXPERIMENTAL FRAMEWORK

This section describes the experimental framework designed
to test CIW-NN.2 Section IV-A presents the classification data
sets used. Section IV-B summarizes the algorithms selected
for the comparison and their relevant parameters. Section IV-C
describes the performance measures employed to evaluate
CIW-NN. Finally, Section IV-D discusses the tests applied in
the statistical comparisons performed.

A. Classification Problems

To check the performance of CIW, we have selected a set
of 38 classification data sets. These are well-known problems
in the area, taken from the KEEL-data-set repository3 [53].
Tables II and III summarize their main characteristics. For each
data set, we provide its number of examples (#Ex.), attributes
(#At.), and classes (#Cl.).

The data sets considered are partitioned by using the ten-
fold cross-validation (10-fcv) procedure, and their values are
normalized in the interval [0, 1] to equalize the influence of
attributes with different range domains. In addition, instances
with missing values have been discarded before the execution
of the methods over the data sets.

B. Comparison Methods

Several classification methods, evolutionary and nonevolu-
tionary, have been selected to perform an exhaustive study of
the capabilities of CIW-NN.

1) 1-NN: The 1-NN rule is used as a baseline limit of per-
formance which most of the methods should supersede.

2The Java code of CIW-NN is available at http://sci2s.ugr.es/ciw-nn.
3http://www.keel.es/datasets.php.
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2) IS-CHC, FW-SSGA, and IW-SSGA: These methods
follow exactly the same setup as the populations of CIW-
NN, except that the AccRate of their fitness function
is computed separately. Consequently, only the IS-CHC
performs a reduction process. Moreover, comparison with
IS-CHC is particularly interesting due to it being recom-
mended as the best performing IS method in [23].

3) Steady-state memetic algorithm (SSMA): An SSMA
specifically designed for prototype selection. This evo-
lutionary IS includes a meme optimization mechanism
(a local search procedure) that is able to improve the
accuracy achieved by the SSGA and to avoid premature
convergence. Moreover, it offers a high reduction capabil-
ity and good behavior when tackling large problems [26].

4) Prototype weighting (PW), class weighting (CW), and
class and prototype weighting (CPW): Three gradient-
descent-based algorithms developed with the aim of min-
imizing a performance index that is an approximation of
the leave-one-out error over the training set. Weights may
be specified for each instance (PW) and for each combi-
nation of feature and class (CW) or both (CPW) [48].

5) Weighted distance nearest neighbor (WDNN): A novel
IW method which searches iteratively, in each training
instance, for the best weight to minimize the leave-one-
out error over the training set. A weight of 0.0 can be
assigned to any instance, which means that it is discarded.
Thus, this method can be regarded as a simultaneous IS
and IW method. Consequently, reduction rates can be
computed for it [17].

6) Tabu search for KNN (TS/KNN): A tabu-search-based
method for simultaneous feature selection and FW, whose
solutions encode the current set of features selected,
the current set of weights assigned to features, and the
best value of k found for the k-NN classifier [54]. Al-
though this method reduces the size of the training set
by selecting features, this reduction is too small for it
to be considered in the comparison with the rest of the
methods.

7) ReliefF: The first Relief-based method adapted to per-
form the FW process [47]. Weights computed in Relief
are not binarized to 0, 1. Instead, they are used as final
weights for the k-NN classifier. This method was noted
as the best performance-based FW method in [11].

8) Mutual information (MI): MI between features can be
used successfully as a weighting factor for k-NN-based
algorithms. This method was marked as the best preset
FW method in [11].

9) Global optimization of feature weighting and in-
stance selection using GA for case-based reasoning
(GOCBR): A GA for simultaneous IS and FW. Weights
are represented by binary chains, using binary codifi-
cation [51]. This method was not designed with the
aim of obtaining the most reduced subset possible; thus,
its reduction power is not competitive. Therefore, their
reduction rates will not be considered.

Many different configurations have been established for each
method. In our experimental study, we have used the parameters
defined in the reference, where they were originally described.
Table IV presents them.

TABLE IV
PARAMETER SPECIFICATION FOR THE METHODS OF THE STUDY

C. Performance Measures

We have selected the following performance measures.
1) Accuracy: It is defined as the number of successful hits

relative to the total number of classifications. It has been
by far the most commonly used metric for assessing the
performance of classifiers for years [1], [4].

2) Kappa: It is an alternative to the accuracy rate, a method,
known for decades, that compensates for random hits
[55] in the same way as the Area Under the ROC curve
measure. Cohen’s kappa measure can be obtained using
the expression

kappa =
N

c∑
I=1

xii −
c∑

i=1

xi.x.i

N2 −
c∑

i=1

xi.x.i

(8)

where xii is the cell count in the main diagonal, N is
the number of examples, c is the number of class values,
and x.i and xi. are the column and row total counts,
respectively. Kappa ranges from −1 (total disagreement)
through 0 (random classification) to 1 (perfect agree-
ment). For multiclass problems, it is a very useful, yet
simple, metric for measuring the accuracy of the classifier
while compensating for random successes.

3) Reduction: The reduction rate is defined as the ratio of
data selected by the algorithm. It has a strong influence
on the efficiency of the solutions obtained, due to the cost
of the final classification process performed by the 1-NN
classifier (O(N2 · M)).

4) Time: The simplest way to measure the practical effi-
ciency of a method. We will analyze the average time
elapsed (in seconds) by every method, considering both
training and classification phases.
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TABLE V
AVERAGE RESULTS OBTAINED IN THE COMPARISON BETWEEN CIW-NN AND EVOLUTIONARY PROPOSALS FOR k-NN-BASED CLASSIFICATION

D. Statistical Tools for Analysis

In our experimental study, we use hypothesis testing tech-
niques to provide statistical support for the analysis of the
results. Concretely, we use nonparametric tests, due to the fact
that the initial conditions that guarantee the reliability of the
parametric tests may not be satisfied, causing the statistical
analysis to lose credibility [56].

Throughout the study, we will use the Friedman and Fried-
man aligned-ranks tests to detect statistical differences among
the methods. Holm, Hochberg, and Finner post hoc procedures
will be used to find out which methods are distinctive among
the 1 ∗ n comparisons performed [56]. Moreover, the ranks
obtained will be analyzed graphically, depicting the best per-
forming algorithms as those with lower ranks.

More information about those statistical procedures specif-
ically designed for use in the field of machine learning can
be found at the SCI2S thematic public Web site on Statistical
Inference in Computational Intelligence and Data Mining.4

V. RESULTS AND ANALYSIS

In this section, we detail the different experimental studies car-
ried out with CIW-NN. In particular, our aims are as follows:

1) to analyze the benefits of coevolution when integrating
several techniques, comparing CIW-NN with other evo-
lutionary methods in isolation (Section V-A);

2) to compare CIW-NN with classical and recent weighting
methods for k-NN-based classification (Section V-B);

3) to test the performance of CIW-NN when the size of the
problem increases (Section V-C);

4) to show the convergence process of CIW-NN and the
cooperation process among populations (Section V-D).

For the sake of simplicity, we only include average results,
whereas the complete results can be found elsewhere.5 These
average results are computed through a 5 × 10-fold cross-
validation procedure, which means that every algorithm has
been run ten times per data set (one for each partition), and this

4http://sci2s.ugr.es/sicidm/.
5http://sci2s.ugr.es/ciw-nn. On this Internet site, it is possible to find results

detailed for each data set and performance measure, including several graphical
comparisons summarizing the results achieved in the experiments and depicting
the rankings obtained by the algorithms in each application of Friedman and
Friedman aligned-ranks procedures. It also contains the results of the applica-
tion of Holm, Hochberg, and Finner post hoc procedures. Furthermore, several
related studies about the behavior of our method (a sensitivity analysis of
parameters, the selection of suitable crossover operators with multiple parents,
advanced schemes of combination of the different preprocessing techniques,
selection of an optimal value for the k parameter of k-NN, and so on) can also
be found there.

Fig. 6. Graphical comparison of accuracy in the test phase between CIW-NN
and evolutionary proposals for k-NN-based classification.

Fig. 7. Rankings computed by Friedman aligned-ranks procedures by using
the accuracy measure.

process has been repeated five times, averaging the results ob-
tained. This will allow us to draw strong conclusions, reducing
the danger of being mislead by outliers or random successes in
the results of the classifiers.

A. Comparison Between CIW-NN and Evolutionary Proposals
for k-NN-Based Classification

The coevolution abilities of CIW-NN can be stressed when
it is compared with its basic components. In this paper, the
three evolutionary techniques employed in CIW-NN (IS-CHC,
FW-SSGA, and IW-SSGA) will be applied in isolation. Fur-
thermore, we consider the 1-NN classifier as a basic reference,
and SSMA, an advanced method for IS which incorporates a
competent local optimizer to improve the search process.

Table V shows the results obtained in the 30 small data
sets. Fig. 6 emphasizes the accuracy results of the test phase
graphically, showing mean accuracy and standard deviations.
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TABLE VI
AVERAGE RESULTS OBTAINED IN THE COMPARISON BETWEEN CIW-NN AND WEIGHTING METHODS FOR k-NN

The results obtained show that CIW-NN is the best perform-
ing algorithm in the test phase. Moreover, all the techniques
selected are able to improve the baseline performance of the
1-NN classifier. Fig. 7 plots the rankings obtained by the Fried-
man aligned-ranks test with the accuracy measure, showing the
differences found among the different methods graphically.

After computing the ranks, the Friedman and Friedman
aligned-ranks procedures obtained p-values of 0.00032 and
0.000097 for accuracy and p-values of 0.00274 and 0.000064
for kappa, respectively. Thus, the two tests detected significant
differences (final p-values computed by the post hoc methods
are reported on the associated Internet site).

Using these results, we can conclude the following.
1) CIW-NN offers the best results in accuracy and kappa

measures (in the test phase). Only FW-SSGA is able to
obtain close results (and only by the kappa measure).

2) The reduction rates achieved by CIW-NN are close to
those of IS-CHC and SSMA. This is a good result if we
recall that the IS population of CIW-NN (the only one
which aims to reduce the data set) only has a third of the
total evaluations spent by the coevolutionary model.

3) CIW-NN achieves the best results in both statistical tests,
considering kappa and accuracy measures.

In summary, the coevolutionary process performed by CIW-
NN can be viewed as a strong improvement on the capabilities
of the basic techniques. The individual benefits of each one
are inherited by CIW-NN, obtaining the reduction capabilities
of IS-CHC and SSMA and able to overcome statistically all
the techniques considered. Consequently, these results show
that CIW-NN is a suitable option to enhance the 1-NN rule in
standard classification domains.

B. Comparison Between CIW-NN and Weighting Methods for
k-NN-Based Classification

In this section, we perform a comparison between CIW-NN
and several weighting methods for k-NN classification, ranging
from classical approaches to more recent ones. We will check if
CIW-NN is a competitive weighting method for the k-NN rule,
in contrast with the existing techniques.

Table VI shows the average results obtained in the 30 small
data sets of the general framework. Furthermore, we also re-
port the average ranks computed by Friedman and Friedman
aligned-ranks procedures. Fig. 8 shows the accuracy results in

Fig. 8. Graphical comparison of accuracy in the test phase for CIW-NN and
weighting methods.

Fig. 9. Rankings computed by Friedman aligned-ranks procedure by using
the accuracy measure.

the test phase graphically, showing average results and standard
deviations.

The results obtained show that CIW-NN is the best per-
forming algorithm in the test phase. This fact is reinforced by
the average rankings obtained by the Friedman and Friedman
aligned-ranks methods. Fig. 9 shows this comparison graphi-
cally for the Friedman aligned-ranks procedure with accuracy
measure.

After computing the ranks, the Friedman and Friedman
aligned-ranks procedures obtained p-values of 0.00005 and
0.00082 for accuracy and p-values of 0.04971 and 0.00090 for
kappa, respectively. Thus, the two tests detected significant dif-
ferences between the methods (final p-values computed by the
post hoc methods are reported on the associated Internet site).
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TABLE VII
AVERAGE RESULTS OBTAINED IN THE STUDY OF CIW-NN IN LARGE DOMAINS

Fig. 10. Graphical comparison of accuracy in test phase in large domains.

From all the results shown, we can conclude the following.
1) CIW-NN offers the best accuracy and kappa results.
2) The average reduction rates achieved by CIW-NN are

comparable with those achieved by WDNN.
3) CIW-NN achieves the best average rankings in the Fried-

man and Friedman aligned-ranks procedures, both in
kappa and accuracy measures.

We can conclude this part of the study by stating that our
approach is very competitive when compared with the rest
of the methods considered. Its classification performance be-
comes a great advantage when compared with other techniques.
Furthermore, with the application of CIW-NN, it is possible
to obtain highly reduced training subsets for the 1-NN rule,
comparable with the subsets achieved by WDNN (the only
comparison method that is able to select weights and reduce
the training set simultaneously).

C. Study of the Behavior of CIW-NN in Large-Sized Domains

In this paper, we will apply CIW-NN to the eight large
data sets described in the general framework, with the aim of
characterizing its behavior as the size of the problem increases.
We have considered all the comparison methods except FW-
SSGA, IW-SSGA, TS/KNN, and GOCBR, due to its high
computational cost.

Table VII shows the average results obtained, highlighting
CIW-NN as the best performing method in the test phase. This
is also shown in Fig. 10. The rankings obtained by the Friedman
aligned-ranks method are shown in Fig. 11.

Fig. 11. Rankings of Friedman aligned-ranks test using accuracy in large
domains.

In this comparison, only the Friedman test detected signifi-
cant differences (p-values of 0.04790 and 0.04700 for accuracy
and kappa, respectively, whereas the Friedman aligned-ranks
p-values were 0.61974 and 0.63096). The final p-values com-
puted by the post hoc methods are shown on the associated
Internet site.

With these results, we can conclude the following.
1) CIW-NN has the best results in accuracy and kappa.
2) The reduction rates achieved by CIW-NN are comparable

with those achieved by WDNN. However, they are lower
than those of IS-CHC and SSMA.

3) CIW-NN achieves the best average rankings in the
Friedman and Friedman aligned-ranks tests, with both
measures.

All these results show us that CIW-NN is a very competitive
algorithm in large domains. It still achieves better accuracy
and kappa results than the rest of the techniques. Moreover,
it also maintains a reasonable reduction rate; thus, its test
classification phase will be faster than most of the remaining
techniques.

D. Convergence Analysis

Often, the dynamics of CAs are hard to manage, since
the constant changes in the global solution performed by the
populations may provoke changes in their search space, thus
changing the fitness value of their individuals [57]. However,
CIW-NN’s sequential scheme of evolution prevents these
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Fig. 12. Convergence analysis for CIW-NN in the Bupa problem. Critical
points are found at 3000 and 4800 evaluations approximately, where the
progress of a population allows the rest to escape from local maximums.

changes from decreasing the fitness value of the current best
individual. In fact, this change may give an opportunity to the
rest of the populations to escape from local optima, as the
current environment (the parts of the solution already fixed by
other populations) has been slightly changed. This is a key
property of CAs.

Here, we show a representative example to illustrate this
behavior. Fig. 12 shows the progress of the best chromosome
of CIW-NN populations during the search.

In this example, the IS populations fall on a local optimum
when roughly 1500 evaluations have been spent. However, FW
and IW are still able to advance, thus modifying the current
global solution and allowing the IS population to escape from
the local optimum, when almost 3000 evaluations have been
spent. This feedback also benefits the progress of the IW and
FW populations. In our example, both suffer from stagnation
when 3000 evaluations have been spent. However, further
progress made by the IS populations allows them to escape
from stagnation later (4800 evaluations). This allows them to
improve the quality of their best solutions, to a point that they
would not be able to reach by themselves.

VI. CONCLUSION

In this paper, we have presented CIW-NN, a novel evolution-
ary approach which integrates IS and two weighting schemes,
i.e., FW and IW, with the aim of enhancing the results of the
1-NN classifier in supervised classification domains.

The application of a coevolutionary scheme has allowed us
to integrate these techniques into a single method, by managing
different EAs, particularly suited to their assigned tasks. Several
mechanisms have been used to improve this cooperation, rang-
ing from the use of specialized crossover operators (modified
HUX and crossover multiple descendants) to the development
of an epoch scheme designed to balance the intensity of the
search in each of the populations.

We have performed a wide experimental study justifying
the most important decisions taken in the designing process of
CIW-NN. Moreover, we have shown that it is able to effectively

improve the behavior of the 1-NN rule to a greater extent than
a representative set of related evolutionary and nonevolutionary
techniques. These results have been successfully contrasted by
several nonparametric statistical procedures.

As future work, the employment of new search methods
to support IS, FW, and IW processes may lead to promising
results. For example, multiobjective methods for evolutionary
IS or the development of new search methods for FW and IW
with greater convergence capabilities (allowing, for example,
the definition of a weight for each instance of the problem,
instead of for each class) may improve the results of CIW-NN,
achieving better performances in classification.
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