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Abstract 

Low-level computer vision algorithms have high computational requirements. In this 

study, we present two real-time architectures using resource constrained FPGA and GPU 

devices for the computation of a new algorithm which performs tone mapping, contrast 

enhancement, and glare mitigation. Our goal is to implement this operator in a portable 

and battery-operated device, in order to obtain a low vision aid specially aimed at 

visually impaired people who struggle to manage themselves in environments where 

illumination is not uniform or changes rapidly. This aid device processes in real-time, 

with minimum latency, the input of a camera and shows the enhanced image on a head 

mounted display (HMD). Therefore, the proposed operator has been implemented on 



battery-operated platforms, one based on the GPU NVIDIA ION2 and another on the 

FPGA Spartan III, which perform at rates of 30 and 60 frames per second, respectively, 

when working with VGA resolution images (640 × 480). 

Keywords: reconfigurable hardware; graphics processor; real-time system; low-vision 

aid; tone mapping; resource-constrained platforms. 

 

1. Introduction 

Luminance levels can change dramatically over time and depending on the place. The 

average luminance in an outdoor scene can be 100 million times greater during the day 

than at night, and in the same scene the range of luminance can also vary with ratios on 

the order of 10,000:1 from highlights to shadows [1]. 

The human visual system is able to capture a wide range of light levels, and it functions 

across the changes in luminance employing diverse adaptation mechanisms. Some of 

them include the pupil, the rod, and the cone receptors. As a result, humans can recognize 

the details clearly in both dark and bright regions in the same scene. However, vision is 

not equally good under all conditions. Particularly, the elderly and those who suffer from 

visual disorders may be profoundly impaired by the low intensity, high dynamic range 

(HDR), and rapidly changing illumination conditions we often experience in our daily 

live as it is stated by Irawan et al. [1]. 

The human visual system can properly recognize details in both dark and bright regions 

in a scene, while the image captured by conventional digital cameras may be either too 

dark or too bright to present details [2]. This is due to the limited dynamic range of digital 

devices. Hence, some image-processing techniques must be applied to enhance these 

images and to map them on displays with a limited dynamic range. 



In this article, we explain two parallel implementations of a new tone mapping operator 

(TMO) on portable and resource-limited devices based on GPU and on FPGA 

architectures. With these implementations we aim to obtain a new low-vision aid which 

seeks to accurately represent in a HMD images captured under non-uniform illumination 

environments and with sudden changes in the illumination conditions. 

In the following sections, we review the properties of some of the most relevant TMOs, 

and their real-time implementations. Then, we briefly describe the new operator 

explaining its main advantages. In Sections 4 and 5, we focus on its implementation 

taking advantage of the parallelism provided by GPU- and FPGA-based platforms to 

achieve real-time processing when working with portable and resource-constrained 

devices. 

Then, we show the obtained results explaining the main advantages and drawbacks of 

each implementation to understand the trade-off between the flexibility but relatively low 

frequency of an FPGA and the high frequency and fixed architecture of the GPU. 

In the literature, we can find several GPU versus FPGA comparative works, for instance, 

in [3] five relatively simple image processing algorithms implemented on a Xilinx Virtex 

4 FPGA and a GeForce GTX 7900 GPU are examined. On the other hand, the work 

developed by Pauwels et al. [4] compare both platforms using medium to highly complex 

vision algorithms that stretch the FPGA to its limits. 

In those works, they employ high-performance FPGA and GPU devices, whereas, with 

our contribution, we aim to extend the state-of-the-art by comparing two resource-

constrained GPU and FPGA implementations of a low level pixel-wise image processing 

algorithm. 

 

2. Background 



The development of techniques for HDR image capture and synthesis has made tone 

mapping an important issue in computer graphics. The fundamental problem is how to 

map the large range of intensities found in an HDR image into the limited range 

supported by a conventional display device. 

Different TMOs have been introduced in the research literature which can be classified 

into two broad categories: global and local operators. 

Global operators apply a single mapping function to all pixels of the image, whereas local 

operators modify the mapping depending on the characteristics of different areas of the 

image. 

Some examples of well-known global operators are the one proposed by Drago et al. [5] 

and by Ward-Larsen et al. [6]. The former is based on logarithmic compression of 

luminance values imitating the human visual system response to light. The logarithmic 

bases employed are modified using a bias power function which produces a good 

preservation of the details and the contrast. The TMO proposed by Ward-Larsen et al. 

also performs logarithmic compression of the luminance as well as an iterative histogram 

adjustment constrained in slope by the human threshold versus intensity. 

The main drawbacks that these algorithms present are that they require the calculations of 

global statistic quantities, the maximum, and the log average. These global calculations 

are very time-consuming when working with parallel architectures such as the GPU 

architecture. Moreover, they require the calculation of the logarithm of the luminance 

which demands a great deal of memory resources in the FPGA implementation, since a 

look-up-table (LUT) is required. Hence, these TMO are not suitable for being 

implemented in resource-constrained devices as we aim to do. As it is stated in [7], to 

achieve real-time performance more powerful GPUs are required. 



One of the most relevant local TMO that can be found in the literature is the Mutiscale 

Retinex with Color Restoration (MSRCR) [8] which performs dynamic range 

compression, color constancy, and rendition. This operator brightens up dark areas of the 

image without saturating the areas of good contrast, preserving the chromatic component. 

It performs logarithmic range compression as well as combination of various Gaussian-

based scales to preserve the color. 

Another local TMO is the proposed by Hu et al. [2], which employs bilateral filters and 

divides the image in different regions according to the global histogram and then each 

region is enhanced according to its individual properties. 

The algorithm proposed by Horiuchi and Tominaga [9] takes advantage of both global 

and local operators by performing global enhancement employing a model of 

photoreceptor adaptation based on the general level of luminance and local adaption 

inspired in the MSRCR. 

We have decided to develop a new TMO since most of the TMOs that can be found in the 

literature require time- or memory-consuming operations such as global statistical 

calculations, iterative processing, or logarithmic compression of the dynamic range. 

Therefore, they are not appropriate to be implemented on resource-constrained systems as 

we aim to do. Actually most of the TMOs mentioned above have been implemented in 

high-end GPUs by Zhao et al. [7] to achieve real-time image performance. It is also true 

when working with FPGA-based devices. As shown in [10] existing hardware 

implementations require high-end FPGAs in order to get real-time operation. Moreover, 

the existing operators are not able to properly mitigate glares as well as enhance dark 

areas in the same scene while enhancing the details of the image such as the edges. Our 

system is required to attenuate glares in the images, since low-vision-affected persons 

present difficulties in their adaptation mechanisms to illumination changing conditions. 



In the next section, we explain the details of the new contrast-enhancement technique 

which is aimed to fulfill the specific requirements of our target low-vision application 

without carrying out complex and time-consuming operations. 

 

3. The new operator 

The proposed system takes advantage of both global and local approaches. On the one 

hand, it performs global contrast enhancement to brighten up the areas of the image of 

poor contrast/lightness as well as preserving the regions of good contrast and without 

altering the color. On the other hand, it carries out local image processing to mitigate too 

bright regions and glares as well as to preserve and enhance the details of the image. The 

glare mitigation is one of the novelties of our approach, and it is specially aimed to the 

low-vision-affected persons who have difficulties to visualize properly and scene with 

too bright regions. 

The global enhancement is based on the histogram adaptation of the brightness channel 

(V), when working in the HSV color space to produce images that accurately represent 

the threshold visibility of the scene features. HSV color space is employed since it is the 

most similar to the way the human brain tends to organize the colors employing three 

components: the Hue (H) which is the chromatic component, the Saturation (S) which 

indicates how pure a color is and the brightness (V) which is a measure of the intensity of 

light. 

The local enhancement is based on a more general retina-like processing scheme 

previously used in Retiner to extract the main regions of the scene and to produce an 

array of spike events for neural stimulation [11, 12] and in Vis2Sound to detect the main 

objects of the scene producing a spatialized sound to indicate their location [13]. In this 

study, this procedure enhances the details of the scene as well as mitigates glares, but we 



do not perform any kind of sensorial transduction or neural encoding employing its 

output. 

Using as inputs the Red (R), Green (G), and Blue (B) color channels and the intensity 

channel, obtained as an average of the R, G, and B channels, we can design a set of 

spatially opponent filters to model the function of retina bipolar cells. This opposition 

between the center and the periphery of the receptive field of these cells can be modeled 

with a difference-of-Gaussians filter (DoG), according to Equation (1): 

   (1) 

where Gaussians  and  are applied to different color channels or combinations, 

and  and  are the standard deviation of the Gaussian Mask. Typical values for  and 

 are 0.9 and 1.2, respectively, when the size of the filtering mask is 7 × 7. Incrementing 

the value of  has the effect of increasing the receptive field. 

This vision model performs a linear combination of three DoG filtering operations: two 

of them enhancing color-opponent contrast (magenta versus green, and yellow versus 

blue), and an additional one enhancing the edges of the scene. Equations (2) to (5) 

describe this procedure: 

    (2) 

     (3) 

  (4) 

        (5) 

where w1, w2, and w3 are the weightings factors used to combine the output from the 

three channels which are obtained according to Equations (6) to (8). 

     (6) 

     (7) 



     (8) 

 

We have chosen this combination of the color input channels according the way the 

human retina combines the signals from the three cone types, two chromatic, and one 

achromatic system [14]. The system sets up the weighting factors according to the 

percentage of dark pixels in the image, so that if the scene is too dark the system mainly 

enhances the edges of the image, as the human visual system does taking into account 

that color sensitivity is reduced in dark environments. The percentage of dark, medium, 

and bright pixels is calculated according to Equations (9) to (14). These parameters make 

possible to adjust the enhancement automatically according to the lighting conditions. 

     (9) 

    (10) 

     (11) 

     (12) 

    (13) 

    (14) 

where minValue is the minimum possible value of brightness and maxValue is the 

maximum possible value. In our case, minValue = 0 and maxValue = 255. 

Finally, the whole system performs a linear combination between the processed 

brightness channel (V2), the original brightness channel (V), and the retina output 

obtaining the final brightness channel, according to Equation (15). 

 

 (15) 

where 

 



Typical values for  are between 0.2 and 0.6. The Hue and the Saturation components 

remain unaltered. Finally, a conversion to the RGB color space is carried out to visualize 

the image on the HMD. A block diagram of the new TMO is depicted in Figure 1. 

To finalize this section the main novelties and advantages of our proposed operator are 

outlined: 

− Tone mapping and contrast enhancement using histogram adaptation of the 

brightness channel without requiring logarithmic compression of the dynamic 

range and other time-consuming computations. 

− Effective mitigation of glares using a bio-inspired processing which also preserves 

and enhances the details of the image such as the edges. 

− Automatically adjustment of the processing parameters according to the 

illumination conditions. 

 

Such pixel-wise operator inherently takes advantage of massively parallel architectures 

like GPU and FPGA. In Sections 4 and 5, the parallel implementation of this operator in 

different platforms is explained. Section 6 compares the output from the new operator 

with the output provided by some of the most relevant TMOs, to show that the proposed 

operator provides similar or even better results than the others without requiring time-

consuming operations and providing new facilities such as glare mitigation and edge 

enhancement, as required in the scope of the target application. 

 

4. GPU implementation 

The requirements for this application as portability, limited power consumption, and real-

time performance led us to consider the GPU NVIDIA ION2 [15] as a good option to 

design and develop the system. The NVIDIA CUDA API [16] is used to parallelize the 



operator since this GPU is supported. More information about the configuration interface 

of this aid device and other available image enhancements are explained in [17]. 

Some other aid systems use FPGA or DSP devices since they provide a high computation 

capability in a small and low power device. However, the selected GPU has 16 

processors and it is already available in a lightweight netbook with sufficient battery 

autonomy (about 4 h). 

Moreover, the system takes advantage of the Intel ATOM N450 processor, integrated in 

the netbook ASUS EEPC 1201 PN [18], which is faster than FPGA built-in processors, 

such as PowerPC. Furthermore, the GPU technology provides more flexibility to develop 

and customize dynamically the application. 

Our target GPU consists of two streaming multiprocessors. Each streaming 

multiprocessor has one instruction unit, eight stream processors (SPs), and one local 

memory (16 KB), so it has 16 SPs in total. The eight SPs in the same streaming 

multiprocessor are connected to the same instruction unit, so they execute the same 

instruction stream on different data (called thread). In order to extract the maximum 

performance of SPs by hiding memory access delays, we provide four threads for each 

SP, which are interleaved on the SP. Therefore, at least 32 threads for each streaming 

multiprocessor are required. 

In our case, the GPU requires full utilization to take advantage of the hardware’s latency 

hiding design. Another way to achieve the maximum performance is using fewer, but 

more work-intensive threads and relying on instruction-level parallelism as it is stated in 

[19]. 

To optimize the use of the available multiprocessors, the parameters to be determined are 

the number of threads and the shared memory required per block. Figure 2 summarizes 

the computation flow followed by the video streaming from the image capture to the 



enhanced image output. As we can observe, our GPU implementation of the TMO is 

comprised of several CUDA kernels. The general structure of the implemented CUDA 

modules is depicted in Figure 3. 

To accurately size the kernels we have used the CUDA Occupancy Calculator tool that 

shows the occupation of the multiprocessor’s cache and its percentage of utilization [16]. 

The thread block size is chosen in all cases so that multiprocessor occupancy is 100%. 

The size of the GRID (number of processing blocks to be executed by the kernel) is 

dynamically set according to the size of the image. The streaming multiprocessors are 

connected to large global memory (512 MB in ION2), which is the interface between the 

CPU and the GPU. This DRAM memory is slower than the shared memory; therefore, 

before starting the computations, all the threads of a block load the required image 

fragment in the shared memory. 

Depending on how the data are encoded in the GPU global memory, each thread can load 

one element if working with 4-byte datum or 4 data if working with 1-byte datum. The 

global memory accesses of the GPU for both reading and writing are done so that in one 

clock cycle all the threads of a warp (L) access to 4·L bytes of RAM, where L is equal to 

32 in CUDA Compute Capability 1.2 GPUs. 

Before turning to the processing stage all the threads of the processing block have to wait 

in a barrier to ensure that all of them have loaded its corresponding data. After the 

calculation step may be a second stage of synchronization of the block threads before 

writing to the GPU global memory. 

Since we are unable to connect the camera directly to the GPU, image transfers to and 

from the GPU via the PCI-Express bus are required. The interface between the host and 

the GPU global memory is the bottleneck of the application so as it is depicted in 

Figure 2, the data that transfer between the host and the device have been minimized. 



Furthermore, each image data are encoded as 1-byte unsigned integer. Therefore to 

encode a color pixel 3 bytes are required. When more precision is needed a conversion to 

floating point is done once the image is stored in the GPU global memory, exploiting the 

parallelism provided by the GPU. 

 

4.1. GPU implementation of the retina model 

In order to optimize the spatial filtering process, the system takes advantage of the linear 

property of the convolution operator. Therefore, we can reduce the processing only to the 

convolution of each color channel with two different Gaussian masks. Then, these filtered 

channels are linearly combined. Equations (16) to (18) describe mathematically this 

simplification: 

   (16) 

    (17) 

           (18) 

Moreover, the GPU implementation of the retina-like processing relies extensively on 2D 

separable convolution operations that are highly data-parallel and thus well matched to 

the GPU architecture. Therefore, the computational complexity is reduced from  to 

 being  the filter mask size. 

In order to carry out these convolutions in real-time we have developed two CUDA 

filtering kernels, one for the rows and another one for the columns. Both modules are 

very similar so we detail only the one for rows. 

The convolution operation requires a neighborhood with the same width that the filter 

mask to calculate the result for each pixel. So, each thread transfers one datum from the 

global memory to the shared memory. In order to get the maximum precision and to 

avoid bank conflicts in shared memory, these data are stored as floating point data. 



Therefore, there are  threads per block that only load data, but do not calculate any 

filtered pixel. So, as to not waste too many threads in the loading stage, the block size 

must be large enough compared to the filter mask width. In this case, the block size is set 

to 1 × 128, and the filter width is 7, so only 6 threads are wasted per processing block. 

The block width is set to 128 to achieve the required alignment when accessing to global 

memory, and also to optimize the multiprocessor utilization. 

When all the data are stored in the shared memory each thread multiplies the filter 

coefficients, stored in the constants memory, with the corresponding pixel and its 

neighborhood. Then, the result is stored in the global memory. Each thread repeats this 

procedure twice, once for each mask. Therefore, we carry out the two rows filtering with 

just one read access to the global memory. 

The column filters are computed in a similar way, taking as input the previously filtered 

images. 

Once the filtering process is finished we just need to linearly combine partial results as 

we have explained earlier, exploiting the parallelism provided by the GPU to obtain a 

gray level image. This image will be used to modulate the degree of enhancement applied 

to the brightness channel. 

 

4.2. HSV conversion and brightness equalizer 

This kernel uses thread blocks with size 256 (64 rows and 4 columns) and 4 KB of shared 

memory to store the necessary pixels and the histogram of the block. According to the 

NVIDIA CUDA Occupancy calculator, the occupancy of the multiprocessor is 100% and 

the maximum number of active blocks per multiprocessor is 4. 

First of all, each block loads 1024 pixels in the GPU shared memory, each thread loads 

four data. Once all the data are stored in shared memory each thread computes three 



converted pixels and stores them in shared memory. During the process, each block 

calculates its own histogram of the brightness channel. To avoid mistakes when 

calculating the histogram we use the atomicAdd operation available in GPUs with CUDA 

Compute Capability 1.2. Finally, we transfer the HSV pixels to the GPU global memory 

and we merge each sub-histogram in a global histogram using atomic operation. This way 

the brightness histogram is computed at the same time the RGB to HSV conversion is 

performed requiring only an additional transfer of each block histogram from shared to 

global memory. Then, the histogram equalization is performed using a LUT substitution 

obtaining a new brightness channel (V2 in Figure 1), which is linearly combined with the 

output from the retina-like processing. 

Finally, de HSV to RGB conversion is performed in a similar way, and the RGB resulting 

image is transferred to the CPU. 

 

5. FPGA implementation 

Our target FPGA platform is the SB video-processing mobile platform [20], which 

includes a Xilinx Spartan 3 XC3S2000 FPGA with 2 million gates, 36-Mbit SRAM 

memory for data exchange, and all the interfaces required for the video input channel and 

the video output for HMD. We have chosen this platform because of its reduced power 

consumption, and small size. It includes a battery that provides up to 10 h of autonomy. 

Figure 4 summarizes the processing carried out over the video frames, from the image 

grabbing stage to the enhanced image output. 

The analog video input is passed to an analog-to-digital converter, which encodes each 

pixel in YUV format. In order to separate the two different clock domains (the input 

working at 27 MHz and the VGA output at 40 MHz) we have used a double buffering 

technique. 



So, as to maximize the performance of the system and to exploit the inherent parallelism 

on the programmable device selected for the implementation we chose a pipelined 

architecture, able to process a pixel every clock cycle. 

As in the previous section, we have implemented two main procedures, the retina-like 

filtering and the brightness equalization. In the next sections, we explain each of these 

modules in detail, as well as the HSV conversion module, which requires a specific 

implementation adapted to the FPGA. 

 

5.1. Implementation of the retina-like filtering 

The convolution process requires a set of pixels of its neighborhood to calculate each 

pixel as we have explained before. To resolve this problem we use the convolution 

computation architecture proposed by Ridgeway [21], depicted in Figure 5. In order to 

use 7 × 7 filtering masks we need 7 FIFO buffers that store the first 7 image rows and 

seven shift registers that are responsible for storing the 49 neighboring pixels for the 

current convolution. The serial connection of the FIFO memories emulates the vertical 

displacement of the mask and the transfer of values of the FIFO memories to the shift 

registers emulates the horizontal scrolling. Then, the accumulators marked as “ACCUM 

x” add those pixels that are multiplied by the same coefficients of the mask. We have six 

products as a result of breaking down the process of convolution taking advantage of the 

linear property of the convolution as we have mentioned before. Then, we have to take 

into account the weighting to be applied according to the percentage of dark pixels 

present in the image. 

5.2. HSV conversion 

The calculation of the Hue component (H) requires complex computation. To avoid that, 

it has been implemented using a LUT with 215 inputs of 8-bits each one mapped into the 



FPGA BlockRAM modules. This LUT employs a 36% of the available memory 

(262 Kbits). Besides, to get the other two color components, saturation (S) and brightness 

(V), two dividers have been implemented. The design of the dividers is fully pipelined, 

and they can achieve a throughput of one division per clock cycle. The division of the S 

component needs a fractional remainder because the minimum of R, G, and B always is 

equal or less than the sum of them. This fact results in an 18-cycle delay which has to be 

considered in the H component computation in order to get synchronization. 

 

5.3. Brightness equalizer 

To implement the brightness equalizer the whole V color plane, whose size is 640 × 480 

pixels, the image is divided in 35 blocks with 100 × 100 pixels and their cumulative 

distributions are calculated. While the cumulative distributions for the current frame are 

being computed in parallel, its brightness channel is being equalized using the 

distributions computed for the previous frame. The distributions computation is 

performed in five steps, calculating seven distributions in parallel at each step, as image 

is being scanned. This procedure finishes when the 35 cumulative distribution functions 

are stored in the RAM memory. To develop the equalizer we rely extensively in the 

implementations explained in [10]. 

 

6. Results 

Regarding to the results provided by the proposed operator, Figure 6 shows the output 

from the different processing stages. Figure 6a shows a dark image [22] in which main 

features of the scene cannot be appreciated, only the window can be distinguished. 

Figure 6b shows the output from the retina-like filtering, as the whole image is too dark, 

the retina output mainly enhances the edges of the main features. Figure 6c shows the 



output brightness equalization without taking into account the retina output. The final 

output image is depicted in Figure 6d. As we can observe in this image, main features of 

the scene can be distinguished clearly whereas the glares and the too bright areas which 

appear in Figure 6c have been mitigated. Moreover, the colors of the picture do not 

appear distorted. 

Figures 7 and 8 show a comparative of the output of our operator, without taking into 

account the retina-like processing, and the output from well-known TMOs and contrast 

enhancement algorithms known as Drago et al. [5], Mantiuk et al. [23], and Reinhard and 

Devlin [24] operators and Multiscale Retinex [8]. As we have explained previously, our 

operator has two main stages, one comprising a dynamic range adaptation and contrast 

enhancement and a second one for glare mitigation and edge enhancement. The later is 

specially designed for low-vision-affected people; therefore, the output obtained from the 

combination of both parts is not directly comparable with the output from other TMO 

operators. For this reason, we have set aside the output from the retina-like processing in 

this comparative. 

In Figure 7a, we can observe the same underexposed image than in Figure 6 [22]. 

Figure 7b–g shows the original image enhanced with different TMO algorithms. In 

Figure 7b, we can observe perfectly all the elements of the image, actually the proposed 

operator not only brighten dark region, but also keep details of the landscape out of the 

window, whereas the output from the other TMOs presents the window overexposed (see 

Figure 7d–g), and, in some cases, the whole image appears too bright (see Figure 7e,g). 

Figure 8 shows another comparative example. In this case, the original image presents 

better signal-to-noise ratio (SNR) than in the previous case, according to Table 1. As we 

can observe, the proposed algorithm enhances the whole image without saturating the 



bright regions and preserves the overall level of illumination in medium values, that way 

all the details can be appreciated without presenting disturbing glares. 

Table 1 summarizes the SNR of each of the images presented in Figures 7 and 8. 

The value of the SNR has been calculated according to Equation (19): 

      (19) 

where  is the average value of the image and  is the standard deviation. We are 

working with color images so we show in Table 1 the average value of the SNR 

calculated for each channel. 

From these comparisons of the results with different methods we can observe that the 

proposed algorithm provides an effective improvement of dark images and high-contrast 

images, without altering color information, preserving the details, and it does not brighten 

excessively the image. Moreover, it can enhance the image automatically according to the 

lighting conditions, without requiring the user to set complicated parameters. 

According to the measures of the SNR presented in Table 1, our operator is able to 

increase the SNR with respect to the original image. Moreover, the values of the SNR 

provided by our algorithm are pretty similar to the values provided by the others TMOs, 

especially to the Drago operator. This operator is the one which provides more natural 

scenes and better detail reproduction in dark regions, according to a study performed by 

Yoshida et al. [25]. In this study, the authors conduct a psychophysical experiment based 

on a direct comparison between the appearances of real-world HDR images of these 

scenes displayed on a low dynamic range monitor employing seven well-known TMOs. 

The human subjects were asked to rate image naturalness, overall contrast, overall 

brightness, and detail reproduction in dark and bright image regions with respect to the 

corresponding real-world scene. 



Moreover, as it can be observed from Figures 7 and 8, the proposed operator provides 

better detail reproduction in bright image regions (observe the window in Figure 7a,b). 

At this point, we discuss the results obtained from tests regarding the performance of the 

system using the GPU and the FPGA-based platforms, and also related to the use of 

resources for the FPGA implementation, and the speed up obtained with respect to a non-

parallel CPU implementation. 

As we have mentioned before, the complete system have been implemented on a GPU 

NVIDIA ION2 and on an FPGA Xilinx Spartan 3. The results regarding area occupation 

and clock frequency for the FPGA implementation are summarized in Table 2. 

Table 3 summarizes the performance in frames per second (fps) of the CPU (Matlab code 

running on a single core), GPU, and FPGA implementations of the new operator and the 

speed up obtained with respect to the CPU when working with RGB images with VGA 

resolution (640 × 480). The CPU used to carry out this tests is the CPU Intel core i7 920 

at 2.67 GHz. Both GPU and FPGA implementations reach real-time performance, over 

25 fps, obtaining a minimum speed up of 7.5 with respect to the CPU even when using a 

high-end CPU. 

The FPGA performs at a major frame rate than the GPU. This is mainly due to the large 

delay required to transfer the frame from the CPU memory to the GPU global memory 

and vice versa (10 ms). Nevertheless further improvement can be achieved by performing 

the transferences between the CPU and the GPU asynchronously, concurrently with 

computation. 

However, the GPU works in floating point precision, whereas the FPGA uses fixed point 

since it has no native support for floating point arithmetic. Also the GPU computes the 

histogram with 256 intensity levels instead of the 64 levels employed by the FPGA, 

which is limited by routing constrains. 



To measure the accuracy of both approaches we have calculated the peak-signal-to-noise 

ratio (PSNR), of the output image obtained with both, GPU and FPGA, systems with 

respect to the one obtained with the CPU, according to Equation (20). The resulting 

image computed with the FPGA obtains a PSNR of 30 dB, whereas with the GPU the 

value of the PSNR is infinite since the output image is identical to the one obtained with 

the CPU. The FPGA obtains a lower value for the PSNR as a result of the different 

algorithmic simplifications that had to be adopted, and the use of fixed point arithmetic. 

     (20) 

where I stands for the resulting image obtained with the CPU, K is the resulting image 

obtained with the GPU or the FPGA, m and n are de dimensions of the image and  

is the maximum value that a pixel can reach (255 in our case). 

Table 4 details the percentage of the total processing time employed in each of the tasks 

by the GPU and by the FPGA. In the case of the FPGA, the percentage of time is 

obtained for each module separately, when the whole system is working, all the tasks are 

being executed in a pipeline. On the other hand, the GPU employs only a 6% of the 

processing time in the histogram adjustment, since the histogram calculation is performed 

in parallel with the RGB to HSV conversion. Moreover, more than 30% of the time is 

employed in performing image transfers from CPU memory to GPU memory, so further 

improvement can be achieved performing the memory storage in parallel with the 

computation. Table 5 summarizes the power consumption, clock frequency, and weight 

for both systems. 

According to the tables presented, we can observe that real-time performance (over 

25 fps) is reached with both embedded solutions. Nevertheless the FPGA implementation 

is an order of magnitude more power efficient than the GPU, although it provides less 

accuracy in the computations and therefore output images with less PSNR. 



On the other hand, the FPGA solution is less weight, whereas the GPU solution is more 

affordable since its use is widely extended. In the case of the GPU, a fixed architecture is 

provided and the goal is to obtain its maximum performance, whereas an FPGA design 

leaves more choices to the engineer. This flexibility of the FPGA comes at the cost of a 

much larger design time than the GPU and makes tuning the system more difficult than in 

the case of the GPU. 

 

7.  Conclusions 

High-end GPUs and FPGAs are suitable for highly parallel complex algorithms such as 

pixel-wise processing. On the other hand, limited resources GPUs and FPGAs, with less 

computing capability and reduced power consumption, can compete with other embedded 

solutions in portable applications which also require image processing parallel 

computation to achieve real-time performance. 

We have presented two implementations of a new TMO on a GPU NVIDIA ION2 

integrated in a small size netbook and on a Spartan 3 FPGA-based platform reaching in 

both cases real-time performance when working with 640 × 480 RGB images. The FPGA 

implementation provides higher frame rates and less power consumption, whereas the 

GPU implementation provides more precision in the computation and therefore higher 

quality output images. 

Since both implementations use portable and battery-operated platforms they can be used 

as low-vision aids specially aimed at visually impaired people, such as those affected by 

Retinitis Pigmentosa, who present several difficulties to manage themselves in 

environments where illumination is not uniform or in low illumination environments. 
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Figure 1. Block diagram of the proposed tone mapping operator. 

Figure 2. System overview illustrating the sequence of processes running on the 

CPU and GPU. Solid and dashed arrows depict large and small data transfers, 

respectively. 

Figure 3. General structure of the developed GPU modules. 

Figure 4. Computation flow for the input images from the camera in the SB 

platform. 

Figure 5. Convolution diagram for the FPGA. 

Figure 6. Outputs from the different stages of the proposed operator: (a) original 

image [22], (b) output from the retina-like filtering, (c) output from the contrast-

enhancement processing, and (d) final image. 

Figure 7. Comparison of the proposed algorithm with different image enhancement 

methods. (a) Original image from [22], (b) result of the proposed algorithm without the 

retina-like filtering, (c) result of the proposed algorithm with the retina-like filtering, (d) 

result of the Drago operator, (e) result of the Reinhard operator, (f) result of the Mantiuk 

operator, (g) result of the Retinex operator. 

Figure 8. Comparison of the proposed algorithm with different image enhancement 

methods. (a) Original image from [22], (b) result of the proposed algorithm without the 

retina-like filtering, (c) result of the proposed algorithm with the retina-like filtering, (d) 

result of the Drago operator, (e) result of the Reinhard operator, (f) result of the Mantiuk 

operator, (g) result of the Retinex operator. 

Table 1. SNR obtained with different TMOs 

 Original 

(dB) 

Proposed  

operator 

without 

Proposed 

operator 

with the 

Drago 

(dB) 

Reinhard 

(dB) 

Mantiuk 

(dB) 

Retinex 

(dB) 



without 

the retina-

like 

output 

(dB) 

with the 

retina-

like 

output 

(dB) 

Kitchen 

scene 

–3.28 18.48 16.18 18.18 20.70 12.36 18.52 

Car 

scene 

9.53 20.77 18.52 21.01 18.3 13.96 23.2 

 

Table 2. Area and speed for the whole system on a Spartan 3 XC3S2000 

Parameter Value 

Slices 16545 (80%) 

LUTs  30086 (73%) 

RAMB  39 (97%) 

 40.25 MHz 

MULTs  26 (65%) 

BUFGMUXs 7 (87%) 

DCMs 2 (50%) 

 

Table 3. Performance of GPU and FPGA implementations, frame size 640 ×××× 480 

 CPU GPU FPGA 

Performance (fps) 4 30 60 

Speed up – 7.5 15 

 



Table 4. Percentage of time per frame spent on each processing stage 

% time/frame 

Processing stage GPU FPGA 

Store image in device memory 15.6 32.54 

RGB to HSV conversion 30.2 10.53 

Histogram adjustment 6.64 18.37 

Retina-like processing 14.22 9.13 

Lineal combination 6.01 2.09 

HSV to RGB conversion 12.31 27.34 

Store image in main  

memory               15.02                 – 

 

Table 5. Comparison of the employed platforms in terms of power consumption, 

clock frequency, and weight 

Platform Power 

(W) 

Proc. clock 

(MHz) 

Mem. clock 

(MHz) 

Weight 

(kg) 

ASUS EEPC 1201PN [18] 12 450 750 1.45 

SB video-processing mobile 

platform [20] 

0.9 40 27 0.5 
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