
Expert Systems with Applications xxx (2012) xxx–xxx
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Evolutionary algorithms for the design of grid-connected PV-systems

Daniel Gómez-Lorente a,⇑, Isaac Triguero b, Consolación Gil c, A. Espín Estrella a

a Dept. of Civil Engineering, Electrical Engineering Section, ETSICCP, University of Granada, Campus Fuentenueva, Granada 18071, Spain
b Dept. of Computer Science and Artificial Intelligence, CITIC-UGR (Research Center on Information and Communications Technology), University of Granada, 18071 Granada, Spain
c Dept. of Computer Arquitecture and Electronics, CITE III, University of Almería, La Cañada de San Urbano s/n, Almería 04120, Spain

a r t i c l e i n f o a b s t r a c t
Keywords:
Photovoltaic plants
Numerical optimization
Evolutionary algorithms
Differential evolution
0957-4174/$ - see front matter � 2012 Elsevier Ltd. A
doi:10.1016/j.eswa.2012.01.159

⇑ Corresponding author. Tel.: +34 958 249435; fax:
E-mail addresses: dglorente@ugr.es (D. Gómez-Lor

(I. Triguero), cgilm@ual.es (C. Gil), aespin@ugr.es (A. E

Please cite this article in press as: Gómez-Loren
plications (2012), doi:10.1016/j.eswa.2012.01.15
The sale of electric energy generated by photovoltaic (PV) plants has attracted much attention in recent
years. The installation of PV plants aims to obtain the maximum benefit of captured solar energy. The cur-
rent methodologies for planning the design of the different components of a PV plant are not completely
efficient. This paper addresses the optimization of the design of PV plants with solar tracking, which con-
sists of the optimization of the variables that make up the PV plant to obtain the minimum electric (Joule)
losses possible. These variables are the size and distribution of solar modules in the solar tracker, the dis-
tribution of the solar trackers in the field and the choice of inverter. Evolutionary algorithms (EAs) are
adaptive methods based on natural evolution that may be used for searching and optimization. Four dif-
ferent EAs have been used for optimizing the design of PV plants: steady-state genetic algorithm, gener-
ational genetic algorithm, CHC algorithm and DE algorithm. In order to test the performance of these
algorithms we have used different proposed fields to mount PV plants. The results obtained show that
EAs, and specifically DE with rand mutation schemes, are promising techniques to optimize design of
PV plants. Furthermore, the results are contrasted with nonparametric statistical tests to support our
conclusions.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The viability of a photovoltaic grid-connected plant (PVGCP)
(Swanson, 2009) can be affected by several factors (Swider et al.,
2008), such as the initial capital cost of the system, the generation
unit costs (Kenneth & Jared, 2010), the selling price of the gener-
ated energy and the PVGCP capital cost subsidization rate. The gen-
eration unit costs is the factor that is easiest to be optimized, since
both the initial investment cost and the sales value of the energy
generated are external factors independent of the photovoltaic
(PV) plant itself. Therefore we address the problem of the optimi-
zation of PVGCPs from the point of view of their initial installation,
with the goal of maximizing the generated energy.

Conventional methodologies (empirical, analytical, numerical,
hybrid, etc.) (Asiedu & Chen, 1997; Bartoli, Cuomo, Fontana, Serio,
& Silvestrini, 1984) for designing PV systems have generally been
used for places where the weather data, such as irradiation, temper-
ature, humidity, clearness index and wind speed, are required and
the information concerning to the place where we want to establish
the PV system is available (Hernández, Medina, Davidson, & Jurado,
2007), because these approaches need long-term meteorological
data for their operations. In this particular case, these methods
ll rights reserved.
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present a good solution for projecting PV systems and their accu-
racy is achieved by using data from daily global irradiation series.
However, these techniques could not be applied for projecting PV
systems in remote and isolated areas, where the relevant meteoro-
logical data, especially regarding solar radiation, are not available.
In order to deal with this situation, we need methods that are capa-
ble of optimizing the design of PV systems using all their variables.

The design of PV systems can be viewed as a continuous optimi-
zation problem, and so it could be solved using evolutionary algo-
rithms (EAs). These techniques (Eiben & Smith, 2003; Fernández,
García, Luengo, Bernadó-Mansilla, & Herrera, 2010; García &
Herrera, 2009) have been successfully used in different continuous
optimization problems (Triguero, García, & Herrera, 2010, 2011),
such as the design of large power distribution systems (Ramírez-
Rosado & Bernal-Agustín, 2001). EAs have proved to perform well
in complex problems with linear or non-linear cost functions.

In recent years, several studies have appeared in the specialized
literature in which generated power for PV systems is optimized
(Baños et al., 2011). Particle swarm optimization (PSO) (Kennedy
& Eberhart, 1995), Genetic algorithms (GAs) (Goldberg, 1989) and
differential evolution (DE) (Storn & Price, 1997) are three effective
evolutionary optimization techniques for continuous spaces. In
fact, PSO has been used to optimize the sizing of a PVGCS with
fixed structures (Kornelakis & Marinakis, 2010), and inverters
(Vural, Der, & Yildirim, 2011), and results have been compared
with GAs in terms of efficiency. Other works, such as (Koutroulis,
thms for the design of grid-connected PV-systems. Expert Systems with Ap-
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Kolokotsa, Potirakis, & Kalaitzakis, 2006), use GAs to optimize the
design of stand-alone photovoltaic/wind systems. Furthermore,
the DE algorithm has been used to determine the tilt angle in PV
modules (Vural, Der, & Yildirim, 2010). To the best of our knowl-
edge, evolutionary techniques have not yet been applied to
optimizing PVGCSs with solar tracking.

In this paper we address the problem of the optimization of PV
plants with trackers in terms of unit generation costs, decreasing
electrical losses that occur in the PV plant and therefore increasing
the generated energy. Four different EAs have been analyzed in
terms of their efficiency in several defined problems which consist
of 40 fields with different dimensions, steady-state GA (Glover &
Kochenberbe, 2003), generational GA (Glover & Kochenberbe,
2003), the CHC algorithm (Eshelman, 1991) and the DE algorithm
(Price, Storn, & Lampinen, 2005; Storn & Price, 1997). In these
fields, the algorithm should choose and distribute the elements
that make up the PV plant in such a way as to generate the mini-
mum possible electric losses. Each of these elements, for instance
the size of the PV panels or their distribution on the structure, will
be part of the solution of the problem, which will allow us to know
the Joule losses in electrical conductors in the installed capacity of
this configuration.

The experimental study will include a statistical analysis based
on nonparametric statistical tests and will involve a total of 40
fields with different parameter selections for each EA.

The rest of the paper is organized as follows: Section 2 describes
the background of PV systems and the EAs used. In Section 3 we
present the use of EAs for optimizing the PV plant design. Section
4 discusses the experimental framework, presents the analysis of
results and shows the analysis of the convergence of each EA pop-
ulation. Finally, in Section 5 we summarize our conclusions.
2. Background

In this section, we deal with the main aspects of the PV plants
with trackers and the EAs used. Section 2.1 presents a background
on PV plants with trackers. Sections 2.2 and 2.3 show the main
characteristics of GA and CHC algorithms, and finally, Section 2.4
shows the main components of the DE algorithm.

2.1. PV plant with trackers

The main components of a PV plant with trackers are the field
where will be installed the PV plant, the tracking structures that
will be distributed in this field, the PV modules on the monitoring
structures, the inverters which convert direct current into alternat-
ing current and the electrical conductors that carry electrical en-
ergy from the PV modules to the inverters. Electrical losses in the
transport of electrical energy in those electrical conductors can
be calculated as follows:

P ¼ 2 � R � I2 ð1Þ

where I is the intensity of current passing through a conductor, and
R is the electrical resistance, which depends on the section s, length
L and resistivity q of the conductor, which for copper conductors
can take the value q ¼ 0:017241 X�m2

m (X ohms and m meters (Elgerd,
1971)), and are related as in the equation:

R ¼ q � L
s

ð2Þ

The section of the conductor is determined by the electric intensity
it is capable of bearing and the allowable voltage drop for that tran-
che. In our case the main condition that defines the section of the
conductor is the voltage drop, because the current through the con-
ductors is much lower than the intensities that they bear. Therefore
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the conductor section is defined by the permissible voltage drop as
follows:

DV ¼ 2 � LP
l � s � V ð3Þ

where P is the electrical power flowing through the conductor, l the
electrical conductivity of the copper conductor that depends on
temperature but can take a standard value of l ¼ 58:0 m

X�m2 and V
the line voltage (Elgerd, 1971).

The conductor’s length is determined by the distance from the
tracking structure to the inverter. In a rectangular field, inverters
will be located at the geometric center of the field. Thus, once we
know the distances from each of the tracking structures to the
geometric center of the field and the electrical current flowing
from each tracker to the inverter, we can calculate the electric
(Joule) losses produced. Obviously, the most interesting configura-
tions, are those in which the current through the conductors is as
low as possible and the voltage at which current flows is as high
as the inverter allows. The intensity and voltage are not only de-
fined by the electrical parameters of the PV modules chosen, but
also depend on the several series–parallel associations that exist
within the tracking structures. The physical parameters of the
PV modules, such as height and width, will define the size of
the tracking structures, and therefore, the separation between
them to ensure that none cast shadows on surrounding structures.
This will limit the number of trackers that are installed in the
field.
2.2. Genetic algorithms (GAs)

GAs have proved to perform well in many optimization prob-
lems (Maaranen, Miettinen, & Penttinen, 2007). GAs are stochastic
search methods that have been successfully applied in many
search, timetabling, scheduling and machine learning problems
and have been especially used in engineering, biology and medi-
cine (Haida et al., 1991). GAs are inspired by evolutionary opera-
tors such as mutation, selection and crossover (Goldberg, 1989).

A GA starts with a population of M candidate solutions, called
individuals or chromosomes. It is usual to denote each individual
as a D-dimensional vector Xi;G ¼ x1

i;G; . . . ; xD
i;G

n o
. The initial popula-

tion should cover the entire search space as much as possible. In this
problem, this is achieved by uniformly randomizing individuals. The
subsequent generations in GA are denoted by G = 0,1, . . . ,Gmax. Fig. 1
shows the outline of a GA.

Traditionally, a solution is represented as a binary string of 0
and 1, but other encodings are also possible (Ronald et al.,
1997). In our case we will focus on a real codification, where
the crossover operator can only be used between genes occupying
the same position within the individuals and the mutation opera-
tor can only mutate the gene within the maximum and minimum
values that the variable can take. In each generation, the fitness of
every individual in the population is evaluated, and multiple indi-
viduals are stochastically selected from the current population
(based on their fitness), and modified to form a new population.
The new population is then used in the next iteration of the
algorithm.
2.3. CHC algorithm

The main idea that differentiates the CHC evolutionary algo-
rithm (Eshelman, 1991) from the GA is that CHC algorithm involves
the combination of a selection strategy with a very high selective
pressure, and several components inducing a strong diversity.
The four main components of the algorithm are shown as follows:
thms for the design of grid-connected PV-systems. Expert Systems with Ap-
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Fig. 1. GA algorithm basic structure.

Fig. 2. Example of individual for the PVGCP.

Table 1
Design problem ranges.

Parameter Minimum Maximum

No. rows 5 9
No. columns 8 14
Module power (W) 150 290
I maximum power point (A) 4.49 10.23
Module height (m) 1.324 2.000
Module width (m) 0.800 1.061
Maximum inverter voltage (V) 700 880
Nominal inverter voltage (V) 600 800
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� Elitist selection. The M members of the current population are
merged with the offspring population obtained from it and
the best M individuals are selected to compose the new
population.
� Highly disruptive crossover, HUX. It crosses over exactly half of

the non-matching individuals, where the bits to be exchanged
are chosen at random without replacement. In this way, it guar-
antees that the two offspring are always at the maximum Ham-
ming distance from their two parents, thus proposing the
introduction of a high diversity in the new population and less-
ening the risk of premature convergence.
� Incest prevention mechanism. During the reproduction step, each

member of the parent (current) population is randomly chosen
without replacement and paired for mating. However, not all
these couples are allowed to cross over. Before mating, the
Hamming distance between the potential parents is calculated
and if half this distance does not exceed a difference threshold
d, they are not mated and no offspring coming from them is
included in the offspring population. The aforementioned
threshold is usually initialized to D/4 (with D being the individ-
ual length). If no offspring is obtained in one generation, the dif-
ference threshold is decremented by one. The effect of this
mechanism is that only the more diverse potential parents are
mated, but the diversity required by the difference threshold
automatically decreases as the population naturally converges.
� Restart process. It is only applied when the population has con-

verged. The difference threshold is considered to measure the
stagnation of the search, which happens when it has dropped
to zero and several generations have been run without intro-
ducing any new individual in the population. Then, the popula-
tion is reinitialized by considering the best individual as the
first chromosome of the new population and generating the
remaining M � 1 by randomly flipping a percentage of their bits.

2.4. Differential evolution

DE follows the general procedure of an EA. As in the previous
algorithms, DE usually begins with a uniform random population
to cover the entire search space as much as possible.

2.4.1. Mutation operation
After initialization, DE applies the mutation operator to gener-

ate a mutant vector Vi,G, with respect to each individual Xi,G, in
Please cite this article in press as: Gómez-Lorente, D., et al. Evolutionary algori
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the current population. For each target Xi,G, at the generation G,

its associated mutant vector Vi;G ¼ V1
i;G; . . . ;VD

i;G

n o
. The method of

creating this mutant vector is that which differentiates one DE
scheme from another. Six of the most frequently referenced strat-
egies are listed below:

� ‘‘DE/Rand/1’’:
thms fo
Vi;G ¼ Xri
1 ;G
þ F � Xri

2 ;G
� Xri

3 ;G

� �
ð4Þ
� ‘‘DE/Best/1’’:
Vi;G ¼ Xbest;G þ F � Xri
1
;G � Xri

2
;G

� �
ð5Þ
� ‘‘DE/RandToBest/1’’:
Vi;G ¼ Xi;G þ F � ðXbest;G � Xi;GÞ þ F � Xri
1 ;G
� Xri

2 ;G

� �
ð6Þ
� ‘‘DE/Best/2’’:
Vi;G ¼ Xbest;G þ F � Xri
1 ;G
� Xri

2 ;G

� �
þ F � Xri

3 ;G
� Xri

4 ;G

� �
ð7Þ
� ‘‘DE/rand/2’’:
Vi;G ¼ Xri
1 ;G
þ F � Xri

2 ;G
� Xri

3 ;G

� �
þ F � Xri

4 ;G
� Xri

5 ;G

� �
ð8Þ
� ‘‘DE/RandToBest/2’’:
Vi;G ¼ Xi;G þ F � ðXbest;G � Xi;GÞ þ F � Xri
1
;G � Xri

2
;G

� �
þ F � Xri

3 ;G
� Xri

4 ;G

� �
ð9Þ
The indices ri
1; r

i
2; r

i
3; r

i
4; r

i
5 are mutually exclusive integers ran-

domly generated within the range [1,NP], which are also different
from the base index i. These indices are randomly generated once
for each mutation. The scaling factor F is a positive control param-
eter for scaling the difference vectors. Xbest,G is the best individual
of the population in terms of fitness.

2.4.2. Crossover operator
After the mutation phase, a crossover operation is applied to in-

crease the potential diversity of the population. The DE algorithm
r the design of grid-connected PV-systems. Expert Systems with Ap-
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Table 2
Fields chose for our problem.

Field Dimension
X (m)

Dimension
Y (m)

Field Dimension
X (m)

Dimension
Y (m)

1 130 90 21 485 415
2 150 100 22 500 450
3 185 100 23 500 500
4 200 135 24 530 485
5 200 150 25 530 510
6 210 165 26 570 510
7 250 150 27 600 525
8 280 180 28 605 550
9 280 210 29 620 540

10 300 200 30 600 600
11 300 250 31 650 600
12 300 300 32 680 620
13 325 275 33 700 620
14 335 290 34 730 600
15 350 300 35 750 610
16 400 315 36 750 680
17 420 350 37 800 700
18 450 350 38 825 680
19 400 400 39 860 800
20 470 380 40 900 900
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can use three kinds of crossover schemes, known as ‘Binomial’,
‘Exponential’ and ‘‘Arithmetic’’ crossovers. This operator is applied
to each pair of the target vector Xi,G and its corresponding mutant
vector Vi,G to generate a new trial vector that we denote Ui,G. The mu-
tant vector exchanges its components with the target vector Xi,G.

We will focus on the binomial crossover scheme, which is per-
formed on each component whenever a randomly picked number
between 0 and 1 is less than or equal to the crossover rate (CR),
The CR is a user-specified constant within the range [0,1), which
controls the fraction of parameter values copied from the mutant
vector. This scheme may be outlined as

Uj
i;G ¼

Vj
i;G if randð0;1Þ <¼ CR or j ¼ jrand

Xj
i;G Otherwise

(
ð10Þ

where rand (0,1) 2 [0,1] is a uniformly distributed random number,
j ranges in {1,2, . . . ,D}, and jrand 2 {1,2, . . . ,D} is a randomly chosen
index, which ensures that Ui,G gets at least one component from Vi,G.

Finally, we describe the arithmetic crossover, which generates
the trial vector Ui,G like this,

Ui;G ¼ Xi;G þ K � ðVi;G � Xi;GÞ ð11Þ

where K is the combination coefficient which is usually used in the
interval [0,1]. This strategy is known as ‘‘DE/CurrentToRand/1’’.

2.4.3. Selection operator
When the trial vector has been generated, we must decide

which individual between XiG and Ui,G should survive in the popu-
lation of the next generation G + 1. The selection operator is
described as follows:

Xi;Gþ1 ¼
Ui;G if f ðUi;GÞ is better than f ðXi;GÞ
Xi;G Otherwise

�
ð12Þ

where f( ) is the fitness function to be minimized. If the new trial
vector yields a solution equal to or better than the target vector,
it replaces the corresponding target vector in the next generation;
otherwise the target is retained in the population. Therefore, the
population always gets better or retains the same fitness values,
but never deteriorates. This one-to-one selection procedure is gen-
erally kept fixed in most of the DE algorithms.

3. Evolutionary algorithms for optimizing the design of PVGCPs
with trackers

In this section we explain the structure of the problem, as well
as each of the solutions that have been adopted for its resolution.
The problem that arises is, given a rectangular field with specific
dimensions and latitude, the algorithm will try to find the optimal
configuration in which the Joule losses in electrical conductors
from trackers to inverters are minimal.

Typically, when dealing with genetic algorithms, the set of vari-
ables that make up the solution of our problem are denoted as a
chromosome, while, in EAs it is defined as an individual. Thus,
we can say that a chromosome consists of genes, while for EAs
the individual consists of attributes. Henceforth, we shall always
refer to them as individuals and attributes (Eiben & Smith, 2003).

3.1. Parameter encoding and individual structure

First of all, it is necessary to define the solution codification. In
the proposed EAs, each individual in the population encodes a
complete solution, that is, all the variables which form the design
of a PV plant are encoded sequentially in each individual. In fact,
one individual is composed of nine different variables, as Fig. 2
shows. The maximum and minimum values of these variables are
Please cite this article in press as: Gómez-Lorente, D., et al. Evolutionary algori
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previously specified; thus the algorithm does not go beyond this
range in its search, and does not lead to inconsistent solutions. It
is important to note that these ranges are adjustable at the start
of calculation. Thus, to solve our problem, the values found in
the catalogs of the leading manufacturers of photovoltaic modules
and inverters have been introduced as limiting values for these
ranges. Following the ideas established in Jingqiao and Sanderson
(2009), the values of each individual are generated randomly.

3.2. Generating new configurations

After the initialization process, each evolutionary algorithm en-
ters an iterative loop in order to perform different operations with
the purpose of defining new individuals Ui,G. Mutation and cross-
over operators generate new configurations in each generation
with the ideas established in Section 2. After applying these oper-
ators, it is necessary to check that the individual Ui,G has been gen-
erated with correct values for all features of the prototypes, i.e. to
check that the values are in the correct range (Table 1).

3.3. Fitness function

In order to evaluate the generated configuration we need to de-
fine a fitness value for each individual. In our case, the fitness val-
ues will be measured as the Joule losses obtained by this
configuration as shown in Eq. 13. The fitness function is guided
by the Joule losses because, as stated previously, this is one of
the most important factors in the design for PV systems. Indeed,
there are other losses in a PV plant, but we have decided to start
the optimization problem of a grid connected PV plant considering
only the Joule losses which are electrically more tractable and
influenced by the series–parallel topology connection of the PV
modules. In addition, the algorithm eliminates self-shading losses,
because for each solution obtained, it estimates the value of the
tracking structure surface and thus it is able to distribute the track-
ers so that there are no self-shading losses.

Pð%Þ ¼
PN

i¼1
2�q�Li �I2

i
si

No: Rows � No: Columns � Pw � N ð13Þ

where P is the percentage of Joule losses in all the conductors of the
PV plant, over the installed power. N is the number of trackers in-
stalled in the field, q is the copper conductor resistivity, No. Rows
thms for the design of grid-connected PV-systems. Expert Systems with Ap-
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Table 3
Parameter specification for all the methods employed in the experimentation.

Algorithm Parameters

Steady-state
GA

PopulationSize = 50, Iterations = 400, One-point crossover,
Crossover prob. = 1.0, Mutation prob. = 0.1

Generational
GA

PopulationSize = 50, Iterations = 400, a value (BLX-a) = 0.5,
Crossover prob. = 0.9, Mutation prob. = 0.2

CHC PopulationSize = 50, Iterations = 400, HUX Crossover,
a value (BLX-a) = 0.5, Hamming dist. = D/4

DE PopulationSize = 50, Iterations = 400, F = 0.5, CR = 0.7,
Binary crossover

DE PopulationSize = 50, Iterations = 400, F = 0.5, CR = 0.9,
Binary crossover
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and No. Columns are the number of rows and columns of PV mod-
ules placed on each tracker, and Pw is the nominal power of each PV
module.

Thus, once the fitness function is defined, the individuals with
smallest values of the fitness function are more likely to pass their
attributes onto the next generation:

Xi;Gþ1 ¼
Ui;G if Joule losses ðUi;GÞ <¼ Joule losses ðXi;GÞ
Xi;G Otherwise

�
ð14Þ
4. Experimental framework and results

In this section we show the factors and issues related to the
experimental study. We provide the details of the areas chosen
for the experimentation and the parameters of the algorithms in
Section 4.1. In Section 4.2 we propose the statistical tool to perform
a comparison between all evolutionary techniques considered. Sec-
tion 4.3 shows the results of the different schemes of EAs proposed,
and subsequently we compare them and identify the best EA
scheme by using the statistical tests. Finally, Section 4.4 shows a
graphical representation of the convergence capabilities of EA
models.

4.1. Experimental framework

The performance of the algorithms is analyzed using 40 fields
proposed. These have been chosen randomly from fields of
standard dimensions where PVGCPs have been installed. Table 2
Table 4
GAs and CHC results.

Field Steady-state GA Generational GA CHC F

Mean S.D. Mean S.D. Mean S.D.

1 0.3968 0.0090 0.2998 0.0174 0.2712 0.0246 2
2 0.4108 0.0278 0.3294 0.0271 0.3098 0.0126 2
3 0.4645 0.0136 0.3649 0.0268 0.3655 0.0211 2
4 0.4583 0.0451 0.4180 0.0170 0.3787 0.0114 2
5 0.5282 0.0388 0.4378 0.0183 0.4075 0.0274 2
6 0.5233 0.0293 0.4459 0.0158 0.4051 0.0206 2
7 0.5685 0.0366 0.4676 0.0244 0.4341 0.0164 2
8 0.5840 0.0643 0.5134 0.0209 0.4703 0.0284 2
9 0.6202 0.0506 0.5551 0.0418 0.4752 0.0234 2

10 0.6668 0.0748 0.5130 0.0321 0.5009 0.0273 3
11 0.6917 0.0193 0.5548 0.0203 0.5135 0.0213 3
12 0.7458 0.0199 0.5704 0.0557 0.5312 0.0226 3
13 0.7535 0.1005 0.6586 0.0412 0.5413 0.0169 3
14 0.7385 0.0359 0.5731 0.0470 0.5366 0.0036 3
15 0.7823 0.0611 0.6374 0.0415 0.5968 0.0333 3
16 0.8133 0.1043 0.7111 0.0541 0.6231 0.0230 3
17 0.9358 0.1197 0.7243 0.0663 0.6425 0.0110 3
18 0.9707 0.0643 0.7977 0.0480 0.7230 0.0688 3
19 0.9727 0.1032 0.7591 0.0279 0.7052 0.0845 3
20 1.0176 0.0771 0.7791 0.0414 0.7214 0.0504 4

A
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summarizes the properties of the selected areas. For each field, it
shows the size (dimensions X and Y). We have chosen a similar va-
lue of 37 degrees latitude, the same for all fields proposed, to com-
pare fields that are in the same geographical area. Table 1 shows
the maximum and minimum values that all variables of our indi-
viduals can take.

The parameters of the algorithms used are presented in Table 3.
These values have been established in order to compare the algo-
rithms fairly. Hence, the number of iterations has been fixed
empirically to 400, with the same values for all algorithms. Fur-
thermore, the EAs considered, steady-state GA, generational GA,
CHC and DE, have been initialized with the same number of indi-
viduals. The parameters of DE are set to F = 0.5 and CR = 0.7 and
0.9 as used or recommended in Jingqiao and Sanderson (2009).
The remaining parameter values are chosen according to the
respective authors of the algorithms, assuming that they were
optimally chosen. For each field, each algorithm has been executed
ten times with different seeds so that the results presented are the
mean and standard deviation of the ten simulations.

4.2. Statistical tools for analysis

In this paper, we use the hypothesis testing techniques to pro-
vide statistical support for the analysis of the results (García,
Fernández, Luengo, & Herrera, 2009; Sheskin, 2006) and identifying
the most relevant differences found between the methods. Specif-
ically, we will use nonparametric statistical tests, due to the fact
that the initial conditions that guarantee the reliability of the para-
metric tests may not be satisfied, causing the statistical analysis to
lose credibility with parametric tests. These tests are suggested in
the studies presented in Luengo, García, and Herrera (2009), Garcı́a
and Herrera (2008) and García et al. (2009, 2010), where their use
in the field of Machine Learning is highly recommended.

Throughout the study, we perform a multiple comparison be-
tween all the evolutionary techniques considered, using the Fried-
man Aligned-Ranks test (Hodges & Lehmann, 1962) to detect
statistical differences among a group of results. Later, post hoc pro-
cedures like Holm’s or Finner’s will find out which algorithms are
distinctive among the 1 ⁄ n comparisons performed. We have used
the KEEL software tool (Alcalá-Fdez et al., 2011) to apply this sta-
tistical test.

More information about these tests and other statistical proce-
dures can be found at http://sci2s.ugr.es/sicidm/.
ield Steady-state GA Generational GA CHC

Mean S.D. Mean S.D. Mean S.D.

1 1.0397 0.1013 0.8376 0.0830 0.7350 0.0382
2 1.1205 0.1134 0.9590 0.0813 0.8173 0.0631
3 1.0986 0.1230 0.9077 0.0326 0.8022 0.0286
4 1.2183 0.1492 0.8826 0.0582 0.8689 0.0522
5 1.2666 0.1461 0.8950 0.0621 0.7945 0.0148
6 1.1453 0.1598 0.9567 0.0802 0.8896 0.0388
7 1.2932 0.1995 1.0086 0.1265 0.9507 0.1114
8 1.3775 0.1174 0.9248 0.0632 0.9295 0.0616
9 1.4817 0.1301 0.9639 0.1158 0.9493 0.0823
0 1.3389 0.2427 1.1007 0.1571 0.9608 0.1064
1 1.3029 0.0264 1.0009 0.0281 0.9869 0.0611
2 1.5384 0.1241 1.0163 0.0848 0.9896 0.0245
3 1.5049 0.1124 1.2050 0.0776 1.0642 0.0404
4 1.4059 0.2404 1.1079 0.0926 1.0483 0.0529
5 1.5020 0.0832 1.0520 0.0202 1.0425 0.0421
6 1.4785 0.1961 1.2135 0.1280 1.1283 0.0484
7 1.6077 0.1751 1.3593 0.1378 1.2198 0.0900
8 1.6568 0.1902 1.3064 0.1372 1.2956 0.1094
9 2.0137 0.0980 1.5327 0.1273 1.3108 0.1165
0 2.1479 0.2771 1.4053 0.0909 1.3750 0.0830
verage 1.0545 0.4411 0.8286 0.3130 0.7576 0.2941
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Table 5
Differential evolution results with CR = 0.7.

Field DE/Rand/1 DE/Best/1 DE/RandToBest/1 DE/Best/2 DE/Rand/2 DE/RandToBest/2

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

1 0.2441 0.0051 0.2477 0.0068 0.2475 0.0018 0.2409 0.0083 0.2484 0.0022 0.2467 0.0000
2 0.2836 0.0059 0.2874 0.0010 0.2872 0.0010 0.2865 0.0001 0.2865 0.0001 0.2865 0.0001
3 0.3359 0.0056 0.3323 0.0053 0.3389 0.0046 0.3383 0.0014 0.3329 0.0054 0.3383 0.0014
4 0.3603 0.0043 0.3709 0.0043 0.3626 0.0003 0.3626 0.0003 0.3575 0.004 0.3624 0.0001
5 0.3644 0.0047 0.3695 0.0017 0.3682 0.0001 0.3682 0.0001 0.3644 0.0047 0.3682 0.0001
6 0.3746 0.0039 0.3816 0.007 0.3805 0.0025 0.3863 0.0036 0.3794 0.0003 0.3793 0.0001
7 0.4146 0.0016 0.4112 0.0085 0.4174 0.0019 0.4143 0.0055 0.4118 0.0041 0.4145 0.0009
8 0.4376 0.0055 0.4552 0.0039 0.4471 0.0007 0.4448 0.0059 0.4369 0.0003 0.4412 0.0052
9 0.4469 0.0047 0.4561 0.0007 0.4556 0.0008 0.4511 0.0031 0.4444 0.0035 0.4542 0.0029

10 0.4678 0.0001 0.4657 0.0087 0.4682 0.0008 0.4661 0.0056 0.4631 0.0096 0.4678 0.0001
11 0.4823 0.0081 0.4812 0.0106 0.4887 0.0021 0.4863 0.0001 0.4823 0.0081 0.4863 0.0001
12 0.4995 0.0130 0.5553 0.0698 0.5074 0.0063 0.5049 0.0099 0.4915 0.0096 0.4980 0.0145
13 0.5115 0.0017 0.5565 0.0554 0.5129 0.0084 0.5058 0.0074 0.5045 0.0053 0.5106 0.0001
14 0.5213 0.0116 0.5253 0.0086 0.5313 0.0004 0.5268 0.0099 0.5211 0.005 0.5309 0.0001
15 0.5386 0.0086 0.5695 0.0252 0.5485 0.0020 0.5285 0.0098 0.5244 0.0116 0.5360 0.0142
16 0.5892 0.0032 0.5935 0.0049 0.5923 0.0035 0.5881 0.0000 0.5793 0.0064 0.5852 0.0126
17 0.6212 0.0001 0.6238 0.0006 0.6245 0.0001 0.6141 0.0096 0.6068 0.0104 0.6113 0.0109
18 0.6475 0.0042 0.6510 0.0004 0.6507 0.0004 0.6500 0.0060 0.6369 0.0160 0.6499 0.0001
19 0.6276 0.0112 0.6281 0.0124 0.6368 0.0032 0.6269 0.0120 0.6304 0.0034 0.6331 0.0001
20 0.6696 0.0109 0.6941 0.0134 0.6740 0.0124 0.6737 0.0059 0.6538 0.0114 0.6793 0.0023
21 0.7033 0.0031 0.7082 0.0021 0.7060 0.0015 0.6894 0.0122 0.6989 0.0109 0.6896 0.0124
22 0.7304 0.0148 0.7269 0.0160 0.7398 0.0016 0.7391 0.0021 0.7123 0.0132 0.7394 0.0001
23 0.7599 0,0154 0.7691 0,0006 0.7692 0.0008 0.7614 0.0071 0.7327 0.0168 0.7629 0.0083
24 0.7801 0.0000 0.7816 0.0018 0.7835 0.0018 0.7830 0.0015 0.7551 0.0124 0.7801 0.0001
25 0,7963 0,0010 0.7999 0.0016 0.7964 0.0010 0.7819 0.0168 0.7956 0.0001 0.7956 0.0001
26 0.8259 0.0005 0.8277 0.0011 0.8292 0.0020 0.8125 0.0181 0.7904 0.0001 0.8261 0.0005
27 0.8576 0.0022 0.8588 0.0002 0.8598 0.0013 0.8187 0.0020 0.8457 0.0155 0.8148 0.0001
28 0.8694 0.0122 0.8612 0.0178 0.8690 0.0148 0.8760 0.0005 0.8663 0.0168 0.8758 0.0005
29 0.8526 0.0162 0.8807 0.0003 0.8815 0.0016 0.8804 0.0004 0.8801 0.0001 0.8809 0.0001
30 0.8995 0.0027 0.9036 0.0030 0.9005 0.0035 0.8755 0.0202 0.8512 0.0228 0.8987 0.0017
31 0.9299 0.0192 0.9418 0.0009 0.9410 0.0013 0.9390 0.0007 0.9105 0.0232 0.9396 0.0001
32 0.9543 0.0217 0.9769 0.0017 0.9738 0.0026 0.9635 0.0198 0.9378 0.0173 0.9675 0.0184
33 0.9681 0.0209 0.9956 0.0067 0.9752 0.0203 0.9746 0.0180 0.9676 0.0138 0.9800 0.0184
34 0.9859 0.0179 0.9850 0.0243 1.0056 0.0006 0.9949 0.0080 0.9986 0.0008 1.0030 0.0030
35 1.0117 0.0179 1.0057 0.0227 1.0251 0.0010 1.0137 0.0205 1.0020 0.0269 1.0239 0.0001
36 1.0451 0.0244 1.0670 0.0015 1.0657 0.0013 1.0451 0.0245 1.0649 0.0002 1.0662 0.0005
37 1.1031 0.0201 1.1186 0.0001 1.1154 0.0028 1.1175 0.0022 1.1032 0.0199 1.1131 0.0001
38 1.1122 0.0207 1.1389 0.0302 1.1259 0.0021 1.1244 0.0025 1.1120 0.0206 1.1226 0.0002
39 1.2103 0.0224 1.2270 0.0002 1.2224 0.0013 1.2235 0.0009 1.1879 0.0274 1.2219 0.0010
40 1.2994 0.0244 1.2943 0.0308 1.3069 0.0247 1.2933 0.0290 1.2709 0.0212 1.3190 0.0030

Average 0.7033 0.2700 0.7131 0.2709 0.7108 0.2730 0.7043 0.2708 0.6960 0.2669 0.7075 0.2737
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4.3. Results of EA schemes

In this section we analyze the results obtained by 3 schemes of
EAs and 12 different schemes of DE, in terms of Joule losses. Tables
4–6 collect the average and standard deviation (SD) in accuracy ob-
tained over the 40 areas considered. The best result for each area is
highlighted in bold. These tables are composed of three columns
for each EA model. The first one identifies the field number, the
second the average of the ten executions performed with different
seeds and the third the standard deviation. Finally, the last row
indicates the average of the forty fields and standard deviations
for each EA scheme studied.

Table 7 presents the statistical analysis conducted by nonpara-
metric multiple comparison procedures for Joule losses. More spe-
cifically, we have used the Friedman aligned (FA) procedure
(Hodges & Lehmann, 1962) to compute the set of rankings that rep-
resent the effectiveness associated with each algorithm (second
column). The table is ordered from the best to the worst ranking.
In addition, the third column shows the adjusted p-value with
the Holm’s test (Holm APV) (Holm, 1979). Finally, the fourth col-
umn presents the adjusted p-value with the Finner’s test (Finner
APV). Note that DE/Rand/2 with CR = 0.7 is established as the con-
trol algorithm because it has obtained the best FA ranking. We will
establish a level of significance a = 0.1 to determine whether the
null hypothesis has been rejected. Those APV highlighted in bold
Please cite this article in press as: Gómez-Lorente, D., et al. Evolutionary algori
plications (2012), doi:10.1016/j.eswa.2012.01.159
point out methods outperformed by the control one, at a a = 0.1 le-
vel of significance.

Some observations can be made from these tables:

� As we can observe, when the size of the different fields
increases, the Joule losses also increment with all the algo-
rithms due to the increasing lengths of electrical conductors.
� All the DE schemes have given better average results than

CHC and GAs algorithms. Note that the same size of popula-
tion and number of iterations have been used for GAs, CHC
and DE.
� Tables 5 and 6 show that the most competitive algorithms for

DE, in terms of Joule losses, are the DE/Rand/2 with CR = 0.7
and DE/Rand/2 with CR = 0.9. Consequently, in our problem,
Rand mutation schemes outperform on average the rest of DE
schemes.
� In DE schemes, the number of difference vectors to be perturbed

by the mutation operator does seem to be an important factor
that influence over the final result obtained
� The p-value of the FA test, shown in Table 7, is lower than 0.005,

meaning that significant differences have been detected
between the methods of the experiment.
� The statistical test confirms that DE/Rand/2 with CR = 0.7 signif-

icantly outperforms the other EAs schemes that are not based
on DE (a = 0.1). However, it is important to point out, that the
thms for the design of grid-connected PV-systems. Expert Systems with Ap-
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Table 6
Differential evolution results with CR = 0.9.

Field DE/Rand/1 DE/Best/1 DE/RandToBest/1 DE/Best/2 DE/Rand/2 DE/RandToBest/2

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

1 0.2470 0.0008 0.2875 0.0501 0.2502 0.0018 0.2459 0.0063 0.2425 0.0071 0.2484 0.0022
2 0.2807 0.0072 0.2867 0.0003 0.2883 0.0012 0.3381 0.0610 0.2807 0.0072 0.2866 0.0002
3 0.3383 0.0014 0.3861 0.0591 0.3827 0.0543 0.3394 0.0001 0.3350 0.0051 0.3394 0.0001
4 0.3624 0.0000 0.4054 0.0354 0.3761 0.0151 0.3594 0.0042 0.3603 0.0043 0.3626 0.0003
5 0.3651 0.0039 0.3717 0.0041 0.3881 0.0109 0.3695 0.0017 0.3568 0.0071 0.3682 0.0001
6 0.3793 0.0000 0.4057 0.0468 0.3894 0.0016 0.4023 0.0462 0.3784 0.0089 0.3810 0.0036
7 0.4156 0.0023 0.4405 0.0451 0.4174 0.0019 0.4121 0.0113 0.4127 0.0009 0.4165 0.0023
8 0.4410 0.0057 0.5037 0.0687 0.4516 0.0046 0.4479 0.0001 0.4369 0.0002 0.4418 0.0072
9 0.4530 0.0029 0.4591 0.0053 0.4505 0.0074 0.4565 0.0001 0.4457 0.0035 0.4565 0.0001

10 0.4697 0.0001 0.4660 0.0106 0.4810 0.0140 0.4690 0.0010 0.4686 0.0010 0.4686 0.0009
11 0.4863 0.0001 0.5378 0.0499 0.4940 0.0085 0.4883 0.0017 0.4741 0.0048 0.4823 0.0081
12 0.4958 0.0071 0.5185 0.0058 0.5395 0.0388 0.4943 0.0011 0.4861 0.0072 0.5073 0.0052
13 0.5123 0.0021 0.5298 0.0036 0.5196 0.0020 0.5132 0.0021 0.5066 0.0081 0.5071 0.0062
14 0.5163 0.0088 0.5359 0.0045 0.5817 0.0524 0.5312 0.0007 0.5260 0.0061 0.5220 0.0123
15 0.5372 0.0128 0.5462 0.0103 0.5917 0.0831 0.5474 0.0076 0.5449 0.0033 0.5476 0.0001
16 0.5910 0.0037 0.5960 0.0024 0.5896 0.0073 0.5765 0.0096 0.5730 0.0129 0.5901 0.0044
17 0.6210 0.0020 0.6752 0.0994 0.7082 0.1027 0.6220 0.0011 0.6183 0.0022 0.6234 0.0013
18 0.6483 0.0034 0.7038 0.0654 0.6504 0.0001 0.6501 0.0005 0.6372 0.0126 0.6489 0.0024
19 0.6244 0.0119 0.6480 0.0133 0.6662 0.0335 0.7307 0.1361 0.6093 0.0145 0.6326 0.0054
20 0.6769 0.0004 0.7909 0.1369 0.6827 0.0060 0.6681 0.0161 0.6499 0.0087 0.6716 0.0049
21 0.6782 0.0011 0.7156 0.0064 0.7071 0.0022 0.7046 0.0003 0.6937 0.0134 0.7060 0.0015
22 0.7301 0.0145 0.7258 0.0146 0.7492 0.0174 0.7376 0.0005 0.7336 0.0134 0.7344 0.0175
23 0.7563 0.0145 0.7810 0.0064 0.7777 0.0079 0.7670 0.0039 0.7420 0.0198 0.7561 0.0065
24 0.7760 0.0054 0.9067 0.1717 0.7749 0.0109 0.7799 0.0002 0.7779 0.0019 0.7682 0.0159
25 0.7964 0.0010 1.0235 0.1750 0.7985 0.0017 0.7983 0.0020 0.7956 0.0001 0.7904 0.0124
26 0.8261 0.0005 0.9797 0.1697 0.8404 0.0331 0.8198 0.0148 0.8107 0.0191 0.8201 0.0149
27 0.8566 0.0027 0.9363 0.0885 0.8603 0.0014 0.8603 0.0014 0.8536 0.0028 0.8457 0.0155
28 0.8588 0.0212 0.9777 0.1248 0.8772 0.0016 0.8587 0.0212 0.8511 0.0199 0.8756 0.0004
29 0.8756 0.0058 0.8876 0.0070 0.8809 0.0001 0.8807 0.0004 0.8727 0.0061 0.8675 0.0148
30 0.8981 0.0017 0.9047 0.0007 1.0634 0.2002 0.8840 0.0222 0.8518 0.0169 0.9014 0.0039
31 0.9012 0.0192 0.9307 0.0327 0.9621 0.0277 0.9396 0.0001 0.9199 0.0231 0.9173 0.0191
32 0.9694 0.0144 0.9744 0.0032 1.1573 0.2194 0.9721 0.0004 0.9504 0.0165 0.9762 0.0017
33 0.9960 0.0064 0.9901 0.0007 0.9904 0.0009 0.9894 0.0003 0.9684 0.0211 0.9891 0.0001
34 1.0022 0.0027 1.0045 0.0012 1.0173 0.0223 0.9832 0.0229 0.9928 0.0061 1.0010 0.0033
35 1.0241 0.0003 1.0282 0.0036 1.0263 0.0019 1.0241 0.0003 1.0239 0.0001 1.0241 0.0003
36 1.0649 0.0002 1.1297 0.0606 1.0670 0.0007 1.0655 0.0005 1.0541 0.0216 1.0460 0.0251
37 1.1131 0.0000 1.2254 0.2189 1.1749 0.0729 1.0943 0.0254 1.0815 0.0259 1.1131 0.0001
38 1.1225 0.0002 1.5421 0.2074 1.1254 0.0019 1.1249 0.0023 1.0914 0.0253 1.1021 0.0248
39 1.2214 0.0000 1.2263 0.0010 1.3395 0.2302 1.2214 0.0000 1.1999 0.0264 1.2248 0.0028
40 1.2702 0.0252 1.3979 0.0816 1.3546 0.0414 1.2807 0.0277 1.2784 0.0297 1.2946 0.0296

Average 0.7050 0.2713 0.7596 0.3061 0.7361 0.2884 0.7112 0.2677 0.6972 0.2675 0.7065 0.2705

Table 7
Average FA rankings of all the employed methods.

Algorithm FA ranking Holm APV Finner APV

DE/Rand/2 0.7 169.4875 – –
DE/Rand/2 0.9 176.9125 1.0000 0.8481
DE/Rand/1 0.7 204.6875 1.0000 0.3856
DE/Best/2 0.7 210.9750 1.0000 0.3290
DE/Rand/1 0.9 212.3250 1.0000 0.3290
DE/RandToBest/2 0.9 225.4125 0.8283 0.2063
DE/RandToBest/2 0.7 226.9750 0.8283 0.2063
DE/Best/2 0.9 248.6500 0.2879 0.0709
DE/RandToBest/1 0.7 254.9125 0.2203 0.0543
DE/Best/1 0.7 261.7625 0.1556 0.0399
DE/RandToBest/1 0.9 351.7500 0 0
DE/Best/1 0.9 402.1250 0 0
CHC 462.5750 0 0
Generational GA 528.8500 0 0
Steady-state GA 570.1000 0 0
P-value by the FA test = 0.00161
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Holm’s procedure states that the differences of the best DE
scheme over two DE schemes are significant (a = 0.1). Finner
procedure goes further, pointing out also the difference with
other three more DE schemes.
Please cite this article in press as: Gómez-Lorente, D., et al. Evolutionary algori
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4.4. Convergence analysis

One of the most important issues in the development of any EA
is the analysis of the convergence of its population. If the EA does
not evolve in time, it will not be able to obtain suitable solutions.
thms for the design of grid-connected PV-systems. Expert Systems with Ap-
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Fig. 3. EAs map of convergence.
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We show a graphical representation of the convergence capabil-
ities of EA models in Fig. 3. Specifically, DE/Rand/2 with CR = 0.7,
CHC, generational GA and steady-state GA.

To perform this analysis we have selected the 400 � 400 stan-
dard field. The graphics show a line representing the fitness value
of the best individual of each population. The X-axis represents the
number of iterations carried out, and the Y-axis represents the fit-
ness value (Joule losses) currently achieved.

As we can see in the graph, DE and CHC algorithm quickly find
promising solutions and they do not need so many ratings to find a
promising solution, although DE finds better solutions.

Observing the map of convergence in Fig. 3, we can highlight
the DE algorithm as a promising optimizer because it is able to
reach highly accurate results very fast, which implies that the DE
scheme needs a small number of iterations.
5. Conclusions

This contribution presents a use of EAs for solving the problem
of the design of PVGCPs with trackers. The optimization problem
consists of choosing the variables that make up the PV plant to
minimize Joule losses in electrical conductors that carry electrical
current generated by PV modules to the distribution transformer.

Four different EAs have been used: steady-state genetic algo-
rithm, generational genetic algorithm, CHC algorithm and DE algo-
rithm. Forty standard fields have been randomly generated and the
response of each algorithm has been analyzed by statistical tests
and graphs of convergence.

Finally, after the comparison of the several EAs used we can con-
clude that for our particular problem, DE algorithm provides the best
results thanks to its balance between exploration and exploitation.
Rand mutation schemes outperform the rest of DE schemes studied.
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