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Abstract—The sequence of Schumann resonances is unique for
each celestial body with an ionosphere, since these resonances
are determined by the dimensions of the planet/satellite and the
corresponding atmospheric conductivity profile. Detecting these
frequencies in an atmosphere is a clear proof of electrical activity, since
it implies the existence of an electromagnetic energy source, which
is essential for their creation and maintenance. In this paper, an
analysis procedure for extracting weak resonances from the responses
of electromagnetic systems excited by electric discharges is shown. The
procedure, based on analysis of the late-time system response, is first
checked using an analytical function and later applied to the vertical
electric field generated by the computational simulation of Earth’s
atmosphere using the TLM (Transmission Line Matrix) method in
order to extract the weak Schumann resonances contained in this
electric field component.

1. INTRODUCTION

Solar photons and galactic cosmic rays penetrating the upper layers
of Earth’s atmosphere, aerosol populations and radon emanating from
the land surface increase the ionization and contribute to forming an
electrical conductivity profile [1, 2] that, starting from low values near
the surface, rises with altitude and generates an electromagnetic cavity
for waves propagating in the ELF-VLF range [3, 4]. This natural cavity
is excited, basically, by the 2,000 permanently active thunderstorm
cells worldwide which produce approximately 50 lightning events every
second [5], although volcanic eruptions, dust storms and tornadoes can
also be seeds of electromagnetic signals [6]. Most of the electromagnetic
energy produced by these natural events is radiated around 3 kHz in
the VLF band, although they are transient signals with a broadband
spectrum. During their propagation, the radio waves trapped in the
cavity must adapt to its geometrical form, which is strongly dispersive
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and greatly distorts the waveform of the excitation signal, allowing
effective propagation of only those frequencies around the resonance
frequencies of the different modes at which the cavity resonates. Any
electromagnetic perturbation in the spherical shell cavity formed by
the ground, the conducting ionosphere and the atmosphere between
them can be described as a superposition of TEr modes (electric field
transverse to the radial direction r) with non-zero field components
Hr, Hϑ, and Eϕ, and TMr modes (transverse magnetic with respect
to r) with Er, Eϑ, and Hϕ components. The TEM modes are
excluded because they represent the static solution, taking the form
of a plane wave without cutoff or resonance frequencies. Following
the notation given in [7], with the script n and m as indices for
the associated Legendre functions or spherical harmonics and with
the script p indicating the successive zeroes of the spherical Bessel
function of order n in the TEr modes, or its derivative for TMr

modes, all the TEr
mnp modes and the TMr

mnp with p 6= 1 are called
transverse resonances [8–10]; they fall almost entirely within the VLF
band, with half-wavelengths proportional to the distance between the
ground and the ionosphere, and are local phenomena because their
energy remains concentrated around the excitation source [11, 12].
However, the TMr

mn1 modes, known as Schumann resonances [13, 14],
are modes globally coupled with the Earth-ionosphere cavity that
should be detected anywhere on Earth and their resonant frequencies
are in the ELF band. The propagation of ELF-VLF radio waves in the
terrestrial atmosphere has been widely studied, due to its importance
in communication and navigation systems. Here, we would like to
highlight the books of Wait [15], Budden [16], and Nickolaenko and
Hayakawa [17].

The idea that the Earth-ionosphere cavity would support
electromagnetic standing waves was predicted by Schumann in
1952 [13] and detected experimentally in 1960 by Balser and
Wagner [18], who identified the first five Schumann resonant
frequencies. Nowadays, there is a renewed interest in the Schumann
resonance signals since Williams [19] observed, for a period of six
years, a correlation between variations in the tropical temperature
and variations in the lowest Schumann-resonance-mode intensity. This
correlation led him to suggest that these resonances could be used
as a global thermometer for the tropics of the Earth, since the
worldwide lightning-flash rate, source of the Schumann resonances,
is dependent on the average global temperature. The Schumann
resonances, contained in the TMr

mn1 modes, are practically quasi-
TEM modes because the electric tangential component is much lower
than the radial electric field in the cavity [20] and, moreover, its
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amplitude must be close to zero near the two spherical external surfaces
because the boundary conditions impose a vanishing tangential electric
field on the conducting surfaces. Regarding their frequency and
field amplitude, the first six experimental Schumann resonances are
observed at nominal frequencies of 7.8, 14, 20, 26, 33, and 39Hz, with
a variation in these values of ±0.5Hz, and their amplitudes are in the
picotesla range for the magnetic field and around tenths of a millivolt
for the electric field [3]. So, the Schumann resonances are extremely
weak compared with the ambient geomagnetic field and with the static
electric field generated by thunderstorms which maintain a potential
difference between the ionosphere and the ground of approximately
300 kV with a 120 V/m electric field at ground level [21]. In this
paper, a computational simulation of Earth’s ionosphere using the
TLM method is carried out in order to obtain the Schumann resonance
spectra. By including in the numerical algorithm a model for the
conductivity profile in the Earth’s atmosphere, a resonant spectrum
is obtained for the tangential magnetic field with peak values close
to the experimental ones. However, the capacitive effect of the two
conducting surfaces, which define the electromagnetic cavity, and the
assumption of a vertical electric dipole as excitation source, determine
a radial electric field with a high DC component that hides the
Schumann resonances in the electric field spectrum, thus a post-
processing analysis of these data being required to recover these
resonances. To deal with this situation, thus a procedure is developed
for extracting weak resonances from the responses of electromagnetic
systems excited by electric discharges. The procedure, based on
analysis of the late-time system response, is first checked using an
analytical function and later applied to the data of the vertical electric
field generated by the computational simulation of Earth’s atmosphere
using the TLM method.

The TLM method provides a different approach from that supplied
by the more popular FDTD (finite differences in the time domain)
method for a numerical analysis of the Earth-ionosphere cavity [22–
24] or other electromagnetic systems [25, 26]. Although both are
low-frequency methods and need spatial and temporal discretization,
they are conceptually different. For example, TLM has been used to
model challenging situations such as radiation by thin conducting wires
with a radius much smaller than the mesh size by simply including
a transmission line circuit describing the inductance and capacitance
introduced by the wire to the medium in which it is placed [27].
Another advantage of TLM over FDTD is that TLM defines all the
field quantities at the same point, the center of the node, as well as
all the perpendicular field quantities at the interface between nodes,
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which simplifies the imposition of boundary conditions. In contrast,
although FDTD is computationally more economical, it defines each
component of the electromagnetic field at a different point and even at
a different time, which complicates the task of accurately defining the
transition between different media.

2. EARTH’S RESONANT CAVITY FOR ELF
ELECTROMAGNETIC WAVES

The electromagnetic wave propagation of atmospheric signals in the
ELF range associated with the Schumann resonances can be modeled
by considering the system as an inhomogeneous lossy cavity formed by
two conducting spherical surfaces. This is justified by the relatively
high conductivity values on the ground’s surface, around 4 S/m for
seawater and from 10−3 to 10−5 S/m for the solid surface, and on
the strong increase in atmospheric conductivity, which changes from
10−14 S/m near ground level to 10−3 S/m at a height just below 100 km,
with an appreciable increment in the slope at an altitude of around
60 km [28], as is shown in Figure 1. With these values, at 25Hz, a
frequency in the middle of the range of interest, the ratio between the
displacement and conductivity current, ωε0/σ, is 1.4 × 105 at ground
level and 1.4×10−6 at a height of 100 km; consequently, the atmosphere
behaves like a dielectric with low losses at ground level to become a
good conductor for higher regions.

As an alternative, the reflection coefficient Γ can give a clear
graphic vision of the Earth’s cavity, besides being useful in the later
implementation of the TLM numerical algorithm. Let us consider the

Figure 1. Conductivity and real part of the reflection coefficient
profiles in the Earth’s lower atmosphere.
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normal reflection of a plane wave at a metallic boundary. The wave is
usually reflected almost completely, and for a perfect conductor with
infinite conductivity, the transmission is zero since there can be no
electromagnetic field inside a perfect conductor. However, for a metal
of finite conductivity σ, its impedance is given by Zc = Z0

√
jωε0/σ,

where Z0 is the characteristic impedance for the free space, and Γ can
be expressed as [29]

Γ =
Zc − Z0

Zc + Z0
=

√
jωεo/σ − 1√
jωε0/σ + 1

' −1 +
√

ωε0

2σ
. (1)

In the above equation, for the latter approach, the imaginary
part of Γ is negligible and Γ becomes a real value. For the interface
atmosphere-seawater, Γ = −0.999987 at 25 Hz, and for solid ground
with σ = 10−3 S/m, Γ = −0.9992. Figure 1 also shows this reflection
coefficient for a 25 Hz electromagnetic wave incident from the free space
in a dissipative medium with a conductivity σ(z) given by the Earth’s
profile. In this figure, Γ is very close to −1 at a height of 100 km, this
value indicating that such a distance is a good choice for locating the
external conducting surface of the Earth-ionosphere cavity.

3. MODELING OF THE EARTH-IONOSPHERE CAVITY
FOR SCHUMANN RESONANCES WITH THE TLM
METHOD

The Transmission Line Matrix (TLM) numerical method is an
approach, devised in the time domain, to the computer simulation
of propagation and diffusion processes [27, 30]. For electromagnetic
waves, the TLM method sets up an iterative process which allows
the temporal evolution of the six electromagnetic field components to
be obtained. It is based on the construction of a three-dimensional
transmission line mesh formed by interconnecting unitary circuits
termed nodes or cells. Each node in the mesh has associated with it a
matrix S built with Maxwell’s equations so that voltages and currents
in this mesh behave similarly to the electromagnetic field in the original
system. To be specific, in this paper, the three-dimensional condensed
node with spherical geometry is used [31]; however, independently of
the specific node used, the basis of the TLM algorithm is quite simple.
Along with the spatial discretization associated with the TLM node
mesh, a temporal discretization coordinated with the spatial one is
necessary. At time step n, t = n∆t, a set of voltage pulses represented
by a column matrix V i

n are incident at each node in the TLM mesh,
which after scattering at each node center, produce a set of reflected
pulses represented by a column matrix V r

n . The two pulse sets are
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related by the scattering matrix of the node S by equation V r
n = SV i

n.
Reflected pulses propagate through all the lines in the nodes and
become incident pulses at neighbor nodes for the next time step. For
lossy systems, S is a 21× 21 square matrix whose elements are related
to the dimensions of the elementary volume modeled by the node and
to the electric permittivity, magnetic permeability and conductivity of
the medium to be simulated [32].

In order to make an efficient TLM mesh to study the Schumann
resonances in Earth’s ionosphere, several considerations should be kept
in mind, such as the size of the mesh, the excitation and the external
boundary. The electromagnetic cavity of our planet has a behavior
similar to a microwave cavity except that because of its dimensions;
thus, Schumann resonant frequencies are located in the ELF band
instead of the microwave zone. Regarding the mesh size or longest
dimension of a TLM node, as is well-known in low-frequency numerical
methods, a wavelength must be sampled at least eight or ten times.
When in the absence of a source term, the cavity resonances are
estimated solving the homogeneous wave equation, due to the spherical
symmetry of the Earth-ionosphere cavity, the resonances obtained
are only functions of the Earth’s radius, r0, and the height of the
ionosphere above the ground, h, and do not depend on the zenithal
and azimuthal coordinates, θ and φ, respectively. The inclusion of
the excitation signal in the physical system can break this symmetry;
however, if the electromagnetic field source is an electric discharge
at the angular coordinates θ and φ, it is always possible to choose
another system of spherical coordinates with the excitation located in
the origin of the θ coordinate (Figure 2). In this specific coordinate
system, the resonant cavity plus the electric discharge source form a
physical system which is not dependent on the azimuthal coordinate φ,

Figure 2. Geometry and coordinates in the TLM mesh to model the
Earth-ionosphere electromagnetic cavity.
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becoming therefore a two-dimensional system, which can be described
by using the coordinates r and θ only. This kind of situation is
frequently invoked because a common excitation source in the Earth-
ionosphere cavity is cloud-to-ground lightning, which can be described
by a radial current and which is a much more efficient excitation of
the cavity than horizontal lightning [11]. In our case, the TLM mesh
used is 10×36 nodes wide in the r and θ directions. This mesh models
an atmosphere with h = 100 km, which means that ∆r = 10 km and
∆θ = 5◦, and optimum time steps of ∆t = 3.48× 10−6 s and ∆φ = 24◦
are chosen to minimize dispersion errors [32].

Regarding the excitation, the lightning discharge process is very
complex; however, although earlier processes may radiate some energy,
the emission of electromagnetic energy is dominated by the lightning
return stroke. In this paper, the exciting electric discharge is assumed
to be a broadband signal with a current modeled by a double
exponential,

i(t) = I0

(
e
− t

τ1 − e
− t

τ2

)
Θ(t), (2)

with I0 = 20 kA, τ1 = 10−4 s, τ2 = 5 × 10−6 s, and where Θ(t) is
the Heaviside unit or step function. This model is usually chosen to
represent the current flowing during a return stroke [33, 34]. With the
typical parameters used previously, the peak current is 16 kA and the
transferred charge q0 = I0(τ1 − τ2) ≈ I0τ1 is 2C. Although a vertical
cloud-to-ground single-stroke flash and its image, given by a quasi-
perfect conducting ground, can exceed a length of 10 km [33, 34], the
large dimensions of the system and a current that can be approximated
by an instantaneously uniform current from the ground to the return
stroke tip [34] allow us to model the excitation discharge as a
Hertzian electric dipole. For an arbitrary temporal current shape, the
electromagnetic radiation fields of a Hertzian electric dipole, placed
along the z-axis, are given by [35]

~E(~r, t) =
L

4πε0c2r

d[i]
dt

r̂ × (r̂ × ẑ), (3)

~H(~r, t) =
L

4πcr

d[i]
dt

ẑ × r̂, (4)

where L is the dipole length and the rectangular brackets denote that
the variable contained within them should be evaluated at the retarded
time t′ = t−R/c, with R the distance between field and source point.
The instantaneous power P (t) crossing a surface s of any sphere of
radius r in the radiation zone, centered on the ground between the
lightning channel and its image, is given by integrating the Poynting
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vector ~E × ~H over the surface:

P (t) =
∫ 2π

φ=0

∫ π/2

θ=0

(
L sin θ

4πcr

)2

Z0

(
d[i]
dt

)2

r2 sin θdθdφ

=
Z0L

2

12π2c2

(
d[i]
dt

)2

. (5)

Hence, the total energy crossing the sphere can be calculated by
integrating the instantaneous power over the time. Using the current
given in (2), we obtain

W =
∫ ∞

t=0
P (t)dt =

Z0L
2I2

0

24π2c2

(τ1 − τ2)2

τ1τ2(τ1 + τ2)
' 1.22× 105J. (6)

The part of this energy that would enter the space simulated by
the TLM mesh, that is, ∆φ/2π, is introduced into the mesh through
the line 1 of the TLM node (1, 1), placed in the polar position. With
regard to how the energy is introduced into the mesh, a broadband
signal with a relatively flat spectrum is necessary in order to excite all
the resonances equally; however, fulfilling the previous conditions, the
mathematical shape is quite irrelevant since any shape would generate
similar spectra. In this paper, a voltage pulse with a width ∆t and
the energy given by (6) is the input signal at t = 0. A total of
N = 3×106 time step calculations were carried out, allowing the signal
to cover Earth’s perimeter more than 70 times, with reflections on the
external boundaries controlled by the value of the reflection coefficient
at 25 Hz, a frequency in the middle of the interest band. The reflection
coefficient Γ defined in (1) is introduced for two reasons: firstly,
because this coefficient shows the altitude of the external boundary
in a simple graphic form; and secondly, more important in the TLM
method, because this coefficient is used in a natural way to implement
simple and efficient boundaries in cases where the external surfaces
are conducting boundaries but not perfect conductors. Figure 3 shows
the spectra of the vertical component of the electric field and the
horizontal component of the magnetic field, obtained via a discrete
Fourier transform (DFT) of the temporal signals at node (1, 6) of the
TLM mesh, i.e., at θ = 30◦. With the time step used and the temporal
iteration number, the frequency step is ∆f = (N∆t)−1 = 0.096Hz.
As can be observed in Figure 3, the magnetic field spectrum responds
like a damped resonant signal but the continuous level representing the
static field and the low-frequency TEM modes mask the resonances of
the electric field spectrum. Since each resonant mode in a Schumann
power spectrum can be approximated by a Lorentzian function [36, 37],
the magnetic resonant spectrum can be expressed approximately as
a superposition of Lorentzian functions obtained by least-squares
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Figure 3. Spectrum of the horizontal magnetic field and vertical
electric field in the Schumann resonance band.

Table 1. Experimental and numerical Schumann resonances in the
Earth-ionosphere electromagnetic cavity.

n 1 2 3 4 5 6

Experimental Schumann

resonances (f , Hz) [3]
7.8 14 20 26 33 39

TLM resonances for

horizontal magnetic

field (f , Hz)

8.2 15.2 22.0 29.0 35.9 42.9

TLM resonances for

vertical electric

field (f , Hz)

8.6 16.2 22.3 27.4 35.1 42.4

fitting. The peak frequencies of this fit together with the experimental
values [3] are included in Table 1.

4. ANALYSIS PROCEDURE FOR EXTRACTING
RESONANCE FREQUENCIES FROM THE LATE-TIME
SIGNAL

The late-time unforced transient response of an electromagnetic system
excited by an electromagnetic pulse can be written as a series of natural
oscillation modes expressed as the product of sine and decreasing
exponential functions [38]. Therefore, at the first time as an example,
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let us consider the following time-varying function:

g(t) = e−2×104(t−0.2)2 +10−3 [sin(2π · 10 · t) + sin(2π · 30 · t)] e−2t, (7)
where the amplitude of the sine functions representing the system
response is a thousand times lower than the maximum value of the
excitation pulse and the decreasing exponential is the term representing
the loss in the damped system. Although the exciting pulse and the
subsequent response of the system may be repeated periodically, for
example, two pulses and system responses are shown in Figure 4(a),
the analysis is reduced to a single pulse and the subsequent system
response. In any case, the reduced amplitude of the oscillations makes
difficult to observe them at first glance in the figure. If the function
given in (7) is sampled, with a time step ∆t = (N∆f)−1, N = 1024
and ∆f = 0.2Hz, and transformed to the frequency domain with a
DFT, the amplitude spectrum shown in Figure 4(b) is obtained. Only
the first half of the samples generated by the DFT is shown in this
figure because, as is widely known, the second half is the specular
reflection of the first. The amplitude spectrum of the entire signal
g(t) is practically superposed on that of the pulse excitation, except
for two slight oscillations around the system resonant frequencies at
10 and 30Hz because the excitation pulse concentrates most of the
energy of the function g(t) and the influence of the resonances on the
spectrum is practically negligible.

The next step in our analysis procedure is to compress the data
logarithmically, expressing them in dBµ, in order to reduce possible
differences in amplitude. The compressed amplitude spectrum is shown
in Figure 4(c). Now, this spectrum of g(t) can be re-transformed to
the time domain using an inverse DFT with zero phase and imposing
a real output sequence, since the temporal response of a physical
system can be represented by a real function. Figure 4(d) shows this
temporal signal, which forms a different signal to the previous g(t)
because, although both signals have the same power spectrum, the
phases are different. Again, the inverse DFT output is constituted by
two halves, one of which is the specular reflection of the other. So, this
temporal signal has only 512 independent samples with ∆t = 4.9ms
and only the first 128 samples are shown in Figure 4(d) to highlight the
difference between the first samples and the rest of the signal. In the
new temporal signal, it is possible to differentiate between an initial
pulse related to the excitation signal, which constitutes the early time
response, and the later oscillations or late-time response associated
with the system response. The early time signal is a pulse centered at
t = 0 and is directly related to the excitation signal because the Fourier
transform of a real time-varying pulse centered at the origin time
is another real pulse in the frequency domain centered at the origin



12 Morente et al.

(a) (b)

(c)(d)

(e) (f)

Figure 4. Different stages in the analysis procedure to extract weak
resonances.

frequency with null phase. At this stage, we would like to reiterate two
points. On the one hand, taking null phase can help obtain the system
resonances because the pulses included in the original temporal signal
are shifted to the origin of the time, allowing us to distinguish the early
time directly related to the excitation and the late time containing
information about the system resonances. On the other hand, the
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(a) (b)

(c)(d)

Figure 5. Analysis of the vertical component of electric field in the
Earth’s electromagnetic cavity.

temporal series obtained via an inverse DFT with zero phase do not
represent a real physical magnitude; they are only an intermediate
step, a mathematical tool, in the analysis procedure for extracting
weak resonances from the response of the physical system. The late-
time part of this temporal signal, which is obtained by making the
first twelve samples of the entire signal zero, is shown in Figure 4(e).
In this case, to annul this number of samples is enough to sufficiently
remove the initial exponential pulse. Finally, with a direct DFT of this
last temporal series, the late-time spectrum is obtained and shown
in Figure 4(f). This last figure is constituted by 128 samples in the
frequency domain with ∆f = 0.4 Hz, although the number of samples
and the frequency step ∆f can be modified by applying the well-
known method of “zero padding”; i.e., adding zeroes to the tail of
the input temporal signal because the samples in the late time signal
oscillate around or tend to zero. The late-time spectrum presents two
noticeable peaks at 10 and 30Hz and, consequently, our analysis was
able to identify the weak resonance introduced in the initial analytical
function.
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The analysis procedure described above with an analytical
function is now applied to the numerical signal, obtained by the
TLM method, which represents the vertical electric field in Earth’s
atmosphere as a response to a lightning discharge. Figure 5(a) shows
the logarithmically compressed amplitude spectrum for the radial
electric field, also shown in Figure 3. This signal may be transformed
to the time domain by means of the inverse DFT, assuming zero
phases for all frequencies; that is, annulling the arguments in all the
complex numbers that represent the spectrum samples. In this case,
the frequency domain input signal is constituted by 1044 samples with
the frequency step given by the TLM simulation, ∆f = 0.096Hz,
and consequently the temporal output is sampled with a time step
∆t = 10 ms. The resultant time-domain signal (Figure 5(b)) has
two clear regions: an early time at which an important initial pulse
is clearly observed and a late time at which a damped oscillation
becomes predominant after the initial pulse disappears. With the
aim of obtaining and analyzing all the information contained in the
late-time response, the early-time response is removed by imposing a
zero value for the first twelve samples, giving the signal sketched in
Figure 5(c) Finally, Figure 5(d) shows the new Fourier transform, i.e.,
the DFT of the late-time response. This amplitude spectrum presents
an appearance different from the Er global spectrum shown in Figure 3,
because the analysis procedure has modified the oscillations present in
the initial spectrum and now clear resonances that correspond with
the expected Schumann resonances can be observed. Table 1 includes
the peak frequencies obtained after a fit of the Er late-time spectrum
with Lorentzian functions.

5. CONCLUSIONS

Detection of the Schumann resonance frequencies in the atmosphere of
a planet or moon is an irrefutable proof of natural electrical activity in
the planet or moon’s atmosphere. Along with a numerical simulation
of the electromagnetic cavity of Earth’s atmosphere for the ELF band,
our paper presents an analysis of the vertical electric field in order
to extract from it the Schumann resonances. The analysis procedure
is based on the following idea. The resonances of a system produce
oscillations in its temporal response which, depending on the damping
ratio, remain visible for more or less time in the response of an under-
damped system. These oscillations are merged with the excitation
and other possible components that may be included in the signal
measured as the temporal response of the system. If the resonances
are weak and their amplitudes are low compared to the amplitude of
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other components of the total signal, their existence can go unnoticed
in a global analysis of the entire signal. However, if the temporal
signal has a low-amplitude oscillating tail due to the non-existence
of excitation in this part of the signal, then it might be possible to
find the system’s natural resonances by analyzing the oscillating tail
or late-time response. Thus, to analyze a temporal signal obtained via
an inverse DFT of the spectra with phase zero could be of great help
because all the pulses included in this signal would be automatically
transferred to the origin of the signal, leaving the tail of the signal free,
since the Fourier transform of a real time-varying pulse centered at the
origin time is another pulse in the frequency domain centered at the
origin frequency with null phase. The above process, applied to the
vertical component of electric fields obtained with the TLM method,
generates a series of Schumann resonances with values close to those
supplied by the horizontal magnetic field and the experimental ones.
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