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a b s t r a c t

Class imbalance is among the most persistent complications which may confront the traditional super-
vised learning task in real-world applications. The problem occurs, in the binary case, when the number
of instances in one class significantly outnumbers the number of instances in the other class. This situa-
tion is a handicap when trying to identify the minority class, as the learning algorithms are not usually
adapted to such characteristics.

The approaches to deal with the problem of imbalanced datasets fall into two major categories: data
sampling and algorithmic modification. Cost-sensitive learning solutions incorporating both the data
and algorithm level approaches assume higher misclassification costs with samples in the minority class
and seek to minimize high cost errors. Nevertheless, there is not a full exhaustive comparison between
those models which can help us to determine the most appropriate one under different scenarios.

The main objective of this work is to analyze the performance of data level proposals against algorithm
level proposals focusing in cost-sensitive models and versus a hybrid procedure that combines those two
approaches. We will show, by means of a statistical comparative analysis, that we cannot highlight an
unique approach among the rest. This will lead to a discussion about the data intrinsic characteristics
of the imbalanced classification problem which will help to follow new paths that can lead to the
improvement of current models mainly focusing on class overlap and dataset shift in imbalanced
classification.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

One major problem facing data mining is the class imbalance
problem (He & Garcia, 2009; Sun, Wong, & Kamel, 2009). It appears
in many applications, and is defined as the case where there exists
a significant difference between the class prior rates, that is, the
probability a particular example belongs to a particular class. The
class imbalance is dominant in a high number of real problems
including, but not limited to, telecommunications, WWW, fi-
nances, ecology, biology, medicine and so on. It must also be
stressed that the positive or minority class is usually the one that
has the highest interest from the learning point of view and it also
implies a great cost when it is not well classified (Elkan, 2001).

A wide number of approaches have been proposed to the imbal-
anced learning problem that fall largely into two major categories.
The first one is data sampling in which the training instances are
modified in such a way as to produce a balanced data distribution
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that allow classifiers to perform in a similar manner to standard
classification (Batista, Prati, & Monard, 2004; Chawla, Bowyer, Hall,
& Kegelmeyer, 2002). The second one is through algorithmic mod-
ification to make base learning methods more attuned to class
imbalance issues (Zadrozny & Elkan, 2001). Cost-sensitive learning
solutions incorporating both the data and algorithm level ap-
proaches assume higher misclassification costs with samples in
the rare class and seek to minimize the high cost errors (Ling, Yang,
Wang, & Zhang, 2004; Zadrozny, Langford, & Abe, 2003).

Works in imbalanced classification usually focus on the devel-
opment of new algorithms along one of the categories previously
mentioned. However, there is not a study that exhaustively com-
pares solutions from one category to another making difficult the
selection of one kind of algorithm when classifying. The aim of this
paper is to develop a thorough experimental study to analyze the
possible differences between preprocessing techniques and cost-
sensitive learning for addressing classification with imbalanced
data. In addition, we also present in the comparison a hybrid pro-
cedure that combines those two approaches to check whether
there is a synergy between them.

In order to analyze the oversampling and undersampling meth-
odologies against cost-sensitive learning approaches, we will use
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the ‘‘Synthetic Minority Over-sampling Technique’’ (SMOTE)
(Chawla et al., 2002) and its variant with the Wilson’s Edited
Nearest Neighbor (ENN) rule (Wilson, 1972) as they have shown
to obtain a very robust behaviour among many different situations
(Batista et al., 2004; Fernández, García, del Jesus, & Herrera, 2008).
As cost-sensitive methods we study several modifications to
well-known classification methods such as C4.5 (Quinlan, 1993),
Support Vector Machines (SVMs) (Vapnik, 1998), k-Nearest
Neighbor classifier (k-NN) (Cover & Hart, 1967) or Fuzzy Hybrid
Genetics-Based Machine Learning (FH-GBML) rule generation
algorithm (Ishibuchi & Yamamoto, 2005). The combination of these
approaches is carried out through a wrapper classifier (Chawla,
Cieslak, Hall, & Joshi, 2008) that uses the aforementioned cost-
sensitive techniques with the preprocessing technique obtaining
the adequate parameters to perform altogether.

In this work, we focus on imbalanced binary classification prob-
lems, having selected a benchmark of 66 problems from KEEL
dataset repository1 (Alcalá-Fdez et al., 2011). We perform our
experimental study focusing on the precision of the models using
the Area Under the ROC curve (AUC) (Huang & Ling, 2005). This
study is carried out using nonparametric tests to check whether
there exist significant differences among the obtained results
(Demšar, 2006; García & Herrera, 2008).

On the other hand, after comparing these techniques we also
want to find what is the source where the difficulties for imbal-
anced classification emerge. Many other studies on the behavior
of several standard classifiers in imbalance domains have shown
that significant loss of performance is mainly due to skew of class
distributions. However, several investigations also suggest that
there are other factors that contribute to such performance deg-
radation, for example, size of the dataset, class imbalance level,
small disjuncts, density, and overlap complexity (Japkowicz &
Stephen, 2002; Prati & Batista, 2004; Weiss & Provost, 2003). This
work focuses on the analysis of two of the most pressing open
problems related to data intrinsic characteristics: overlap and
dataset shift.

This paper is organized as follows: first, Section 2 presents the
problem of imbalanced datasets and the metric we have employed
in this context whereas Section 3 describes some ways to tackle
the problem: the preprocessing methods used, cost-sensitive clas-
sification and a wrapper approach to combine both. Next, Section 4
describes the algorithms we have used in this study, selected
benchmark datasets and the configuration of the methods. In Sec-
tion 5 an analysis of preprocessing techniques versus cost-sensitive
learning approaches can be found. Section 6 is devoted to discuss
the imbalanced classification problem characteristics that make
that problem difficult, analysing the open problems related to data
intrinsic characteristics, class overlap and dataset shift. The conclu-
sions of this work can be found in Section 7. Additionally, we in-
clude an appendix with the complete tables of results from the
experimental study.
2. Imbalanced datasets in classification

In this section, we first introduce the problem of imbalanced
datasets and then we present the evaluation metrics for this type
of classification problem which differ from usual measures in
classification.

2.1. The problem of imbalanced datasets

In some classification problems, the number of instances of
every class can be very different. Specifically when facing a dataset
1 http://www.keel.es/datasets.php.
with only two classes, the imbalance problem occurs when one
class is represented by a large number of examples, while the other
is represented by only a few (Chawla, Japkowicz, & Kotcz, 2004).

The problem of imbalanced datasets is extremely significant
(Yang & Wu, 2006) because it is implicit in most real world appli-
cations, such as very high resolution airborne imagery (Chen, Fang,
Huo, & Li, 2011), e-mail foldering (Bermejo, Gámez, & Puerta, 2011)
or micro seismic hazards in coal mines (Sikora, 2011), just citing
some of them. It is important to point out that the minority class
usually represents the concept of interest, for example patients
with illnesses in a medical diagnosis problem; whereas the other
class represents the counterpart of that concept (healthy patients).

Usually, standard classifier algorithms have a bias towards the
majority class, since the rules that predict the higher number of
examples are positively weighted during the learning process in fa-
vour of the accuracy metric. Consequently, the instances that be-
long to the minority class are misclassified more often than those
belonging to the majority class. Another important issue related
to this type of problem is the presence of small disjuncts in the
dataset (Weiss & Provost, 2003) and the difficulty most learning
algorithms have in detecting those regions. Furthermore, the main
handicap in imbalanced datasets is the overlapping between the
examples of the positive and the negative class (García, Mollineda,
& Sánchez, 2008). These facts are depicted in Fig. 1(a) and (b)
respectively.

2.2. Evaluation in imbalanced domains

The measures of the quality of classification are built from a
confusion matrix (shown in Table 1) which records correctly and
incorrectly recognized examples for each class.

The most commonly used empirical measure, accuracy (1), does
not distinguish between the number of correct labels of different
classes, which in the framework of imbalanced problems may lead
to erroneous conclusions. For example a classifier that obtains an
accuracy of 90% in a dataset with a degree of imbalance 9:1, might
not be accurate if it does not cover correctly any minority class
instance.

Acc ¼ TP þ TN
TP þ FN þ FP þ TN

ð1Þ

Because of this, instead of using accuracy, more correct metrics are
considered. Specifically, from Table 1 it is possible to obtain four
metrics of performance that measure the classification quality for
the positive and negative classes independently:

� True positive rate TPrate ¼ TP
TPþFN is the percentage of positive

cases correctly classified as belonging to the positive class.
� True negative rate TNrate ¼ TN

FPþTN is the percentage of negative
cases correctly classified as belonging to the negative class.
� False positive rate FPrate ¼ FP

FPþTN is the percentage of negative
cases misclassified as belonging to the positive class.
� False negative rate FNrate ¼ FN

TPþFN is the percentage of positive
cases misclassified as belonging to the negative class.

One appropriate metric that could be used to measure the per-
formance of classification over imbalanced datasets is the Receiver
Operating Characteristic (ROC) curve (Bradley, 1997). In this curve,
the tradeoff between the benefits (TPrate) and costs (FPrate) can be
visualized, and acknowledges the fact that the capacity of any clas-
sifier cannot increase the number of true positives without also
increasing the false positives. The Area Under the ROC Curve
(AUC) (Huang & Ling, 2005) corresponds to the probability of cor-
rectly identifying which of the two stimuli is noise and which is sig-
nal plus noise. AUC provides a single-number summary for the
performance of learning algorithms.

http://www.keel.es/datasets.php
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(a) (b)
Fig. 1. Example of the imbalance between classes: (a) small disjuncts and (b) overlapping between classes.

Table 1
Confusion matrix for a two-class problem.

Positive prediction Negative prediction

Positive class True positive (TP) False negative (FN)
Negative class False positive (FP) True negative (TN)
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The way to build the ROC space is to plot on a two-dimensional
chart the true positive rate (Y axis) against the false positive rate (X
axis) as shown in Fig. 2. The points (0,0) and (1,1) are trivial clas-
sifiers in which the output class is always predicted as negative
and positive respectively, while the point (0,1) represents perfect
classification. To compute the AUC we just need to obtain the area
under the curve as:

AUC ¼ 1þ TPrate � FPrate

2
ð2Þ
3. Solutions to the class imbalance problem

A large number of approaches have been previously proposed to
deal with the class-imbalance problem. These approaches can be
categorized in two groups: the internal approaches that create
new algorithms or modify existing ones to take the class-imbal-
ance problem into consideration (Barandela, Sánchez, García, &
Rangel, 2003; Ducange, Lazzerini, & Marcelloni, 2010; Wu & Chang,
2005; Xu, Chow, & Taylor, 2007) and external approaches that pre-
process the data in order to diminish the effect of their class imbal-
ance (Batista et al., 2004; Estabrooks, Jo, & Japkowicz, 2004).
Furthermore, cost-sensitive learning solutions incorporating both
the data and algorithmic level approaches assume higher mis-
classification costs with samples in the minority class and seek
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Fig. 2. Example of an ROC plot. Two classifiers are represented: the solid line is a
good performing classifier whereas the dashed line represents a random classifier.
to minimize the high cost errors (Domingos, 1999; Sun, Kamel,
Wong, & Wang, 2007; Zhou & Liu, 2006).

In this section, we first introduce the SMOTE and SMOTE + ENN
methods in Section 3.1. Then, cost-sensitive learning is described
in Section 3.2. Finally, Section 3.3 presents a framework to auto-
matically detect a threshold for preprocessing using an underlying
algorithm, in this case, a cost-sensitive approach.
3.1. Preprocessing imbalanced datasets. The SMOTE and SMOTE + ENN
algorithms

As mentioned before, applying a preprocessing step in order to
balance the class distribution is an effective solution to the imbal-
anced dataset problem (Batista et al., 2004). Specifically, in this
work we have chosen an oversampling method which is a well-
known reference in the area: the SMOTE algorithm (Chawla
et al., 2002) and a variant called SMOTE + ENN (Batista et al.,
2004) as they have been shown to present a very robust behavior
among many different situations (Batista et al., 2004; Fernández
et al., 2008).

In this approach, the positive class is over-sampled by taking
each minority class sample and introducing synthetic examples
along the line segments joining any/all of the k minority class
nearest neighbors. Depending upon the amount of over-sampling
required, neighbors from the k nearest neighbors are randomly
chosen. This process is illustrated in Fig. 3, where xi is the se-
lected point, xi1 to xi4 are some selected nearest neighbors and
r1 to r4 the synthetic data points created by the randomized
interpolation.

Synthetic samples are generated in the following way: take the
difference between the feature vector (sample) under consider-
ation and its nearest neighbor. Multiply this difference by a ran-
dom number between 0 and 1, and add it to the feature vector
under consideration. This causes the selection of a random point
Fig. 3. An illustration of how to create the synthetic data points in the SMOTE
algorithm.
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along the line segment between two specific features. This
approach effectively forces the decision region of the minority class
to become more general. An example is detailed in Fig. 4.

In short, its main feature is to form new minority class exam-
ples by interpolating between several minority class examples that
lie together. Thus, the overfitting problem is avoided and causes
the decision boundaries for the minority class to spread further
into the majority class space.

Nevertheless, class clusters may be not well defined in cases
where some majority class examples invade the minority class
space. The opposite can also be true, since interpolating minority
class examples can expand the minority class clusters, introducing
artificial minority class examples too deeply into the majority class
space. Inducing a classifier in such a situation can lead to overfit-
ting. For this reason we also consider a hybrid approach in this
work, ‘‘SMOTE + ENN’’, where the Wilson’s ENN rule (Wilson,
1972) is used after the SMOTE application to remove from the
training set any example misclassified by its three nearest
neighbors.

3.2. Cost-sensitive learning

Cost-sensitive learning takes into account the variable cost of
a misclassification of the different classes (Domingos, 1999;
Zadrozny et al., 2003). A cost matrix codifies the penalties of
classifying examples of one class as a different one. Let C(i, j) be
the cost of predicting an instance of class i as class j; with this
notation C(+,�) is the cost of misclassifying an instance of the
positive class as if it was negative and C(�, +) is the cost of the
opposite case.

When dealing with imbalanced problems it is usually more
important to recognize the positive instances rather than the neg-
ative ones. Therefore, the cost of misclassifying a positive instance
is higher than the cost of misclassifying a negative one
(C(+,�) > C(�, +)). As a classical example, the reader may refer to
a diagnosis problem in which it is often less dangerous to obtain
a false positive than a false negative.

Three main general approaches have been proposed to deal
with cost-sensitive problems:

1. Methods based on modifying the training data. The most popu-
lar technique lies in resampling the original class distribution of
the training dataset according to the cost decision matrix by
means of undersampling/oversampling, modifying decision
thresholds or assigning instance weights. These modifications
have shown to be effective and can also be applied to any cost
insensitive learning algorithm (Zadrozny et al., 2003; Zhou &
Liu, 2006).

2. Methods that change the learning process in order to build a
cost-sensitive classifier, for example, in the context of decision
tree induction, the tree-building strategies are adapted to min-
imize the misclassification costs. The cost information is used
to: (1) choose the best attribute to split the data Ling et al.
(2004) and Riddle, Segal, and Etzioni (1994); and (2) determine
whether a subtree should be pruned Bradford, Kunz, Kohavi,
Brunk, and Brodley (1998).
Fig. 4. Example of the SMOTE application.
3. Methods based on the Bayes decision theory that assign
instances to the class with minimum expected cost. For exam-
ple, a typical decision tree for a binary classification problem
assigns the class label of a leaf node depending on the majority
class of the training samples that reach the node. A cost-sensi-
tive algorithm assigns the class label to the node that minimizes
the classification cost Domingos (1999) and Zadrozny and Elkan
(2001).

Cost-sensitive learning supposes that there is a cost matrix
available for the different type of errors. However, given a dataset,
this matrix is not usually given Sun et al. (2007, 2009).

3.3. Hybridization. Automatically countering imbalance

The different solutions used to deal with the imbalanced prob-
lem have been presented in the previous subsections. So the ques-
tion now is ‘‘Can we use both techniques together and achieve
better results?’’

Cost-sensitive learning algorithms associate high misclassifi-
cation costs to positive instances which bias the search towards
the positive class. If the cost associated to positive instances is
too high or if the specific cost-sensitive algorithm is easily biased
towards the positive class, we can observe that the decision region
generated by the algorithm is far away from those instances.
Therefore, we need to bias those algorithms in a way that pushes
the boundary towards the positive instances, but still classifies cor-
rectly both classes. If the positive instances are sparse, a case that is
likely to occur in imbalanced datasets, then the boundary may not
have the proper shape.

On the other hand, preprocessing methods try to balance class
distributions to let the standard classifier algorithms accomplish
similar results to their performance in a balanced data scenario.
There is a diversity of preprocessing methods with a behavior fo-
cused on generating new samples, removing some of the samples
or carrying out both operations jointly. Nevertheless, these meth-
ods can fail due to the loss of information produced when we de-
lete samples that define our decision boundaries or when we
create examples that introduce noise to the classifier.

Regarding cost-sensitive learning classifiers, a way to avoid
biasing towards positive instances without modifying the algo-
rithm itself lies in the creation of a few positive instances or the
deletion of some negative examples. This causes a more balanced
data distribution which means that the misclassification costs
associated to positive instances will also be lower thus making
the search process less biased. In addition, since we are using a
cost-sensitive classifier we do not need to apply a preprocessing
procedure to balance the distribution because cost-sensitive learn-
ers are able to learn in imbalanced conditions, therefore, the
resampling stage is quicker than using only a preprocessing ap-
proach and the whole learning process is sped up, especially when
the base classifier efficiency deeply depends on the number of
instances.

We can find some works related to this idea. For example,
Akbani, Kwek, and Japkowicz (2004) propose a solution with sup-
port vector machines where they integrate a cost-sensitive support
vector machine (Veropoulos, Campbell, & Cristianini, 1999) with
the SMOTE technique of oversampling the minority instances
(Chawla et al., 2002). With this behavior they manage to push
the boundary away from the positive instances (cost-sensitive
learning) and make the boundary better defined (because of the
denser positive instance distribution).

Due to the previous facts we aim to develop a procedure to inte-
grate the cost-sensitive learning and preprocessing approaches
into one. Chawla et al. (2008) propose a wrapper paradigm that
discovers the amount of resampling needed for a dataset based
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on optimizing evaluation functions which can include the cost
associated to the classification. This wrapper infrastructure applies
cross-validation to first discover the best amounts of undersam-
pling and oversampling, applies the preprocessing algorithms with
the amounts estimated and finally runs the algorithm used over
the preprocessed dataset.

Obviously, searching the entire space of undersampling and
SMOTE combinations can quickly become intractable, so the search
procedure must be fine-tuned. This strategy removes the ‘‘excess’’
examples of the majority classes, which reduces the size of the
training dataset. This also makes learning time more manageable.
SMOTE is used to add synthetic examples of the minority classes
and increase the generalization performance of the classifier over
the minority classes. Fig. 5 shows the algorithm procedure.

The estimation is done over a training and a test set. The train-
ing data is split into five partitions for an internal five-fold cross-
validation. The wrapper applies this independent validation stage
to each fold to discover the appropriate percentages of sampling
for a given method and classifier combination. Once these percent-
ages are discovered, the classifier is re-learned on the original
training fold using the discovered percentages and tested on the
corresponding testing fold.

The undersampling estimation starts with no undersampling
for all majority classes and obtains baseline results on the training
data. Then it traverses through the search space of undersampling
percentages in decrements of Sample Decrement, in a greedy itera-
tive fashion, to increase performance over the minority classes
without sacrificing performance on the majority class.

The oversampling algorithm evaluates different amounts of
SMOTE at steps of Sample Increment (percentage of the number
of examples from the minority class that will be generated in each
step). This is a greedy search, and at each step the new perfor-
mance estimates become the new baseline. That is, the initial base-
line is the performance obtained via the Wrapper Undersample. If
SMOTE = Sample Increment improves the performance over that
baseline by some margin Increment Min, then the performance
achieved at SMOTE = Sample Increment becomes the new baseline.
The amount of SMOTE is then incremented by Sample Increment,
and another evaluation is performed to check if the performance
Fig. 5. Illustration on the wrapper undersample SMOTE algorithm. Dashed lines means
result is in grey.
increase at new SMOTE amount is at least greater than Increment
Min. This process repeats, greedily, until no performance gains
are observed.

However, there is an important caveat to the search to avoid
being trapped in a local maximum. If the average does not improve
by Increment Min we have to verify that we have not settled on a
local maximum. In order to do so, we look ahead some more steps
at increasing amounts of SMOTE. If the look-ahead does not result
in an improvement in performance, then the amount of SMOTE is
reset to the value discovered prior to the look-ahead. This is done
to allow SMOTE to introduce additional examples with the aim of
improving performance. However, if the addition of examples does
not help, then we go back to using the lesser amount of SMOTE dis-
covered prior to the look-ahead.

We can use different measures to evaluate the performance of
the classifier to estimate the sampling parameters. Since we are
using cost-sensitive learning algorithms as base classifiers a logical
evaluation criteria is the cost itself. Cost is calculated as shown in
Eq. (3) when we assume C(+j+) = C(�j�) = 0 (as it is usual in imbal-
anced classification).

cost ¼ FNrate � Cð�jþÞ þ FPrate � Cðþj�Þ ð3Þ
4. Experimental framework

In this section, we first introduce the algorithms which are in-
cluded in the study (Section 4.1). Next, we provide details of the
imbalanced problems chosen for the experimentation and the con-
figuration parameters of the methods (Sections 4.2 and 4.3). Final-
ly, we present the statistical tests applied to compare the results
obtained with the different classifiers (Section 4.4).

4.1. Algorithms selected for the study

This section presents the description of the state of the art algo-
rithms of four different classification paradigms selected for our
study. For each paradigm we outline the base classifier commonly
used in general classification problems and the cost-sensitive
learning version associated to that classifier.
resampling actions, black boxes represent the parameters estimation and the final
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4.1.1. Decision trees
Decision trees use simple knowledge representation to classify

examples into a finite number of classes. In a typical setting, the
tree nodes represent the attributes, the edges represent the possi-
ble values for a particular attribute, and the leaves are assigned
with class labels. Classifying a test sample is straightforward once
a decision tree has been constructed. An object is classified by fol-
lowing paths from the root node through the tree to a leaf, taking
the edges corresponding to the values of attributes.

C4.5 decision tree. C4.5 (Quinlan, 1993) is a decision tree gener-
ating algorithm. It induces classification rules in the form of deci-
sion trees from a set of given examples. The decision tree is
constructed top-down using the normalized information gain
(difference in entropy) that results from choosing an attribute for
splitting the data. The attribute with the highest normalized infor-
mation gain is chosen to make the decision. The C4.5 algorithm
then recurs on the smaller sublists.

Cost-sensitive C4.5 decision tree. The cost-sensitive C4.5 deci-
sion tree (C4.5CS) (Ting, 2002) is a method to induce cost-sensitive
trees that seeks to minimize the number of high cost errors and, as
a consequence of that, leads to minimization of the total misclassi-
fication costs in most cases.

The method changes the class distribution such that the tree in-
duced is in favor of the class with high weight/cost and is less likely
to commit errors with high cost. Specifically, the computation of
the split criteria for C4.5 (normalized information gain) is modified
to take into account the a priori probabilities according to the num-
ber of samples for each class.

C4.5CS modifies the weight of an instance proportional to the
cost of misclassifying the class to which the instance belonged,
leaving the sum of all training instance weights still equal to N.
Let C(j) be the cost of misclassifying a class j instance; the weight
of a class j instance can be computed as

wðjÞ ¼ CðjÞ NP
iCðiÞNi

ð4Þ

such that the sum of all instance weights is
P

jwðjÞNj ¼ N.
The standard greedy divide-and-conquer procedure for induc-

ing minimum error trees can then be used without modification,
except that Wj(t) is used instead of Nj(t) in the computation of
the test selection criterion in the tree growing process and the er-
ror estimation in the pruning process. That Wj(t) is the result of
weighting the initial number of instances from a class with the
weight computed in Eq. (4): Wj(t) = w(j) � Nj(t) Thus, both processes
are affected due to this change.

This modification effectively converts the standard tree induc-
tion procedure that seeks to minimize the number of errors, regard-
less of cost, to a procedure that seeks to minimize the number of
errors with high weight or cost. To classify a new instance, C4.5CS pre-
dicts the class which has the maximum weight at a leaf, as in C4.5.

C4.5CS also introduces another optional modification that alters
the usual classification process after creating the decision tree. In-
stead of classifying using the minimum error criteria, it is advisable
to classify using the expected misclassification cost in the last part
of the classification procedure. The expected misclassification cost
for predicting class i with respect to the instance x is given by

ECiðxÞ /
X

j

WjðtðxÞÞcostði; jÞ ð5Þ

where t(x) is the leaf of the tree that instance x falls into and Wj(t) is
the total weight of class j training instances in node t.

To classify a new instance x using a minimum error tree with
the minimum expected cost criterion, ECi(x) is computed for every
class. The instance x is assigned to class i with the smallest value
for ECi(x); that is, ECiðxÞ < ECi0 ðxÞ for all i0 – i.
4.1.2. Support vector machines
SVMs are one of the binary classifiers based on maximum mar-

gin strategy introduced by Vapnik and Lerner (1963). Originally,
SVMs were designed for linear two-class classification with mar-
gin, where margin means the minimal distance from the separat-
ing hyperplane to the closest data points. SVMs seek an optimal
separating hyperplane, where the margin is maximal. The solution
is based only on those data points at the margin. These points are
called as support vectors. The linear SVMs have been extended to
nonlinear examples when the nonlinear separated problem is
transformed into a high dimensional feature space using a set of
nonlinear basis functions. However, the SVMs are not necessary
to implement this transformation to determine the separating
hyperplane in the possibly high dimensional feature space. Instead,
a kernel representation can be used, where the solution is written
as a weighted sum of the values of a certain kernel function eval-
uated at the support vectors.

Soft margin SVM. In 1995, Cortes and Vapnik suggested a mod-
ified maximum margin idea that allows for mislabeled examples
(Cortes & Vapnik, 1995; Vapnik, 1998). If there exists no hyper-
plane that can split the ‘‘yes’’ and ‘‘no’’ examples, the Soft Margin
method will choose a hyperplane that splits the examples as
cleanly as possible, while still maximizing the distance to the near-
est cleanly split examples. The method introduces slack variables,
ni, which measure the degree of misclassification of the datum xi.

Cost-sensitive SVM. The cost-sensitive SVM (SVMCS)
(Veropoulos et al., 1999) is a modification of the soft-margin
support vector machine. We need to bias SVM in a way that will
push the boundary away from the positive instances using differ-
ent error costs for the positive (C+) and negative (C�) classes.
Specifically, the change implies a new optimization function

min
w;n;b

max
a;b

1
2
kwk2þCþ

Xnþ
fijyi¼þ1g

niþC�
Xn�

fjjyj¼�1g
nj�

Xn

i¼1

ai½yiðw �xi�bÞ

8<
:

�1þni��
Xn

i¼1

bini

)
ð6Þ

The constraints on ai then become:

0 6 ai 6 Cþ if yi ¼ þ1 ð7Þ

and

0 6 ai 6 C� if yi ¼ �1 ð8Þ

Furthermore, ni > 0 only when ai = C. Therefore non-zero errors on
positive support vectors will have larger ai while non-zero errors
on negative support vectors will have smaller ai. The net effect is
that the boundary is pushed more towards the negative instances.

4.1.3. Fuzzy rule based classification system learning methods
A fuzzy rule based classification system (FRBCS) has two main

components: the inference system and the knowledge base. In a
linguistic FRBCS, the knowledge base is composed of a rule base,
constituted by a set of fuzzy rules, and the data base that stores
the membership functions of the fuzzy partitions associated to
the input variables.

In this work we use fuzzy rules of the following form for our
FRBCSs:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class ¼ Cj with RWj
ð9Þ

where Rj is the label of the jth rule, x = (x1, . . . ,xn) is an n-dimen-
sional pattern vector, Aji is an antecedent fuzzy set, Cj is a class label,
and RWj is the rule weight (Ishibuchi & Nakashima, 2001). We use
triangular membership functions as fuzzy partitions associated to
the input variables. To compute the rule weight, many alternatives
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have been proposed, although we have considered as a good choice
the use of the heuristic method known as the Penalized Certainty
Factor (PCF) Ishibuchi and Yamamoto (2005):

PCFj ¼
P

xp2Cj
lAj
ðxpÞ �

P
xpRCj

lAj
ðxpÞPm

p¼1lAj
ðxpÞ

ð10Þ

where xp is the pth example of the training set, Cj is the consequent
class of rule j and lAj

ðxpÞ is the membership degree of the example
with the antecedents of the rule.

Fuzzy hybrid genetic based machine learning rule generation
algorithm. In order to build the rule base, we have chosen the
FH-GBML algorithm (Ishibuchi, Yamamoto, & Nakashima, 2005),
a proposal that presents a good behaviour in both standard and
imbalanced classification (Fernández, del Jesús, & Herrera, 2010;
Luengo, Fernández, García, & Herrera, 2011).

The FH-GBML method consists of a Pittsburgh approach where
each rule set is handled as an individual. It also contains a Genetic
Cooperative-Competitive Learning (GCCL) approach (an individual
represents a unique rule), which is used as a kind of heuristic muta-
tion for partially modifying each rule set. This method uses standard
fuzzy rules with rule weights (Ishibuchi & Yamamoto, 2005) where
each input variable xi is represented by a linguistic term or label. The
system defines 14 possible linguistic terms for each attribute as well
as a special ‘‘do not care’’ as an additional linguistic term.

In the learning process, Npop rule sets are created by randomly
selecting Nrule training patterns. Then, a fuzzy rule from each of
the selected training patterns is generated by probabilistically
choosing an antecedent fuzzy set from the 14 candidates

Pdonot careðBkÞ ¼
lBk
ðxpiÞP14

j¼1
lBj
ðxpiÞ

 !
and each antecedent fuzzy set of the

generated fuzzy rule is replaced with don’t care using a pre-speci-
fied probability Pdo not care.

Npop �1 rule sets are generated by selection, crossover and
mutation in the same manner as the Pittsburgh-style algorithm.
Next, with a pre-specified probability, a single iteration of the Ge-
netic Cooperative–Competitive-style algorithm is applied to each
of the generated rule sets.

Finally, the best rule set is added to the current population in
the newly generated (Npop � 1) rule sets to form the next popula-
tion and, if the stopping condition is not satisfied, the genetic pro-
cess is repeated again. Classification is performed following the
fuzzy reasoning method of the winning rule.

Cost-sensitive fuzzy hybrid genetic based machine learning
rule generation algorithm. The FH-GBML-CS (Fuzzy Hybrid Genet-
ics-Based Machine Learning Cost-Sensitive) algorithm (López,
Fernández, & Herrera, 2010) is a modification of the FH-GBML
original algorithm. The main goal of FH-GBML-CS is to obtain a
FRBCS that is able to consider the different costs associated to mis-
classification of some of its samples during the building process of
the RB. To achieve that purpose an algorithmic level solution is
used, modifying the original behaviour of the FH-GBML algorithm
in some of its steps:

� Adaptation of the fitness function of the Pittsburgh approach.
Instead of using the number of correctly classified training
examples FH-GBML-CS tries to minimize the misclassification
cost: FNrate � C(�, +) + FPrate � C(+,�).
� Modifications in the computation of the rule weight. The PCF heu-

ristic has been adapted to cost-sensitive learning building the
Cost-Sensitive Penalized Certainty Factor (CS-PCF) which is
used in FH-GBML-CS to compute the rule weight:
CS� PCFj ¼
P

xp2Cj
lAj
ðxpÞ � CspPm

p¼1lAj
ðxpÞ � Csp

�
P

xpRCj
lAj
ðxpÞ � CspPm

p¼1lAj
ðxpÞ � Csp

ð11Þ
where Csp is the misclassification cost of an example from class p.
� Different class label choice for the rule. Instead of selecting the

class considering only the highest compatibility the class with
the highest compatibility � cost is chosen.

4.1.4. Lazy learning
Lazy learning is a set of methods in which generalization be-

yond the training data is delayed until a query is made to the sys-
tem, as opposed to in eager learning, where the system tries to
generalize the training data before receiving queries.

The main advantage gained in employing a lazy learning meth-
od is that the target function will be approximated locally, such as
in the k-NN algorithm. Because the target function is approximated
locally for each query to the system, lazy learning systems can
simultaneously solve multiple problems and deal successfully with
changes in the problem domain.

K-nearest neighbor algorithm. k-NN (Cover & Hart, 1967) finds a
group of k instances in the training set that are closest to the test pat-
tern. Given a test sample, the algorithm computes the distance (or
similarity) between the test sample and all of the training samples
to determine its k-nearest neighbors. The class of the test sample
is decided by the most abundant class within the k-nearest samples.

Cost-sensitive k-nearest neighbor algorithm. Cost-sensitive
k-NN algorithm (Hand & Vinciotti, 2003) is a cost-sensitive
learning version of k-NN based on Bayes risk theory to assign each
sample to its lowest risk class.

Let the cost of misclassifying a class i case be ci. Now, if points at x
are assigned to class 1, the loss at x is c0p(0jx). Similarly, if points at x
are assigned to class 0, the loss at x is c1p(1jx). The minimum loss at x
is thus achieved by assigning points at x to class 1 if
c0p(0jx) < c1p(1jx) and to class 0 otherwise. This is equivalent to
the condition

pð1jxÞ > c0=ðc0 þ c1Þ ð12Þ

Without loss of generality we will rescale the costs so that
(c0 + c1) = 1, so that the classification rule becomes ‘‘Assign points
at x to class 1 when p(1jx) > c0 and to class 0 otherwise’’.

Nearest neighbor methods estimate the p(ijx) by the proportion
of class i points amongst the k nearest neighbors to the point x to
be classified. This requires a choice of a distance metric and a
choice of the parameter k.

To sum up, the cost-sensitive k-NN classification rule assigns a
point with measurement vector x to class 1 if k1/k > c0, and other-
wise to class 0, where k1 is the number of class 1 points amongst
the k design set points closest to x.

4.1.5. Summary of the different schemes selected for the experimental
study

In this work, we test several combinations of preprocessing and
cost-sensitive learning with the classification algorithms from each
paradigm described in this section. Specifically, the schemes used
can be arranged into three categories:

1. Oversampling approaches to balance the data distribution before
applying the algorithm which were described in Section 3.1.

2. Cost-sensitive learning methods which take into consideration
costs. The methods used are specific versions that come from
the original non-balanced algorithms. These algorithm versions
have been described in this section.

3. Application of the hybrid methodology that combines cost-sen-
sitive learning and preprocessing: a methodology to automati-
cally countering imbalance using cost was described in
Section 3.3. We use different combinations of algorithms to
evaluate the performance of the methodology.



Table 2
Acronyms used to designate the different algorithm variations used in the experimental study.

Acronym Version description

None The original classifier that names the algorithm family
SMOTE The original classifier that names the algorithm family applied to a dataset preprocessed with the SMOTE algorithm
SENN The original classifier that names the algorithm family applied to a dataset preprocessed with the SMOTE + ENN algorithm
CS The cost-sensitive version of the original classifier from the corresponding algorithm family which was explained in the previous section
Wr_SMOTE Version of the Wrapper routine described in the previous section that uses as main algorithm the cost-sensitive version of the algorithm family and only

performs the oversampling step with the SMOTE algorithm
Wr_US Version of the Wrapper routine described in the previous section that uses as main algorithm the cost-sensitive version of the algorithm family, performs

the undersampling step with a random undersampling algorithm and the oversampling step with the SMOTE algorithm
Wr_SENN Version of the Wrapper routine described in the previous section that uses as main algorithm the cost-sensitive version of the algorithm family and only

performs the oversampling step with the SMOTE + ENN algorithm
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For the sake of clarity, Table 2 indicates a list of acronyms used
to identify the different algorithm versions for each paradigm and a
brief description of each one of them.

4.2. Datasets and data partitions

In order to analyze the preprocessing approach against the cost-
sensitive learning strategy, we have selected 66 datasets from the
KEEL dataset repository2 (Alcalá-Fdez et al., 2011).

In the specialized literature, researchers usually manage all
imbalanced datasets as a whole (Barandela et al., 2003; Batista
et al., 2004; Chen, Chen, Hsu, & Zeng, 2008). In this work we sort
the different datasets according to their degree of imbalance using
the imbalance ratio (IR) (Orriols-Puig & Bernadó-Mansilla, 2009),
which is defined as the ratio of the number of instances of the
majority class and the minority class.

The datasets are summarized in Table 3, where we denote the
number of examples (#Ex.), number of attributes (#Atts.), class
name of each class (positive and negative), class distribution and
IR.

To develop the different experiments we consider a 5-folder
cross-validation model, i.e., five random partitions of data with a
20% and the combination of 4 of them (80%) as training and the
remaining one as test. For each dataset we consider the average re-
sults of the five partitions. The datasets used in this study use the
partitions provided by the repository in the imbalanced classifica-
tion dataset section.3

4.3. Parameters

The configuration parameters for the base classifiers are shown
in Table 4. The selected values are common for all the versions of
the algorithm in the same family to maintain an experimental sce-
nario on equal terms. On the other hand, the parameters for the
preprocessing methods used in this study are presented in Table 5.
Finally, Table 6 points out the parameters for the implementation
of the wrapper routine. All these values were selected according
to the recommendation of the corresponding authors of each algo-
rithm, which is the default parameters’ setting included in the
KEEL software (Alcalá-Fdez et al., 2008).

The only ad-hoc parameter value is the k parameter of nearest
neighbors. We have set that value to k = 3 instead of k = 1 which
is the usual approach because the cost-sensitive k-NN used in this
study achieves an identical performance for 1-NN and 1-NNCS.

Furthermore, we have to identify the misclassification costs
associated to the positive and negative class for the cost-sensitive
learning versions. If we misclassify a positive sample as a negative
one the associated misclassification cost is the IR of the dataset
(C(+,�) = IR) whereas if we misclassify a negative sample as a
2 http://www.keel.es/datasets.php.
3 http://www.keel.es/imbalanced.php.
positive one the associated cost is 1 (C(�,+) = 1). The cost of classi-
fying correctly is 0 (C(+,+) = C(�,�) = 0) because guessing the cor-
rect class should not penalize the built model.

Although we acknowledge that the tuning of the parameters for
each method on each particular problem could lead to better re-
sults, we chose to maintain a baseline performance of each method
as the basis for comparison. Since the experimental study is focused
in the performance of methods from the same family, our hypoth-
esis is that methods that win on average on all problems would also
win if a better setting was used. Furthermore, in a framework where
no method is tuned, winner methods tend to correspond to the
most robust learners, which is also a desirable characteristic.

4.4. Statistical tests for performance comparison

Statistical analysis needs to be carried out in order to find sig-
nificant differences among the results obtained by the studied
methods (García, Fernández, Luengo, & Herrera, 2009). We con-
sider the use of non-parametric tests, according to the recommen-
dations made in Demšar (2006), García and Herrera (2008), García
et al. (2009), García, Fernández, Luengo, and Herrera (2010) where
a set of simple, safe and robust non-parametric tests for statistical
comparisons of classifiers is presented. These tests are used due to
the fact that the initial conditions that guarantee the reliability of
the parametric tests may not be satisfied, causing the statistical
analysis to lose credibility (Demšar, 2006).

Since the study is split in parts comparing a group of algorithms,
we use statistical tests for multiple comparisons. Specifically, we
use the Iman–Davenport test (Sheskin, 2006) to detect statistical
differences among a group of results and the Shaffer post-hoc test
(Shaffer, 1986) in order to find out which algorithms are distinctive
among an n � n comparison.

The post-hoc procedure allows us to know whether a hypothe-
sis of comparison of means could be rejected at a specified level of
significance a, which we set to 95% in our study. However, it is very
interesting to compute the p-value associated with each compari-
son, which represents the lowest level of significance of a hypoth-
esis that results in a rejection. In this manner, we can know
whether two algorithms perform significantly differently and to
what degree.

Furthermore, we consider the average ranking of the algorithms
in order to show graphically how good a method is with respect to
its partners. This ranking is obtained by assigning a position to
each algorithm depending on its performance for each dataset.
The algorithm which achieves the best accuracy in a specific
dataset will have the first ranking (value 1); then, the algorithm
with the second best accuracy is assigned rank 2, and so forth. This
task is carried out for all datasets and finally an average ranking is
computed as the mean value of all rankings.

These tests are suggested in the studies presented by Demšar
(2006), García and Herrera (2008), and García et al. (2009), where
their use in the field of machine learning is strongly recommended.

http://www.keel.es/datasets.php
http://www.keel.es/imbalanced.php


Table 3
Summary of imbalanced datasets.

Datasets # Ex. # Atts. Class (�, +) %Class (�;+) IR

Glass1 214 9 (build-win-non_float-proc;remainder) (35.51,64.49) 1.82
Ecoli0vs1 220 7 (im;cp) (35.00,65.00) 1.86
Wisconsin 683 9 (malignant;benign) (35.00,65.00) 1.86
Pima 768 8 (tested-positive; tested-negative) (34.84,66.16) 1.90
Iris0 150 4 (Iris-Setosa; remainder) (33.33,66.67) 2.00
Glass0 214 9 (build-win-float-proc;remainder) (32.71,67.29) 2.06
Yeast1 1484 8 (nuc;remainder) (28.91,71.09) 2.46
Vehicle1 846 18 (Saab;remainder) (28.37,71.63) 2.52
Vehicle2 846 18 (Bus;remainder) (28.37,71.63) 2.52
Vehicle3 846 18 (Opel; remainder) (28.37,71.63) 2.52
Haberman 306 3 (Die;Survive) (27.42,73.58) 2.68
Glass0123vs456 214 9 (non-window glass;remainder) (23.83,76.17) 3.19
Vehicle0 846 18 (Van;remainder) (23.64,76.36) 3.23
Ecoli1 336 7 (im;remainder) (22.92,77.08) 3.36
New-thyroid2 215 5 (hypo;remainder) (16.89,83.11) 4.92
New-thyroid1 215 5 (hyper;remainder) (16.28,83.72) 5.14
Ecoli2 336 7 (pp;remainder) (15.48,84.52) 5.46
Segment0 2308 19 (brickface;remainder) (14.26,85.74) 6.01
Glass6 214 9 (headlamps;remainder) (13.55,86.45) 6.38
Yeast3 1484 8 (me3;remainder) (10.98,89.02) 8.11
Ecoli3 336 7 (imU;remainder) (10.88,89.12) 8.19
Page-blocks0 5472 10 (remainder;text) (10.23,89.77) 8.77
Ecoli034vs5 200 7 (p, imL, imU;om) (10.00,90.00) 9.00
Yeast2vs4 514 8 (cyt;me2) (9.92,90.08) 9.08
Ecoli067vs35 222 7 (cp,omL,pp; imL,om) (9.91,90.09) 9.09
Ecoli0234vs5 202 7 (cp, imS, imL, imU;om) (9.90,90.10) 9.10
Glass015vs2 172 9 (build-win-non_float-proc, tableware,build-win-float-proc; ve-win-float-proc) (9.88,90.12) 9.12
Yeast0359vs78 506 8 (mit,me1,me3,erl;vac,pox) (9.88,90.12) 9.12
Yeast02579vs368 1004 8 (mit,cyt,me3,vac,erl;me1,exc,pox) (9.86,90.14) 9.14
Yeast0256vs3789 1004 8 (mit,cyt,me3,exc;me1,vac,pox,erl) (9.86,90.14) 9.14
Ecoli046vs5 203 6 (cp, imU,omL;om) (9.85,90.15) 9.15
Ecoli01vs235 244 7 (cp, im; imS, imL,om) (9.83,90.17) 9.17
Ecoli0267vs35 224 7 (cp, imS,omL,pp; imL,om) (9.82,90.18) 9.18
Glass04vs5 92 9 (build-win-float-proc,containers; tableware) (9.78,90.22) 9.22
Ecoli0346vs5 205 7 (cp, imL, imU,omL;om) (9.76,90.24) 9.25
Ecoli0347vs56 257 7 (cp, imL, imU,pp;om,omL) (9.73,90.27) 9.28
Yeast05679vs4 528 8 (me2;mit,me3,exc,vac,erl) (9.66,90.34) 9.35
Ecoli067vs5 220 6 (cp,omL,pp;om) (9.09,90.91) 10.00
Vowel0 988 13 (hid;remainder) (9.01,90.99) 10.10
Glass016vs2 192 9 (ve-win-float-proc; build-win-float-proc,build-win-non_float-proc,headlamps) (8.89,91.11) 10.29
Glass2 214 9 (Ve-win-float-proc;remainder) (8.78,91.22) 10.39
Ecoli0147vs2356 336 7 (cp, im, imU,pp; imS, imL,om,omL) (8.63,91.37) 10.59
Led7digit02456789vs1 443 7 (0,2,4,5,6,7,8,9;1) (8.35,91.65) 10.97
Glass06vs5 108 9 (build-win-float-proc,headlamps; tableware) (8.33,91.67) 11.00
Ecoli01vs5 240 6 (cp, im;om) (8.33,91.67) 11.00
Glass0146vs2 205 9 (build-win-float-proc,containers,headlamps,build-win-non_float-proc;ve-win-float-proc) (8.29,91.71) 11.06
Ecoli0147vs56 332 6 (cp, im, imU,pp;om,omL) (7.53,92.47) 12.28
Cleveland0vs4 177 13 (0;4) (7.34,92.66) 12.62
Ecoli0146vs5 280 6 (cp, im, imU,omL;om) (7.14,92.86) 13.00
Ecoli4 336 7 (om;remainder) (6.74,93.26) 13.84
Yeast1vs7 459 8 (nuc;vac) (6.72,93.28) 13.87
Shuttle0vs4 1829 9 (Rad Flow;Bypass) (6.72,93.28) 13.87
Glass4 214 9 (containers; remainder) (6.07,93.93) 15.47
Page-blocks13vs2 472 10 (graphic;horiz.line,picture) (5.93,94.07) 15.85
Abalone9vs18 731 8 (18;9) (5.65,94.25) 16.68
Glass016vs5 184 9 (tableware; build-win-float-proc,build-win-non_float-proc,headlamps) (4.89,95.11) 19.44
Shuttle2vs4 129 9 (Fpv Open;Bypass) (4.65,95.35) 20.5
Yeast1458vs7 693 8 (vac;nuc,me2,me3,pox) (4.33,95.67) 22.10
Glass5 214 9 (tableware; remainder) (4.20,95.80) 22.81
Yeast2vs8 482 8 (pox;cyt) (4.15,95.85) 23.10
Yeast4 1484 8 (me2;remainder) (3.43,96.57) 28.41
Yeast1289vs7 947 8 (vac;nuc,cyt,pox,erl) (3.17,96.83) 30.56
Yeast5 1484 8 (me1;remainder) (2.96,97.04) 32.78
Ecoli0137vs26 281 7 (pp, imL;cp, im,imU, imS) (2.49,97.51) 39.15
Yeast6 1484 8 (exc;remainder) (2.49,97.51) 39.15
Abalone19 4174 8 (19;remainder) (0.77,99.23) 128.87
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5. Experimental study

In this section, we will perform an analysis to determine the
performance of the different alternatives used for imbalanced
classification. Our aim is to analyze three different issues:
1. The improvement obtained by preprocessing datasets and
cost-sensitive learning over the original algorithm.

2. The possible differences between the rebalancing tech-
niques versus cost-sensitive learning and in which
cases.



Table 4
Parameter specification for the algorithms family employed in the experimentation.

Algorithm
family

Parameters

C4.5 Pruned = true
Confidence = 0.25
Minimum number of item-sets per leaf = 2

SVM Kernel type = polynomial
C = 100.0
Tolerance of termination criterion = 0.001
Degree (for kernel function) = 1
Gamma (for kernel function) = 0.01
coef0 (for kernel function) = 0.0
Use the shrinking heuristics = true

FH-GBML Conjunction operator = product t-norm
Rule weight = PCF (FH-GBML and FH-GBML + preprocessing)
and PCF-SC (FH-GBML-CS)
Fuzzy reasoning method = winning rule
Number of fuzzy rules = 5 � d (max. 50 rules)
Number of rule sets = 200
Crossover probability = 0.9
Mutation probability = 1/d
Number of replaced rules = all rules except the best-one
(Pittsburgh-part,elitist approach)
Number of rules/5 (GCCL-part)
Total number of generations = 1.000
Do not care probability = 0.5
Probability of the application of the GCCL iteration = 0.5

k-NN k = 3
Distance = Heterogeneous value difference metric (HVDM)

Table 5
Parameter specification for the preprocessing algorithms used in this study.

Preprocessing Algorithm Parameters

SMOTE kSMOTE = 5
Balancing = 1:1
distanceFunction = HVDM

SMOTE_ENN kSMOTE = 5
kENN = 3
Balancing = 1:1
distanceFunction = HVDM

Table 6
Parameter specification for the wrapper routine.

Parameter Value

Sample decrement 10%
Sample increment 100%
Increment min 5%
Look-ahead steps 2

Table 7
Average table of results using the AUC measure for the C4.5 variety of algorithms.

Algorithm AUCtr AUCtst

C4.5 0.8774 ± 0.0392 0.7902 ± 0.0804
C4.5 SMOTE 0.9606 ± 0.0142 0.8324 ± 0.0728
C4.5 SENN 0.9471 ± 0.0154 0.8390 ± 0.0772
C4.5CS 0.9679 ± 0.0103 0.8294 ± 0.0758
C4.5 Wr_SMOTE 0.9679 ± 0.0103 0.8296 ± 0.0763
C4.5 Wr_US 0.9635 ± 0.0139 0.8245 ± 0.0760
C4.5 Wr_SENN 0.9083 ± 0.0377 0.8145 ± 0.0712

Fig. 6. Average rankings using the AUC measure for the C4.5 variety of algorithms.
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3. Whether a hybrid methodology that combines a preprocessing
approach and a cost-sensitive learning algorithm supposes a
positive synergy and enables the achievement of more accurate
results.

The study is divided into different paradigms to check whether
the conclusions achieved for one paradigm can be extrapolated to
the others.
5.1. Study of decision trees versions: C4.5

Table 7 shows the average results in training and test together
with the corresponding standard deviation for the seven versions
of the C4.5 algorithm used in the study: the base classifier, the base
classifier used over the preprocessed datasets, the cost-sensitive
version of the algorithm and the hybrid versions of it. We stress
in boldface the best results achieved for the prediction ability of
the different techniques. The complete table of results for all
datasets is shown in the appendix of this work.

From this table of results it can be observed that the highest
average value corresponds to preprocessing approaches closely fol-
lowed by the cost-sensitive learning approach and one version of
the wrapper routine. This suggests the goodness of the preprocess-
ing and cost-sensitive learning approaches.

In order to compare the results, a multiple comparison test is
used to find the performance relationship between the different
versions studied. The results of the statistical analysis of the C4.5
family are as follows. For the sake of a visual comparison, Fig. 6
shows the average ranking obtained through Friedman’s test
(Friedman, 1937) for these approaches. Under the AUC measure,
the Iman–Davenport test detects significant differences among
the algorithms, since the p-value returned (1.88673E�10) is lower
than our a-value (0.05). The differences found are analyzed with a
Shaffer test, shown in Table 8. In this table, a ‘‘+’’ symbol implies
that the algorithm in the row is statistically better than the one
in the column, whereas ‘‘�’’ implies the contrary; ‘‘=’’ means that
the two algorithms compared have no significant differences. In
brackets, the adjusted p-value associated to each comparison is
shown.

Observing the results from Tables 7 and 8, we conclude that the
standard C4.5 approach is outperformed by most of the methodol-
ogies that deal with imbalanced data. The base version is different
from every other version except the hybrid version that uses only
an oversampling step with SMOTE + ENN. Thus, we can state that
the imbalanced classification approaches (preprocessing and
cost-sensitive learning) improve the base classifier.

Comparing the results when applying preprocessing we can see
that the performance of these methods is not statistically different
for any of its versions. In addition, the performance of those
preprocessing methods is also not different to the cost-sensitive



Table 8
Shaffer test for the C4.5 variety of algorithms using the AUC measure.

C4.5 None SMOTE SENN CS Wr_SMOTE Wr_US Wr_SENN

None � �(6.404E�6) �(4.058E�8) �(6.404E�6) �(7.904E�6) �(.00341) =(.37846)
SMOTE +(6.404E�6) � =(1.0) =(1.0) =(1.0) =(1.0) +(.04903)
SENN +(4.058E�8) =(1.0) � =(1.0) =(1.0) =(.22569) +(.00152)
CS +(6.404E�6) =(1.0) =(1.0) � =(1.0) =(1.0) +(.04903)
Wr_SMOTE +(7.904E�6) =(1.0) =(1.0) =(1.0) � =(1.0) +(.04903)
Wr_US +(.00341) =(1.0) =(.22569) =(1.0) =(1.0) � =(1.0)
Wr_SENN =(.37846) �(.04903) �(.00152) �(.04903) �(.04903) =(1.0) �

Table 9
Average table of results using the AUC measure for the SVM variety of algorithms.

Algorithm AUCtr AUCtst

SVM 0.7563 ± 0.0198 0.7341 ± 0.0530
SVM SMOTE 0.8806 ± 0.0140 0.8514 ± 0.0568
SVM SENN 0.8826 ± 0.0146 0.8517 ± 0.0557
SVMCS 0.7869 ± 0.0281 0.7651 ± 0.0621
SVM Wr_SMOTE 0.6981 ± 0.0283 0.6820 ± 0.0521
SVM Wr_US 0.7077 ± 0.0315 0.6895 ± 0.0619
SVM Wr_SENN 0.7656 ± 0.0303 0.7461 ± 0.0662

Fig. 7. Average rankings using the AUC measure for the SVM variety of algorithms.

Table 11
Average table of results using the AUC measure for the FH-GBML variety of
algorithms.

Algorithm AUCtr AUCtst

FH-GBML 0.8352 ± 0.0226 0.7692 ± 0.0756
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learning version of C4.5. This means that in decision trees both pre-
processing and cost-sensitive learning are good approaches to deal
with the problem.

Focusing on the hybridization of cost-sensitive learning and
preprocessing by using a wrapper routine, it can be seen that there
are significant differences both between the different hybrid ver-
sions and with the other alternatives. The hybrid version that uses
only an oversampling step with SMOTE + ENN is outperformed by
all the other versions except the base version. The rest of the hy-
brid versions are not statistically different from the performance
of usual approaches for imbalanced classification. Therefore, we
cannot state that the hybridization in decision trees produces a po-
sitive synergy between the two techniques.
FH-GBML SMOTE 0.9181 ± 0.0130 0.8364 ± 0.0733
FH-GBML SENN 0.9127 ± 0.0131 0.8350 ± 0.0736
FH-GBMLCS 0.9328 ± 0.0076 0.8373 ± 0.0773
FH-GBML Wr_SMOTE 0.9330 ± 0.0075 0.8244 ± 0.0830
FH-GBML Wr_US 0.9304 ± 0.0095 0.8322 ± 0.0834
FH-GBML Wr_SENN 0.8866 ± 0.0306 0.8168 ± 0.0901
5.2. Study of support vector machines versions

In this part of the study, we follow the same scheme that was
previously carried out. The average results are shown in Table 9
and, as in the former case, the complete table of results can be
found in Appendix A of this work.

According to the results presented in Table 9, we may conclude
that the preprocessing approaches perform better than the remain-
ing proposals. We first check for significant differences using an
Iman–Davenport test, which obtains a p-value (5.25259E�36)
below our level of significance and near to zero. The associated sta-
tistical study is developed in Table 10, where we show the p-values
computed by a Shaffer test with which we compare every SVM ver-
sion using the AUC measure. In Fig. 7 the average ranking obtained
through Friedman’s test for these versions displayed, in which we
can observe that the best rankings correspond to preprocessing
Table 10
Shaffer test for the SVM variety of algorithms using the AUC measure.

SVM None SMOTE SENN

None � �(1.364E�8) �(4.749E�7)
SMOTE +(1.364E�8) � =(1.0)
SENN +(4.749E�7) =(1.0) �
CS =(1.0) �(2.409E�7) �(6.167E�6)
Wr_SMOTE =(.05819) �(3.329E�17) �(6.421E�15)
Wr_US =(.11667) �(4.454E�16) �(7.094E�14)
Wr_SENN =(1.0) �(4.042E�7) �(9.585E�6)
approaches whereas worst rankings coincide with the hybrid
approaches.

Table 10 shows that the original SVM is outperformed by the
two preprocessing versions whereas there are not significant dif-
ferences to the rest of versions. This means that the preprocessing
approach improves the base classifier, however, the cost-sensitive
learning proposal for SVMs is not competitive enough to be able to
state that there are statistical differences. The hybridizations also
cannot exceed the base classifier.

Comparing the results of preprocessing datasets we can see that
the performance of these methods is not statistically different for
CS Wr_SMOTE Wr_US Wr_SENN

=(1.0) =(.05819) =(.11667) =(1.0)
+(2.409E�7) +(3.329E�17) +(4.454E�16) +(4.042E�7)
+(6.167E�6) +(6.421E�15) +(7.094E�14) +(9.585E�6)
� +(.01792) +(.03837) =(1.0)
�(.01792) � =(1.0) �(.01394)
�(.03837) =(1.0) � �(.03139)
=(1.0) +(.01394) +(.03139) �



Fig. 8. Average rankings using the AUC measure for the FH-GBML variety of
algorithms.

Table 13
Average table of results using the AUC measure for the k-NN variety of algorithms.

Algorithm AUCtr AUCtst

3-NN 0.7697 ± 0.0555 0.7752 ± 0.0916
3-NN SMOTE 0.8880 ± 0.0495 0.8212 ± 0.0836
3-NN SENN 0.8743 ± 0.0434 0.8166 ± 0.0733
3-NNCS 0.8229 ± 0.0567 0.8295 ± 0.0854
3-NN Wr_SMOTE 0.8594 ± 0.0253 0.8596 ± 0.0626
3-NN Wr_US 0.8564 ± 0.0283 0.8561 ± 0.0655
3-NN Wr_SENN 0.8849 ± 0.0316 0.8509 ± 0.0664
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any of its versions. Nevertheless, there are significant differences
between the preprocessing versions and the cost-sensitive learning
version for SVMs. Furthermore, the preprocessing versions outper-
form statistically any other version.

If we just look at the hybridization of cost-sensitive learning
and preprocessing by using a wrapper routine to check if the
hybridization contributes to improve the cost-sensitive learning
performance we find that there are significative differences be-
tween the different hybrid versions and between the other alterna-
tives. The hybrid version that uses only an oversampling step with
SMOTE + ENN outperforms the other hybrid versions whereas it
has no significant differences with the cost-sensitive learning ver-
sion. The rest of hybrids versions are not statistically different,
however, they are also outperformed by the cost-sensitive version.
In this paradigm, we cannot say that the hybridization produces a
positive synergy between the two techniques because some of the
hybrid versions are even outperformed by the cost-sensitive learn-
ing proposal.
5.3. Study of fuzzy rule based systems versions: FH-GBML

Table 11 shows the average results in training and test together
with the corresponding standard deviation for the seven versions
of the FH-GBML algorithm. The complete table of results for all
datasets is also shown in Appendix A of this work together with
the results of the previous experiments.

According to the average values shown in this table the best
methods in this case are the preprocessing approaches and the
cost-sensitive learning. To carry out the statistical study we first
check for significant differences among the algorithms using an
Iman–Davenport test. The p-value (8.20497E�12) is lower than
our level of confidence a = 0.05 and near to zero. Thus, we can
conclude that significant differences do exist, proceeding with a
Shaffer test. The ranks of the algorithms are presented in Fig. 8,
Table 12
Shaffer test for the FH-GBML variety of algorithms using the AUC measure.

FH-GBML None SMOTE SENN

None � �(5.439E�10) �(1.078E�6)
SMOTE +(5.439E�10) � =(.64093)
SENN +(1.078E�6) =(.64093) �
CS +(2.379E�7) =(1.0) =(1.0)
Wr_SMOTE +(4.128E�5) =(.41406) =(1.0)
Wr_US +(2.379E�7) =(1.0) =(1.0)
Wr_SENN +(.00676) =(1.0) =(.60824)
and the results of the multiple comparison test performed on all
algorithms are shown in Table 12.

At first glance we can check the tendency that we have seen in
the previous studies: the base classifier is significantly different
from other versions in the experimental study. Particularly, the
base FH-GBML classifier is outperformed by the other versions,
which means that the techniques used in imbalanced classification
are useful and achieve better results than not performing special
strategies to improve the results.

If we focus now on the performance of preprocessing methods
we can observe that the oversampling versions are not statistically
different. If we examine the preprocessing versions versus the
cost-sensitive learning proposal we can see that they also do not
differ statistically. With this information we can state that prepro-
cessing and cost-sensitive learning are a good option to deal with
the imbalanced classification problem.

Finally, we look at the hybridization versions from cost-sensi-
tive learning and preprocessing. We find that between the different
hybrid versions there are not statistical differences. If we compare
the hybrid versions against the other versions of the study we can
appreciate a difference between one of the hybrid versions and the
cost-sensitive learning algorithm. Specifically, the cost-sensitive
version surpasses the hybrid version that uses only an oversam-
pling step with SMOTE + ENN. From this study, we cannot find a
synergy in the hybridization.
5.4. Study of lazy learning versions: k-NN

Similar to the studies of other paradigms, we show in Table 13
the average results in training and test for the different versions of
the study. We also refer the reader to the appendix for the com-
plete table of results.

According to the average values shown in this table the best
methods in this case seem to be the hybridizations of the prepro-
cessing approaches with cost-sensitive learning. To carry out the
statistical study we first check for significant differences among
the algorithms using an Iman–Davenport test. The p-value
(2.71648E�22) is lower than our level of confidence a = 0.05 and
near to zero. Thus, we can conclude that significant differences
do exist, proceeding with a Shaffer test. The ranks of the algorithms
are presented in Fig. 9, and the results of the multiple comparison
test performed on all algorithms are shown in Table 14.
CS Wr_SMOTE Wr_US Wr_SENN

�(2.379E�7) �(4.128E�5) �(2.379E�7) �(.00676)
=(1.0) =(.41406) =(1.0) =(1.0)
=(1.0) =(1.0) =(1.0) =(.60824)
� =(1.0) =(1.0) +(.02511)
=(1.0) � =(1.0) =(1.0)
=(1.0) =(1.0) � =(.41406)
�(.02511) =(1.0) =(.41406) �



Fig. 9. Average rankings using the AUC measure for the k-NN variety of algorithms.
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In this last part of experiments we confirm the tendency we
pointed out after the previous statistical procedures: the base clas-
sifier is statistically different from the other versions used in the
study. Using 3-NN the base classifier is outperformed by all the
other algorithms in the analysis. This fact proves again that the ap-
proaches used in imbalanced classification are a need to solve
these problems.

Moving to the comparison between preprocessing methods we
can see that they do not differ statistically. If we broadened the
comparison and we include the cost-sensitive learning proposal
we still can see that there are no statistical differences. With these
facts we can say that preprocessing and cost-sensitive learning are
strong alternatives to solve the imbalanced classification problem.

The hybridization of cost-sensitive learning and preprocessing
for 3-NN seems promising according to the average values. How-
ever, the Shaffer test does not indicate us the presence of statistical
differences between the different hybrid versions. When we ex-
tend the comparison to the preprocessing and cost-sensitive learn-
ing versions we can find a difference between the base classifier
combined with the SMOTE dataset and the hybrid version that uses
only an oversampling step with SMOTE + ENN. Surprisingly, the
difference in this case is in favor of the hybrid version. Due to these
facts, for 3-NN we cannot say that there is no synergy between pre-
processing and cost-sensitive learning; however, this improvement
is so small that gets outshined by its bad results in the other
paradigms.
5.5. General analysis on the suitability of preprocessing vs. cost-
sensitive learning

As summary of the experimental study, and to unify the differ-
ent conclusions extracted through the analysis of the results from
the different selected paradigms, in this subsection we discuss the
results we can discern attending to the three different issues we
wanted to deal with: the first one devoted to demonstrate the
goodness of both approaches for enhancing the performance of
standard learning algorithms on this scenario, the second one for
Table 14
Shaffer test for the k-NN variety of algorithms using the AUC measure.

3-NN None SMOTE SENN C

None � �(2.142E�7) �(2.260E�8) �
SMOTE +(2.142E�7) � =(1.0) =
SENN +(2.260E�8) =(1.0) � =
CS +(5.690E�11) =(1.0) =(1.0) �
Wr_SMOTE +(3.981E�17) +(.03081) =(.09722) =
Wr_US +(3.679E�12) =(.80278) =(1.0) =
Wr_SENN +(5.711E�14) =(.34698) =(.80119) =
contrasting the behaviour of both preprocessing and cost-sensitive
between them and the third part where a hybrid approach combin-
ing the two approaches is studied.

Before addressing the general conclusions we want to empha-
size an idea about the generalization of these experiments: we can-
not extrapolate the behaviour of a version from one paradigm to
another. This fact has been critical in the hybrids models where a
hybrid version was put at the same level of the base classifier in
a paradigm whereas the same hybrid version outperformed a pre-
processing approach in another paradigm.

Focusing now on the questions of the study, regarding the first
issue, it is straightforward that classification performance is de-
graded in an imbalance scenario having a bias towards the major-
ity class examples and that the use of the aforementioned
techniques allow us to obtain a better discrimination of the exam-
ples of both classes resulting in an overall good classification for all
concepts of the problem (positive and negative classes).

The second part of the study has reflected that the two employed
solutions are quite similar between them and it was not possible to
highlight one of them as the most adequate one for no one of the dif-
ferent type of algorithms (paradigms) selected for this study. There-
fore, the question on which approach is preferable for addressing
classification with imbalanced datasets is still unresolved.

Finally, the last approach differs from our expectations on a po-
sitive synergy. In most cases, the preliminary versions of hybridiza-
tion techniques do not show a good behaviour in contrast to
standard preprocessing and cost-sensitive learning. Nevertheless,
some work on the combination of preprocessing and cost-sensitive
learning can still be addressed with more specific methods that en-
hance the behaviour of these approaches.
6. Analyzing the limitations of both preprocessing and cost-
sensitive learning in imbalanced classification. Open problems
related to data intrinsic characteristics

According to the conclusions extracted in the previous section,
we should focus on the nature of the problem itself in order to de-
tect why both type of techniques obtain a comparable quality of
solutions and how to address the imbalance problem in a more
reasonable way. In this section we look at two data intrinsic char-
acteristics issues, class overlapping and dataset shift, and their
influence on imbalanced classification.

In Section 6.1 we will discuss some results about the influence
of the imbalance ratio over the classification process and its rela-
tionship with the class overlap regions. Then, in Section 6.2 we will
talk about the class overlapping problem and how it increases the
difficulty to solve imbalanced classification problems. Finally, Sec-
tion 6.3 will present the dataset shift problem and its relationship
to imbalanced datasets classification.

6.1. On the influence of the imbalance ratio and its relationship with
the class overlap regions

As we have stated previously, in real world machine learning
applications, it has often been reported that the class imbalance
S Wr_SMOTE Wr_US Wr_SENN

(5.690E�11) �(3.981E�17) �(3.679E�12) �(5.711E�14)
(1.0) �(.03081) =(.80278) =(.34698)
(1.0) =(.09722) =(1.0) =(.80119)

=(.94508) =(1.0) =(1.0)
(.94508) � =(1.0) =(1.0)
(1.0) =(1.0) � =(1.0)
(1.0) =(1.0) =(1.0) �



Fig. 10. F1 = 0.6994.

Fig. 11. F1 = 9.69.

Fig. 12. F1 = 26.16.

Fig. 13. F1 = 48.65.
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hinders the performance of some standard classifiers. However, the
relationship between class imbalance and learning algorithms is
not clear yet, and a good understanding of how each one affects
the other is lacking. Japkowicz and Stephen (2002) state that
‘‘Linearly separable domains are not sensitive to any amount of
imbalance. As a matter of fact, as the degree of concept complexity
increases, so does the system’s sensitivity to imbalance’’. Thus, it
does not seem fair to directly correlate class imbalance to the loss
of performance of learning algorithms. Rather, it is quite possible
that beyond class imbalances yield certain conditions that hamper
classifiers induction.

As a direct result, there is a need to check whether class imbal-
ances are truly to blame for the loss of performance of learning sys-
tems or whether the class imbalances are not a problem by
themselves. Prati and Batista (2004) develop a study where they
try to find an explanation for this performance decrease. Their
experiments suggest that the problem is not solely caused by class
imbalanced, but it is also related to the degree of data overlapping
among the classes. They propose several experiments with syn-
thetic datasets varying the IR and the overlap existing between
the two classes. From them, it is deduced that it is not the class
probabilities the main responsible for the hinder in the classifica-
tion performance, but instead the degree of overlapping between
the classes. This class overlapping may have a role even more
important to concept induction than class imbalance. Thus, dealing
with class imbalances will not always help classifiers performance
improvement.

García et al. (2008) also develop a study focusing on the rela-
tionship between the IR and the overlap class regions. They studied
the performance of several algorithms in different situations of
imbalance and overlap focusing in the k-NN algorithm. For their
study, they also use a set of synthetic datasets to check the rela-
tionship of these problems in several different situations. On the
one hand, they try to find the relation when the IR in the overlap
region is similar to the overall IR whereas on the other hand, they
search for the relation when the IR in the overlap region is inverse
to the overall one (the positive class is locally denser than the neg-
ative class in the overlap region). This first situation concludes that
the increase in overlapping of a homogeneous imbalance affects
more the (overall) minority class. Furthermore, the more local
schemes tend to be better at classifying the minority class whereas
models based on a more global learning are more robust at classi-
fying the majority class. The second situation produces results
where the accuracy on positive class is improved whereas negative
class produces almost-stable accuracy curves. This example reveals
that when the overlapped data is not balanced, the IR in overlap-
ping can be more important than the overlapping size. In addition,
classifiers based on more global learning attain greater TP rates
whereas more local learning models obtain better TN rates than
the former. This complementarity between global and local classi-
fiers suggest a direction for future works on learning from imbal-
ance data which will be discussed in Section 6.2.



Fig. 14. Performance in training and test for the C4.5 decision tree with SMOTE sorted using the IR.

Fig. 15. Performance in training and test for the C4.5 decision tree with SMOTE sorted using the F1 data complexity metric.
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Similarly, Denil and Trappenberg (2010) examine the effects of
overlap and imbalance on the complexity of the learned model and
demonstrate that overlap is a far more serious factor than imbal-
ance in this respect. They demonstrate that these two problems
acting in concert cause difficulties that are more severe than one
would expect by examining their effects in isolation. In order to
do so, they also use synthetic datasets for classifying with a SVM
where they vary the IR, the overlap between classes and the IR
and overlap jointly. Their results show that when the training set
size is small, high levels of imbalance cause a dramatic drop in
classifier performance, explained by the presence of small dis-
juncts. Overlapping classes cause a consistent drop in performance
regardless of the size of the training set. However, with overlap and
imbalance combined the classifier performance is degraded signif-
icantly beyond what the model predicts.

On the other hand, there exist recent works which have shown
empirically with real world datasets that the quality of the results
has not a clear relationship with the IR. Specifically, in Luengo et al.
(2011) the authors try to characterize this datasets using complex-
ity measures, which capture different aspects or sources of
complexity which are considered complicated to the classification
task. Specifically, they use the so called metric F1 or maximum
Fisher’s discriminant ratio (Ho & Basu, 2002) which measures the
overlap of individual feature values. This data complexity metric,
for one feature dimension, is defined as:

f ¼ ðl1 � l2Þ
2

r2
1 þ r2

2

ð13Þ

where l1, l2, r1 y r2 are the means and variances of the two classes,
respectively, in that feature dimension. We compute f for each fea-
ture and take the maximum as measure F1. For a multidimensional
problem, not all features have to contribute to class discrimination.
The problem is easy as long as there exists one discriminating fea-
ture. Therefore, we can just take the maximum f over all feature
dimensions in discussing class separability. Small values indicate
that the classes have a high overlapping degree. Figs. 10–13 show
illustrative examples of artificially generated data with two vari-
ables in the range [0.0;1.0] and two classes as example, similar to
those used in the studies from García et al. (2008) or Denil and
Trappenberg (2010).

In Luengo et al. (2011) the authors depicted the performance of
the different datasets ordered according to the imbalanced ratio
and the F1 measure in order to search for some regions of
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interesting good or bad behaviour. In Fig. 14 we can observe that
the good and bad results of both learning methods with respect
to the preprocessing are not related with the IR value, nor the
improvements achieved with preprocessing steps. However, if
the datasets are ordered using the F1 measure depicted in Fig. 15
both good and bad behavior intervals can be extracted, indicated
by vertical lines. Therefore, the IR is not good enough to predict a
classifier behavior and we need to focus on other problems to
achieve better performance.

6.2. Addressing the significance of overlapping for imbalanced datasets

According to the studies previously presented, we observe the
necessity to focus our efforts on the research for solutions in the
imbalanced scenario towards the problem of overlapping between
classes, without discarding in any case the issue of data distribution.

Our aim, given the current studies on the topic, is to address the
overlapping problem integrating measures to deal with imbalance,
opening many ways for future work. Therefore, following the
approaches for imbalanced classification we can find several paths
to improve the performance.

If we look at approaches at the algorithm-level we try to find
algorithms that can show complementarity between global and lo-
cal classifiers as suggested by García et al. (2008). A recently
emerging solution to class imbalance is through the use of ‘‘infor-
mation granulation’’. This high level procedure takes a less literal
interpretation of data: instead of viewing a training sample as a
set of example points, this type of classification tries to first estab-
lish higher level concepts via the construction of information gran-
ules. Kaburlasos (2007) propose a method that uses Fuzzy ART
(Carpenter, Grossberg, & Rosen, 1991) to select a level of granular-
ity. Based on these results, data is represented and a traditional
learner is used. Fuzzy ART at its core is a clustering (unsupervised)
system and this approach may be viewed as an additional feature
transformation phase prior to classification. Chen et al. (2008) ap-
ply a similar framework, although k-means clustering is used to
determine information granules instead of Fuzzy Art.

Regarding FRBCSs, Fernández, del Jesus, and Herrera (2009) pro-
posed to make use of a Hierarchical FRBCS, which consists in the
application of a thicker granularity in order to generate the initial
rule base, and to reinforce those problem subspaces that are spe-
cially difficult by means of the application of rules with a higher
granularity. Also, in Gama (2004) the author uses a framework of
decision trees which allows to, for those leaves which have difficul-
ties to discriminate between examples of different classes, to apply
a strong classifier (for example an SVM or any other technique) in
Fig. 16. Data creation based
order to obtain a better separability in this specific area of the
problem, rather than just using a standard heuristic.

Therefore, a very positive approach at the algorithm-level could
consist in working with different granular levels, in a way that
more general submodels of knowledge could cover the largest part
of the problem space, whereas in more difficult areas, that is,
boundary zones with a high degree of overlapping, we could use
more specific discrimination functions in different paradigms of
learning algorithms.

If we now turn a look at preprocessing approaches at the data-
level we have in mind a double objective: try to find algorithms
that can balance the data distribution whereas trying to avoid
overlap as much as possible.

In oversampling techniques, and specially for the SMOTE algo-
rithm, the problem of over generalization is largely attributed to
the way in which it creates synthetic samples. Specifically, SMOTE
generates the same number of synthetic data samples for each ori-
ginal minority example and does so without consideration to
neighboring examples, which increases the occurrence of overlap-
ping between classes (Wang & Japkowicz, 2004). To this end, var-
ious adaptive sampling methods have been proposed to
overcome this limitation; some representative works include the
Borderline-SMOTE (Han, Wang, & Mao, 2005), Adaptive Synthetic
Sampling (He, Bai, Garcia, & Li, 2008) and the Safe-Level-SMOTE
(Bunkhumpornpat, Sinapiromsaran, & Lursinsap, 2009) algorithms.
In Fig. 16 we can observe the generation of new instances using an
over-sampling algorithm. It defines three kind of instances accord-
ing to its neighbors: ‘‘Safe’’ instances that can be used to generate
synthetic samples, ‘‘Danger’’ instances that can be used to generate
synthetic samples but can introduce overlap between the two clas-
ses and ‘‘Noise’’ instances that should not be used to generate in-
stances as they are considered wrongly labelled instances.

Also, some combination of preprocessing of instances with data
cleaning techniques could lead to diminish the overlapping that is
introduced from sampling methods. Some representative work in
this area includes the one-sided selection method Kubat and Mat-
win (1997), the condensed nearest neighbor rule and Tomek Links
integration method Batista et al. (2004), the neighborhood cleaning
rule Laurikkala (2001) based on the edited nearest neighbor (ENN)
rule which removes examples that differ from two of its three
nearest neighbors, and the integrations of SMOTE with ENN and
SMOTE with Tomek links Batista et al. (2004) (Fig. 17).

In this manner, applying new ways of informed preprocessing
techniques in order to identify and weight significant samples
and discard noisy examples in the boundary areas could be an
interesting topic for future work for both relaxing overlapping
on Borderline instance.



Fig. 17. (a) Original dataset distribution, (b) post-SMOTE dataset, (c) the identified Tomek links, and (d) the dataset after removing Tomek links.
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and rebalancing the data distribution for avoiding the bias towards
the majority class examples during the learning stage.

Still in the preprocessing approach, Martín-Félez and Mollineda
(2010) propose an approach that combines preprocessing and fea-
ture selection (specifically in this order), in a way that preprocessing
deals with data distribution and small disjuncts (‘‘IR part’’) and fea-
ture selection somehow reduces the degree of overlapping (‘‘F1
part’’). In a more general way, the idea behind this approach consists
on overcoming different sources of data complexity such as class
overlap, irrelevant and redundant features, noisy samples, class
imbalance, low ratios of the sample size to dimensionality and so
on using different approaches used to solve each complexity.

Also, Villar, Fernández, Sánchez, and Herrera (2009, 2010) use a
FRBCS that performs an a priori learning of the data base to obtain
the optimal number of variables and granularity level for the fuzzy
partitions in an imbalance scenario. The authors combine prepro-
cessing (SMOTE in this case) with the former technique with very
good results in performance (in contrast with C4.5) with a reduc-
tion of about the 65% of the variables for high imbalanced
problems.

In summary, in order to reduce the original overlapping of a
problem, we may apply a feature selection process in order to re-
move those instances which do not introduce any relevant infor-
mation but makes hard to obtain discrimination functions for a
given dataset.

6.3. Dataset shift in imbalanced classification

The problem of dataset shift (Alaiz-Rodríguez & Japkowicz, 2008;
Shimodaira, 2000; Quiñonero Candela, Sugiyama, Schwaighofer, &
Lawrence, 2009) is defined as the case where training and test data
follow different distributions. This is a common problem that can
affect all kind of classification problems, and it often appears due
to sample selection bias issues. A mild degree of dataset shift is pres-
ent in most real-world problems, but general classifiers are often
capable of handling it without a severe performance loss.

However, the dataset shift issue is specially relevant when deal-
ing with imbalanced classification, because in highly imbalanced
domains, the minority class is particularly sensitive to singular
classification errors, due to the typically low number of examples
it presents (Moreno-Torres & Herrera, 2010). In the most extreme
cases, a single misclassified example of the minority class can cre-
ate a significant drop in performance.

Fig. 18 presents an example of dataset shift in imbalanced clas-
sification for clarity. Note how, in the test set, some of the minority
class examples are in an area where there was none in the training
set, creating a situation that is likely to produce low classifier
performance.

Since dataset shift is a highly relevant issue in imbalanced clas-
sification, it is easy to see why it would be an interesting perspec-
tive to focus on in future research regarding the topic.

There are two different potential approaches in the study of the
effect and solution of dataset shift in imbalanced domains. The first
one focuses on intrinsic dataset shift, that is, the data of interest in-
cludes some degree of shift that is producing a relevant drop in
performance. In this case, we need to:

� Develop techniques to discover and measure the presence of
dataset shift following the suggestions made in (Cieslak &
Chawla, 2009; Wang et al., 2003; Yang, Wu, & Zhu, 2008); but
adapting them to focus on the minority class. To do so, either
a partially labeled test set will be needed (in order to properly
identify the minority class examples in the test set), or a new
strategy will have to be developed.



Fig. 18. Example of the impact of dataset shift in imbalanced domains.
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� Design algorithms that are capable of working under dataset
shift conditions. These could be either preprocessing techniques
(Moreno-Torres, Llorà, Goldberg, & Bhargava, in press) or algo-
rithms that are designed to have the capability to adapt and
deal with dataset shift without the need for a preprocessing
step (Alaiz-Rodríguez, Guerrero-Curieses, & Cid-Sueiro, 2009;
Bickel, Brückner, & Scheffer, 2009; Globerson, Teo, Smola, &
Roweis, 2009; Gretton et al., 2009; Sugiyama, Krauledat, &
Müller, 2007). In both cases, we are not aware of any proposals
in the literature that focus on the problem of imbalanced
classification in the presence of dataset shift.

The second branch in terms of dataset shift in imbalanced clas-
sification is related to induced dataset shift. Most current state of
the art research is validated through stratified cross-validation
techniques, which are another potential source of shift in the ma-
chine learning process. A more suitable validation technique needs
to be developed in order to avoid introducing dataset shift issues
artificially.
7. Concluding remarks

In this work we have analyzed the preprocessing performance
in the framework of imbalanced datasets against other approaches
in this problem such as cost-sensitive learning. We have consid-
ered two oversampling methods: SMOTE and SMOTE + ENN, a
cost-sensitive version and a hybrid approach that tries to integrate
both approaches together.

We have observed that the approaches used to address the
imbalanced problem improve the overall performance in all the
paradigms used in the study, which was the expected behaviour.

The comparison between preprocessing techniques against
cost-sensitive learning hints that there are no differences among
the different preprocessing techniques. The statistical study carried
Table A.15
Complete table of results using the AUC measure for the C4.5 variety of algorithms.

C4.5 None SMOTE SENN

Dataset Tr Tst Tr Tst Tr Tst

Glass1 0.8561 0.7399 0.9234 0.7368 0.8690 0.6921
Ecoli0vs1 0.9870 0.9832 0.9926 0.9729 0.9870 0.9832
Wisconsin 0.9840 0.9454 0.9826 0.9532 0.9776 0.9576
Pima 0.8317 0.7012 0.8179 0.7245 0.8012 0.7403
Iris0 1.0000 0.9900 1.0000 0.9900 1.0000 0.9900
Glass0 0.9306 0.8167 0.9459 0.7752 0.8897 0.7994
Yeast1 0.7494 0.6642 0.8085 0.7090 0.7829 0.6954
Vehicle1 0.8898 0.6717 0.9503 0.7301 0.8817 0.7542
out let us say that both preprocessing and cost-sensitive learning
are good and equivalent approaches to address the imbalance
problem.

The preliminary versions of hybridization techniques are truly
competitive with the standard methodologies only in some cases,
which determines more work needs to be done in addressing this
approach.

Finally, we develop a discussion about how to go above pre-
processing and cost-sensitive learning limits. We try to analyze
the problem according to the results and we focus on the open
problems to improve the algorithms. Specifically, we have
emphasized that the IR is important but there are still other is-
sues like the class overlapping and dataset shift problems that
arise in some cases and can prove detrimental in terms of classi-
fication performance. Since overcoming these problems is the key
to the improvement of the algorithms’ performance, future work
should be oriented to analyze the existing overlap to create accu-
rate algorithms that can improve in imbalanced classification and
to use dataset shift repairing techniques to fill the gap between
data distributions.
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Appendix A. Detailed results for the experimental study

In this appendix we present the complete results tables for
all the algorithms used in this work. Thus, the reader can ob-
serve the full training and test results, in order to compare the
performance of each approach. In Table A.15 we show the
CS Wr_SMOTE Wr_US Wr_SENN

Tr Tst Tr Tst Tr Tst Tr Tst

0.9069 0.7160 0.9069 0.7160 0.8831 0.6682 0.8595 0.7367
0.9870 0.9832 0.9870 0.9832 0.9800 0.9832 0.9870 0.9832
0.9780 0.9636 0.9780 0.9636 0.9768 0.9555 0.9755 0.9524
0.8571 0.7125 0.8571 0.7125 0.8621 0.7311 0.8203 0.7077
1.0000 0.9900 1.0000 0.9900 1.0000 0.9900 1.0000 0.9900
0.9205 0.8212 0.9205 0.8212 0.9100 0.8042 0.8636 0.7999
0.7855 0.6779 0.7855 0.6779 0.7806 0.6767 0.8023 0.6945
0.9362 0.7013 0.9362 0.7013 0.9276 0.7130 0.8173 0.6719



Table A.15 (continued)

C4.5 None SMOTE SENN CS Wr_SMOTE Wr_US Wr_SENN

Dataset Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst

Vehicle2 0.9905 0.9561 0.9905 0.9498 0.9848 0.9419 0.9866 0.9434 0.9866 0.9434 0.9850 0.9450 0.9811 0.9419
Vehicle3 0.8588 0.6637 0.9508 0.7282 0.8914 0.7409 0.9221 0.7283 0.9221 0.7283 0.9275 0.7010 0.8569 0.6791
Haberman 0.6204 0.5757 0.7124 0.6163 0.7383 0.5884 0.6380 0.5752 0.6380 0.5752 0.5879 0.5476 0.6417 0.5396
Glass0123vs456 0.9671 0.9155 0.9868 0.9232 0.9635 0.9240 0.9806 0.8777 0.9806 0.8777 0.9783 0.8931 0.9513 0.9108
Vehicle0 0.9863 0.9296 0.9878 0.9188 0.9724 0.9072 0.9861 0.9289 0.9861 0.9289 0.9799 0.9373 0.9752 0.9178
Ecoli1 0.9329 0.8586 0.9507 0.9105 0.9335 0.8926 0.9457 0.9114 0.9457 0.9114 0.9394 0.9017 0.9368 0.9065
New-thyroid2 0.9679 0.9373 0.9922 0.9659 0.9817 0.9774 0.9903 0.9802 0.9903 0.9802 0.9868 0.9437 0.9744 0.9063
New-thyroid1 0.9607 0.9143 0.9879 0.9631 0.9944 0.9889 0.9903 0.9746 0.9903 0.9746 0.9882 0.9746 0.9774 0.9405
Ecoli2 0.9297 0.8641 0.9738 0.8811 0.9716 0.8976 0.9594 0.8905 0.9594 0.8905 0.9515 0.8641 0.9473 0.8580
Segment0 0.9932 0.9826 0.9986 0.9927 0.9989 0.9916 0.9988 0.9919 0.9988 0.9919 0.9967 0.9894 0.9940 0.9876
Glass6 0.9347 0.8132 0.9872 0.8842 0.9851 0.9203 0.9865 0.8896 0.9865 0.8896 0.9878 0.8923 0.9369 0.9365
Yeast3 0.9237 0.8597 0.9607 0.8905 0.9617 0.9230 0.9784 0.9117 0.9784 0.9117 0.9796 0.9096 0.9587 0.9176
Ecoli3 0.8320 0.7280 0.9671 0.8123 0.9371 0.8705 0.9585 0.8326 0.9585 0.8326 0.9605 0.8452 0.9133 0.8694
Page-blocks0 0.9637 0.9221 0.9848 0.9504 0.9797 0.9427 0.9903 0.9458 0.9903 0.9458 0.9894 0.9435 0.9614 0.9284
Ecoli034vs5 0.9188 0.8389 0.9854 0.9000 0.9764 0.8806 0.9938 0.9250 0.9938 0.9250 0.9896 0.8972 0.9694 0.9111
Yeast2vs4 0.9158 0.8307 0.9814 0.8588 0.9746 0.9042 0.9797 0.8866 0.9797 0.8866 0.9768 0.8955 0.9323 0.8291
Ecoli067vs35 0.8789 0.8250 0.9781 0.8500 0.9775 0.8125 0.9875 0.8825 0.9875 0.8825 0.9869 0.8775 0.9201 0.8875
Ecoli0234vs5 0.9313 0.8307 0.9897 0.8974 0.9828 0.8947 0.9966 0.8334 0.9966 0.8334 0.9835 0.7946 0.9730 0.8835
Glass015vs2 0.8910 0.5011 0.9766 0.6772 0.9083 0.7957 0.9790 0.6003 0.9790 0.6003 0.9758 0.5938 0.8727 0.5508
Yeast0359vs78 0.7028 0.5868 0.9490 0.7047 0.9217 0.7024 0.9715 0.6765 0.9715 0.6765 0.9556 0.6721 0.8362 0.6641
Yeast02579vs368 0.8809 0.8432 0.9767 0.9143 0.9576 0.9138 0.9874 0.8996 0.9874 0.8996 0.9855 0.8896 0.9533 0.9102
Yeast0256vs3789 0.7563 0.6606 0.9330 0.7951 0.9179 0.7817 0.9743 0.7846 0.9743 0.7846 0.9435 0.7403 0.8906 0.7648
Ecoli046vs5 0.9368 0.8418 0.9870 0.8701 0.9836 0.8869 0.9911 0.8310 0.9911 0.8310 0.9884 0.8174 0.9543 0.7978
Ecoli01vs235 0.9097 0.7136 0.9656 0.8377 0.9650 0.8332 0.9739 0.7641 0.9739 0.7641 0.9727 0.7664 0.9263 0.7532
Ecoli0267vs35 0.8788 0.7752 0.9796 0.8155 0.9827 0.8179 0.9889 0.8527 0.9889 0.8527 0.9852 0.8653 0.9067 0.8577
Glass04vs5 0.9940 0.9941 0.9910 0.9816 0.9910 0.9754 0.9940 0.9941 0.9940 0.9941 0.9940 0.9941 0.9940 0.9941
Ecoli0346vs5 0.9118 0.8615 0.9892 0.8980 0.9885 0.8980 0.9905 0.8507 0.9905 0.8507 0.9905 0.8534 0.9579 0.7730
Ecoli0347vs56 0.8600 0.7757 0.9778 0.8568 0.9568 0.8546 0.9892 0.7586 0.9898 0.7764 0.9806 0.7985 0.9384 0.8100
Yeast05679vs4 0.8508 0.6802 0.9526 0.7602 0.9199 0.7802 0.9741 0.7243 0.9741 0.7243 0.9691 0.7480 0.9134 0.7804
Ecoli067vs5 0.9363 0.7675 0.9875 0.8475 0.9744 0.8450 0.9888 0.8825 0.9888 0.8825 0.9869 0.8775 0.9081 0.8600
Vowel0 0.9999 0.9706 0.9971 0.9505 0.9943 0.9455 0.9925 0.9422 0.9925 0.9422 0.9928 0.9311 0.9928 0.9322
Glass016vs2 0.8710 0.5938 0.9716 0.6062 0.9375 0.6388 0.9829 0.6155 0.9829 0.6155 0.9807 0.5793 0.8529 0.5788
Glass2 0.9350 0.7194 0.9700 0.6390 0.9280 0.7457 0.9734 0.6416 0.9734 0.6416 0.9639 0.6715 0.8669 0.6501
Ecoli0147vs2356 0.8578 0.8051 0.9789 0.8277 0.9565 0.8228 0.9882 0.8772 0.9882 0.8772 0.9866 0.8788 0.9112 0.7673
Led7digit02456789vs1 0.9022 0.8788 0.9225 0.8908 0.9249 0.8379 0.9203 0.8436 0.9203 0.8436 0.9178 0.8387 0.9042 0.8616
Glass06vs5 0.9950 0.9950 0.9912 0.9147 0.9912 0.9647 0.9950 0.9950 0.9950 0.9950 0.9637 0.9579 0.9950 0.9950
Ecoli01vs5 0.9114 0.8159 0.9886 0.7977 0.9830 0.8250 0.9778 0.8182 0.9778 0.8182 0.9858 0.8318 0.9392 0.8136
Glass0146vs2 0.7879 0.6616 0.9676 0.7842 0.9042 0.7095 0.9847 0.6797 0.9847 0.6797 0.9708 0.6421 0.7930 0.6102
Ecoli0147vs56 0.8842 0.8318 0.9798 0.8592 0.9610 0.8424 0.9756 0.8539 0.9756 0.8539 0.9813 0.8371 0.9468 0.7774
Cleveland0vs4 0.8648 0.6878 0.9939 0.7908 0.9816 0.7605 0.9886 0.6893 0.9906 0.6823 0.9914 0.6885 0.9086 0.6795
Ecoli0146vs5 0.9178 0.7885 0.9870 0.8981 0.9851 0.8981 0.9808 0.8385 0.9808 0.8385 0.9837 0.8135 0.9572 0.8212
Ecoli4 0.9430 0.8437 0.9703 0.7794 0.9827 0.9044 0.9680 0.8636 0.9680 0.8636 0.9684 0.8636 0.9505 0.8386
Yeast1vs7 0.7608 0.6275 0.9351 0.7003 0.9097 0.7371 0.9741 0.6139 0.9741 0.6139 0.9671 0.6794 0.8530 0.6627
Shuttle0vs4 1.0000 0.9997 0.9999 0.9997 0.9999 0.9997 1.0000 0.9997 1.0000 0.9997 1.0000 1.0000 1.0000 1.0000
Glass4 0.9403 0.7542 0.9901 0.8867 0.9670 0.8650 0.9104 0.8431 0.9104 0.8431 0.9340 0.8298 0.8861 0.7831
Page-blocks13vs2 0.9989 0.9978 0.9975 0.9955 0.9975 0.9910 0.9989 0.9789 0.9989 0.9789 0.9977 0.9978 0.9791 0.9498
Abalone9vs18 0.6907 0.5859 0.9142 0.6283 0.9058 0.7193 0.9864 0.6655 0.9864 0.6655 0.9849 0.6369 0.8515 0.7150
Glass016vs5 0.9843 0.8943 0.9921 0.8129 0.9864 0.8629 0.9914 0.9886 0.9914 0.9886 0.9914 0.9886 0.9914 0.9886
Shuttle2vs4 1.0000 0.9500 0.9990 0.9917 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Yeast1458vs7 0.5000 0.5000 0.9158 0.5367 0.8770 0.5563 0.9640 0.5540 0.9640 0.5540 0.9625 0.5464 0.7788 0.4943
Glass5 0.9702 0.8976 0.9921 0.8805 0.9705 0.7756 0.9976 0.9427 0.9976 0.9427 0.9872 0.9854 0.8624 0.8439
Yeast2vs8 0.5563 0.5250 0.9071 0.8338 0.8960 0.8197 0.9927 0.8652 0.9927 0.8652 0.9913 0.8359 0.8541 0.7978
Yeast4 0.7482 0.6135 0.9071 0.7121 0.9007 0.7257 0.9722 0.7222 0.9722 0.7222 0.9700 0.6999 0.8872 0.7400
Yeast1289vs7 0.6290 0.6156 0.9465 0.6832 0.9414 0.6332 0.9752 0.6769 0.9752 0.6769 0.9748 0.6973 0.7073 0.6107
Yeast5 0.9453 0.8833 0.9777 0.9337 0.9820 0.9406 0.9929 0.9330 0.9929 0.9330 0.9928 0.9326 0.9743 0.9434
Ecoli0137vs26 0.7953 0.7481 0.9678 0.8136 0.9660 0.8136 0.9804 0.8281 0.9804 0.8281 0.9594 0.7954 0.8907 0.8445
Yeast6 0.7762 0.7115 0.9326 0.8294 0.9314 0.8270 0.9883 0.8082 0.9883 0.8082 0.9864 0.8099 0.8165 0.7311
Abalone19 0.5000 0.5000 0.8550 0.5205 0.8890 0.5166 0.9839 0.5701 0.9839 0.5701 0.9835 0.5543 0.6211 0.5231

Average 0.8774 0.7902 0.9606 0.8324 0.9471 0.8390 0.9679 0.8294 0.9679 0.8296 0.9635 0.8245 0.9083 0.8145

Table A.16
Complete table of results using the AUC measure for the SVM variety of algorithms.

SVM None SMOTE SENN CS Wr_SMOTE Wr_US Wr_SENN

Dataset Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst

Glass1 0.5155 0.4963 0.6613 0.6179 0.6780 0.6391 0.6624 0.6264 0.5000 0.5000 0.5097 0.5000 0.6229 0.5682
Ecoli0vs1 0.9675 0.9671 0.9844 0.9796 0.9811 0.9770 0.9675 0.9671 0.9844 0.9796 0.9810 0.9731 0.9828 0.9796
Wisconsin 0.9728 0.9666 0.9770 0.9727 0.9794 0.9691 0.9724 0.9719 0.9653 0.9552 0.9726 0.9626 0.9777 0.9737
Pima 0.7334 0.7194 0.7523 0.7348 0.7520 0.7300 0.7378 0.7289 0.6985 0.6916 0.6960 0.7116 0.7452 0.7449
Iris0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(continued on next page)
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Table A.16 (continued)

SVM None SMOTE SENN CS Wr_SMOTE Wr_US Wr_SENN

Dataset Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst

Glass0 0.7070 0.6914 0.7716 0.7377 0.7755 0.7243 0.5215 0.5074 0.7778 0.7517 0.7778 0.7517 0.7411 0.7520
Yeast1 0.5771 0.5732 0.7108 0.7100 0.7096 0.7067 0.6675 0.6749 0.5000 0.5000 0.5012 0.5000 0.6750 0.6897
Vehicle1 0.7510 0.7202 0.8001 0.7742 0.8184 0.8055 0.7930 0.7546 0.6401 0.6180 0.6147 0.6076 0.7125 0.6882
Vehicle2 0.9693 0.9527 0.9722 0.9601 0.9711 0.9578 0.9734 0.9571 0.9223 0.9068 0.9371 0.9070 0.9023 0.8891
Vehicle3 0.7290 0.7134 0.7805 0.7613 0.8101 0.7881 0.8072 0.7904 0.4789 0.4871 0.5612 0.5753 0.6339 0.6306
Haberman 0.5223 0.5036 0.6287 0.6344 0.6621 0.6332 0.5225 0.5382 0.5000 0.5000 0.5000 0.5000 0.5217 0.4996
Glass0123vs456 0.9151 0.9043 0.9351 0.9050 0.9426 0.8987 0.8572 0.8445 0.8572 0.8445 0.8672 0.8445 0.9425 0.8987
Vehicle0 0.9780 0.9490 0.9778 0.9632 0.9778 0.9611 0.9781 0.9493 0.9798 0.9620 0.9805 0.9653 0.9610 0.9470
Ecoli1 0.8331 0.8192 0.9082 0.9062 0.9006 0.9024 0.9084 0.9062 0.6430 0.6367 0.6523 0.6535 0.8776 0.8659
New-thyroid2 0.9972 0.9829 0.9965 0.9917 0.9917 0.9889 0.9972 0.9829 0.9750 0.9687 0.9802 0.9603 0.9680 0.9659
New-thyroid1 0.9972 0.9829 0.9965 0.9944 0.9944 0.9861 0.9943 0.9687 0.9786 0.9516 0.9901 0.9829 0.9701 0.9603
Ecoli2 0.7675 0.7351 0.9073 0.9067 0.9065 0.9050 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.8916 0.8805
Segment0 0.9954 0.9927 0.9987 0.9955 0.9985 0.9965 0.9990 0.9965 0.9947 0.9932 0.9946 0.9932 0.9944 0.9922
Glass6 0.9379 0.9198 0.9497 0.9063 0.9554 0.9009 0.8882 0.8725 0.8882 0.8725 0.8964 0.8919 0.9281 0.9032
Yeast3 0.6305 0.6299 0.9056 0.8917 0.9114 0.9061 0.9057 0.8951 0.5000 0.5000 0.5000 0.5000 0.5200 0.5154
Ecoli3 0.5000 0.5000 0.9037 0.8984 0.8964 0.8818 0.8222 0.7925 0.5000 0.5000 0.5855 0.5614 0.7267 0.6976
Page-blocks0 0.8287 0.8218 0.9251 0.9258 0.9292 0.9273 0.9248 0.9254 0.5001 0.5004 0.4976 0.4769 0.5738 0.5828
Ecoli034vs5 0.9153 0.8611 0.9271 0.8889 0.9250 0.8861 0.8750 0.8639 0.8750 0.8639 0.8847 0.8556 0.8972 0.8889
Yeast2vs4 0.6691 0.6691 0.9090 0.8896 0.9084 0.8885 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.7408 0.7360
Ecoli067vs35 0.8999 0.8525 0.9276 0.8325 0.9239 0.8350 0.8363 0.8025 0.7807 0.7050 0.8468 0.8300 0.8733 0.8275
Ecoli0234vs5 0.9229 0.8667 0.9302 0.8892 0.9205 0.8892 0.8813 0.8417 0.8813 0.8417 0.8834 0.8140 0.9292 0.8696
Glass015vs2 0.5000 0.5000 0.5943 0.5094 0.5961 0.5191 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Yeast0359vs78 0.6067 0.6067 0.7476 0.7451 0.7522 0.7450 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.6067 0.6067
Yeast02579vs368 0.8090 0.8006 0.9137 0.9013 0.9143 0.9069 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.8890 0.8981
Yeast0256vs3789 0.5524 0.5486 0.8102 0.7940 0.8098 0.8018 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.8034 0.8000
Ecoli046vs5 0.9028 0.8696 0.9213 0.8869 0.9130 0.8869 0.8875 0.8696 0.8875 0.8696 0.8806 0.8669 0.8966 0.8642
Ecoli01vs235 0.8863 0.8359 0.9393 0.8505 0.9420 0.8550 0.8429 0.7805 0.8429 0.7805 0.8796 0.8582 0.9029 0.7959
Ecoli0267vs35 0.8899 0.8526 0.9162 0.8255 0.9156 0.8530 0.8346 0.7851 0.8346 0.7851 0.8288 0.8251 0.8717 0.8079
Glass04vs5 0.8893 0.8500 0.9638 0.9566 0.9638 0.9507 0.8893 0.9000 0.8893 0.9000 0.8983 0.9129 0.8893 0.9000
Ecoli0346vs5 0.9035 0.8696 0.9191 0.8926 0.9287 0.8926 0.8688 0.8946 0.8688 0.8946 0.8743 0.8973 0.9279 0.8088
Ecoli0347vs56 0.9123 0.8935 0.9219 0.9082 0.9224 0.9061 0.8550 0.8135 0.8500 0.8135 0.8545 0.8135 0.9191 0.8848
Yeast05679vs4 0.5000 0.5000 0.8016 0.8075 0.7977 0.7875 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.7371 0.7135
Ecoli067vs5 0.9094 0.8425 0.9213 0.8475 0.9238 0.8075 0.8500 0.7450 0.8500 0.7450 0.8775 0.8325 0.9013 0.9125
Vowel0 0.9096 0.8950 0.9793 0.9622 0.9795 0.9622 0.8655 0.8461 0.9432 0.9244 0.9420 0.9172 0.9477 0.9489
Glass016vs2 0.5000 0.5000 0.6462 0.5336 0.6520 0.5267 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Glass2 0.5000 0.5000 0.6883 0.6155 0.6852 0.6905 0.7051 0.5953 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Ecoli0147vs2356 0.8635 0.8434 0.8973 0.8828 0.9060 0.8727 0.7801 0.7267 0.7801 0.7267 0.7882 0.7101 0.8885 0.8568
Led7digit02456789vs1 0.9051 0.8901 0.8981 0.8851 0.8850 0.8891 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.9027 0.8272
Glass06vs5 0.7071 0.6500 0.9520 0.9437 0.9520 0.9437 0.6929 0.6500 0.6929 0.6500 0.8262 0.6245 0.6929 0.6500
Ecoli01vs5 0.9273 0.8364 0.9648 0.8364 0.9608 0.8364 0.8813 0.7909 0.8813 0.7909 0.8864 0.7909 0.9403 0.8864
Glass0146vs2 0.5000 0.5000 0.6631 0.6121 0.6729 0.6310 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Ecoli0147vs56 0.9080 0.8719 0.9181 0.8612 0.9205 0.8546 0.8400 0.7967 0.8400 0.7967 0.8742 0.8335 0.8984 0.8519
Cleveland0vs4 0.9403 0.7483 0.9619 0.8785 0.9627 0.9149 0.9318 0.7483 0.9318 0.7483 0.9503 0.7483 0.8966 0.8014
Ecoli0146vs5 0.8798 0.8635 0.9269 0.8904 0.9404 0.8808 0.8438 0.7923 0.8438 0.7923 0.8620 0.8154 0.8865 0.8654
Ecoli4 0.5875 0.5750 0.9743 0.9200 0.9739 0.9200 0.9834 0.9529 0.5000 0.5000 0.5000 0.5000 0.6313 0.6000
Yeast1vs7 0.5000 0.5000 0.7746 0.7861 0.7664 0.7741 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Shuttle0vs4 1.0000 1.0000 1.0000 0.9960 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9960 1.0000 1.0000
Glass4 0.6157 0.5592 0.9546 0.9576 0.9621 0.9101 0.9615 0.9126 0.6064 0.5617 0.5964 0.5592 0.7529 0.6733
Page-blocks13vs2 0.8896 0.8332 0.9654 0.9561 0.9654 0.9640 0.8513 0.8566 0.6777 0.7757 0.6654 0.6325 0.7104 0.6738
Abalone9vs18 0.5029 0.5000 0.8161 0.8127 0.8257 0.8128 0.8352 0.8740 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Glass016vs5 0.5839 0.4971 0.9536 0.9429 0.9521 0.9457 0.5554 0.5000 0.5554 0.5000 0.6346 0.5886 0.5825 0.5471
Shuttle2vs4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9990 0.9960 1.0000 1.0000
Yeast1458vs7 0.5000 0.5000 0.6926 0.6373 0.7032 0.6266 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Glass5 0.5554 0.5000 0.9518 0.9512 0.9488 0.9415 0.9713 0.9732 0.5554 0.5000 0.5554 0.5500 0.5143 0.5000
Yeast2vs8 0.7739 0.7739 0.8201 0.7663 0.8183 0.7642 0.8223 0.7664 0.5500 0.5739 0.5500 0.5739 0.7739 0.7739
Yeast4 0.5000 0.5000 0.8571 0.8241 0.8560 0.8258 0.8604 0.8155 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Yeast1289vs7 0.5000 0.5000 0.7401 0.7194 0.7455 0.7077 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Yeast5 0.5000 0.5000 0.9641 0.9653 0.9642 0.9628 0.9648 0.9656 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Ecoli0137vs26 0.8733 0.8500 0.9571 0.7990 0.9521 0.8044 0.8733 0.8500 0.8733 0.8500 0.8720 0.8481 0.8553 0.8463
Yeast6 0.5000 0.5000 0.8886 0.8730 0.8867 0.8696 0.8807 0.8758 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Abalone19 0.5000 0.5000 0.8039 0.7930 0.8150 0.7873 0.8170 0.7615 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

Average 0.7563 0.7341 0.8806 0.8514 0.8826 0.8517 0.7869 0.7651 0.6981 0.6820 0.7077 0.6895 0.7656 0.7461

Table A.17
Complete table of results using the AUC measure for the FH-GBML variety of algorithms.

FH-GBML None SMOTE SENN CS Wr_SMOTE Wr_US Wr_SENN

Dataset Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst

Glass1 0.8103 0.7199 0.8194 0.7313 0.8220 0.7331 0.8270 0.7414 0.8263 0.6852 0.8278 0.6964 0.8192 0.7540
Ecoli0vs1 0.9958 0.9762 0.9926 0.9627 0.9837 0.9532 0.9942 0.9765 0.9959 0.9729 0.9928 0.9550 0.9878 0.9698
isconsin 0.9818 0.9620 0.9811 0.9638 0.9785 0.9720 0.9828 0.9780 0.9841 0.9704 0.9829 0.9704 0.9739 0.9507
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Table A.17 (continued)

FH-GBML None SMOTE SENN CS Wr_SMOTE Wr_US Wr_SENN

Dataset Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst

Pima 0.7410 0.6980 0.7684 0.7381 0.7494 0.7061 0.7772 0.7274 0.7770 0.7235 0.7776 0.7304 0.7619 0.7321
Iris0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9950 0.9713 0.9850 1.0000 1.0000
Glass0 0.8246 0.7524 0.8515 0.7542 0.8325 0.7901 0.8500 0.7709 0.8565 0.8036 0.8542 0.7738 0.8342 0.8043
Yeast1 0.6717 0.6611 0.7310 0.7004 0.7211 0.7044 0.7353 0.7016 0.7351 0.7115 0.7346 0.7234 0.7272 0.6965
Vehicle1 0.6642 0.6164 0.7655 0.7106 0.7469 0.7049 0.7615 0.6982 0.7655 0.7126 0.7549 0.7202 0.7284 0.6902
Vehicle2 0.8257 0.8204 0.8917 0.8718 0.8812 0.8697 0.8900 0.8732 0.8932 0.8768 0.8859 0.8704 0.8916 0.8582
Vehicle3 0.6454 0.6121 0.7520 0.7128 0.7501 0.7275 0.7500 0.6942 0.7485 0.6929 0.7493 0.6966 0.7339 0.6748
Haberman 0.6284 0.5130 0.7080 0.6136 0.6851 0.6067 0.7498 0.6061 0.7547 0.6132 0.7506 0.6141 0.6345 0.5163
Glass0123vs456 0.9651 0.8888 0.9722 0.9307 0.9704 0.9430 0.9796 0.9154 0.9774 0.8474 0.9803 0.9082 0.9617 0.8954
Vehicle0 0.8618 0.8348 0.9062 0.8938 0.9007 0.8697 0.8997 0.8878 0.9194 0.9053 0.9131 0.9050 0.8988 0.8837
Ecoli1 0.9083 0.8480 0.9276 0.8763 0.9174 0.8704 0.9346 0.8659 0.9303 0.8732 0.9297 0.8731 0.9198 0.8557
New-thyroid2 0.9893 0.9546 0.9986 0.9802 0.9931 0.9774 1.0000 0.9516 1.0000 0.9544 0.9979 0.9659 0.9579 0.8944
New-thyroid1 0.9982 0.9931 1.0000 0.9516 0.9944 0.9917 1.0000 0.9659 1.0000 0.9659 0.9958 0.9405 0.9608 0.9488
Ecoli2 0.9296 0.8550 0.9538 0.8861 0.9471 0.9369 0.9569 0.8974 0.9564 0.9044 0.9536 0.8943 0.9428 0.9343
Segment0 0.9724 0.9709 0.9837 0.9772 0.9829 0.9741 0.9891 0.9806 0.9827 0.9828 0.9855 0.9802 0.9840 0.9736
Glass6 0.9656 0.9032 0.9772 0.8827 0.9743 0.8298 0.9854 0.8384 0.9949 0.8605 0.9899 0.8771 0.9509 0.9252
Yeast3 0.8673 0.8321 0.9432 0.9293 0.9362 0.9165 0.9447 0.9076 0.9419 0.9212 0.9424 0.9298 0.9341 0.9089
Ecoli3 0.8240 0.7674 0.9405 0.8847 0.9443 0.8787 0.9516 0.8864 0.9554 0.8502 0.9524 0.8772 0.9222 0.8283
Page-blocks0 0.8170 0.8116 0.9012 0.8938 0.8939 0.8983 0.9028 0.8944 0.9003 0.9017 0.8996 0.9023 0.8927 0.8868
Ecoli034vs5 0.9743 0.8569 0.9865 0.8944 0.9865 0.8444 0.9997 0.9125 1.0000 0.8236 0.9979 0.8861 0.9597 0.8972
Yeast2vs4 0.8859 0.8328 0.9442 0.9073 0.9504 0.8972 0.9626 0.8931 0.9610 0.9056 0.9606 0.9196 0.9019 0.8809
Ecoli067vs35 0.9324 0.8575 0.9458 0.8125 0.9539 0.8750 0.9828 0.8188 0.9831 0.8075 0.9863 0.8375 0.9036 0.8350
Ecoli0234vs5 0.9688 0.8890 0.9856 0.8572 0.9769 0.8434 0.9993 0.8059 0.9979 0.8696 0.9903 0.8227 0.9501 0.9306
Glass015vs2 0.5886 0.4887 0.8709 0.6008 0.8576 0.7204 0.9246 0.6481 0.9267 0.6191 0.9141 0.7167 0.7967 0.6013
Yeast0359vs78 0.6100 0.5889 0.7995 0.7226 0.7977 0.7351 0.8204 0.7573 0.8234 0.7030 0.8262 0.6879 0.7895 0.7004
Yeast02579vs368 0.8998 0.8619 0.9248 0.9099 0.9232 0.8938 0.9330 0.9001 0.9325 0.8982 0.9311 0.9071 0.9270 0.9029
Yeast0256vs3789 0.7259 0.6911 0.8283 0.7851 0.8252 0.7942 0.8374 0.7945 0.8388 0.7818 0.8359 0.7970 0.8226 0.7778
Ecoli046vs5 0.9688 0.8973 0.9877 0.8326 0.9829 0.8061 0.9986 0.9669 0.9973 0.8142 0.9963 0.8669 0.9682 0.9337
Ecoli01vs235 0.9407 0.7882 0.9693 0.8075 0.9625 0.8482 0.9781 0.7955 0.9804 0.8409 0.9794 0.8320 0.9276 0.7900
Ecoli0267vs35 0.9314 0.8551 0.9599 0.8331 0.9479 0.7991 0.9864 0.8315 0.9842 0.8103 0.9855 0.8303 0.9326 0.8216
Glass04vs5 1.0000 0.8441 0.9868 0.9673 0.9925 0.8574 1.0000 0.9199 1.0000 0.9375 0.9895 0.7195 0.9687 0.8188
Ecoli0346vs5 0.9556 0.7946 0.9823 0.8331 0.9872 0.9142 0.9986 0.8919 0.9990 0.8669 0.9926 0.9061 0.9627 0.9223
Ecoli0347vs56 0.9339 0.8357 0.9663 0.8600 0.9608 0.8525 0.9855 0.8320 0.9847 0.8737 0.9844 0.8731 0.9423 0.8792
Yeast05679vs4 0.7084 0.6514 0.8559 0.8064 0.8456 0.7312 0.8690 0.7703 0.8665 0.7842 0.8693 0.7832 0.8476 0.7782
Ecoli067vs5 0.9375 0.8613 0.9600 0.8338 0.9656 0.8750 0.9903 0.8613 0.9897 0.8863 0.9869 0.8150 0.9050 0.9125
Vowel0 0.8924 0.8256 0.9661 0.9561 0.9565 0.9135 0.9663 0.9394 0.9630 0.9352 0.9563 0.9352 0.9521 0.9466
Glass016vs2 0.5727 0.5233 0.8671 0.6343 0.8498 0.6895 0.9046 0.6636 0.8973 0.5976 0.8912 0.5860 0.8092 0.5400
Glass2 0.5659 0.4885 0.8603 0.6771 0.8210 0.5991 0.8972 0.7098 0.9050 0.8172 0.8957 0.5978 0.7961 0.6106
Ecoli0147vs2356 0.8934 0.7936 0.9467 0.8508 0.9489 0.8457 0.9651 0.8622 0.9624 0.8077 0.9607 0.8792 0.8995 0.8043
Led7digit02456789vs1 0.9069 0.8938 0.9235 0.8839 0.9039 0.8900 0.9440 0.8745 0.9454 0.8741 0.9459 0.8666 0.9079 0.8823
Glass06vs5 1.0000 0.8925 0.9859 0.9320 0.9862 0.8925 1.0000 0.9100 1.0000 0.8747 0.9975 0.8950 0.9756 0.9374
Ecoli01vs5 0.9750 0.8648 0.9892 0.8989 0.9835 0.8864 0.9994 0.8432 1.0000 0.8875 0.9966 0.8886 0.9543 0.8693
Glass0146vs2 0.5368 0.4961 0.8510 0.7064 0.8352 0.6345 0.9111 0.7618 0.8996 0.6367 0.8947 0.6756 0.8079 0.7020
Ecoli0147vs56 0.9296 0.8667 0.9669 0.8045 0.9648 0.8605 0.9862 0.8955 0.9888 0.8388 0.9866 0.8596 0.9561 0.8820
Cleveland0vs4 0.9219 0.6939 0.9431 0.7520 0.9317 0.7056 0.9832 0.6861 0.9798 0.6348 0.9829 0.7876 0.9519 0.7541
Ecoli0146vs5 0.9495 0.7913 0.9786 0.9202 0.9856 0.8750 0.9990 0.8529 0.9983 0.7808 0.9962 0.9000 0.9418 0.8231
Ecoli4 0.9563 0.8703 0.9876 0.9302 0.9858 0.9294 0.9972 0.9421 0.9968 0.8873 0.9972 0.8905 0.9484 0.8913
Yeast1vs7 0.6786 0.5358 0.8396 0.7191 0.8543 0.6424 0.8673 0.7389 0.8773 0.7026 0.8724 0.6655 0.8012 0.6882
Shuttle0vs4 1.0000 0.9960 1.0000 0.9980 1.0000 1.0000 1.0000 0.9920 1.0000 0.9958 1.0000 1.0000 1.0000 0.9958
Glass4 0.9021 0.6479 0.9775 0.8867 0.9657 0.9613 0.9969 0.8746 0.9963 0.7505 0.9957 0.8684 0.9259 0.6868
Page-blocks13vs2 0.9375 0.9272 0.9866 0.9515 0.9882 0.9459 0.9958 0.9749 0.9949 0.9787 0.9959 0.9498 0.9532 0.9142
Abalone9vs18 0.6085 0.5912 0.7917 0.7165 0.7979 0.7376 0.8440 0.7737 0.8308 0.7774 0.8346 0.7797 0.7972 0.7948
Glass016vs5 0.9107 0.8136 0.9752 0.8993 0.9768 0.8921 0.9993 0.8193 1.0000 0.8443 0.9975 0.8300 0.9486 0.8964
Shuttle2vs4 1.0000 0.9500 1.0000 0.9940 1.0000 0.9877 1.0000 1.0000 1.0000 0.8500 1.0000 0.9500 0.9200 0.8500
Yeast1458vs7 0.5333 0.4985 0.7761 0.6287 0.7620 0.6597 0.8021 0.6319 0.7925 0.6370 0.7955 0.6237 0.7385 0.5822
Glass5 0.8797 0.8201 0.9899 0.7671 0.9848 0.7970 0.9988 0.8841 0.9994 0.7427 0.9976 0.9201 0.9636 0.8165
Yeast2vs8 0.8125 0.7478 0.8723 0.7442 0.8555 0.7226 0.8877 0.7411 0.8916 0.7839 0.8892 0.8180 0.8196 0.7076
Yeast4 0.5659 0.5167 0.8806 0.8137 0.8785 0.7947 0.8945 0.8222 0.8962 0.8027 0.8898 0.8214 0.8261 0.7394
Yeast1289vs7 0.6250 0.5820 0.8096 0.7238 0.7943 0.7175 0.8425 0.6393 0.8369 0.7076 0.8457 0.6441 0.6868 0.5299
Yeast5 0.7206 0.6783 0.9735 0.9469 0.9796 0.9778 0.9885 0.9740 0.9875 0.9314 0.9861 0.9396 0.9575 0.8958
Ecoli0137vs26 0.8767 0.7472 0.9824 0.8236 0.9820 0.8208 0.9991 0.7891 0.9989 0.8363 0.9966 0.8445 0.8544 0.7982
Yeast6 0.6243 0.6270 0.9204 0.8646 0.9215 0.8591 0.9296 0.8426 0.9317 0.8713 0.9302 0.8300 0.8716 0.8302
Abalone19 0.5000 0.5000 0.8322 0.6708 0.8250 0.7297 0.8387 0.6627 0.8493 0.6816 0.8321 0.6914 0.6293 0.5726

Average 0.8352 0.7692 0.9181 0.8364 0.9127 0.8350 0.9328 0.8373 0.9330 0.8244 0.9304 0.8322 0.8866 0.8168

Table A.18
Complete table of results using the AUC measure for the k-NN variety of algorithms.

3-NN None SMOTE SENN CS Wr_SMOTE Wr_US Wr_SENN

Dataset Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst

Glass1 0.7583 0.7460 0.8273 0.7805 0.8398 0.7761 0.7583 0.7460 0.7583 0.7460 0.7567 0.7350 0.8593 0.8147
Ecoli0vs1 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.9691 0.9600 0.9690 0.9766 0.9707 0.9533

(continued on next page)
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Table A.18 (continued)

3-NN None SMOTE SENN CS Wr_SMOTE Wr_US Wr_SENN

Dataset Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst

Wisconsin 0.9636 0.9658 0.0214 0.9698 0.0209 0.9729 0.9636 0.9658 0.9636 0.9658 0.9641 0.9658 0.9647 0.9658
Pima 0.6686 0.6703 0.7479 0.6865 0.7682 0.7099 0.6686 0.6703 0.6686 0.6703 0.6696 0.6711 0.7986 0.7297
Iris0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9988 1.0000 1.0000 1.0000
Glass0 0.8144 0.8027 0.8184 0.8185 0.8299 0.8361 0.7884 0.7771 0.7884 0.7771 0.7529 0.7670 0.8025 0.7809
Yeast1 0.6559 0.6539 0.7864 0.6772 0.7734 0.7071 0.6740 0.6858 0.6740 0.6858 0.6745 0.6841 0.7772 0.7190
Vehicle1 0.6741 0.6314 0.8454 0.6985 0.8230 0.7752 0.7665 0.7476 0.7665 0.7476 0.7664 0.7474 0.7781 0.7472
Vehicle2 0.9743 0.9736 0.9753 0.9692 0.9690 0.9620 0.9578 0.9541 0.9578 0.9541 0.8942 0.8960 0.9635 0.9519
Vehicle3 0.6395 0.6529 0.8539 0.7085 0.8291 0.7636 0.7365 0.7355 0.7365 0.7355 0.7367 0.7355 0.7416 0.7474
Haberman 0.5463 0.5310 0.6955 0.5633 0.6906 0.5767 0.6167 0.6510 0.6167 0.6510 0.6100 0.6516 0.6546 0.5729
Glass0123vs456 0.8859 0.8888 0.9709 0.9164 0.9620 0.9334 0.9424 0.9331 0.9424 0.9331 0.9338 0.9399 0.9407 0.9199
Vehicle0 0.9446 0.9379 0.9548 0.9471 0.9493 0.9415 0.9473 0.9461 0.9473 0.9461 0.9371 0.9363 0.9535 0.9479
Ecoli1 0.7693 0.7636 0.8484 0.8085 0.8345 0.8089 0.8019 0.8036 0.8789 0.8749 0.8721 0.8730 0.9165 0.9065
New-thyroid2 0.9508 0.9373 0.9889 0.9889 0.9875 0.9861 0.9831 0.9917 0.9831 0.9917 0.9854 0.9833 0.9688 0.9516
New-thyroid1 0.9401 0.9659 0.9917 0.9889 0.9889 0.9861 0.9831 0.9917 0.9831 0.9917 0.9818 0.9806 0.9816 0.9631
Ecoli2 0.8253 0.8302 0.8674 0.8382 0.8622 0.8276 0.8307 0.8276 0.9102 0.9154 0.9082 0.9066 0.9396 0.9294
Segment0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.9970 0.9980 0.9941 0.9937 0.9977 0.9962
Glass6 0.9147 0.9140 0.9824 0.9419 0.9770 0.9338 0.9366 0.9419 0.9366 0.9419 0.9305 0.9365 0.9286 0.9419
Yeast3 0.8231 0.8171 0.9541 0.8681 0.9470 0.8634 0.8827 0.8777 0.8827 0.8777 0.8859 0.8803 0.9300 0.8824
Ecoli3 0.6798 0.6598 0.8514 0.7283 0.8443 0.7772 0.7766 0.7502 0.8432 0.8209 0.8428 0.8478 0.8932 0.8863
Page-blocks0 0.9040 0.9075 0.9796 0.9326 0.9748 0.9316 0.9409 0.9370 0.9409 0.9370 0.9409 0.9370 0.9530 0.9193
Ecoli034vs5 0.8306 0.8222 0.8813 0.8222 0.8813 0.8222 0.8556 0.8361 0.9389 0.9333 0.9389 0.9222 0.9535 0.9167
Yeast2vs4 0.7485 0.7368 0.8573 0.8073 0.8554 0.8073 0.7903 0.7938 0.8680 0.8771 0.8677 0.8771 0.9128 0.8803
Ecoli067vs35 0.7109 0.7625 0.8531 0.8200 0.8525 0.8150 0.7724 0.8550 0.8563 0.8900 0.8623 0.8800 0.8627 0.8275
Ecoli0234vs5 0.8125 0.8500 0.8746 0.8530 0.8746 0.8530 0.8328 0.8612 0.9294 0.9308 0.9329 0.9280 0.9446 0.9336
Glass015vs2 0.5943 0.5788 0.8637 0.6750 0.8637 0.6935 0.7036 0.7097 0.7036 0.7097 0.7073 0.6685 0.7225 0.6067
Yeast0359vs78 0.6522 0.6468 0.8736 0.7247 0.8733 0.7203 0.6762 0.6923 0.6762 0.6923 0.6852 0.6979 0.8005 0.6977
Yeast02579vs368 0.8845 0.8834 0.9507 0.9024 0.9506 0.9013 0.8970 0.8988 0.8970 0.8988 0.8852 0.8922 0.9269 0.9082
Yeast0256vs3789 0.7580 0.7658 0.9066 0.7728 0.9066 0.7655 0.8096 0.7916 0.8096 0.7916 0.8087 0.7861 0.8407 0.7836
Ecoli046vs5 0.9111 0.9250 0.9781 0.9282 0.9754 0.9282 0.9328 0.9365 0.9328 0.9365 0.9172 0.9450 0.9335 0.9392
Ecoli01vs235 0.7733 0.7700 0.8705 0.7936 0.8705 0.7936 0.8099 0.7850 0.8926 0.8827 0.8973 0.8959 0.9181 0.8564
Ecoli0267vs35 0.7263 0.7725 0.8629 0.8401 0.8604 0.8327 0.7745 0.8026 0.8516 0.8526 0.8491 0.8677 0.8566 0.8150
Glass04vs5 0.8702 0.9441 0.9412 0.9632 0.9397 0.9511 0.9789 0.9941 0.9789 0.9941 0.9517 0.9761 0.9789 0.9941
Ecoli0346vs5 0.8368 0.8000 0.8791 0.8169 0.8791 0.8169 0.8434 0.8419 0.9282 0.9419 0.9096 0.9095 0.9329 0.9446
Ecoli0347vs56 0.7925 0.7735 0.8623 0.7920 0.5000 0.5000 0.8263 0.8363 0.9109 0.9119 0.9089 0.9212 0.9317 0.9227
Yeast05679vs4 0.6288 0.6257 0.8954 0.7440 0.8978 0.7682 0.7443 0.7968 0.7443 0.7968 0.7383 0.7915 0.8557 0.7825
Ecoli067vs5 0.8031 0.8225 0.9500 0.8375 0.9456 0.8250 0.8769 0.8675 0.8769 0.8675 0.8750 0.8825 0.8863 0.8600
Vowel0 0.9915 0.9939 0.9999 0.9994 0.9999 0.9994 0.9975 0.9994 0.9975 0.9994 0.9808 0.9800 0.9975 0.9994
Glass016vs2 0.5629 0.6357 0.8800 0.7169 0.8771 0.6445 0.7477 0.7893 0.7477 0.7893 0.7640 0.7864 0.7982 0.7560
Glass2 0.5474 0.5302 0.9150 0.7162 0.8984 0.7717 0.6969 0.6954 0.6969 0.6954 0.7254 0.7334 0.8470 0.6733
Ecoli0147vs2356 0.7838 0.7968 0.8605 0.7959 0.8609 0.7959 0.8160 0.8272 0.8969 0.9057 0.8907 0.9041 0.9262 0.9170
Led7digit02456789vs1 0.7696 0.7747 0.8618 0.8215 0.8642 0.8465 0.8261 0.8297 0.8261 0.8297 0.8311 0.8223 0.9018 0.8639
Glass06vs5 0.8725 0.9500 0.9786 0.9847 0.9786 0.9847 0.9240 1.0000 0.9240 1.0000 0.9205 0.9400 0.9383 1.0000
Ecoli01vs5 0.8932 0.9000 0.9739 0.9023 0.9733 0.9023 0.9216 0.9136 0.9216 0.9136 0.9239 0.9068 0.9312 0.9159
Glass0146vs2 0.5302 0.5727 0.8903 0.7019 0.8923 0.7018 0.6940 0.7567 0.6940 0.7567 0.7339 0.7458 0.7404 0.6447
Ecoli0147vs56 0.8793 0.8551 0.9666 0.9139 0.9601 0.9025 0.9221 0.9189 0.9221 0.9189 0.9238 0.9156 0.9340 0.9254
Cleveland0vs4 0.7726 0.7136 0.9320 0.8346 0.9320 0.8346 0.8487 0.8584 0.8487 0.8584 0.8448 0.8553 0.8727 0.8583
Ecoli0146vs5 0.9058 0.9231 0.9740 0.9019 0.9745 0.9000 0.9168 0.9135 0.9168 0.9135 0.9159 0.9250 0.9197 0.9192
Ecoli4 0.8238 0.7734 0.8865 0.8421 0.8846 0.8108 0.8366 0.8187 0.9163 0.9155 0.9217 0.9107 0.9281 0.9202
Yeast1vs7 0.6153 0.6109 0.8802 0.7390 0.8811 0.6998 0.7170 0.7453 0.7170 0.7453 0.7175 0.7406 0.8039 0.6177
Shuttle0vs4 0.9959 0.9960 1.0000 0.9960 1.0000 0.9960 0.9959 0.9960 0.9959 0.9960 0.9959 1.0000 0.9959 0.9960
Glass4 0.7628 0.8425 0.9689 0.8917 0.9627 0.9151 0.8885 0.8868 0.8885 0.8868 0.8835 0.8868 0.8912 0.8843
Page-blocks13vs2 0.9724 0.9433 0.9963 0.9978 0.9963 0.9989 0.9963 0.9977 0.9963 0.9977 0.9859 0.9888 0.9972 0.9977
Abalone9vs18 0.5987 0.6332 0.9099 0.7525 0.9023 0.7416 0.6990 0.7637 0.7998 0.7334 0.8097 0.7408 0.7117 0.6482
Glass016vs5 0.9121 0.8971 0.9686 0.9271 0.9664 0.9186 0.9871 0.9857 0.9871 0.9857 0.9757 0.9686 0.9850 0.9857
Shuttle2vs4 0.8750 0.9500 0.9959 1.0000 0.9959 1.0000 0.9600 0.9500 0.9600 0.9500 0.9078 0.9140 0.9600 0.9500
Yeast1458vs7 0.5163 0.5144 0.8852 0.6944 0.8812 0.6929 0.6249 0.6609 0.6249 0.6609 0.6228 0.6654 0.6719 0.5729
Glass5 0.8439 0.8976 0.9780 0.9378 0.9689 0.9732 0.9717 0.9329 0.9717 0.9329 0.9799 0.9256 0.9580 0.9280
east2vs8 0.7236 0.7239 0.9656 0.7208 0.9608 0.7371 0.7930 0.8012 0.7930 0.8012 0.7846 0.8012 0.8131 0.7631
Yeast4 0.5966 0.5947 0.9594 0.7444 0.9520 0.7571 0.7281 0.7489 0.7281 0.7489 0.7279 0.7489 0.8787 0.7708
Yeast1289vs7 0.5520 0.5484 0.9185 0.6586 0.9170 0.6764 0.6677 0.6462 0.6677 0.6462 0.6671 0.6629 0.7135 0.6154
Yeast5 0.8056 0.8128 0.9836 0.9503 0.9812 0.9566 0.9357 0.9424 0.9357 0.9424 0.9394 0.9389 0.9530 0.9174
Ecoli0137vs26 0.7730 0.7982 0.8680 0.7691 0.5000 0.5000 0.7607 0.7800 0.8361 0.8281 0.8293 0.8244 0.8516 0.8445
Yeast6 0.7570 0.7527 0.9720 0.8442 0.9676 0.8540 0.8145 0.8368 0.8145 0.8368 0.8198 0.8497 0.8890 0.8678
Abalone19 0.4998 0.4998 0.9780 0.5216 0.9737 0.5205 0.5402 0.5184 0.7576 0.5193 0.7573 0.5357 0.6215 0.5114

Average 0.7697 0.7752 0.8880 0.8212 0.8743 0.8166 0.8229 0.8295 0.8594 0.8596 0.8564 0.8561 0.8849 0.8509
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results for the C4.5 algorithm versions. Next, the results for
the SVM versions used in the study are shown in Table A.16.
Later, the results for the FH-GBML algorithm versions are
presented in Table A.17. Finally, Table A.18 show the average
results for each dataset for the 3-NN algorithm. We stress in
boldface the best results achieved by a version.
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