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Abstract Graph-based data mining approaches have been mainly proposed to the task pop-
ularly known as frequent subgraph mining subject to a singleuser preference, like frequency,
size, etc. In this work, we propose to deal with the frequent subgraph mining problem from
multiobjective optimization viewpoint, where a subgraph (or solution) is defined by several
user-defined preferences (or objectives), which are conflicting in nature. For example, mined
subgraphs with high frequency are often of small size, andvice-versa. Use of such objectives
in the multiobjective subgraph mining process generates Pareto-optimal subgraphs, where
no subgraph is better than another subgraph in all objectives. We have applied aPareto-
dominance approachfor evaluation and search subgraphs regarding to both proximity and
diversity in multiobjective sense, which has incorporatedin the framework of Subdue algo-
rithm for subgraph mining. The method is called Multi-Objective subgraph mining by Sub-
due (MOSubdue), and has several advantages: i) generation of Pareto-optimal subgraphs in
a single run, ii) selection of subgraph-seeds from the candidate subgraphs based on all ob-
jectives, iii) search in the multiobjective subgraphs lattice space, and iv) capability to deal
with different multiobjective frequent subgraph mining tasks by customizing the tackled
objectives. The good performance of MOSubdue is shown by performing multiobjective
subgraph mining defined by two and three objectives on two real-life datasets.

Keywords Graph-based data mining· Frequent subgraph mining· Subdue· Gaston·
Multiobjective graph-based data mining· Pareto-based multiobjective optimization·
Evolutionary multiobjective optimization

1 Introduction

Graph-based data mining (GBDM) has been prevalently used ina wide range of application
domains, such as computing communities [11,31], subgraph discovery [7,41,48,51], topic
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detection [38], attack detection [45], computing the number of triangles [46], clustering
[27, 36], peta graph mining [23], etc. Recently GBDM has beenrecognized as one of the
ten challenging problems in data mining research [50]. For the recent developments and
comprehensive survey of this important and emerging topic the reader is referred to [1,7].

GBDM approaches are characterized by representation of multi-relational data in the
form of graphs. They have been extensively applied to the task popularly known as fre-
quent subgraph mining. These approaches can be categorizedinto mathematical graph the-
ory based approaches (such as, MoFa/MoSS [3], FSG [26], Gaston [32], gSpan [48], Close-
Graph [49], gPrune [51]), greedy search based approaches (like Subdue [6] and GBI [29]),
and kernel function based approaches [24]. All these approaches work by performing a
search in the lattice of all possible subgraphs [12]. The underlying search process, which
could either involve an exact exhaustive or approximate heuristic search, is usually guided
by a singleobjective, which represents a unique and specific userpreference. For example,
mining subgraphs which are present in at leastm graphs, or mining subgraphs which contain
at leastn nodes are typical choices.

The existing GBDM approaches applying such simple thresholds for frequent subgraph
mining task have important limitations. For example, the number of mined subgraphs is
large (respectively, few or nil) in the cases of weak (respectively, strict) thresholds [35].
Moreover, in real-life applications a user is generally interested in mining a graph-based
repository using several objectives that are actually meaningful to her/him, which are of-
ten conflicting in nature [35]. For example, users prefer obtaining subgraphs with both high
frequency and size values. Nevertheless, these objectivesare conflicting as simpler descrip-
tions are usually the most frequent ones andvice versa. In view of the reasons stated above, a
GBDM methodology should not only rely on the optimization ofa simple objective but also
consider simultaneously additional, conflicting objectives to extract better defined concepts,
which may be based on the size of the subgraph being explained, the number of retrieved
subgraphs, and their diversity.

Towards dealing with the limitations of a simple single objective-based search, Sky-
Graph [35] has recently shown an application of skyline processing incorporating multiple
objectives for subgraph mining. The skyline processing hasbeen predominantly called as
Pareto-based optimizationin multiobjective optimization, which has been important for sev-
eral applications involving multicriteria decision making [4,14]. Recently, Pareto dominance-
based multiobjective optimization has also gained much importance in the data mining and
machine learning communities [21, 22]. Besides, it has alsobeen applied to other kinds of
optimization problems based on graph datasets such as multiobjective graph partitioning [2].
Multiobjective optimization usually contains several conflicting objectives that require op-
timization, and normally there exist many (Pareto) optimalsolutions to this problem, where
no solution is better than another in all objectives.Pareto dominanceis an approach to eval-
uate different solutions based on objective vectors [4,5,14]. It is illustrated in Fig. 1.1 using
a familiar example in the literature. Assume we have a set of hotelsP = {p1, pi, . . . , p11}

with information of the price and the distance from beach. The Pareto dominance says: point
pi dominates another pointpj ∈ P if pi is better than or equal topj in all objectives and is
strictly better thanpj in at least one objective. With this definition, pointpi is said to be a
Pareto-optimal solution if it is not dominated by any other point pj ∈ P . Thus, Fig. 1.1 con-
tains three pointsp1, p2, p3 that are said to be Pareto-optimal solutions which collectively
form a Pareto-optimal set. An interesting property of the Pareto-optimal set is that it is in-
dependent of how you weigh your preferences towards the price and the distance of hotels
during selection. In any case, you will find your favorite hotel in the Pareto-optimal set. The
Pareto dominance approach is scale invariant, it does not need a ranking function, it does
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not apply any threshold and can be used as long as the length ofobjective vector is low (e.g.,
d < 10) [5, 35]. For high dimensional objective vectors the probability that a solution dom-
inates another becomes very small and this may lead to a largenumber of Pareto-optimal
solutions. Nevertheless, recent proposals have managed todeal with a significantly large
number of objectives in what is calledevolutionary many-objective optimization[20,37].

Fig. 1.1 A toy hotel example dataset and Pareto-optimal points in the set

For multiobjective subgraph mining, generating the true Pareto-optimal subgraph set can
be computationally expensive and is often infeasible because the complexity of the underly-
ing application prevents exact methods from being applicable [35]. The number of subgraphs
in the input graph dataset grows exponentially in relation to the number of nodes, thus re-
sulting in a combinatorial explosion in the subgraph lattice search space. Hence, a challenge
is to provide an efficient polynomial time algorithm that canmine a good approximation to
the true Pareto-optimal set of the input graph data, i.e., a set of subgraphs whose objective
vectors are not too far away from the optimal objective vectors. SkyGraph [35] actually man-
ages to generate Pareto-optimal subgraphs defined by two objectives, the edge connectivity
and the order of the subgraph, by means of a polynomial time, exhaustive search algorithm.
To do so, SkyGraph performs recursive graph partitioning within a very advanced and well
designed framework. However, the drawback of SkyGraph is that it is problem-specific, i.e.,
it can only be applied to the latter concrete multiobjectivefrequent subgraph mining task.
This specificity allows it to use a single-objective (and notmultiobjective) underlying search
method, which only uses the edge-connectivity to evaluate graph partitioning in a recursive
fashion. Therefore, the Pareto dominance approach is only applied for evaluation purposes
each time a new subgraph (or solution) is discovered in the recursive search in order to main-
tain a Pareto-optimal set of discovered subgraphs. As a consequence, it cannot be applied to
other multiobjective graph mining tasks requiring the use of different objectives.

In this work, we propose the incorporation of Pareto dominance-based multiobjective
search and evaluation strategies from the field of evolutionary multiobjective optimiza-
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tion [5] to an existing graph mining method, Subdue [6]. Thisis done in order to allow this
graph mining method to tackle the simultaneous optimization of several conflicting objec-
tives representing different user preferences. The new proposal to perform Multi-Objective
subgraph mining using the Subdue algorithm (thus called MOSubdue) is able to generate
Pareto-optimal subgraphs regarding to several user-defined criteria on the subgraphs’ char-
acteristics.

MOSubdue applies a heuristic search, a more general framework to perform multiob-
jective subgraph mining. It extends Subdue’s beam search ina multiobjective fashion but
keeps the remaining Subdue’s components (such as the subgraph-growth method) unal-
tered. Hence, it can work on exactly the same kinds of graph data handled by Subdue (sets
of connected relational graphs with or without cycles and directed or undirected edges).
The resulting multiobjective beam search is not restrictedto use any specific objective but
can be customized to different multiobjective GBDM tasks. To illustrate this idea, the cur-
rent contribution deals with two different multiobjectivefrequent subgraph mining prob-
lems considering two and three objectives, respectively. First, MOSubdue generates a set of
Pareto-optimal subgraphs in the case of mining subgraphs jointly maximizing two conflict-
ing objectives, i) the order of the subgraph (the number of nodes) and ii) the support of the
subgraph (the occurrence frequency in graph data). Further, to show that MOSubdue is com-
pletely general purpose, MOSubdue is extended to solve a three-objective subgraph mining
task by considering one more objective (the density of subgraph) along with the latter two.

Two real-life graph-based datasets developed under Predictive Toxicology Evaluation
(PTE) challenge, and scientific publication domain-based knowledge discovery (scientograms)
are considered to validate our proposal. PTE data has been applied in the past as a bench-
mark dataset to study the performance of different proposals for frequent subgraph mining
task [32, 33, 48]. Scientograms database has been recently applied to propose several auto-
matic knowledge discovery tasks in visual science maps, like the evolution of a scientific
domain over time or the extraction of the common research fronts in the world [40]. The
performance of MOSubdue is benchmarked with two variants ofsingle-objective Subdue
and a multiobjective extension of the well-known Gaston method [32].

The rest of the paper is organized as follows. Section 2 discusses the related work in the
area of frequent subgraph mining. Section 3 provides some basic definitions of the different
objectives considered and the description of Subdue methodfor frequent subgraph mining.
Section 4 describes the proposed MOSubdue methodology. Experimental results and com-
parison based on real-life datasets are provided in Section5. Finally, Section 6 concludes
the work and discusses some ideas for the future work.

2 Related Work and Contribution

Recent work in the data mining community has been focused on developing graph-based
data approaches to discover subgraphs consisting of complex relationships between entities
[1,7]. In this section, we briefly review some fundamental developments related to our work.

2.1 Related Work

Frequent subgraph mining has been the most studied problem in GBDM [3,6,18,19,26,32,
48]. The goal is to apply mining techniques on graph data to discover some information that
is likely to be useful for the user. For example, a typical graph mining task is to report all
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subgraphs that appear in at leastm graphs, wherem is the minimum frequency (or support)
threshold specified, or report all subgraphs that contain atleastn nodes, wheren is the
minimum number of nodes specified by the user. Recently, gPrune [51] has been proposed
as a general general framework to incorporate several such thresholds (or constraints) into
the graph pattern mining process. gPrune performs constraint-based frequent graph pattern
mining using the concept of pattern-inseparable-data-antimonotonicity.

All the previously mentioned developments have in common the application of some
specific preference in the graph mining process, such as the number of nodes, the frequency,
the density, or the edge-connectivity. In many situations,it would be more useful for the
user if the algorithm could jointly consider several preferences to evaluate the mined sub-
graphs (i.e., multiobjective GBDM), or even better if the algorithm could perform automatic
subgraph mining for the preferences defined by the user. To doso, SkyGraph [35] has in-
corporated skyline processing to discover important subgraphs during the mining process.
The method applies the skyline processing on the mined subgraph defined by two objec-
tives, i) the subgraph edge connectivity, and ii) the order of the mined subgraph (the number
of nodes). To mine a subgraph, SkyGraph carries out successive application of a min-cut
algorithm that uses only one of those two objectives, the edge connectivity. Then, the other
objective, the order of the mined subgraph, is evaluated as the number of nodes it consists of.
This mined subgraph is stored into an external setP of skyline (or Pareto-optimal) subgraphs
if it is not dominated by another subgraph in the setP . Hence, SkyGraph’s subgraph search
in graph data is single-objective and not multiobjective, as a subgraph is mined according to
the edge connectivity by the successive application of the min-cut algorithm. Thus, it only
applies a multiobjective processing while evaluating the discovered subgraphs in order to
check if they must be stored in the external set of mined subgraphs. In SkyGraph, you could
use several objectives while storing the mined subgraph in the external set of mined sub-
graphs, but Skygraph searches for a subgraph in graph data according to only objective, the
edge connectivity. Besides, the strong relation between this objective and the search method
applied prevents SkyGraph from being utilized for other multiobjective frequent subgraph
mining tasks.

2.2 Our Contribution

Pareto dominance-based evaluation and search strategies are commonly used with evolution-
ary algorithms for solving multiobjective optimization problems in different fields of science
and engineering [5, 21]. In this work, we propose incorporating Pareto dominance-based
search [4,5,14] in graph data according to several general and user-customizable objectives
(i.e. d-dimensional objective vectors) to mine interesting subgraphs. The mined set of sub-
graphs is a set of Pareto-optimal subgraphsP , where no subgraph is better than another
subgraph and every included subgraph is better than all the remaining ones not included
in that optimal set. The proposed Pareto dominance-based method performs evaluation and
search ford-dimensional objective vector subgraphs in the multiobjective subgraph-search
space.

For this purpose, we have used the framework of Subdue method[6] that carries out
two main steps, i) subgraph-seed generation, and ii) subgraph-growth. The standard Subdue
performs the subgraph-seed generation by using an evaluation method based the minimum
description length (MDL) principle [42], and the subgraph-growth by adding an edge and
node or only edge to the current subgraph. It applies single-objective heuristic search based
on a beam search method [28] to explore the subgraph lattice.We have changed both the



6

evaluation and the search methods in the standard Subdue. The evaluation method is now
based on the actuald-dimensional objective vector that defines a subgraph, and amultiob-
jective subgraph is evaluated using the Pareto dominance-based approach. A multiobjective
subgraph can be seen as a record defined byd objectives in the Pareto dominance-based
evaluation method. The search method in Subdue is now extended by incorporating Pareto
dominance-based strategy for selecting candidate subgraphs as subgraph-seeds in the mining
process for further subgraph-growth operation. This implementation is called MOSubdue.

We show that the subgraph mining process can itself handle multiple preferences (or
objectives) that could be meaningful to the user. To do so, MOSubdue is applied for two
different graph mining tasks. First, the generation of subgraphs defined by two conflicting
objectives, i) the order of the subgraph (the number of nodes) and ii) the support of the
subgraph (the occurrence frequency in graph data). Further, to show that MOSubdue can
handle more than two objectives, it is extended to solve a three-objective subgraph mining
task by considering one more objective (i.e., the density ofthe subgraph) along with the
latter two.

We emphasize that MOSubdue is fundamentally different thanSkyGraph [35] method.
SkyGraph is a multiobjective GBDM method showing differential characteristics as it is
designed for a very specific kind of multiobjective frequentsubgraph mining task. As a
consequence, it uses two specific objectives for its graph mining task and it cannot work with
a different definition for those objectives. Skygraph does not apply a classical Pareto-based
multiobjective search but an exhaustive search method based on recursive graph partitioning
by only considering a single objective (i.e., the edge connectivity). The underlying search
method is thus not guided by any multiobjective approach. A multiobjective evaluation is
only performed each time a new subgraph is explored by the recursive search in order to
finally keep the non-dominated subgraphs mined in the external set.

On the opposite, MOSubdue’s subgraph mining process is based on a pure general-
purpose multiobjective subgraph search. MOSubdue implements a Pareto-based multiobjec-
tive approximate heuristic search based on Subdue’s subgraph-growth approach and beam
search method. Hence, MOSubdue applies Pareto dominance not only to evaluate the ex-
plored subgraphs but also to actually perform multiobjective search in the subgraph lattice
space. MOSubdue is able to deal with several objectives (twoand three in this contribution)
which could be generically customized by the user to deal with different GBDM tasks as
long as they can be formulated in a simple way.

In summary, we do not claim MOSubdue is a better multiobjective frequent subgraph
mining method than SkyGraph but it is proposed as a complementary approach which can
deal with more general multiobjective graph mining tasks.

3 Preliminaries

In this section, we provide some basic definitions of the different preferences considered
for the multiobjective subgraph mining tasks. Besides, as the work described in this paper
applies the Subdue framework, a brief description of the standard Subdue method [6] is
provided.
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3.1 Definitions

A labeled connected graphG is denoted by a set of nodesV (G) and a set of edgesE(G),
where there is an edgeel between every pair of nodes(vi, vj). Each nodevi ∈ V (G) has a
label from the node label setLV , and each edgeel ∈ E(G) that connects two nodesvi, vj

has a label from the edge label setLE . The edgeel can be directed or undirected. In this
work, we only consider a set of relational connected graphsD = {G1, G2, . . . , GN}, where
a graphGi is said to be relational if each node it contains has an uniquelabel. There are
several applications of relational graphs, such as web community detection [11], analysis of
biological networks [17], scientific publication domain analysis [40], and social networks
[45], among others.

In this study, we have considered some of the commonly used preferences (or objectives)
for our multiobjective subgraph mining task which are givenbelow as:
Definition 1.(Induced subgraphp): In GBDM, a subgraph is itself a graph, and will be
denoted asp. Graphp is a subgraph of graphp′ if p is subgraph isomorphic withp′, denoted
by p ⊆ p′.
Definition 2.(Support of subgraphp): The frequency (or support) of subgraphp denoted
by q(p) in a graph databaseD is the cardinality of the set{Gi|p ⊆ Gi, i = 1, . . . , N}. Given
a thresholdm, the subgraphp is frequent iffq(p) ≥ m. Exhaustive frequent subgraph mining
methods find all such subgraphs.
Definition 3.(Order of subgraph p): The order or size of subgraphp denoted bys(p) is the
number of nodes present in the subgraphp. Given a thresholdn, the subgraphp is extracted
iff s(p) ≥ n. Exhaustive subgraph mining methods find all such feasible subgraphs.
Definition 4.(Density of subgraphp): The density of subgraphp denoted byρ(p) is the
fraction 2.|E(p)|

|V (p)|.(|V (p)|−1)
. The value ofρ(p) = 1 assumes a complete graph.

As seen, all these objectives have been commonly applied in the frequent subgraph
mining literature primarily to guide single objective-based search methods by posing some
threshold in the mining process [11,17,45]. Recently, someapproaches considering multiple
objectives together to mine subgraphs have also been introduced [35], suggesting a need of
multiobjective subgraph search in graph data during the mining process.

3.2 The Subgraph Mining Framework of the Subdue Method

Subdue [6] is a GBDM method designed for different tasks as frequent subgraph min-
ing, hierarchical clustering, and classification model building from relational data. Subdue
has been successfully applied on many real-world problems including, chemistry [6], geol-
ogy [15], counter-terrorism [16], bioinformatics [25], anomaly detection [34], and scientific
publication domain analysis [40], among others.

Subdue is an instance of greedy search-based approaches, which use heuristics to eval-
uate the subgraphs. It represents data in graph form and can support either directed or undi-
rected edges. Input to Subdue is a single graph or a set of graphs. The framework of Subdue
has two main components: i) subgraph-seed generation, and ii) subgraph-growth.
Subgraph-seed Generation: Subdue uses a beam search [28] to enumeratebeamWidth
number of subgraph-seeds according to a subgraph evaluation method based on the MDL
principle [42]. It begins from subgraph-seeds consisting of all nodes with unique labels.

The MDL value of the subgraphp is given as:

MDL(G, p) = DL(p) + DL(G|p) (3.1)
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whereDL(p) is the description length of the subgraphp, andDL(G|p) is the description
length of the input graphG compressed by the subgraphp. The better a subgraph performs,
the smaller the value of equation (3.1) will be. Notice that,to evaluate a subgraph, the MDL
measure in equation (3.1) jointly considers two commonly used objectives in GBDM, the
support and the size of the subgraph.

Subgraph-growth: The subgraph-seeds are extended by one node and one edge or one
edge in all possible ways to generate candidate subgraphs. Candidate subgraphs are evalu-
ated and ranked according to the MDL principle. Following the beam search principle, the
bestbeamWidthnumber of candidate subgraphs are retained as new subgraph-seeds for fur-
ther expansion. Subdue’s output is a set of best (or most descriptive) subgraphs according
to the evaluation method in equation (3.1). This procedure repeats until all subgraphs are
considered or the user imposed computational constraints are exceeded. Notice that, Subdue
is an heuristic search method, which does not perform an exhaustive search in the subgraph
lattice.

Fig. 3.1 summarizes the outline of the Subdue method. Inputsare a single graph or a set
of graphsG, maxBest is the maximum number of best subgraphs to be reported,beamWidth
is the length of subgraph-seeds considered for expansion, andLimit is the maximum num-
ber of total subgraph-seeds to be expanded. The output comprises the best subgraphs found.

1. Subdue(GraphG, BeamWidth, Limit, maxBest)

2. Subgraph-seeds List, Q ={Nodev — v has a unique label in graph}

3. Best Subgraphs List, BestP = UpdateBestList(Q) //can storemaxBestsubgraphs

4. while Limit > 0 and Q6= ∅ do
5. Candidate Subgraphs List, newQ ={}

6. for eachp∈ Q

7. newQ = newQ∪ NewSubgraphsByExpansion(p) //subgraph-growth

8. Limit = Limit − 1

9. Evaluate subgraphs in newQ by MDL measure in Eq.(3.1)

Sort newQ in ascending order of MDL measure

10. Q = the firstbeamWidthnumber of subgraphs in newQ

11. BestP = UpdateBestList(Q)

12. end while
13. Return BestP // the best subgraphs found

Fig. 3.1 The outline of Subdue algorithm.

4 MOSubdue Proposal

In this section, we describe the application of Pareto dominance-based evaluation and search
method to enumerate multiobjective subgraph-seeds in Subdue to generate Pareto-optimal
subgraphs. Before, we briefly review some basics on multiobjective optimization and meth-
ods to solve this problem commonly employed in the multicriteria decision making [4,5,10,
14].
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4.1 Multiobjective Optimization

Single-objective optimization problems may have a unique optimal solution, while multiob-
jective optimization problems (MOPs) usually present a setof optimal solutions, which rep-
resent trade-offs in objective space. A decision maker thenimplicitly chooses an acceptable
solution or some of them by selecting one or more from the set.An MOP is mathematically
defined as follows [4,5,14]:

Definition 5 (General MOP): In general, an MOP minimizesf(x) = (f1(x), . . . , fd(x))

subject tox ∈ X, wherex is the solution vector andX is the solution space. An MOP so-
lution minimizes the components of objective vectorf(x), where solution vectorx belongs
to solution search spaceX.

Definition 6 (Pareto dominance): An objective vectoru = (u1, . . . , ud) is said to dom-
inate another vectorv = (v1, . . . , vd) (denoted byu � v) if u is less than or equal tov in
all objectives, and is strictly less thanv in at least one objective, i.e.,∀i ∈ {1, 2, . . . , d} :

ui ≤ vi ∧ ∃i ∈ {1, 2, . . . , d} : uj < vj . This definition can also be applied for maximization
or any condition of objectives. For simplicity, we have considered minimization of all ob-
jectives defining solutionx. Actually, our multiobjective subgraph mining problem defined
later considers maximization of all objectives.

Definition 7 (Pareto optimality): A solutionx ∈ X with objective vectoru is said to
be Pareto optimal with respect to the search spaceX iff there is no solutionx′ ∈ X with
objective vectorv that dominatesu.

Definition 8 (Pareto optimal set): For a given MOPf(x), the Pareto optimal setP∗ is
defined as:

P∗ := {x ∈ X | ¬∃ x′ ∈ X f(x′) � f(x)} (4.1)

Definition 9 (Pareto front): For a given MOPf(x), the Pareto-optimal frontPF∗ as-
sociated with the Pareto optimal setP∗ is defined as:

PF∗ := {u = f(x) = (fi(x), . . . , fd(x))|(x ∈ P∗)} (4.2)

Thus, an MOP contains several objectives that must be jointly optimized. These objec-
tives are usually conflicting in nature, their optimizationoffers several optimal solutions in
the objective space. To solve an MOP, the optimization algorithm should efficiently and ef-
fectively find those solutions that satisfy multiple objectives. In other words, the obtained
solutions should be of good proximity and diversity to the true Pareto-optimal solution set
P∗. Proximity means that the algorithm is of excellent searching ability to obtain good so-
lutions on or close to the true Pareto-optimal frontPF∗. Diversity means that the algorithm
is capable to obtain solutions distributed uniformly to some extent for the decision-maker to
find a comparatively satisfying solution close to his preference at any time.

Perhaps the most straightforward approach to solve an MOP isto combine different
objectives into a single-objective scalar value function by any kind of objective aggrega-
tion scheme, and apply a single-objective optimization approach to generate Pareto-optimal
solutions [4, 5, 14]. However, this formulation will generate only the specific solutions sub-
ject to the trade-off between the objectives explicitly or implicitly specified by the aggre-
gation function. To overcome limitations of aggregating schemes, evolutionary multiob-
jective optimization (EMO) algorithms have successfully shown the application of Pareto
dominance-based evaluation of solutions to guide the search process in the multiobjective
solution search space to generate good Pareto front approximations [5,10,52].
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In this contribution, we apply the concept of general MOP to define the multiobjective
subgraph mining problem, and apply a Pareto dominance-based scheme for evaluation of
subgraphs to guide the mining process in the multiobjectivesubgraph lattice search space.
In the following sections, we provide the problem statementfor multiobjective subgraph
mining as well as the methodology for evaluation of subgraphs and to guide the mining
process. For this purpose, we use the terms subgraph and solution interchangeably.

4.2 Multiobjective Subgraph Mining Problem Statement

Multiobjective subgraph mining is based on the idea of multiobjective optimization, where
a solutionx is defined as a subgraphp, a set of nodes and edges, the solution spaceX is
referred as the subgraph search space, i.e., the subgraph lattice. A subgraph is defined by
severald user-defined objectives on the subgraph’s characteristics, such as the frequencyq,
the orders, etc., which are usually conflicting. For example, subgraphs with high frequency
are usually of small order (or size) andvice-versa. Formally, given a set of graphsG, our goal
is to mine the Pareto-optimal subgraph set representing allthe induced connected subgraphs
of G defined by several user-defined objectives. For this purpose, we have formulated two
multiobjective subgraph mining tasks as:

• Given a set of graphsG, mine all Pareto-optimal subgraphs ofG which are maximal
with respect to the support (or frequency) and the number of nodes (or order).

• Given a set of graphsG, mine all Pareto-optimal subgraphs ofG which are maximal
with respect to the support, order, and density.

Theoretically, the subgraph mining algorithm has to searchthe entire subgraph lattice
that represents all possible subgraphs to determine if a mined subgraph is Pareto-optimal
[35]. However, the number of possible subgraphs in the subgraph lattice grows exponentially
in relation to the number of nodes. This makes finding Pareto-optimal subgraphs computa-
tionally expensive and often infeasible when dealing with large graph databases. Moreover,
the complexity of the underlying application prevents exact methods from being applicable.
In this scenario, we need to rely on the GBDM methods proposedin the literature that per-
form approximate heuristic search in the subgraph lattice to generate good approximations
to the true Pareto-optimal subgraph set in reasonable computational time.

Subdue [6] is an instance of approximate heuristic search inthe subgraph lattice for
frequent subgraph mining. In this work, we apply the framework of Subdue to solve the
above formulated multiobjective subgraph mining problem.As said, one way to solve this
problem is by aggregation of objectives (see Section 4.1). However, a subgraph defined by
the aggregation of objectives, e.g., the support and the order, in a single-objective scalar
function would result in a similar behavior where only the specific subgraphs showing the
specified trade-off between the two objectives would be mined. This is the classical draw-
back of aggregation schemes as found in the multiobjective optimization area [4, 5, 14].
With that problem in mind, we propose the use of Pareto dominance-based evaluation and
search methods in the framework of Subdue algorithm to mine subgraphs defined by several
user-defined preferences (or objectives).

4.3 Pareto Dominance-based Subgraph Evaluation and Selection Method

Pareto dominance definition (6) can be used: i) to estimate the quality (or fitness or rank)
of a solution using the objective vector, and ii) to establish preference between solutions
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for selection. Methods based on the concept of Pareto dominance are very popular in EMO
area [5,10,13,52]. One such method is proposed in [10], which is called Pareto dominance-
based ranking. To describe this solution ranking procedure, we revisit the classical hotel
selection example shown in Fig. 1.1. We seek hotels with low price and short distance to
beach. Applying the Pareto dominance definition (6) on the entire setP of size 11, we find
three pointsp1, p2, andp3 that are optimal and comprise the frontF1 as shown in Fig. 4.1.
Suppose, the hotels belonging to this front have been fully occupied. In this scenario, the
visitor needs to draw another front considering the remaining hotels (i.e., by temporarily
discarding pointsp1, p2, andp3 in the setP ). Application of the Pareto dominance definition
(6) on the temporarily pruned setP provides the second frontF2 to choose from five points
(p4, p5, p6, p7, andp8). To make further choice, the last frontF3 which contains three points
p9, p10, andp11 is obtained by temporarily discarding all points belongingto the frontsF1

andF2. In this way, we have sorted the setP into different fronts using the Pareto dominance
definition (6). It can be noticed that the first frontF1 is better than any other front in the set
P . This is because it was obtained on the entire setP . Any subsequent front was obtained
on the temporarily pruned setP . Thus, we can actually rank points in the setP based on
the front number to which they belong. Hence, points belonging to the frontF1 share rank
1, points in the frontF2 have rank 2, and so on. As points holding the best rank 1 are from
the frontF1, this ranking method assumes rank minimization. In this way, in Fig. 4.1 the
Pareto dominance-based ranking has performed two functions: i) evaluation of points using
objective vectors, i.e., estimation of rank for each point in the setP based on the front
number it belongs, and ii) preference based selection, i.e., minimization of rank is assumed
and thus points with the rank 1 are the best, points with rank 2are the second-best, and so on.
MOSubdue applies this procedure in the multiobjective beamsearch to enable generation of
beamWidthnumber of subgraph-seeds from the multiobjective candidate subgraphs.

The pseudo-code of MOSubdue is given in Fig. 4.2. In this figure, in line 9, the list
newQ contains the candidate subgraphs defined byd number of user-defined objectives.
The multiobjective beam search sorts the list newQ into different fronts using the Pareto
dominance definition (6) (like as illustrated in Fig.4.1). It assigns rank to each candidate
subgraph in the list newQ equal to the front number it belongs. To generatebeamWidth
number of subgraph-seeds from the list newQ, assuming the rank minimization, the candi-
date subgraphs are sorted in the ascending order of rank. ThetopmostbeamWidthnumber
of candidate subgraphs in the sorted list newQ are selected as subgraph-seeds for further
expansion (line 10). We call this approach as MOSubdue-I method.

In MOSubdue-I, generation of the subgraph-seed list Q of length beamWidthfrom the
list newQ sorted into different fronts can be seen as follows. First we choose the frontF1.
If the size of frontF1 is smaller thanbeamWidththen all the candidate subgraphs belonging
to this front are selected. Next we choose the frontF2, and so on until the total of number
candidate subgraphs in the frontsF1, F2, . . . , Fl is not greater than/equal tobeamWidth. Fl

is the last front that can be accommodated to form the list Q. We cut the frontFl simply at
a point where the addition of the sizes of frontsF1, F2, . . . , Fl is equal tobeamWidth.

The worst case complexity of this Pareto dominance-based ranking isO(dK2), whered

is the number of objectives to define a subgraph, andK is the length of candidate subgraph
list newQ. In the worst case, the list newQ is sorted intoK fronts with one subgraph per
front [10]. However, in practice, the actual computationaltime complexity is low as we
terminate fronts generation as soon as we find enough fronts to obtainbeamWidthnumber
of subgraph-seeds.

When reviewing the latter selection procedure, it should benoticed that all the candidate
subgraphs in the frontFl share same rankl, and hence have equal probability to become
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Fig. 4.1 All possible Pareto fronts generated in the toy hotel exampledataset. The frontF1 is generated
considering all 11 points. The frontF2 is produced by temporarily discarding all points belonging to the
front F1. Similarly, the frontF3 is obtained by discarding all points belonging to the previously generated
fronts, i.e., both the frontsF1 andF2.

1. MOSubdue (GraphG, BeamWidth, Limit, maxParetoSubs)

2. Subgraph-seeds List, Q ={Nodev — v has a unique label in graph}

3. Pareto Subgraphs List, ParetoList = UpdateParetoSubList(Q) //can store max.maxParetoSubssubgraphs

4. while Limit > 0 and Q6= ∅ do
5. Candidate Subgraphs List, newQ ={}

6. for eachp∈ Q

7. newQ = newQ∪ NewSubgraphsByExpansion(p) //subgraph-growth

8. Limit = Limit − 1

9. Apply Pareto dominance-based evaluation and selection on the list newQ

Sort the list newQ into different fronts using objective vectors

Assign rank to each candidate subgraph equal to front number it belongs

10. Q =beamWidthnumber of subgraphs in newQ according to the minimum rank and

uniformly distributed subgraph selection

11. ParetoList = UpdateParetoList(Q)

12. end while
13. Return ParetoList // the Pareto-optimal subgraphs found

Fig. 4.2 The Pseudo-Code of MOSubdue.

subgraph-seeds in the list Q. So, it will be appropriate to perform uniformly distributed
selection on the frontFl. We have done so using the objective vectors of the candidate
subgraphs in the frontFl. We apply this modification as MOSubdue-II method [44]. The
overall procedure for evaluation and selection applied by the designed multiobjective beam
search in the list newQ is depicted in Fig. 4.3.

Application of uniformly distributed selection in the front Fl of solutions defined byd
objectives is given as follows. To measure how a solutionpi is spread over the frontFl, we
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Fig. 4.3 Multiobjective beam search applied by MOSubude. At any expansion stage, the subgraph-growth
operation has generated ad-objective vector candidate subgraph list newQ. The beam search applies Pareto
dominance-based ranking to sort list newQ into different fronts, sayF1, F2, . . ., and assigns rank to each
candidate subgraph equal to the front number it belongs. It assumes the best candidate subgraph has minimum
rank and sorts list newQ according to ascending value of the rank. To create the subgraph-seed list Q of size
beamWidth, it selects the candidate subgraphs with minimum rank such that |F1| + |F2| + . . . + |Fl| ≥
beamWidth. From the last accommodated frontFl, the most diversified candidate subgraphs are selected.

calculateαi of pi as the average distance of two solutions on either side ofpi along each of
d objectives given as:

step 1 SortL solutions in the frontFl in the ascending order of eachfj objective.αij has
assigned infinite value for solutions with the smallest and largest values of objectivefj

(i.e.,α1j = αLj = ∞). For the remaining solutions it is calculated as:

αij =
fj(pi+1) − fj(pi−1)

fj(pmax) − fj(pmin)
, i = 2, . . . , L − 1 (4.3)

step 2 Repeat step 1 with each objectivefj , j = 1, . . . , d, and find the distribution valueαi of
solutionpi as:

αi =

d
X

j=1

αij (4.4)

This diversified selection method has a computational complexity of O(dLlogL), where
L is the size of Pareto frontFl. This type of distributed selection has been applied in the
nondominated sorting genetic algorithm-II (NSGA-II) in the EMO area [10].

We exemplify the computation ofαi on points in the frontF2 in the hotel selection ex-
ample as shown in Fig. 4.4. There are five pointsp4, p5, . . . , p8 in the frontF2. To calculate
distributionαi for each pointpi in F2, we first sort this front in ascending order of price.
Thereafter, points with the smallest and the largest price values have assigned an infinite
value (i.e.,α1 = ∞ for pointsp8 andp4, respectively). For all other intermediate points,α1

is equal to the absolute normalized difference in the price values of two adjacent points. For
example, for pointp5 α1 = 45/70 = (130 − 85)/(130 − 60) is obtained as the normalized
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difference in the price values of pointsp4 andp6. Similarly, we apply these two steps con-
sidering the other objective, the distance from beach. Sorting according to ascending order
of this objective values assignsα2 = ∞ for pointsp4 andp8. α2 for the remaining points
is computed as the absolute normalized difference in the values of the distance from beach
using two nearest neighbors with each one from either side.α2 for one of the intermedidate
pointsp5 is given asα2 = 3/5 = (4−1)/(6−1). Thus, the distribution valueαi for p5 in the
front F2 is the sum ofα1 andα2 values. It can be observed that the procedure is straight for-
ward to apply for any number of objectives, as we have used it for a three-objective subgraph
mining problem in this study.

Fig. 4.4 Diversification calculation for points in the hotel example.The procedure is described using the
points belonging to the frontF2. For each pointp4 to p8 corresponding the price ($) and the distance (km)
values are given.α1 andα2 represent the distribution values for points according to the price and the distance
values. First sort the points in the ascending order of magnitude for each objective, and points at the extreme
ends have assigned an infinite diversification value. Thus, pointsp4 andp8 have been assignedα = ∞ for
carrying the smallest and largest values with the two objectives. For all other remaining pointsα values are
calculated as (α = α1 +α2), the summation of the absolute normalized difference betweenthe two adjacent
points in both the objectives.

Let us consider the complexity of one iteration of the entireMOSubdue algorithm. The
basic operations and their worst-case complexities are as follows:

1. subgraph-growth operation by Subdue isO((
PLimit

i=1 i∗((v−1)−(i−1)))∗(v(Limit−

1)) ∗ gm) [8]
2. subgraph-seeds generation

(a) Pareto dominance-based ranking isO(dK2)

(b) diversified subgraph selection isO(dLlogL)

The run time for Subdue’s subgraph-growth process isO((
PLimit

i=1 i ∗ ((V − 1) − (i −

1))) ∗ (V (Limit − 1)) ∗ gm), calculated considering the total number of subgraphs to be
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expandedLimit, the number of instances of each subgraph in the input graphG, the num-
ber of partial mappings considered during graph matchinggm, and the number of nodes
V (G). The introduced Pareto-dominance-based subgraph-seeds generation adds the overall
complexity ofO(dK2) in MOSubdue. If the subgraph evaluation is performed carefully,
the complete candidate subgraph list newQ does not need to besorted into different Pareto
fronts. As soon as the Pareto dominance-based ranking procedure has found enough num-
ber of fronts in the list newQ to havebeamWidthnumber of candidate subgraphs, there is no
reason to continue the ranking computation.

4.4 Comparison Between the Operation of Subdue and MOSubdue

In this section, we provide an illustrative example to show the different operation that Sub-
due and MOSubdue apply for solving the two objective subgraph mining problem defined
in Section 4.2. The single-objective beam search in the Subdue method in Fig. 3.1 uses the
MDL measure in equation (3.1) to evaluate subgraphs. Equation (3.1) is a combination of
two objectives, the support and the size (#nodes + #edges) ofthe subgraph. The multiobjec-
tive beam search in the MOSubdue-I method (i.e., without theapplication of the diversified
selection procedure) uses Pareto dominance-based rankingto evaluate subgraphs defined by
two objectives, the support and the order of the subgraphs1.

We apply identical parameter settings for both methods, i.e., beamWidth= 5,Limit = ∞,
andmaxBest = maxParetoSubs =100. Both methods are applied on theshapes domain, a
synthetically generated dataset frequently used in the study of Subdue method [6]. Fig. 4.5
shows an example of a graphical representation of the input shapes data. The objects in the
figure (e.g., C1, T1, S1) become labeled nodes in the graph andthe relationships (e.g., on
(T1,S1), shape (T1,triangle)) become labeled edges in the graph. The considered dataset
consists of 100 different graphs with a total of 500 nodes, 400 edges, and 6 unique node
labels. The Pareto-optimal setP∗ (which is known for this simple domain as it has been
computed in an exhaustive way) contains 12 different subgraphs out of which 7 are distinct
in the objective vector space. The graphical representation of one of the subgraphs discov-
ered by MOSubdue-I from this dataset is also shown in Fig. 4.5.

shapes

shapes

on

object

object

triangle

square
R1

C1

T5
S1

T1

S3

T3

S2

T2

S4

T4

Fig. 4.5 An example of a subgraph in the shapes domain.

Both methods start from subgraph-seeds consisting of all nodes with unique labels.
At any expansion stage, both methods apply the same subgraph-growth operation on the
subgraph-seeds to generate the candidate subgraphs. However, they consider a different

1Notice that, any other formulation for these two objectives can be considered. Anyway, they constitute
support and size objectives as in the MDL measure.
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subgraph selection procedure on the candidate subgraphs togeneratebeamWidthnumber
of subgraph-seeds for the next stage of expansion. Fig. 4.6 reports the support and the order
values ofbeamWidth =5 subgraph-seeds generated by the Subdue and MOSubdue meth-
ods at each expansion stage. At the beginning, i.e., at the first expansion stage in Fig. 4.6,
both methods start from the same subgraph-seeds as shown in Fig. 4.6(a), consisting of all
nodes with unique labels in the shapes dataset. For the second expansion stage, one out of
5 subgraph-seeds generated by Subdue is different from thatgenerated by MOSubdue-I as
highlighted in gray in Fig. 4.6(b). For the third expansion stage, Subdue has generated the
subgraph-seed list which contains two solutions that are not present in the subgraph-seed
list created by MOSubdue-I (see, Fig. 4.6(c)). Both methodshave performed 6 generations.
Finally, as shown in Fig. 4.6(h), the Pareto-optimal set of subgraphs reported by Subdue
(resulting from the use of Pareto dominance definition (6) onthe final output list of single-
objective Subdue) has two solutions dominated by that of MOSubdue-I, showing the better
performance of the latter.

5 Experimental Study

The performance evaluation study has been conducted in our experiments on two real-world
datasets, which are summarized in Table 5.1 and are briefly described as follows:

Table 5.1 Description of different datasets used.

Datasets #Graphs #Nodes #Edges #Unique Labels

chemical 340 9189 9317 66

scientograms 73 19253 19709 296

Chemical Compound Datais a dataset which was available under the Predictive Tox-
icology Evaluation (PTE) challenge2. The dataset contains 340 chemical compounds, 24
different atoms, 66 atom types, and 4 types of bonds. The dataset consists of 27 nodes and
28 edges per graph on average. The largest one contains 214 edges and 214 nodes. So, the
discovered subgraphs are much like trees, though they do contain some cycles. The type of
atoms and bonds form the labels to the nodes and edges in the dataset. The PTE dataset was
earlier used in [32,33,48].

Scientograms Database[40] is a database built following De Moya-Anegón et al.’s
methodology [30,47] to design visual science maps (scientograms) for huge scientific pub-
lications collections. The nodes of the graphs correspond to Elsevier SCOPUS-SJR3 co-
citation categories. Each category agglutinates the journals that were categorized under that
name, and likewise the documents that were published in those journals. A co-citation mea-
sure is used to compute the relational similarity between two categories, thus defining a
relation matrix with an associated graph. Only the salient relationships between categories
are kept, capturing the essential underlying intellectualstructure of the studied scientific do-
main, using the Pathfinder algorithm [9,39] to prune the graphs. The rough considered data

2http://www.comlab.ox.ac.uk/activities/machinelearning/PTE/
3http://www.scopus.com
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Fig. 4.6 Comparison between the operation of Subdue and MOSubdue methods on the shapes dataset. The
subgraph-seed list of lengthbeamWidth=5generated by each algorithm at the end of each expansion stage
is reported. Both methods terminated after 6 generations shown in b to g. Solutions, if any, not present in
either generated list are highlighted in gray. (a) Both methods began with subgraph-seed list consisting of all
nodes with unique labels; (b) After the first expansion stage, Subdue has generated a subgraph-seed list which
contains one solution with a different value of support to that of generated by MOSubdue-I, and so on; (h)
Finally, both methods have reported their Pareto-optimal setof subgraphs, which indicates the two solutions
in gray produced by Subdue are dominated by those of MOSubdue-I.

have been extracted from the Scimago Journal & Country Rank portal4 and comprise a set

4http://www.scimagojr.com/
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of 36 millions of documents indexed by Elsevier SCOPUS-SJR from 1996 to 2008 over 73
countries [47]. This database has been extensively analyzed in [40] to propose an automatic
approach allowing the identification and the comparison of scientific structures within sci-
entograms. To do so, the Subdue algorithm has been applied for three different scientogram
analysis tasks regarding the evolution of a scientific domain over time, the extraction of the
common research fronts in the world, and the comparison of scientific domains between dif-
ferent countries. In the current study, the scientogram dataset contains visual science maps
generated for 73 countries for the year 2005. The dataset contains 73 graphs with 264 nodes
and 270 edges per graph on average, and consists of 294 uniquenode labels. As the dataset
does not contain any cycles, the mined subgraphs are like trees. However, the large size
and the presence of several unique node labels make this dataset a challenging one for the
defined multiobjective subgraph mining tasks.

The two variants of MOSubdue have been implemented in C, and all experiments have
been performed on an Intel Core Quad at 2.66GHz, with 4GB RAM,running CentOS 5.5.
Additionally, for the comparison study, Subdue and Gaston methods have been adapted for
solving the defined multiobjective subgraph mining tasks. These methods were originally
proposed for single-objective frequent subgraph mining and their source code in C is avail-
able through URLs5,6. Their adaptation is briefly described as follows:

Subdue-I: This applies three different independent subgraph evaluation methods, viz.
the MDL, size, and set cover, originally supported by the Subdue algorithm [6] for frequent
subgraph mining. Subdue is executed on the input graph dataset with the three evaluation
methods independently. The outputs from three evaluation methods are merged and repeated
subgraphs are removed, and later domination checks using the Pareto dominance definition
(6) are performed to produce Pareto-optimal subgraph set asgenerated by the Subdue-I
method.

Subdue-II: This basic multiobjective extension of the Subdue algorithm applies a mod-
ified subgraph evaluation method based on a single-objective function combining multiple
objectives in a weighted additive fashion [4, 5, 14] (as said, in our case,d= 2 and 3). Let
λ =(λ1, . . . , λd)T be a weight vector, i.e.λi ≥ 0 for all i = 1, . . . , d and

Pd
i=1 λi = 1.

Then, the subgraphp is evaluated using the following scalar objective functionas:

maximize z(p|λ) =

d
X

i=1

λifi(p) (5.1)

subject top ∈ P

where we usez(p|λ) to emphasize thatλ is a coefficient vector in this objective function.
Of course, the considered objectives are normalized. To generate a set of different optimal
subgraphs, one can use different weight vectors in the abovescalar objective function, and
perform repeated runs of Subdue-II.

MOGaston: Gaston [32] is a quick start algorithm for frequent subgraph mining, as it
applies efficient ways to uniquely enumerate paths and trees. The algorithm first generates
paths, then trees, and finally general graphs in order to efficiently search through the sub-
graph lattice. It stores all embeddings to generate only newsubgraphs that actually appear
in the database and to achieve fast isomorphism testing. In the last phase, the algorithm
deals with general graphs by defining a global order on cycle-closing edges to minimize the

5Subdue:http://ailab.wsu.edu/subdue/software/subdue-5.2.1.zip
6Gaston:http://www.liacs.nl/∼snijssen/gaston/



19

need for graph isomorphism tests. Only in handling general graphs, Gaston faces the NP-
completeness of the subgraph isomorphism problem. Gaston can calculate the frequency of
a subgraph either with isomorphism tests or embedding lists. In total the theoretical time
complexity of Gaston isO(|Ec(G)|c log |E(G)| + mc log c), whereEc is the number of
edges of the connected graphG that occurs in a cycle,c is the number of edges that should
be removed to obtain a tree, andm is the number of automorphisms of the spanning tree.
If c andm are small, this computation is polynomial in the size of the graph to be normal-
ized [32].

Input to Gaston is a set of graphs and a value for minimum frequency (or support)m to
retrieve subgraphs, and the output is a list of all the mined subgraphs with frequency greater
than or equal tom. To obtain a Pareto-optimal set from the output list, a simple modifica-
tion is done in the output of Gaston as: i) compute the additional objectives, the order and
the density of the mined subgraph, and ii) check dominance ofthe mined subgraph with
the subgraphs in an external Pareto set archiveP . If this mined subgraph is not dominated
by any subgraph in the setP then it is included inP , which is updated eventually to re-
move dominated subgraph, if any, it could contain. Notice that, as Gaston is an exhaustive
search method, when the lowest values for the thresholds areconsidered, the multiobjective
extension designed is able to obtain the true Pareto-optimal set of subgraphs for the tack-
led frequent subgraph mining task. Nevertheless, that would require an enormous and many
times unaffordable computation time for large graph databases due to the exponential size of
the subgraph search space. In our study, the graph datasets are large and complex and thus it
has been practically infeasible to let MOGaston run till exhuastion to carry out an exhaustive
search for mining subgraphs withm ≥ 2. In fact, for the scientogram dataset, MOGaston
spent more than ten hours in mining subgraphs with onlym ≥ 8. Thus, for the purpose of
performance comparison study, we have decided to fix the execution time for MOGaston
based on the time corresponding to the best result obtained by any of the Subdue-based
methods on each dataset.

5.1 Parameter Setting

Subdue-I and II and MOSubdue-I and II methods have been run with three different values
of beamWidth= 5, 10, and 20. Each of these methods has been run till subgraph-seeds can
not be grown further to generate candidate subgraphs, i.e.,till exhaustion of the explored
subgraph search space. A maximum number of Pareto subgraphsto be reported was set to
maxBest = maxParetoSubs = 100. A single execution of Subdue-I and MOSubdue-I has
been carried out on the input graph datasets as a consequenceof being deterministic methods
while MOSubdue-II has been run ten times with ten different seeds.

Subdue-II has applied different weight vectors in the case of two and three objective
problems. For the two-objective problem, the weight of the first objective function, the sup-
port, is varied from 0 to 1 in the step of 0.1, which has resulted into 11 weight vectors. The
algorithm has been run for each of the eleven weight vectors.For the three-objective prob-
lem, we have used 13 different weight vectors given in Table 5.2, and Subdue-II has been
run with each of them.

Finally, simulations have been performed with MOGaston using three different run times
on each dataset. The duration for the first run was set corresponding to the computational
time associated with the best result produced by any of the Subdue-based methods, while
the duration for the other two runs were set equal to two and five times the duration for the
first run.
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Table 5.2 Different weight vectors to transform the three-objectiveproblem into a single value scalar function
in Subdue-II method

Weights for objectivesWeights for objectives

Sr.No. SupportSupport OrderOrder DensityDensity

1 1.00 0.00 0.00

2 0.90 0.10 0.00

3 0.80 0.20 0.00

4 0.70 0.20 0.10

5 0.50 0.30 0.20

6 0.40 0.30 0.30

7 0.33 0.33 0.33

8 0.30 0.30 0.40

9 0.20 0.30 0.50

10 0.10 0.20 0.70

11 0.00 0.20 0.80

12 0.00 0.10 0.90

13 0.00 0.00 1.00

5.2 Performance Evaluation

To evaluate the performance of the proposed Pareto dominance-based multiobjective sub-
graph search approach, we compare the Pareto-optimal set ofsubgraphs produced by each
of the applied methods. A classical way to do so in EMO studies[5, 53, 54] is to check the
closeness of the Pareto-optimal setP produced by the algorithm with respect to the true
Pareto-optimal setP∗ on the input datasetG. Thus, the setP produced by the algorithm is
an approximationto the setP∗. The true setP∗ contains all subgraphs according to def-
inition (7) of Pareto optimality (see Section 4.1) from the multiobjective subgraph search
space, i.e. the subgraph lattice of the input graph dataset,and it may be obtained by employ-
ing an exhaustive search on small size datasets. However, itis practically infeasible to run an
exhaustive search on large sets of real-world graphs, whichis the case in our experimental
study. To overcome this problem, we have generated a pseudo Pareto-optimal set obtained
from the aggregation of the setP produced by the different methods in all runs performed.
Here after, we consider this pseudo Pareto-optimal set is equivalent to the setP∗ in the
performance analysis, unless otherwise specified.

Hypervolume ratio (HVR) is a commonly used and powerful measure in EMO studies
[5,53,54] to compute the proximity of Pareto-optimal frontPF obtained from the objective
vectors of solutions in the setP to the Pareto-optimal frontPF∗ of the setP∗. It is measured
in the objective space of solutions. For a two-objective problem, the hypervolume is the
summation of the area covered by each member in the frontPF with respect to the objective
space axis. The use ofHVR-metric is very extended in the EMO area as it measures both
diversity and closeness of the approximation to the setP∗. It is calculated as the ratio of
the hypervolume for the frontPF to that for the frontPF∗. A value of 1 for theHVR-
metric indicates the frontPF of the solution setP obtained by the algorithm duplicates the
front PF∗ of the solution setP∗ on the input datasetG. Thus, a high value ofHVR-metric
indicates a good approximation to the setP∗ has been produced by the algorithm.



21

We have computed theHVR-metric corresponding to Pareto-optimal subgraph setP

obtained by the different methods for the two and three objective problems. For the two-
objective problem, the methods have produced Pareto-optimal solutions defined by the sup-
port and the order of the subgraphs. Meanwhile, for the three-objective problem, the methods
have generated Pareto-optimal solutions defined by the support, the order, and the density
of the subgraphs. In the following subsections, we analyze the performance of the different
methods for both problems.

5.3 Analysis of Results for the Two Objective Subgraph Mining Task

Tables 5.3 and 5.4 report theHVR-metric values for the approximations produced by the
different Subdue methods on both datasets for the two-objective subgraph mining task. The
values in these tables associated with MOSubdue-II and Subdue-II represent the mean and
standard deviation values corresponding to the 10 and 11 different runs performed, respec-
tively. Table 5.5 provides theHVR-metric values for the obtained approximations corre-
sponding to the different runs of MOGaston on both datasets.The values in the brackets
in this table represent the run time in seconds for each execution of MOGaston. Table 5.6
shows the HVR-metric values corresponding to the best approximation produced by the dif-
ferent methods on each dataset. Tables 5.7 and 5.8 provide the run time analysis for the
different Subdue methods to produce their approximations.

Table 5.3 The HVR-metric values for Pareto-optimal sets obtained by the different Subdue methods on the
chemical dataset for the two-objective subgraph mining task.The numbers in the parentheses represent the
standard deviation.

beamWidthbeamWidth

MethodsMethods 55 1010 2020

Subdue-I 0.9729 (-) 0.9392 (-) 0.9243 (-)

Subdue-II 0.8120 (0.2042) 0.3009 (0.3129) 0.1054 (0.0560)

MOSubdue-I 0.9537 (-) 0.9898 (-) 0.9675 (-)

MOSubdue-II 0.9522 (0.0000) 0.9662 (0.0012) 0.9652 (0.0036)

Table 5.4 TheHVR-metric values for Pareto-optimal sets obtained by the different Subdue methods on the
scientogram dataset for the two-objective subgraph mining task. The numbers in the parentheses represent
the standard deviation.

beamWidthbeamWidth

MethodsMethods 55 1010 2020

Subdue-I 0.8545 (-) 0.7990 (-) 0.8090 (-)

Subdue-II 0.1606 (0.0242) 0.1052 (0.0242) 0.1017 (0.0265)

MOSubdue-I 0.8206 (-) 0.8491 (-) 0.6520 (-)

MOSubdue-II 0.8606 (0.0000) 0.8968 (0.0000) 0.6735 (0.0000)
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Table 5.5 TheHVR-metric values for Pareto-optimal sets obtained by MOGaston using three different run
times on both datasets for the two-objective subgraph mining task. The numbers in the brackets represent the
run times in seconds.

DatasetDataset Run 1Run 1 Run 2Run 2 Run 3Run 3

Chemical 0.0583 [50] 0.0583 [100] 0.0612 [250]

Scientogram 0.0746 [485] 0.0762 [970] 0.0762 [2425]

Table 5.6 TheHVR-metric values corresponding to the best result produced by the different methods on both
datasets for the two-objective subgraph mining task.

Datasets Subdue-I Subdue-II MOSubdue-I MOSubdue-II MOGaston

Chemical 0.9729 0.8120 0.9898 0.9662 0.0612

Scientogram 0.8545 0.1606 0.8491 0.8968 0.0762

Table 5.7 Run time in seconds for the different Subdue methods on the chemical dataset for the two-objective
subgraph mining task. The numbers in the parentheses represent the standard deviation.

beamWidthbeamWidth

MethodsMethods 55 1010 2020

Subdue-I 40.71 (-) 79.2 (-) 165.53 (-)

Subdue-II 10.46 (3.27) 15.69 (4.87) 29.29 (10.48)

MOSubdue-I 20.73 (-) 49.47 (-) 92.71 (-)

MOSubdue-II 19.93 (0.24) 40.64 (0.49) 87.76 (7.73)

Table 5.8 Run time in seconds for the different Subdue methods on the scientogram dataset for the two-
objective subgraph mining task. The numbers in the parentheses represent the standard deviation.

beamWidthbeamWidth

MethodsMethods 55 1010 2020

Subdue-I 661.72 (-) 1289.62 (-) 5674.45 (-)

Subdue-II 47.20 (15.01) 99.38 (32.27) 2876.70 (953.40)

MOSubdue-I 134.36 (-) 684.77 (-) 199.14 (-)

MOSubdue-II 181.76 (1.32) 484.65 (4.14) 217.25 (1.52)

From Tables 5.3 and 5.4, it can be seen how both single-objective Subdue variants,
Subdue-I and II, have shown performance decrease with increase inbeamWidth. Increase in
beamWidthmeans more subgraph-seeds availaible for expansion. This will generate many
repeated solutions (high redundancy) at the early stage of search in the subgraph lattice. Both
Subdue-I and II have applied single-objective beam search in the subgraph lattice. Subdue-I
uses the MDL-measure in equation (3.1) that constitutes thecombination of the support and
the size of the mined subgraphs, and Subdue-II applies a scalar function based on weighted
addition of the support and the order of the mined subgraphs.This suggests single-objective
beam search using these measures is unable to handle the selection pressure under the high
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redundancy. As against, both variants of MOSubdue have shown improvement in the per-
formance for increase inbeamWidth= 10. This shows that the multiobjective beam search
in MOSubdue can handle the selection pressure better than the single-objective beam search
in Subdue-I and II. However, they have shown a decrease in theperformance for further
increase inbeamWidth. This is because the multiobjective beam search considering these
(the support and the order) objectives are somewhat unable to handle the selection pressure
under such high redundancy. That configuration could be morebeneficial for the case of
having some additional objectives, as we will see in the following Section.

The analysis of theHVR-metric values reported in Table 5.3 corresponding to the chemi-
cal dataset reveals that Subdue-I and II have produced theirbest approximation correspond-
ing to beamWidth =5 for which the estimatedHVR-metric value is 0.9729 and 0.8120,
respectively. The bestHVR-metric values produced by MOSubdue-I and II are equal to
0.9898 and 0.9662, respectively, corresponding tobeamWidth =10. TheHVR-metric values
on the scientogram dataset reported in Table 5.4 show that the best value ofHVR-metric ob-
tained by Subdue-I and II is 0.8545 and 0.1606, respectively, corresponding tobeamWidth
= 5. MOSubdue-I and II have produced their best value ofHVR-metric equal to 0.8491 and
0.8968, respectively, corresponding tobeamWidth =10.

Finally, we compare the performance of the different Subduemethods on each dataset
based on theHVR-metric values. From Table 5.6, on the chemical dataset MOSubdue-I has
obtained the best value ofHVR-metric equal to 0.9898. The second-best value of theHVR-
metric equal to 0.9729 was obtained by Subdue-I. It was followed by MOSubdue-II and
Subdue-II withHVR-metric values of 0.9662 and 0.8120, respectively. On the scientogram
dataset (see 5.6), the best approximation was obtained by MOSubdue-II with aHVR-metric
value of 0.8968. Subdue-I has produced the second-best approximation with aHVR-metric
value of 0.8545. This performance was followed by MOSubdue-I and Subdue-II withHVR-
metric values of 0.8491 and 0.1606, respectively.

Table 5.5 shows theHVR-metric values corresponding to three different runs of MO-
Gaston on both datasets. On the chemical dataset, three different runs of the algorithm have
been carried out with run times of 50, 100 and 250 seconds. Meanwhile, on the scientogram
dataset, three different runs correspond to computationaltimes of 485, 970 and 2425 sec-
onds. The run time on the chemical dataset was estimated based on the execution time of
49.47 seconds required by MOSubdue-I in Table 5.7 to obtain the best value ofHVR-metric
equal to 0.9898 (see Tables 5.3 and 5.6). The run time on the scientogram dataset was esti-
mated from the run time of 484.65 seconds in Table 5.8 required by MOSubdue-II to produce
the best approximation with theHVR-metric value equal to 0.8968 (see Tables 5.4 and 5.6).
The HVR-metric values in Table 5.5 for the approximation produced by the different runs
of MOGaston show that the performance of the algorithm has improved for the higher run
times, although the quality of the results is not very significant.

The analysis of run times reported in Tables 5.5 and 5.7 on thechemical dataset shows
that Subdue-I and II have generated their best approximation with run time of 40.71 and
10.46 seconds, respectively (see Table 5.7). The run time required by MOSubdue-I and II to
provide their best approximation was 49.47 and 40.64 seconds, respectively (see Table 5.7).
From Table 5.5, MOGaston has obtained the best result corresponding to run time of 250
seconds. Compared to the Subdue methods, MOGaston has takenthe highest run time. The
result it has produced is the worst one to that of generated byany of the Subdue methods as
reported in Table 5.6. The run time analysis among Subdue methods show that MOSubdue-
I has taken the highest computational time of 49.47 seconds as compared to that taken by
other Subdue methods to produce their best approximation, but MOSubdue-I has reported
the best approximation with theHVR-metric value of 0.9898 as given in Table 5.6. Subdue-
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II has taken the least run time of 10.46 to generate its best performance which is in fact the
worst one among the Subdue methods, but it is better than thatgenerated by MOGaston as
shown in Table 5.6.

On the scientogram dataset, the run time analysis is based onthe values reported in
Tables 5.5 and 5.8. Subdue-I and II have reported their best approximation requiring a run
time of 661.72 and 47.20 seconds, respectively, as given in Table 5.8. MOSubdue-I and
II have generated their best performance for a computational time of 684.77 and 484.65
seconds, respectively (see Table 5.8). MOGaston required arun time of 970 seconds to
produce the bestHVR-metric value as reported in Table 5.5, but it happened to be the worst
one among the Subdue methods, as can be seen from Table 5.6. Among Subdue methods,
MOSubdue-II has generated the best performance with theHVR-metric value of 0.8968 (see
Table 5.6), but with less computational time of 484.65 when compared to that of required
by Subdue-I and MOSubdue-I. Again, Subdue-II has taken the least computational time
to produce its best performance which is the worst one to thatof the remaining Subdue
methods, but it is better than that of MOGaston as can be seen from Table 5.6.

Overall comparison is based on theHVR-metric values reported in Table 5.6. We can say
that MOSubdue-I has achieved the best performance on the chemical dataset with a value
of 0.9892, and on the scientogram dataset, MOSubdue-II has produced the best approxima-
tion with a value of 0.8968. Figs. 5.1 and 5.2 show the graphical representation of the best
approximation based on theHVR-metric value produced by each of the methods applied in
this study. The graphical representation produced for Subdue-I, MOSubdue-I, and MOGas-
ton that is corresponding to the approximation generated bythe single-run of the algorithm.
The plotted approximation corresponding to MOSubdue-II and Subdue-II is obtained as ag-
gregation of the output of 10 and 11 different runs carried bythe algorithms, respectively.
On the chemical dataset, Subdue methods have been able to generate most of the solutions
present in the true front,PF∗. For order values> 20, all Subdue methods but MOSubdue-I
have found some difficulty in producing the corresponding solutions. There are four solu-
tions inPF∗ with order values> 20. MOSubdue-I has managed to produce four solutions
with order values> 20 which are close to the frontPF∗. As against, Subdue-I, Subdue-II,
and MOSubdue-II could only find one solution each with order value higher than 20. In
general, MOGaston could generate very few solutions as compared to those obtained by the
Subdue methods. On the scientogram dataset, MOSubdue-II has shown the best spread of
solutions with respect to that in the frontPF∗. There is a good spread of solutions generated
by Subdue-I and MOSubdue-I, but they find it somewhat difficult to generate any solution
with order value higher than 60. Subdue-II has produced the least number of solutions that
can be comparable to that in the frontPF∗. MOGaston is not able to generate any solution
present in the frontPF∗ as can be seen from Fig. 5.2.

5.4 Analysis of Results for the Three-objective Subgraph Mining Task

Tables 5.9 to 5.12 report the HVR-metric values for the approximation produced by the dif-
ferent methods on both datasets for the three- objective subgraph mining problem. Tables 5.9
and 5.10 represent the mean and standard deviation values corresponding to MOSubdue-II
and Subdue-II using the 10 and 13 runs, respectively. Table 5.11 shows the HVR-metric
values corresponding MOGaston on both datasets. In this table, the values in the brackets
represent again computational time corresponding to each run of MOGaston. Tables 5.13
and 5.14 report the computational time for the different Subdue methods on each dataset.
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Fig. 5.1 A graphical representation of solutions corresponding to the best approximations produced by the
different methods with respect to theHVR-metric for two objective subgraph mining task. The pseudo Pareto-
optimal front is also shown as a reference.

Table 5.9 TheHVR-metric values for Pareto-optimal sets obtained by the different Subdue methods on the
chemical dataset for the three-objective subgraph mining task. The numbers in the parentheses represent the
standard deviation.

beamWidthbeamWidth

MethodsMethods 55 1010 2020

Subdue-I 0.9708 (-) 0.9609 (-) 0.9635 (-)

Subdue-II 0.6975 (0.3696) 0.2001 (0.2575) 0.0148 (0.0181)

MOSubdue-I 0.9715 (-) 0.9822 (-) 0.9879 (-)

MOSubdue-II 0.9759 (0.0052) 0.978 (0.0022) 0.9892 (0.0009)

When comparing the performance among Subdue methods on bothdatasets using the re-
sults in Tables 5.9 and 5.10, it can be seen how Subdue-I has shown a performance decrease
with the increase inbeamWidth. This is in line with the behavior on the two-objective sub-
graph mining task (see Tables 5.3 and 5.4). Subdue-II has shown a very significant decrease
in the performance on the chemical dataset for the increase in beamWidth, but it has shown
some small improvement in the performance on the scientogram dataset whenbeamWidth
was increased to 10. On the other hand, both variants of MOSubdue have shown a better
handling of the selection pressure (by using three objectives, the support, the order and the
density of the mined subgraph) under the redundancy createdby increasingbeamWidth. On
the chemical dataset, MOSubdue variants have shown the bestperformance corresponding
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Fig. 5.2 A graphical representation of solutions corresponding to the best approximations produced by the
different methods with respect to theHVR-metric for two objective subgraph mining task. The pseudo Pareto-
optimal front is also shown as a reference.

Table 5.10 TheHVR-metric values for Pareto-optimal sets obtained by the different Subdue methods on the
scientogram dataset for the three-objective subgraph mining task. The numbers in the parentheses represent
the standard deviation.

beamWidthbeamWidth

MethodsMethods 55 1010 2020

Subdue-I 0.7334 (-) 0.5315 (-) 0.4815 (-)

Subdue-II 0.0368 (0.0010) 0.0620 (0.1002) 0.0341 (0.0756)

MOSubdue-I 0.9482 (-) 0.9486 (-) 0.9209 (-)

MOSubdue-II 0.9508 (0.0036) 0.9540 (0.0028) 0.9356 (0.0171)
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Table 5.11 The HVR-metric values for Pareto-optimal sets obtained by MOGaston using three different run
times on both datasets for the three-objective subgraph mining task. The numbers in the brackets represent
the run times in seconds.

DatasetDataset Run 1Run 1 Run 2Run 2 Run 3Run 3

Chemical 0.0463 [90] 0.0463 [180] 0.5062 [450]

Scientogram 0.0615 [587] 0.0617 [1174] 0.0617 [2935]

Table 5.12 The HVR-metric values corresponding to the best result produced by the different methods on
both datasets for the three-objective subgraph mining task.

Datasets Subdue-I Subdue-II MOSubdue-I MOSubdue-II MOGaston

Chemical 0.9708 0.6975 0.9879 0.9892 0.5062

Scientogram 0.7334 0.0620 0.9486 0.9540 0.0617

Table 5.13 Run time in seconds for the different Subdue methods on the chemical dataset for three-objective
subgraph mining task. The numbers in the parentheses represent the standard deviation.

beamWidthbeamWidth

MethodsMethods 55 1010 2020

Subdue-I 40.71 (-) 79.20 (-) 165.53 (-)

Subdue-II 10.36 (5.14) 15.78 (7.79) 27.17 (13.37)

MOSubdue-I 19.80 (-) 48 (-) 89.38 (-)

MOSubdue-II 19.13 (1.82) 42.46 (3.73) 90.28 (7.69)

Table 5.14 Run time in seconds for the different Subdue methods on the scientogram dataset for three-
objective subgraph mining task. The numbers in the parentheses represent the standard deviation.

beamWidthbeamWidth

MethodsMethods 55 1010 2020

Subdue-I 661.72 (-) 1289.62 (-) 5674.45 (-)

Subdue-II 40.60 (22.05) 85.10 (47.27) 2438.18 (1388.57)

MOSubdue-I 132.55 (-) 681.10 (-) 197.50 (-)

MOSubdue-II 262.29 (48.17) 587.28 (88.42) 587.98 (603.86)

to beamWidth= 20. On the scientogram dataset, they have improved their performance cor-
responding tobeamWidth= 10, but they have shown a little drop in the performance when
beamWidthwas further increased to 20. However, this performance dropwas minimal as
compared to that suffered by Subdue-I and II methods.

Comparison of theHVR-metric values reported in Table 5.9 corresponding to the chem-
ical dataset shows that the best approximation obtained by Subdue-I and II hasHVR-metric
values of 0.9708 and 0.6975, respectively, corresponding to beamWidth =5. Both MO-
Subdue variants have generated their best approximation corresponding tobeamWidth =
20 that has producedHVR-metric values of 0.9879 and 0.9892, respectively. On the sci-
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entogram dataset, Subdue-I and II have generated their bestperformance corresponding to
beamWidth =5 and 10 with theHVR-metric value equal to 0.7334 and 0.0620, respectively.
When we carry out a detailed analysis of theHVR-metric values produced by the differ-
ent Subdue methods on the chemical dataset, it reveals that MOSubdue-II has produced
the best performance with theHVR-metric equal to 0.9892 corresponding tobeamWidth =
20. MOSubdue-I has generated the second-best performance with theHVR-metric value of
0.9879 with respect tobeamWidth =20. The third-best result has shown by Subdue-I and
the last one was Subdue-II withHVR-metric values of 0.9708 and 0.6975, respectively, cor-
responding tobeamWidth =5. On the scientogram dataset, theHVR-metric values reported
in Table 5.10 show that MOSubdue-II has again secured the best performance with aHVR-
metric value of 0.9540 corresponding tobeamWidth =10. The second-best performance
has been produced by MOSubdue-I with theHVR-metric value of 0.9486 corresponding to
beamWidth =10. This has followed by Subdue-I and Subdue-II withHVR-metric values of
0.7334 and 0.0620 corresponding, tobeamWidth =5 and 10, respectively.

Table 5.11 shows theHVR-metric values associated to three different runs of MOGas-
ton on both datasets. On the chemical dataset, MOGaston has carried out three runs with
run times of 90, 180, and 450 seconds. On the scientogram dataset, the algorithm has per-
formed three runs with execution times of 587, 1174, and 2935seconds. The run time on
the chemical dataset was based on the run time of 90.28 seconds corresponding to the best
HVR-metric value (0.9892, see Table 5.12) produced by MOSubdue-II (see Table 5.13). The
run time on the scientogram dataset was estimated from the time 587.28 seconds as reported
in Table 5.14 corresponding to MOSubdue-II to generate the best approximation (0.9540,
see Table 5.12). TheHVR-metric values in Table 5.11 indicate that MOGaston will need a
significantly larger amount of run time to produce good approximations.

The run time analysis of different methods is given in Tables5.11, 5.13, and 5.14. The
analysis on the chemical dataset reveals that Subdue-I and II have produced their best ap-
proximation with run times of 40.71 and 10.36 seconds, respectively (see Table 5.13). The
run times for MOSubdue-I and II to obtain their best performance were 89.38 and 90.28
seconds, respectively (see Table 5.13). MOGaston has produced its best performance for a
given run time of 450 seconds. In comparison to the run time required by each of the Sub-
due methods to produce their best approximation, MOGaston has taken much more time
and produced a significantly worst approximation as can be seen from Table 5.12. The com-
parison of run times for the different Subdue methods shows that MOSubdue-II has taken
the highest run time of 90.28 seconds to produce its best performance that happens to be the
best approximation than obtained by any applied methods (see Table 5.12). The least run
time of 10.36 was required by Subdue-II to obtain its best approximation (0.6975), which is
the worst one among the Subdue methods, but it is better than that of MOGaston (0.5062,
see Table 5.12).

On the scientogram dataset, the run time analysis based on the values reported in Ta-
bles 5.11 and 5.14 show that Subdue-I and II have achieved their best performance requiring
run times of 661.72 and 85.10 seconds, respectively (see Table 5.14). MOSubdue-I and II
have obtained their best performance for run times of 681.10and 587.28 seconds, respec-
tively (see Table 5.14). The best performance of MOGaston has been that corresponding to
run time of 1174 seconds as reported in Table 5.11. Once again, MOGaston has taken the
highest run time and produced the worst performance as can beseen from Table 5.12. The
run time analysis among the Subdue methods reveals that MOSubdue-II has produced the
best result withHVR-metric value of 0.9540 as shown in Table 5.12 using a run timeof
587.28 as reported in Table 5.14. This run time is less than that required by Subdue-I and
MOSubdue-II to produce their best performance. Subdue-II has taken the least computa-
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tional time (85.10 seconds, see Table 5.14) to produce its its best results (0.0620), which is
the worst one among the Subdue methods, but it is still slightly better than that of MOGaston
(0.0617, see Table 5.12).

The final comparison is based on theHVR-metric values reported in Table 5.12 corre-
sponding to the best approximation produced by each method.On both datasets, MOSubdue-
II has produced the best approximation withHVR-metric values of 0.9892 and 0.9540, re-
spectively. On both datasets, the results show that tackling a more complex problem with
three objectives has enabled the multiobjective beam search to handle the selection pressure
far better as compared to that by single-objective beam search under the huge redundancy
in the candidate subgraph list. Figs. 5.3 and 5.4 show the three-dimensionalMieres plotting
of solutions corresponding to the best approximations produced by Subdue-I, MOSubdue-I,
and MOGaston, as well as to the aggregated set of solutions obtained from the different runs
of MOSubdue-II and Subdue-II. The performance advantage ofboth MOSubdue variants
with respect to the remaining algorithms can be clearly observed.
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Fig. 5.3 A graphical representation of solutions corresponding to the best approximations produced by the
different methods with respect to theHVR-metric for the three- objective subgraph mining task. The pseudo
Pareto-optimal front is also shown as a reference.

We summarize that the proposed multiobjective beam search methods, i.e., both MO-
Subdue variants, have outperformed the single-objective beam search (i.e., Subdue-I and II)
and the exhaustive search, i.e., MOGaston, on both datasets. In particular, MOSubdue-II
that has applies diversified selection has shown better performance than MOSubdue-I. This
indicates that an application of multiobjective beam search for subgraph-seeds generation
has indeed guided the Subdue algorithm to find Pareto-optimal subgraphs in the subgraph
lattice space in a proper way. Besides, it should be noticed that the Pareto dominance-based
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Fig. 5.4 A graphical representation of solutions corresponding to the best approximations produced by the
different methods with respect to theHVR-metric for the three- objective subgraph mining task. The pseudo
Pareto-optimal front is also shown as a reference.

computation introduced in the Subdue algorithm only adds a small complexity ofO(dK2)

to the theoretical complexity of standard Subdue [6].

6 Concluding Remarks and Future Work

We have proposed the use of a Pareto dominance-based search strategy for multiobjective
subgraph mining in relational graph databases. The approach has been customized using the
Subdue algorithm and has been called as MOSubude (Multi-Objective subgraph mining by
Subdue). Two different MOSubdue variants based on the selection of subgraph-seeds for
further expansion were proposed.
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The performance of MOSubdue has been analyzed using two real-world datasets, and
taking the original single-objective Subdue, a weighted preference-based Subdue, and a mul-
tiobjective extension of the exhaustive Gaston algorithm as baselines. From the obtained re-
sults, we have found that MOSubdue is able to discover a set ofPareto-optimal subgraphs in
a single run. The performance has been tested by computing the proximity of the generated
Pareto-optimal set to the pseudo Pareto-optimal set produced by combining every result ob-
tained by any considered algorithm. For this purpose, we have employed the hypervolume
measure commonly applied in EMO studies. It is evident from the experiments developed
that our proposal is clearly able to perform multiobjectivesubgraph search in the subgraph
lattice space, and that it is able to generate approximations to the Pareto-optimal front far
better than obtained by the considered baseline methods. Both MOSubdue approaches were
able to obtain the Pareto-optimal set of subgraphs that showgood diversity and closeness to
the Pareto-optimal front of the input graph dataset. In particular, for the two-objective sub-
graph mining problem, MOSubdue-I showed the best performance on the chemical dataset,
while MOSubdue-II did so on the scientogram dataset. For three-objective subgraph mining
problem, MOSubdue-II was the best performer on both datasets.

Several ideas for future developments arise from this work.On the one hand, at the start
of the search process, both variants of the MOSubdue algorithm initially have a large num-
ber of subgraphs belonging to the first Pareto front, and the size of that front decreases as
the search progresses. This is due to the initialization of the subgraph-seeds with the sin-
gle node subgraphs and the application of a constructive search Subdue applies. MOSubdue
implements the multiobjective beam search with a fixed and constantbeamWidthvalue that
discards some of the less promising subgraphs at the early stage of expansion, thereby ter-
minating the possibility of expanding these less promisingsubgraphs later in order to search
other promising subgraph search space regions. Thus, beam search is a kind of heuristic
search in the state space of subgraphs lattice not allowing backtracking and hence may often
end up performing local search with suboptimal results. Onepossible solution for this unde-
sired behavior could be to use an adaptivebeamWidth. We would initially keep a high value
of beamWidthand decrease it using some adaptation scheme as the search progresses. This
will allow exploring more subgraphs at the beginning of the search process, when the first
Pareto front is more populated, in order to discriminate theselection procedure in a more
aggressive way. On the other hand, the same problem could also be solved by considering an
implementation of pure EMO method to directly perform multiobjective subgraph search in
the subgraph lattice. This is due to the fact that an EMO algorithm would maintain a popula-
tion of subgraph-seeds and perform the subgraph-growth at different tree levels to generate
Pareto-optimal subgraphs. We aim to design such an EMO-based GBDM method.

MOSubdue applies a diversification-based subgraph selection procedure that computes
the diversity of solutions in the objective space. However,it does not take into considera-
tion the diversity of solutions in the solution space. Application of structural diversity of
subgraphs will help to generate subgraph-seeds that are different from each other in the
solution space and thus will enable to explore the differentregions of the multiobjective
subgraph search space. One such solution selection procedure that computes the diversity
of subgraph using the objective space as well as the solutionspace has been recently ap-
plied in [43]. As a future study, this procedure can be applied for the diversified subgraph
selection in MOSubdue.

The Pareto dominance-based evaluation and search can be applied with algorithms which
work on a set of subgraphs to generate new subgraphs. Besides, this approach may be
utilized in subgraph mining algorithms, such as those in [19, 26] whose subgraph-growth
method performs merging subgraph-seeds to generate candidate subgraphs. In such subgraph-
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growth methods, the selection ofd-objective vector subgraph-seeds can be done using the
Pareto dominance-based approach to generate candidate subgraphs for further expansion.
We will consider the latter as future extensions of our methodology.
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39. A. Quirin,Ó. Cord́on, V. P. Guerrero-Bote, B. Vargas-Quesada, and F. De Moya-Aneǵon. A quick MST-
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