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Abstract Graph-based data mining approaches have been mainly gapomthe task pop-
ularly known as frequent subgraph mining subject to a singé preference, like frequency,
size, etc. In this work, we propose to deal with the frequebgsaph mining problem from
multiobjective optimization viewpoint, where a subgraph golution) is defined by several
user-defined preferences (or objectives), which are cainfjén nature. For example, mined
subgraphs with high frequency are often of small size \aoetversaUse of such objectives
in the multiobjective subgraph mining process generatest®aptimal subgraphs, where
no subgraph is better than another subgraph in all objectie have applied Rareto-
dominance approacfor evaluation and search subgraphs regarding to both mioxiand
diversity in multiobjective sense, which has incorporatethe framework of Subdue algo-
rithm for subgraph mining. The method is called Multi-Olijee subgraph mining by Sub-
due (MOSubdue), and has several advantages: i) generdtitareto-optimal subgraphs in
a single run, ii) selection of subgraph-seeds from the aatdisubgraphs based on all ob-
jectives, iii) search in the multiobjective subgraphsitatispace, and iv) capability to deal
with different multiobjective frequent subgraph miningka by customizing the tackled
objectives. The good performance of MOSubdue is shown bfopeing multiobjective
subgraph mining defined by two and three objectives on twilifeadatasets.

Keywords Graph-based data mining=requent subgraph miningSubdue- Gaston-
Multiobjective graph-based data minindPareto-based multiobjective optimization
Evolutionary multiobjective optimization

1 Introduction

Graph-based data mining (GBDM) has been prevalently usadhiide range of application
domains, such as computing communities [11, 31], subgréaggoeery [7,41, 48, 51], topic

Prakash ShelokarArnaud Quirin- Oscar Corén

European Centre for Soft Computing, 33600-Mieres, Spain.

Dr. Oscar Cordn is also affiliated to the Department of Computer Science atificlal Intelligence (DEC-
SAI) and the Research Centre on Information and Communicagehriologies (CITIC-UGR), University
of Granada. 18071-Granada, Spain.

E-mail: { prakash.shelokar, arnaud.quirin, oscar.cojd@softcomputing.es, ocordon@decsai.ugr.es



detection [38], attack detection [45], computing the numdiietriangles [46], clustering
[27, 36], peta graph mining [23], etc. Recently GBDM has besrognized as one of the
ten challenging problems in data mining research [50]. Rerrecent developments and
comprehensive survey of this important and emerging tdga¢ader is referred to [1, 7].

GBDM approaches are characterized by representation di-reldtional data in the
form of graphs. They have been extensively applied to thie papularly known as fre-
guent subgraph mining. These approaches can be categoriaedathematical graph the-
ory based approaches (such as, MoFa/MoSS [3], FSG [26]pG{32], gSpan [48], Close-
Graph [49], gPrune [51]), greedy search based approadkesSibdue [6] and GBI [29]),
and kernel function based approaches [24]. All these appesmwork by performing a
search in the lattice of all possible subgraphs [12]. Theedgthg search process, which
could either involve an exact exhaustive or approximateiktc search, is usually guided
by a singleobjective which represents a unique and specific yseferenceFor example,
mining subgraphs which are present in at leagjiraphs, or mining subgraphs which contain
at least» nodes are typical choices.

The existing GBDM approaches applying such simple threshfar frequent subgraph
mining task have important limitations. For example, thenber of mined subgraphs is
large (respectively, few or nil) in the cases of weak (resipely, strict) thresholds [35].
Moreover, in real-life applications a user is generallyenested in mining a graph-based
repository using several objectives that are actually rimggdal to her/him, which are of-
ten conflicting in nature [35]. For example, users prefeaobihg subgraphs with both high
frequency and size values. Nevertheless, these objeetieesonflicting as simpler descrip-
tions are usually the most frequent ones =g versaln view of the reasons stated above, a
GBDM methodology should not only rely on the optimizatioreafimple objective but also
consider simultaneously additional, conflicting objegesivo extract better defined concepts,
which may be based on the size of the subgraph being explaimedumber of retrieved
subgraphs, and their diversity.

Towards dealing with the limitations of a simple single alijee-based search, Sky-
Graph [35] has recently shown an application of skyline pssing incorporating multiple
objectives for subgraph mining. The skyline processinglbeen predominantly called as
Pareto-based optimizatidn multiobjective optimization, which has been importamt$ev-
eral applications involving multicriteria decision magift,14]. Recently, Pareto dominance-
based multiobjective optimization has also gained muctomamce in the data mining and
machine learning communities [21, 22]. Besides, it has bé&sn applied to other kinds of
optimization problems based on graph datasets such a®hbjslttive graph partitioning [2].
Multiobjective optimization usually contains several imting objectives that require op-
timization, and normally there exist many (Pareto) optis@ltions to this problem, where
no solution is better than another in all objectivieareto dominances an approach to eval-
uate different solutions based on objective vectors [#4b,ILis illustrated in Fig. 1.1 using
a familiar example in the literature. Assume we have a seot#l8P = {p1,p;,...,p11}
with information of the price and the distance from beacte Pareto dominance says: point
p; dominates another poipy € P if p; is better than or equal t; in all objectives and is
strictly better tharp; in at least one objective. With this definition, pojpntis said to be a
Pareto-optimal solution if it is not dominated by any otheinpp; € P. Thus, Fig. 1.1 con-
tains three pointg+, p2, ps that are said to be Pareto-optimal solutions which coletyi
form a Pareto-optimal set. An interesting property of theeRaoptimal set is that it is in-
dependent of how you weigh your preferences towards the el the distance of hotels
during selection. In any case, you will find your favorite élah the Pareto-optimal set. The
Pareto dominance approach is scale invariant, it does remt aganking function, it does



not apply any threshold and can be used as long as the lengtjestive vector is low (e.g.,
d < 10) [5,35]. For high dimensional objective vectors the prdligtthat a solution dom-
inates another becomes very small and this may lead to a tengder of Pareto-optimal
solutions. Nevertheless, recent proposals have manageealowith a significantly large
number of objectives in what is calleyolutionary many-objective optimizati¢20, 37].
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Fig. 1.1 A toy hotel example dataset and Pareto-optimal points in the se

For multiobjective subgraph mining, generating the trueeRaoptimal subgraph set can
be computationally expensive and is often infeasible bee#ue complexity of the underly-
ing application prevents exact methods from being applécgdb]. The number of subgraphs
in the input graph dataset grows exponentially in relatmithie number of nodes, thus re-
sulting in a combinatorial explosion in the subgraph latsearch space. Hence, a challenge
is to provide an efficient polynomial time algorithm that gaime a good approximation to
the true Pareto-optimal set of the input graph data, i.eet @ssubgraphs whose objective
vectors are not too far away from the optimal objective vextS8kyGraph [35] actually man-
ages to generate Pareto-optimal subgraphs defined by twotiigjs, the edge connectivity
and the order of the subgraph, by means of a polynomial tinieustive search algorithm.
To do so, SkyGraph performs recursive graph partitionintpiwia very advanced and well
designed framework. However, the drawback of SkyGraphaisitlis problem-specific, i.e.,
it can only be applied to the latter concrete multiobjecfrezgjuent subgraph mining task.
This specificity allows it to use a single-objective (and moftiobjective) underlying search
method, which only uses the edge-connectivity to evaluetplgpartitioning in a recursive
fashion. Therefore, the Pareto dominance approach is qpleal for evaluation purposes
each time a new subgraph (or solution) is discovered in tthrséve search in order to main-
tain a Pareto-optimal set of discovered subgraphs. As aegqoesice, it cannot be applied to
other multiobjective graph mining tasks requiring the usdifferent objectives.

In this work, we propose the incorporation of Pareto domégabased multiobjective
search and evaluation strategies from the field of evolatiprmultiobjective optimiza-



tion [5] to an existing graph mining method, Subdue [6]. Tikidone in order to allow this

graph mining method to tackle the simultaneous optimiratibseveral conflicting objec-

tives representing different user preferences. The newqgsal to perform Multi-Objective

subgraph mining using the Subdue algorithm (thus called Mg8e) is able to generate
Pareto-optimal subgraphs regarding to several user-defineria on the subgraphs’ char-
acteristics.

MOSubdue applies a heuristic search, a more general frarkewgerform multiob-
jective subgraph mining. It extends Subdue’s beam searehniltiobjective fashion but
keeps the remaining Subdue’s components (such as the phbgrawth method) unal-
tered. Hence, it can work on exactly the same kinds of grajpd ldandled by Subdue (sets
of connected relational graphs with or without cycles angated or undirected edges).
The resulting multiobjective beam search is not restrictedse any specific objective but
can be customized to different multiobjective GBDM tasks.illustrate this idea, the cur-
rent contribution deals with two different multiobjectifieequent subgraph mining prob-
lems considering two and three objectives, respectivétgt, MOSubdue generates a set of
Pareto-optimal subgraphs in the case of mining subgraphtyjonaximizing two conflict-
ing objectives, i) the order of the subgraph (the number afesy and ii) the support of the
subgraph (the occurrence frequency in graph data). Futthehow that MOSubdue is com-
pletely general purpose, MOSubdue is extended to solvesa-hiojective subgraph mining
task by considering one more objective (the density of safligr along with the latter two.

Two real-life graph-based datasets developed under Rireditoxicology Evaluation
(PTE) challenge, and scientific publication domain-basexhitedge discovery (scientograms)
are considered to validate our proposal. PTE data has be#iecjn the past as a bench-
mark dataset to study the performance of different propofealfrequent subgraph mining
task [32, 33, 48]. Scientograms database has been recepligcto propose several auto-
matic knowledge discovery tasks in visual science maps,thle evolution of a scientific
domain over time or the extraction of the common researchtérin the world [40]. The
performance of MOSubdue is benchmarked with two variantsirifle-objective Subdue
and a multiobjective extension of the well-known Gastonhuodt[32].

The rest of the paper is organized as follows. Section 2 disesithe related work in the
area of frequent subgraph mining. Section 3 provides sorsie bafinitions of the different
objectives considered and the description of Subdue mdtrddcequent subgraph mining.
Section 4 describes the proposed MOSubdue methodologgrixgntal results and com-
parison based on real-life datasets are provided in Se8tiéiinally, Section 6 concludes
the work and discusses some ideas for the future work.

2 Related Work and Contribution

Recent work in the data mining community has been focusedewvaldping graph-based
data approaches to discover subgraphs consisting of camgliionships between entities
[1,7]. In this section, we briefly review some fundamentalelepments related to our work.
2.1 Related Work

Frequent subgraph mining has been the most studied probl&BDM [3,6, 18,19, 26, 32,

48]. The goal is to apply mining techniques on graph datagoadier some information that
is likely to be useful for the user. For example, a typicalpgranining task is to report all



subgraphs that appear in at leasgraphs, wheren is the minimum frequency (or support)
threshold specified, or report all subgraphs that contaileadt» nodes, where: is the
minimum number of nodes specified by the user. Recently,rgbil] has been proposed
as a general general framework to incorporate several $uektolds (or constraints) into
the graph pattern mining process. gPrune performs constoaised frequent graph pattern
mining using the concept of pattern-inseparable-datavamiotonicity.

All the previously mentioned developments have in commanapplication of some
specific preference in the graph mining process, such asimber of nodes, the frequency,
the density, or the edge-connectivity. In many situationgould be more useful for the
user if the algorithm could jointly consider several prefeces to evaluate the mined sub-
graphs (i.e., multiobjective GBDM), or even better if thg@ithm could perform automatic
subgraph mining for the preferences defined by the user. Taogd&kyGraph [35] has in-
corporated skyline processing to discover important saipigs during the mining process.
The method applies the skyline processing on the mined aphgiefined by two objec-
tives, i) the subgraph edge connectivity, and ii) the ordehe mined subgraph (the number
of nodes). To mine a subgraph, SkyGraph carries out suseeapplication of a min-cut
algorithm that uses only one of those two objectives, theeerbgnectivity. Then, the other
objective, the order of the mined subgraph, is evaluatedeassumber of nodes it consists of.
This mined subgraph is stored into an externalsef skyline (or Pareto-optimal) subgraphs
if it is not dominated by another subgraph in the BeHence, SkyGraph'’s subgraph search
in graph data is single-objective and not multiobjectiveeaaubgraph is mined according to
the edge connectivity by the successive application of tireaut algorithm. Thus, it only
applies a multiobjective processing while evaluating tieeavered subgraphs in order to
check if they must be stored in the external set of mined saiw. In SkyGraph, you could
use several objectives while storing the mined subgrapheérekternal set of mined sub-
graphs, but Skygraph searches for a subgraph in graph dadediitg to only objective, the
edge connectivity. Besides, the strong relation betweisrotijective and the search method
applied prevents SkyGraph from being utilized for other tiobjective frequent subgraph
mining tasks.

2.2 Our Contribution

Pareto dominance-based evaluation and search strategiesamonly used with evolution-
ary algorithms for solving multiobjective optimizationgiiems in different fields of science
and engineering [5, 21]. In this work, we propose incorpamPareto dominance-based
search [4,5,14] in graph data according to several genacaliaer-customizable objectives
(i.e. d-dimensional objective vectors) to mine interesting sapfs. The mined set of sub-
graphs is a set of Pareto-optimal subgraphswvhere no subgraph is better than another
subgraph and every included subgraph is better than allehmining ones not included
in that optimal set. The proposed Pareto dominance-bas#tthperforms evaluation and
search ford-dimensional objective vector subgraphs in the multiotojecsubgraph-search
space.

For this purpose, we have used the framework of Subdue m¢g@jdtiat carries out
two main steps, i) subgraph-seed generation, and ii) spbegeowth. The standard Subdue
performs the subgraph-seed generation by using an evatuaiethod based the minimum
description length (MDL) principle [42], and the subgragtowth by adding an edge and
node or only edge to the current subgraph. It applies singjeetive heuristic search based
on a beam search method [28] to explore the subgraph lattieehave changed both the



evaluation and the search methods in the standard SubdeesvBiuation method is now
based on the actudtdimensional objective vector that defines a subgraph, andléob-
jective subgraph is evaluated using the Pareto dominaaseebapproach. A multiobjective
subgraph can be seen as a record defined bijectives in the Pareto dominance-based
evaluation method. The search method in Subdue is now eadieloglincorporating Pareto
dominance-based strategy for selecting candidate subgegsubgraph-seeds in the mining
process for further subgraph-growth operation. This imm@atation is called MOSubdue.

We show that the subgraph mining process can itself handlépheupreferences (or
objectives) that could be meaningful to the user. To do soSMi@lue is applied for two
different graph mining tasks. First, the generation of sapfs defined by two conflicting
objectives, i) the order of the subgraph (the number of npded ii) the support of the
subgraph (the occurrence frequency in graph data). Fyrihheshow that MOSubdue can
handle more than two objectives, it is extended to solve eetimbjective subgraph mining
task by considering one more objective (i.e., the densitthefsubgraph) along with the
latter two.

We emphasize that MOSubdue is fundamentally different 8lyGraph [35] method.
SkyGraph is a multiobjective GBDM method showing diffeiahtharacteristics as it is
designed for a very specific kind of multiobjective frequenbgraph mining task. As a
consequence, it uses two specific objectives for its grapingitask and it cannot work with
a different definition for those objectives. Skygraph doesapply a classical Pareto-based
multiobjective search but an exhaustive search methoddmaseecursive graph partitioning
by only considering a single objective (i.e., the edge cotiviéy). The underlying search
method is thus not guided by any multiobjective approach. ultiobjective evaluation is
only performed each time a new subgraph is explored by thersee search in order to
finally keep the non-dominated subgraphs mined in the eatset.

On the opposite, MOSubdue’s subgraph mining process isdbase pure general-
purpose multiobjective subgraph search. MOSubdue impiésreePareto-based multiobjec-
tive approximate heuristic search based on Subdue’s spbgpowth approach and beam
search method. Hence, MOSubdue applies Pareto dominah@alyao evaluate the ex-
plored subgraphs but also to actually perform multiobjectearch in the subgraph lattice
space. MOSubdue is able to deal with several objectivesdtwdathree in this contribution)
which could be generically customized by the user to deat different GBDM tasks as
long as they can be formulated in a simple way.

In summary, we do not claim MOSubdue is a better multiobyecfrequent subgraph
mining method than SkyGraph but it is proposed as a compleaneapproach which can
deal with more general multiobjective graph mining tasks.

3 Preliminaries

In this section, we provide some basic definitions of theedéht preferences considered
for the multiobjective subgraph mining tasks. Besideshaswork described in this paper
applies the Subdue framework, a brief description of theddad Subdue method [6] is
provided.



3.1 Definitions

A labeled connected graphi is denoted by a set of nod&yG) and a set of edges(G),
where there is an edgg between every pair of nodé€s;, v;). Each node; € V(G) has a
label from the node label sét;, and each edgg € E(G) that connects two nodes, v;
has a label from the edge label det. The edge:; can be directed or undirected. In this
work, we only consider a set of relational connected graphs {G1,Ga,...,G N}, Where
a graphG; is said to be relational if each node it contains has an uniajpel. There are
several applications of relational graphs, such as web aamtgndetection [11], analysis of
biological networks [17], scientific publication domainadysis [40], and social networks
[45], among others.

In this study, we have considered some of the commonly us#dnences (or objectives)
for our multiobjective subgraph mining task which are gilmtow as:
Definition 1.(Induced subgraphp): In GBDM, a subgraph is itself a graph, and will be
denoted ap. Graphp is a subgraph of grapp! if p is subgraph isomorphic with', denoted
byp C p'.
Definition 2.(Support of subgraphp): The frequency (or support) of subgrapldenoted
by ¢(p) in a graph databage is the cardinality of the s€tG;|p C G;,i =1,...,N}. Given
athresholdn, the subgraph is frequent iffg(p) > m. Exhaustive frequent subgraph mining
methods find all such subgraphs.
Definition 3.(Order of subgraph p): The order or size of subgraphdenoted by (p) is the
number of nodes present in the subgrapliven a threshold, the subgraph is extracted
iff s(p) > n. Exhaustive subgraph mining methods find all such feasilddgsphs.
Definition 4.(Density of subgraphp): The density of subgraph denoted byp(p) is the

fraction %. The value ofp(p) = 1 assumes a complete graph.
As seen, all these objectives have been commonly appliebeirfrequent subgraph
mining literature primarily to guide single objective-leakssearch methods by posing some
threshold in the mining process [11,17,45]. Recently, sapproaches considering multiple
objectives together to mine subgraphs have also been intent[35], suggesting a need of

multiobjective subgraph search in graph data during thengiprocess.

3.2 The Subgraph Mining Framework of the Subdue Method

Subdue [6] is a GBDM method designed for different tasks aguent subgraph min-
ing, hierarchical clustering, and classification modelding from relational data. Subdue
has been successfully applied on many real-world probleciading, chemistry [6], geol-
ogy [15], counter-terrorism [16], bioinformatics [25], amaly detection [34], and scientific
publication domain analysis [40], among others.

Subdue is an instance of greedy search-based approachiel,usk heuristics to eval-
uate the subgraphs. It represents data in graph form andup@o either directed or undi-
rected edges. Input to Subdue is a single graph or a set dfigirape framework of Subdue
has two main components: i) subgraph-seed generationj)aubgraph-growth.
Subgraph-seed Generation Subdue uses a beam search [28] to enumdyagenWidth
number of subgraph-seeds according to a subgraph evaluatthod based on the MDL
principle [42]. It begins from subgraph-seeds consistihglinodes with unique labels.

The MDL value of the subgraphis given as:

MDL(G,p) = DL(p) + DL(G|p) (3.1)



where DL(p) is the description length of the subgraphand DL(G|p) is the description
length of the input graplty compressed by the subgraphThe better a subgraph performs,
the smaller the value of equation (3.1) will be. Notice thagvaluate a subgraph, the MDL
measure in equation (3.1) jointly considers two commonkydusbjectives in GBDM, the
support and the size of the subgraph.

Subgraph-growth: The subgraph-seeds are extended by one node and one edge or o
edge in all possible ways to generate candidate subgrapimslidate subgraphs are evalu-
ated and ranked according to the MDL principle. Following tieam search principle, the
bestbeamWidtmumber of candidate subgraphs are retained as new subgespls-for fur-
ther expansion. Subdue’s output is a set of best (or mostigége) subgraphs according

to the evaluation method in equation (3.1). This procedapeats until all subgraphs are
considered or the user imposed computational constraiet@eeded. Notice that, Subdue
is an heuristic search method, which does not perform anustiva search in the subgraph
lattice.

Fig. 3.1 summarizes the outline of the Subdue method. Irgreta single graph or a set
of graphs, max Best is the maximum number of best subgraphs to be repdoessnWidth
is the length of subgraph-seeds considered for expansiol,an:t is the maximum num-
ber of total subgraph-seeds to be expanded. The output geaphe best subgraphs found.

. Subdue(GraphG, BeamWidthLimit, maxBest

. Subgraph-seeds List, QfNodev — v has a unique label in graph

. Best Subgraphs List, BestP = UpdateBestList(Q) //can stasBessubgraphs

. while Limit > 0 and Q+ ( do

Candidate Subgraphs List, newQq ¥

foreachpe Q
newQ = newQJ NewSubgraphsByExpansion(p) //subgraph-growth
Limit = Limit — 1

Evaluate subgraphs in newQ by MDL measure in Eq.(3.1)

Sort newQ in ascending order of MDL measure

10. Q = the firsbeamWidtmumber of subgraphs in newQ

11. BestP = UpdateBestList(Q)

12. end while

13. Return BestP // the best subgraphs found

©CPNO O A ®NE

Fig. 3.1 The outline of Subdue algorithm.

4 MOSubdue Proposal

In this section, we describe the application of Pareto damie-based evaluation and search
method to enumerate multiobjective subgraph-seeds in&utmgenerate Pareto-optimal
subgraphs. Before, we briefly review some basics on mubitije optimization and meth-
ods to solve this problem commonly employed in the multei@ decision making [4,5, 10,
14].



4.1 Multiobjective Optimization

Single-objective optimization problems may have a unigutineal solution, while multiob-
jective optimization problems (MOPs) usually present a$eptimal solutions, which rep-
resent trade-offs in objective space. A decision maker imgticitly chooses an acceptable
solution or some of them by selecting one or more from theAseMOP is mathematically
defined as follows [4, 5, 14]:

Definition 5 (General MOP): In general, an MOP minimize&x) = (f1(x), ..., f4(x))
subject tox € X, wherex is the solution vector and is the solution space. An MOP so-
lution minimizes the components of objective vedt¢x), where solution vectax belongs
to solution search space.

Definition 6 (Pareto dominance) An objective vectol = (uy, ..., uy) is said to dom-
inate another vector = (v1,...,v4) (denoted byu < v) if u is less than or equal te in
all objectives, and is strictly less thanin at least one objective, i.ev; € {1,2,...,d} :

u; < vy AFie {1,2,...,d} : u; < vj. This definition can also be applied for maximization
or any condition of objectives. For simplicity, we have ciolesed minimization of all ob-
jectives defining solutiox. Actually, our multiobjective subgraph mining problem defd
later considers maximization of all objectives.

Definition 7 (Pareto optimality): A solutionx € X with objective vecton is said to
be Pareto optimal with respect to the search sp&ad# there is no solution’ € X with
objective vector that dominates.

Definition 8 (Pareto optimal set) For a given MOF (x), the Pareto optimal s&* is
defined as:

P i={xe X |-3x € X f(x') < f(x)} (4.1)

Definition 9 (Pareto front): For a given MOF¥ (x), the Pareto-optimal frorPF* as-
sociated with the Pareto optimal set is defined as:

PF" = {u=1f(x) = (fi(x),..., fa(x))|(x € P*)} (4.2)

Thus, an MOP contains several objectives that must be yoaptimized. These objec-
tives are usually conflicting in nature, their optimizatioffiers several optimal solutions in
the objective space. To solve an MOP, the optimization #lgorshould efficiently and ef-
fectively find those solutions that satisfy multiple objees. In other words, the obtained
solutions should be of good proximity and diversity to theestiPareto-optimal solution set
P*. Proximity means that the algorithm is of excellent searghability to obtain good so-
lutions on or close to the true Pareto-optimal fr@nE™. Diversity means that the algorithm
is capable to obtain solutions distributed uniformly to goemtent for the decision-maker to
find a comparatively satisfying solution close to his prefere at any time.

Perhaps the most straightforward approach to solve an MQ® é¢@mbine different
objectives into a single-objective scalar value functignalmy kind of objective aggrega-
tion scheme, and apply a single-objective optimizatiorreggh to generate Pareto-optimal
solutions [4, 5, 14]. However, this formulation will genezanly the specific solutions sub-
ject to the trade-off between the objectives explicitly mipiicitly specified by the aggre-
gation function. To overcome limitations of aggregatindpesmes, evolutionary multiob-
jective optimization (EMO) algorithms have successfullypwn the application of Pareto
dominance-based evaluation of solutions to guide the Bgaacess in the multiobjective
solution search space to generate good Pareto front appatirns [5, 10, 52].
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In this contribution, we apply the concept of general MOP éfirte the multiobjective
subgraph mining problem, and apply a Pareto dominancedbsdeme for evaluation of
subgraphs to guide the mining process in the multiobjectiuegraph lattice search space.
In the following sections, we provide the problem statenfentmultiobjective subgraph
mining as well as the methodology for evaluation of subgsaphd to guide the mining
process. For this purpose, we use the terms subgraph aradhterchangeably.

4.2 Multiobjective Subgraph Mining Problem Statement

Multiobjective subgraph mining is based on the idea of mbjgctive optimization, where
a solutionx is defined as a subgraph a set of nodes and edges, the solution spade
referred as the subgraph search space, i.e., the subgtiph.l& subgraph is defined by
severald user-defined objectives on the subgraph’s characteristich as the frequengy
the orders, etc., which are usually conflicting. For example, subgsaptih high frequency
are usually of small order (or size) anide-versaFormally, given a set of graplig, our goal

is to mine the Pareto-optimal subgraph set representingelhduced connected subgraphs
of G defined by several user-defined objectives. For this purpeséhave formulated two
multiobjective subgraph mining tasks as:

e Given a set of graphé&/, mine all Pareto-optimal subgraphs &f which are maximal
with respect to the support (or frequency) and the numbeodés (or order).

e Given a set of graph&, mine all Pareto-optimal subgraphs &f which are maximal
with respect to the support, order, and density.

Theoretically, the subgraph mining algorithm has to sedhehentire subgraph lattice
that represents all possible subgraphs to determine if @angubgraph is Pareto-optimal
[35]. However, the number of possible subgraphs in the saafdglattice grows exponentially
in relation to the number of nodes. This makes finding Paoptomal subgraphs computa-
tionally expensive and often infeasible when dealing wétfyé graph databases. Moreover,
the complexity of the underlying application prevents eéxaethods from being applicable.
In this scenario, we need to rely on the GBDM methods proposétk literature that per-
form approximate heuristic search in the subgraph latticgeinerate good approximations
to the true Pareto-optimal subgraph set in reasonable ctatigoal time.

Subdue [6] is an instance of approximate heuristic seardhénsubgraph lattice for
frequent subgraph mining. In this work, we apply the framewof Subdue to solve the
above formulated multiobjective subgraph mining problém.said, one way to solve this
problem is by aggregation of objectives (see Section 4.ayvéver, a subgraph defined by
the aggregation of objectives, e.g., the support and therpid a single-objective scalar
function would result in a similar behavior where only thesific subgraphs showing the
specified trade-off between the two objectives would be hifidnis is the classical draw-
back of aggregation schemes as found in the multiobjectptenization area [4, 5, 14].
With that problem in mind, we propose the use of Pareto donue#@ased evaluation and
search methods in the framework of Subdue algorithm to mibgsphs defined by several
user-defined preferences (or objectives).

4.3 Pareto Dominance-based Subgraph Evaluation and Belétethod

Pareto dominance definition (6) can be used: i) to estimateytiality (or fitness or rank)
of a solution using the objective vector, and ii) to estdbliseference between solutions
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for selection. Methods based on the concept of Pareto darwénare very popular in EMO
area [5,10,13,52]. One such method is proposed in [10],misicalled Pareto dominance-
based ranking. To describe this solution ranking procedaeerevisit the classical hotel
selection example shown in Fig. 1.1. We seek hotels with ldeepand short distance to
beach. Applying the Pareto dominance definition (6) on thgeesetP of size 11, we find
three point1, p2, andps that are optimal and comprise the frafit as shown in Fig. 4.1.
Suppose, the hotels belonging to this front have been fudbupied. In this scenario, the
visitor needs to draw another front considering the renmgjriiotels (i.e., by temporarily
discarding pointg1, p2, andps in the setP). Application of the Pareto dominance definition
(6) on the temporarily pruned sétprovides the second frot, to choose from five points
(p4, p5, D6, P7, @Ndpg). To make further choice, the last frof§ which contains three points
P9, P10, andpy1 is obtained by temporarily discarding all points belongiaghe frontsF
andFs. In this way, we have sorted the geinto different fronts using the Pareto dominance
definition (6). It can be noticed that the first fraht is better than any other front in the set
P. This is because it was obtained on the entirefsetny subsequent front was obtained
on the temporarily pruned sét. Thus, we can actually rank points in the $ebased on
the front number to which they belong. Hence, points beloggo the frontF; share rank
1, points in the frontt, have rank 2, and so on. As points holding the best rank 1 are fro
the front Fy, this ranking method assumes rank minimization. In this,vimyig. 4.1 the
Pareto dominance-based ranking has performed two furgctipavaluation of points using
objective vectors, i.e., estimation of rank for each pomthe setP based on the front
number it belongs, and ii) preference based selectionni@imization of rank is assumed
and thus points with the rank 1 are the best, points with rasse2he second-best, and so on.
MOSubdue applies this procedure in the multiobjective beaarch to enable generation of
beamWidtmumber of subgraph-seeds from the multiobjective candigabgraphs.

The pseudo-code of MOSubdue is given in Fig. 4.2. In this &gur line 9, the list
newQ contains the candidate subgraphs defined bymber of user-defined objectives.
The multiobjective beam search sorts the list newQ intoedifit fronts using the Pareto
dominance definition (6) (like as illustrated in Fig.4.1f)aksigns rank to each candidate
subgraph in the list newQ equal to the front number it belofigsgeneratebeamWidth
number of subgraph-seeds from the list newQ, assuming tileménimization, the candi-
date subgraphs are sorted in the ascending order of rankiophgostbeamWidtmumber
of candidate subgraphs in the sorted list newQ are selectetlitagraph-seeds for further
expansion (line 10). We call this approach as MOSubdue-hatkt

In MOSubdue-I, generation of the subgraph-seed list Q ajtebeamWidthifrom the
list newQ sorted into different fronts can be seen as folldvist we choose the frort; .

If the size of frontFy is smaller tharbeamWidthihen all the candidate subgraphs belonging
to this front are selected. Next we choose the frBptand so on until the total of number
candidate subgraphs in the frorits, Fs, . .., F} is not greater than/equal teamWidth £}

is the last front that can be accommodated to form the list @ cW the frontF; simply at

a point where the addition of the sizes of froifits F5, ..., F} is equal todbeamWidth

The worst case complexity of this Pareto dominance-bas#dmg isO(dk?), whered
is the number of objectives to define a subgraph, &nd the length of candidate subgraph
list newQ. In the worst case, the list newQ is sorted iAtdronts with one subgraph per
front [10]. However, in practice, the actual computatiotimle complexity is low as we
terminate fronts generation as soon as we find enough frorgbtainbeamWidtmumber
of subgraph-seeds.

When reviewing the latter selection procedure, it shoulddiied that all the candidate
subgraphs in the fronk; share same rank and hence have equal probability to become
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Fig. 4.1 All possible Pareto fronts generated in the toy hotel exandgliaset. The fronf? is generated
considering all 11 points. The frort, is produced by temporarily discarding all points belonginghe
front Fy. Similarly, the frontF3 is obtained by discarding all points belonging to the prasly generated
fronts, i.e., both the front$y and F5.

. MOSubdue (GraphG, BeamWidthLimit, maxParetoSub)s
. Subgraph-seeds List, QfNodev — v has a unique label in graph
. Pareto Subgraphs List, ParetoList = UpdateParetoSubList(Q) //c@mséx.maxParetoSubsubgraphs
. while Limit > 0 and Q# ( do
Candidate Subgraphs List, newQ ¥
foreachp € Q

newQ = newQJ NewSubgraphsByExpansion(p) //subgraph-growth

Limit = Limit — 1
Apply Pareto dominance-based evaluation and selection on the list newQ

Sort the list newQ into different fronts using objective vectors

Assign rank to each candidate subgraph equal to front number it belongs
10. Q =beamWidtmumber of subgraphs in newQ according to the minimum rank and

uniformly distributed subgraph selection

11. ParetoList = UpdateParetoList(Q)
12. end while
13. Return ParetolList / the Pareto-optimal subgraphs found

©CENO O A ®ONE

Fig. 4.2 The Pseudo-Code of MOSubdue.

subgraph-seeds in the list Q. So, it will be appropriate tdgoe uniformly distributed
selection on the fron¥;. We have done so using the objective vectors of the candidate
subgraphs in the fronk;. We apply this modification as MOSubdue-Il method [44]. The
overall procedure for evaluation and selection appliedngydesigned multiobjective beam
search in the list newQ is depicted in Fig. 4.3.

Application of uniformly distributed selection in the frol; of solutions defined by
objectives is given as follows. To measure how a solugipis spread over the frorf;, we
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Candidate Subgraph list Subgraph-seeds

subgraph list after evaluation for expansion beamlWidth

/ number of
subgraphs

r ™
([ |~
| |
-\ - )i =
Subgraph-seeds generation by | 1 =2
Subgraph Evaluation by Pareto selection of beamWidth number | 1
dominance-based Ranking of candidate subgraphs X I 1 F
+ Sort subgraphs into different * Choose subgraphs from fronts
Pareto fronts Fy, F,,...,F to have total iscard
* Assign rank to each subgraph beamWidth subgraphs glsacgi;phs
equal to the front number it belongs « Apply diversified subgraph
+ Sort subgraphs in ascending order selection in the last front 7).
of rank (best rank is 1)

Fig. 4.3 Multiobjective beam search applied by MOSubude. At any ez stage, the subgraph-growth
operation has generatedieobjective vector candidate subgraph list newQ. The beartheapplies Pareto
dominance-based ranking to sort list newQ into differennfso sayFi, F5, ..., and assigns rank to each
candidate subgraph equal to the front number it belongssiirass the best candidate subgraph has minimum
rank and sorts list newQ according to ascending value ofahk.fTo create the subgraph-seed list Q of size
beamWidthit selects the candidate subgraphs with minimum rank suah|fa + |F2| + ... + |F;| >
beamW idth. From the last accommodated frafit, the most diversified candidate subgraphs are selected.

calculaten; of p; as the average distance of two solutions on either sige along each of
d objectives given as:

step 1 SortL solutions in the frontF; in the ascending order of eagh objective.«;; has
assigned infinite value for solutions with the smallest ardest values of objectivg;
(i.e.,a1; = ap; = co). For the remaining solutions it is calculated as:

0., = JiWPir1) = fi(pi-1)
v fj (pmaf) - fj (pmin)7

step 2 Repeat step 1 with each objectiyej = 1,...,d, and find the distribution value; of
solutionp; as:

i=2,...,L—1 (4.3)

d
o = Z QG (4.4)
=1

This diversified selection method has a computational cerityl of O(dLlogL), where
L is the size of Pareto fronk;. This type of distributed selection has been applied in the
nondominated sorting genetic algorithm-Il (NSGA-II) iretEMO area [10].

We exemplify the computation @f; on points in the fron#; in the hotel selection ex-
ample as shown in Fig. 4.4. There are five popitsps, . . ., pg in the frontF5. To calculate
distribution«; for each pointp; in F», we first sort this front in ascending order of price.
Thereafter, points with the smallest and the largest pralaes have assigned an infinite
value (i.e.,«1 = oo for pointsps andp4, respectively). For all other intermediate poinis,
is equal to the absolute normalized difference in the pradaes of two adjacent points. For
example, for poinps 1 = 45/70 = (130 — 85)/(130 — 60) is obtained as the normalized
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difference in the price values of pointg andpg. Similarly, we apply these two steps con-
sidering the other objective, the distance from beach.ii®peccording to ascending order
of this objective values assigias = oo for pointspy andps. ao for the remaining points

is computed as the absolute normalized difference in theegabf the distance from beach
using two nearest neighbors with each one from either sigléor one of the intermedidate
pointsps is given asyg = 3/5 = (4—1)/(6—1). Thus, the distribution value; for ps in the
front F» is the sum ofy; andas values. It can be observed that the procedure is straight for
ward to apply for any number of objectives, as we have used & three-objective subgraph
mining problem in this study.

Points Price  Distance  Oprce  Oldistance

%) {km) 1oy oy 0=t
Pa 130 1 o - -
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Fig. 4.4 Diversification calculation for points in the hotel examplée procedure is described using the
points belonging to the fronk». For each poinp4 to pg corresponding the price ($) and the distance (km)
values are givenx; andas represent the distribution values for points accordindpeogdrice and the distance
values. First sort the points in the ascending order of madaifor each objective, and points at the extreme
ends have assigned an infinite diversification value. Thoisitpps andpg have been assigned = oo for
carrying the smallest and largest values with the two ohjestiFor all other remaining points values are
calculated asd, = a1 + a2), the summation of the absolute normalized difference betwreetwo adjacent
points in both the objectives.

Let us consider the complexity of one iteration of the elti®Subdue algorithm. The
basic operations and their worst-case complexities arelasvs:

1. subgraph-growth operation by Subdu@ig>" =" i« (v —1) — (i — 1)) * (v(Limit —
1)) * gm) [8]

2. subgraph-seeds generation
(a) Pareto dominance-based rankin@ig K ?)
(b) diversified subgraph selectionG§dLlogL)

The run time for Subdue’s subgraph-growth proces8(€" =7 i « (V — 1) — (i —
1))) = (V(Limit — 1)) * gm), calculated considering the total number of subgraphs to be
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expanded.imit, the number of instances of each subgraph in the input giggthe num-
ber of partial mappings considered during graph matchimg and the number of nodes
V(G). The introduced Pareto-dominance-based subgraph-seadsagion adds the overall
complexity of O(dK?) in MOSubdue. If the subgraph evaluation is performed césefu
the complete candidate subgraph list newQ does not needdortel into different Pareto
fronts. As soon as the Pareto dominance-based rankingquoedas found enough num-
ber of fronts in the list newQ to haveeamWidtmumber of candidate subgraphs, there is no
reason to continue the ranking computation.

4.4 Comparison Between the Operation of Subdue and MOSubdue

In this section, we provide an illustrative example to shbe different operation that Sub-
due and MOSubdue apply for solving the two objective subgraming problem defined
in Section 4.2. The single-objective beam search in the Seailbtkthod in Fig. 3.1 uses the
MDL measure in equation (3.1) to evaluate subgraphs. Equ#8.1) is a combination of
two objectives, the support and the size (#nodes + #edgdis¢ aslubgraph. The multiobjec-
tive beam search in the MOSubdue-I method (i.e., withouafi@ication of the diversified
selection procedure) uses Pareto dominance-based raokéwgluate subgraphs defined by
two objectives, the support and the order of the subgraphs

We apply identical parameter settings for both methods heamWidth= 5, Limit = oo,
andmaxBest = maxParetoSubst)0. Both methods are applied on tleapes domaira
synthetically generated dataset frequently used in traysti Subdue method [6]. Fig. 4.5
shows an example of a graphical representation of the in@pes data. The objects in the
figure (e.g., C1, T1, S1) become labeled nodes in the graplhenalationships (e.g., on
(T1,S1), shape (T1,triangle)) become labeled edges in rdghg The considered dataset
consists of 100 different graphs with a total of 500 node$) d@ges, and 6 unique node
labels. The Pareto-optimal st (which is known for this simple domain as it has been
computed in an exhaustive way) contains 12 different sudfgg@ut of which 7 are distinct
in the objective vector space. The graphical represemati@ne of the subgraphs discov-
ered by MOSubdue-I from this dataset is also shown in Fig. 4.5

Fig. 4.5 An example of a subgraph in the shapes domain.

Both methods start from subgraph-seeds consisting of alesavith unique labels.
At any expansion stage, both methods apply the same subgrapih operation on the
subgraph-seeds to generate the candidate subgraphs. éfowesy consider a different

INotice that, any other formulation for these two objectivas be considered. Anyway, they constitute
support and size objectives as in the MDL measure.
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subgraph selection procedure on the candidate subgrapfentrateoeamWidthnumber

of subgraph-seeds for the next stage of expansion. Figepdits the support and the order
values ofbeamWidth =5 subgraph-seeds generated by the Subdue and MOSubdue meth-
ods at each expansion stage. At the beginning, i.e., at #teefipansion stage in Fig. 4.6,
both methods start from the same subgraph-seeds as showg hi6{a), consisting of all
nodes with unique labels in the shapes dataset. For the despansion stage, one out of
5 subgraph-seeds generated by Subdue is different frongémerated by MOSubdue-I as
highlighted in gray in Fig. 4.6(b). For the third expansidage, Subdue has generated the
subgraph-seed list which contains two solutions that atepresent in the subgraph-seed
list created by MOSubdue-I (see, Fig. 4.6(c)). Both methale performed 6 generations.
Finally, as shown in Fig. 4.6(h), the Pareto-optimal setudigaphs reported by Subdue
(resulting from the use of Pareto dominance definition (6)tenfinal output list of single-
objective Subdue) has two solutions dominated by that of M8e-I, showing the better
performance of the latter.

5 Experimental Study

The performance evaluation study has been conducted irxparienents on two real-world
datasets, which are summarized in Table 5.1 and are brieflyrifbed as follows:

Table 5.1 Description of different datasets used.

Datasets #Graphs #Nodes #Edges #Unique Labels
chemical 340 9189 9317 66
scientograms 73 19253 19709 296

Chemical Compound Datis a dataset which was available under the Predictive Tox-
icology Evaluation (PTE) challenge The dataset contains 340 chemical compounds, 24
different atoms, 66 atom types, and 4 types of bonds. Thesefatansists of 27 nodes and
28 edges per graph on average. The largest one contains g&4 add 214 nodes. So, the
discovered subgraphs are much like trees, though they daiossome cycles. The type of
atoms and bonds form the labels to the nodes and edges inttteetla he PTE dataset was
earlier used in [32, 33, 48].

Scientograms Databadd0] is a database built following De Moya-Anig et al.’s
methodology [30, 47] to design visual science maps (scggatus) for huge scientific pub-
lications collections. The nodes of the graphs corresponBlisevier SCOPUS-S3Ro-
citation categories. Each category agglutinates the pisithat were categorized under that
name, and likewise the documents that were published iretfoosnals. A co-citation mea-
sure is used to compute the relational similarity between tategories, thus defining a
relation matrix with an associated graph. Only the saliefdtionships between categories
are kept, capturing the essential underlying intellecstraicture of the studied scientific do-
main, using the Pathfinder algorithm [9, 39] to prune the bsafhe rough considered data

2http://www.comlab.ox.ac.uk/activities/machinelearning/PTE/
Shttp://www.scopus.com
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Fig. 4.6 Comparison between the operation of Subdue and MOSubdue dsetihathe shapes dataset. The
subgraph-seed list of lengtteamWidth=5generated by each algorithm at the end of each expansioa stag
is reported. Both methods terminated after 6 generations st to g. Solutions, if any, not present in
either generated list are highlighted in gray. (a) Both mégieegan with subgraph-seed list consisting of all
nodes with unique labels; (b) After the first expansion st&g#due has generated a subgraph-seed list which
contains one solution with a different value of support tattbf generated by MOSubdue-I, and so on; (h)
Finally, both methods have reported their Pareto-optimab&stibgraphs, which indicates the two solutions
in gray produced by Subdue are dominated by those of MOSubdue-

have been extracted from the Scimago Journal & Country Rartialp and comprise a set

4http://www.scimagojr.com/
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of 36 millions of documents indexed by Elsevier SCOPUS-S3mRf1996 to 2008 over 73
countries [47]. This database has been extensively ardlpd0] to propose an automatic
approach allowing the identification and the comparisonc@rtific structures within sci-
entograms. To do so, the Subdue algorithm has been appfi¢iirée different scientogram
analysis tasks regarding the evolution of a scientific donoaer time, the extraction of the
common research fronts in the world, and the comparisoniehtiic domains between dif-
ferent countries. In the current study, the scientogramastcontains visual science maps
generated for 73 countries for the year 2005. The datasédicsn/3 graphs with 264 nodes
and 270 edges per graph on average, and consists of 294 uridadabels. As the dataset
does not contain any cycles, the mined subgraphs are liks.tidowever, the large size
and the presence of several unique node labels make thisetlat@hallenging one for the
defined multiobjective subgraph mining tasks.

The two variants of MOSubdue have been implemented in C, bied@eriments have
been performed on an Intel Core Quad at 2.66GHz, with 4GB RAMning CentOS 5.5.
Additionally, for the comparison study, Subdue and Gastethads have been adapted for
solving the defined multiobjective subgraph mining tasksese methods were originally
proposed for single-objective frequent subgraph mining teir source code in C is avail-
able through URL%®. Their adaptation is briefly described as follows:

Subdue-l This applies three different independent subgraph etialuanethods, viz.
the MDL, size, and set cover, originally supported by thedbgbalgorithm [6] for frequent
subgraph mining. Subdue is executed on the input graphetatath the three evaluation
methods independently. The outputs from three evaluatethouds are merged and repeated
subgraphs are removed, and later domination checks uséngareto dominance definition
(6) are performed to produce Pareto-optimal subgraph seeasrated by the Subdue-I
method.

Subdue-1i This basic multiobjective extension of the Subdue algonipplies a mod-
ified subgraph evaluation method based on a single-obgefitivction combining multiple
objectives in a weighted additive fashion [4, 5, 14] (as saicbur cased= 2 and 3). Let
A =(A1,..., 27T be a weight vector, i.e\; > 0foralli =1,...,d andzfz1 A = L
Then, the subgraphis evaluated using the following scalar objective funciimn

d
maximize z(p|A) = Y Aifi(p) (5.1)
i=1
subjecttop € P

where we use(p|)) to emphasize that is a coefficient vector in this objective function.
Of course, the considered objectives are normalized. Tergdm a set of different optimal
subgraphs, one can use different weight vectors in the aboalar objective function, and
perform repeated runs of Subdue-II.

MOGaston Gaston [32] is a quick start algorithm for frequent subdrapining, as it
applies efficient ways to uniquely enumerate paths and.tidesalgorithm first generates
paths, then trees, and finally general graphs in order toesftly search through the sub-
graph lattice. It stores all embeddings to generate only sidvgraphs that actually appear
in the database and to achieve fast isomorphism testindhdnatst phase, the algorithm
deals with general graphs by defining a global order on cgldsing edges to minimize the

5Subduehttp://ailab.wsu.edu/subdue/software/subdue-5.2.1.zip
6Gastonhttp://www.liacs.nl/~snijssen/gaston/
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need for graph isomorphism tests. Only in handling gena@blys, Gaston faces the NP-
completeness of the subgraph isomorphism problem. Gastonalculate the frequency of
a subgraph either with isomorphism tests or embedding listsotal the theoretical time
complexity of Gaston i$(|E.(G)| log |E(G)| + meclog ¢), where E. is the number of
edges of the connected graghthat occurs in a cycle; is the number of edges that should
be removed to obtain a tree, andis the number of automorphisms of the spanning tree.
If c andm are small, this computation is polynomial in the size of thepdp to be normal-
ized [32].

Input to Gaston is a set of graphs and a value for minimum faqu (or supportjn to
retrieve subgraphs, and the output is a list of all the mindygaphs with frequency greater
than or equal ton. To obtain a Pareto-optimal set from the output list, a senpbdifica-
tion is done in the output of Gaston as: i) compute the addiliobjectives, the order and
the density of the mined subgraph, and ii) check dominanddeinined subgraph with
the subgraphs in an external Pareto set arciivé this mined subgraph is not dominated
by any subgraph in the sét then it is included inP, which is updated eventually to re-
move dominated subgraph, if any, it could contain. Notic,ths Gaston is an exhaustive
search method, when the lowest values for the thresholdsomsgdered, the multiobjective
extension designed is able to obtain the true Pareto-opsietadf subgraphs for the tack-
led frequent subgraph mining task. Nevertheless, thatadvaguire an enormous and many
times unaffordable computation time for large graph degabalue to the exponential size of
the subgraph search space. In our study, the graph dataséasge and complex and thus it
has been practically infeasible to let MOGaston run till@x$tion to carry out an exhaustive
search for mining subgraphs with > 2. In fact, for the scientogram dataset, MOGaston
spent more than ten hours in mining subgraphs with emly 8. Thus, for the purpose of
performance comparison study, we have decided to fix theudiwectime for MOGaston
based on the time corresponding to the best result obtaipeahy of the Subdue-based
methods on each dataset.

5.1 Parameter Setting

Subdue-I and Il and MOSubdue-I and Il methods have been rimthnee different values

of beamWidth= 5, 10, and 20. Each of these methods has been run till sulbgegds can
not be grown further to generate candidate subgraphstillexhaustion of the explored
subgraph search space. A maximum number of Pareto subgi@plesreported was set to
mazBest = mazParetoSubs = 100. A single execution of Subdue-l and MOSubdue-I has
been carried out on the input graph datasets as a conseqfdraeg deterministic methods
while MOSubdue-II has been run ten times with ten differeeids.

Subdue-Il has applied different weight vectors in the casevo and three objective
problems. For the two-objective problem, the weight of thet fobjective function, the sup-
port, is varied from 0 to 1 in the step of 0.1, which has reslitgo 11 weight vectors. The
algorithm has been run for each of the eleven weight veckansthe three-objective prob-
lem, we have used 13 different weight vectors given in Taki®e &d Subdue-Il has been
run with each of them.

Finally, simulations have been performed with MOGastongtiiree different run times
on each dataset. The duration for the first run was set canelpg to the computational
time associated with the best result produced by any of thel$e+based methods, while
the duration for the other two runs were set equal to two aredtfimes the duration for the
first run.
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Table 5.2 Different weight vectors to transform the three-objectiveblem into a single value scalar function
in Subdue-II method

Weights for objectivesWeights for objectives

Sr.No. SupportSupport OrderOrder  DensityDensity

1 1.00 0.00 0.00
2 0.90 0.10 0.00
3 0.80 0.20 0.00
4 0.70 0.20 0.10
5 0.50 0.30 0.20
6 0.40 0.30 0.30
7 0.33 0.33 0.33
8 0.30 0.30 0.40
9 0.20 0.30 0.50
10 0.10 0.20 0.70
11 0.00 0.20 0.80
12 0.00 0.10 0.90
13 0.00 0.00 1.00

5.2 Performance Evaluation

To evaluate the performance of the proposed Pareto donmgraased multiobjective sub-
graph search approach, we compare the Pareto-optimal sabgfaphs produced by each
of the applied methods. A classical way to do so in EMO stuigs3, 54] is to check the
closeness of the Pareto-optimal geproduced by the algorithm with respect to the true
Pareto-optimal seP* on the input dataset. Thus, the seP produced by the algorithm is
an approximationto the setP*. The true setP* contains all subgraphs according to def-
inition (7) of Pareto optimality (see Section 4.1) from theltiobjective subgraph search
space, i.e. the subgraph lattice of the input graph datasetit may be obtained by employ-
ing an exhaustive search on small size datasets. Howeigepréctically infeasible to run an
exhaustive search on large sets of real-world graphs, whithe case in our experimental
study. To overcome this problem, we have generated a pseargtoPoptimal set obtained
from the aggregation of the sé&t produced by the different methods in all runs performed.
Here after, we consider this pseudo Pareto-optimal setus/algnt to the seP* in the
performance analysis, unless otherwise specified.

Hypervolume ratio KIVR) is a commonly used and powerful measure in EMO studies
[5,53,54] to compute the proximity of Pareto-optimal frank’ obtained from the objective
vectors of solutions in the sétto the Pareto-optimal froe 7™ of the setP*. It is measured
in the objective space of solutions. For a two-objectivebfgm, the hypervolume is the
summation of the area covered by each member in the fPé@hivith respect to the objective
space axis. The use dfVR-metric is very extended in the EMO area as it measures both
diversity and closeness of the approximation to the/3etlt is calculated as the ratio of
the hypervolume for the fronPF to that for the frontPF*. A value of 1 for theHVR-
metric indicates the fronP F' of the solution seP obtained by the algorithm duplicates the
front PF* of the solution seP* on the input dataset. Thus, a high value dflVR-metric
indicates a good approximation to the ®thas been produced by the algorithm.
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We have computed thelVR-metric corresponding to Pareto-optimal subgraph Ret
obtained by the different methods for the two and three divegroblems. For the two-
objective problem, the methods have produced Pareto-apsiatutions defined by the sup-
port and the order of the subgraphs. Meanwhile, for the tbigective problem, the methods
have generated Pareto-optimal solutions defined by theostjgpe order, and the density
of the subgraphs. In the following subsections, we analyjegerformance of the different
methods for both problems.

5.3 Analysis of Results for the Two Objective Subgraph Minirask

Tables 5.3 and 5.4 report théVR-metric values for the approximations produced by the
different Subdue methods on both datasets for the two-tgesubgraph mining task. The
values in these tables associated with MOSubdue-Il andibdepresent the mean and
standard deviation values corresponding to the 10 and fdreiift runs performed, respec-
tively. Table 5.5 provides thélVR-metric values for the obtained approximations corre-
sponding to the different runs of MOGaston on both datagéte.values in the brackets
in this table represent the run time in seconds for each ¢xecaf MOGaston. Table 5.6
shows the HVR-metric values corresponding to the best aypadion produced by the dif-
ferent methods on each dataset. Tables 5.7 and 5.8 prowédeithtime analysis for the
different Subdue methods to produce their approximations.

Table 5.3 The HVRmetric values for Pareto-optimal sets obtained by the diffeSubdue methods on the
chemical dataset for the two-objective subgraph mining téikk. numbers in the parentheses represent the
standard deviation.

beamWidthbeamWidth
MethodsMethods 55 1010 2020
Subdue-I 0.9729 (-) 0.9392 (-) 0.9243 (-)
Subdue-ll 0.8120 (0.2042)  0.3009 (0.3129) 0.1054 (0.0560)
MOSubdue-I 0.9537 (-) 0.9898 (-) 0.9675 (-)
MOSubdue-lI 0.9522 (0.0000) 0.9662 (0.0012) 0.9652 (GBPO3

Table 5.4 The HVR-metric values for Pareto-optimal sets obtained by the diffeSubdue methods on the
scientogram dataset for the two-objective subgraph mirasg.tThe numbers in the parentheses represent
the standard deviation.

beamWidthbeamWidth
MethodsMethods 55 1010 2020
Subdue-I 0.8545 (-) 0.7990 (-) 0.8090 (-)
Subdue-I1 0.1606 (0.0242)  0.1052 (0.0242)  0.1017 (0.0265)
MOSubdue-I 0.8206 (-) 0.8491 (-) 0.6520 (-)
MOSubdue-II 0.8606 (0.0000) 0.8968 (0.0000) 0.6735 (0.0000)
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Table 5.5 The HVR-metric values for Pareto-optimal sets obtained by MOGassimguthree different run
times on both datasets for the two-objective subgraph mirisk. fThe numbers in the brackets represent the
run times in seconds.

DatasetDataset Run 1Run 1 Run 2Run 2 Run 3Run 3

Chemical 0.0583[50]  0.0583[100] 0.0612 [250]
Scientogram  0.0746 [485]  0.0762[970]  0.0762 [2425]

Table 5.6 TheHVRmetric values corresponding to the best result producetiéyifferent methods on both
datasets for the two-objective subgraph mining task.

Datasets Subdue-l  Subdue-ll  MOSubdue-l MOSubdue-ll M@gbas
Chemical 0.9729 0.8120 0.9898 0.9662 0.0612
Scientogram  0.8545 0.1606 0.8491 0.8968 0.0762

Table 5.7 Run time in seconds for the different Subdue methods on the claédataset for the two-objective
subgraph mining task. The numbers in the parentheses repthsestandard deviation.

beamWidthbeamWidth
MethodsMethods 55 1010 2020
Subdue-I 40.71 (-) 79.2 (-) 165.53 (-)
Subdue-II 10.46 (3.27) 15.69 (4.87)  29.29 (10.48)
MOSubdue-I 20.73 (-) 49.47 (-) 92.71 (-)
MOSubdue-II 19.93(0.24) 40.64 (0.49) 87.76 (7.73)

Table 5.8 Run time in seconds for the different Subdue methods on thetsgem dataset for the two-
objective subgraph mining task. The numbers in the parenshrepeesent the standard deviation.

beamWidthbeamWidth
MethodsMethods 55 1010 2020
Subdue-I 661.72 (-) 1289.62 () 5674.45 (-)
Subdue-II 47.20 (15.01) 99.38(32.27) 2876.70 (953.40)
MOSubdue-I 134.36 (-) 684.77 (-) 199.14 (-)
MOSubdue-II 181.76 (1.32) 484.65 (4.14) 217.25 (1.52)

From Tables 5.3 and 5.4, it can be seen how both single-dmgeSubdue variants,
Subdue-I and II, have shown performance decrease withasermbeamWidthIincrease in
beamWidthmeans more subgraph-seeds availaible for expansion. Tihigemerate many
repeated solutions (high redundancy) at the early stagean€h in the subgraph lattice. Both
Subdue-I and Il have applied single-objective beam searte subgraph lattice. Subdue-I
uses the MDL-measure in equation (3.1) that constitutesdgh®ination of the support and
the size of the mined subgraphs, and Subdue-II applies ardaalktion based on weighted
addition of the support and the order of the mined subgrafihis.suggests single-objective
beam search using these measures is unable to handle tbigosefgessure under the high
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redundancy. As against, both variants of MOSubdue have rslmygrovement in the per-
formance for increase iheamWidth= 10. This shows that the multiobjective beam search
in MOSubdue can handle the selection pressure better teasirigle-objective beam search
in Subdue-I and II. However, they have shown a decrease ipehfermance for further
increase irbeamWidth This is because the multiobjective beam search consgl¢hiese
(the support and the order) objectives are somewhat unalbiartdle the selection pressure
under such high redundancy. That configuration could be rhereficial for the case of
having some additional objectives, as we will see in thefoihg Section.

The analysis of thelVR-metric values reported in Table 5.3 corresponding to tlesdh
cal dataset reveals that Subdue-1 and Il have producedibsirapproximation correspond-
ing to beamWidth =5 for which the estimatetHVR-metric value is 0.9729 and 0.8120,
respectively. The bedVR-metric values produced by MOSubdue-l and Il are equal to
0.9898 and 0.9662, respectively, correspondinggamWidth =10. TheHVR-metric values
on the scientogram dataset reported in Table 5.4 show tbdddbt value oHVR-metric ob-
tained by Subdue-Il and Il is 0.8545 and 0.1606, respectieelyesponding tbeamWidth
= 5. MOSubdue-I and Il have produced their best value'dR-metric equal to 0.8491 and
0.8968, respectively, correspondingtteamWidth =10.

Finally, we compare the performance of the different Subahe¢hods on each dataset
based on thélVR-metric values. From Table 5.6, on the chemical dataset Md&e+| has
obtained the best value 6fVR-metric equal to 0.9898. The second-best value oHKW&
metric equal to 0.9729 was obtained by Subdue-I. It was i@k by MOSubdue-Il and
Subdue-11 withHVR-metric values of 0.9662 and 0.8120, respectively. On tiensagram
dataset (see 5.6), the best approximation was obtained yuQue-II with 8HVR-metric
value of 0.8968. Subdue-I has produced the second-besbapmtion with aHVR-metric
value of 0.8545. This performance was followed by MOSubbaed Subdue-II wittHVR-
metric values of 0.8491 and 0.1606, respectively.

Table 5.5 shows thelVR-metric values corresponding to three different runs of MO-
Gaston on both datasets. On the chemical dataset, threesdiffruns of the algorithm have
been carried out with run times of 50, 100 and 250 secondsnivieite, on the scientogram
dataset, three different runs correspond to computatitmeds of 485, 970 and 2425 sec-
onds. The run time on the chemical dataset was estimated lbasthe execution time of
49.47 seconds required by MOSubdue-I in Table 5.7 to obkeibest value dfiVR-metric
equal to 0.9898 (see Tables 5.3 and 5.6). The run time on tbetegram dataset was esti-
mated from the run time of 484.65 seconds in Table 5.8 redbiygMOSubdue-II to produce
the best approximation with tHeVR-metric value equal to 0.8968 (see Tables 5.4 and 5.6).
The HVR-metric values in Table 5.5 for the approximation producgdhe different runs
of MOGaston show that the performance of the algorithm hasamed for the higher run
times, although the quality of the results is not very sigaifit.

The analysis of run times reported in Tables 5.5 and 5.7 oclieenical dataset shows
that Subdue-l and 1l have generated their best approximatith run time of 40.71 and
10.46 seconds, respectively (see Table 5.7). The run timeredl by MOSubdue-I and Il to
provide their best approximation was 49.47 and 40.64 sex;ardpectively (see Table 5.7).
From Table 5.5, MOGaston has obtained the best result gmmneting to run time of 250
seconds. Compared to the Subdue methods, MOGaston haghaleighest run time. The
result it has produced is the worst one to that of generateghigyf the Subdue methods as
reported in Table 5.6. The run time analysis among Subdubadstshow that MOSubdue-
| has taken the highest computational time of 49.47 secosd®m@pared to that taken by
other Subdue methods to produce their best approximatitrM®Subdue-1 has reported
the best approximation with tHeVR-metric value of 0.9898 as given in Table 5.6. Subdue-
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Il has taken the least run time of 10.46 to generate its befinpeance which is in fact the
worst one among the Subdue methods, but it is better thamyémegrated by MOGaston as
shown in Table 5.6.

On the scientogram dataset, the run time analysis is basebeomalues reported in
Tables 5.5 and 5.8. Subdue-I and Il have reported their ggbaimation requiring a run
time of 661.72 and 47.20 seconds, respectively, as giverabieT5.8. MOSubdue-I and
Il have generated their best performance for a computdtiimea of 684.77 and 484.65
seconds, respectively (see Table 5.8). MOGaston requinech @ime of 970 seconds to
produce the besiVR-metric value as reported in Table 5.5, but it happened tdhvbevorst
one among the Subdue methods, as can be seen from Table So8g/Aubdue methods,
MOSubdue-II has generated the best performance withlt¥fig@ metric value of 0.8968 (see
Table 5.6), but with less computational time of 484.65 whempared to that of required
by Subdue-I and MOSubdue-I. Again, Subdue-Il has takendhstlcomputational time
to produce its best performance which is the worst one to dhathe remaining Subdue
methods, but it is better than that of MOGaston as can be seenTable 5.6.

Overall comparison is based on tH¥R-metric values reported in Table 5.6. We can say
that MOSubdue-| has achieved the best performance on theichledataset with a value
of 0.9892, and on the scientogram dataset, MOSubdue-IIfoalsiped the best approxima-
tion with a value of 0.8968. Figs. 5.1 and 5.2 show the graghi&presentation of the best
approximation based on th#VR-metric value produced by each of the methods applied in
this study. The graphical representation produced for 8addMOSubdue-I, and MOGas-
ton that is corresponding to the approximation generatetth&gingle-run of the algorithm.
The plotted approximation corresponding to MOSubdue-tl 8nbdue-Il is obtained as ag-
gregation of the output of 10 and 11 different runs carriedh®yalgorithms, respectively.
On the chemical dataset, Subdue methods have been ableei@tgemost of the solutions
present in the true fron? F*. For order values- 20, all Subdue methods but MOSubdue-I
have found some difficulty in producing the correspondinigitsons. There are four solu-
tions inPF* with order values> 20. MOSubdue-I has managed to produce four solutions
with order values> 20 which are close to the from.F*. As against, Subdue-I, Subdue-lII,
and MOSubdue-Il could only find one solution each with orda&lug higher than 20. In
general, MOGaston could generate very few solutions as acedgo those obtained by the
Subdue methods. On the scientogram dataset, MOSubdue-Hhuavn the best spread of
solutions with respect to that in the froRtF*. There is a good spread of solutions generated
by Subdue-l and MOSubdue-I, but they find it somewhat diffitwigenerate any solution
with order value higher than 60. Subdue-II has producededhstinumber of solutions that
can be comparable to that in the frdh#*. MOGaston is not able to generate any solution
present in the fronPF* as can be seen from Fig. 5.2.

5.4 Analysis of Results for the Three-objective Subgraphidj Task

Tables 5.9 to 5.12 report the HVR-metric values for the agipnation produced by the dif-
ferent methods on both datasets for the three- objectivgraph mining problem. Tables 5.9
and 5.10 represent the mean and standard deviation valuesgonding to MOSubdue-II
and Subdue-Il using the 10 and 13 runs, respectively. Talilé $hows the HVR-metric
values corresponding MOGaston on both datasets. In this, thie values in the brackets
represent again computational time corresponding to eactof MOGaston. Tables 5.13
and 5.14 report the computational time for the different@wéomethods on each dataset.
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Fig. 5.1 A graphical representation of solutions correspondingholiest approximations produced by the
different methods with respect to thB/R-metric for two objective subgraph mining task. The pseudet®ar
optimal front is also shown as a reference.

Table 5.9 The HVR-metric values for Pareto-optimal sets obtained by the diffeSubdue methods on the
chemical dataset for the three-objective subgraph minirlg #se numbers in the parentheses represent the
standard deviation.

beamWidthbeamWidth
MethodsMethods 55 1010 2020
Subdue-I 0.9708 (-) 0.9609 (-) 0.9635 (-)
Subdue-ll 0.6975 (0.3696) 0.2001 (0.2575) 0.0148 (0.0181)
MOSubdue-I 0.9715 (-) 0.9822 (-) 0.9879 (-)
MOSubdue-lI 0.9759 (0.0052) 0.978(0.0022) 0.9892 (0.0009)

When comparing the performance among Subdue methods odaisitets using the re-
sults in Tables 5.9 and 5.10, it can be seen how Subdue-| basxshperformance decrease
with the increase itbeamWidth This is in line with the behavior on the two-objective sub-
graph mining task (see Tables 5.3 and 5.4). Subdue-II hagrshwery significant decrease
in the performance on the chemical dataset for the increslseamWidthbut it has shown
some small improvement in the performance on the sciemogi@aset whebeamWidth
was increased to 10. On the other hand, both variants of M@®ubhave shown a better
handling of the selection pressure (by using three objestithe support, the order and the
density of the mined subgraph) under the redundancy crégtéttreasingpeamwWidthOn
the chemical dataset, MOSubdue variants have shown thepedstmance corresponding
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Fig. 5.2 A graphical representation of solutions correspondinchtohiest approximations produced by the
different methods with respect to thB/R-metric for two objective subgraph mining task. The pseudet®ar
optimal front is also shown as a reference.

Table 5.10 TheHVR-metric values for Pareto-optimal sets obtained by the diffeGBubdue methods on the
scientogram dataset for the three-objective subgraph mitaisk. The numbers in the parentheses represent
the standard deviation.

beamWidthbeamWidth
MethodsMethods 55 1010 2020
Subdue-I 0.7334 (-) 0.5315 () 0.4815 (-)
Subdue-ll 0.0368 (0.0010) 0.0620 (0.1002) 0.0341 (0.0756)
MOSubdue-I 0.9482 (-) 0.9486 (-) 0.9209 (-)

MOSubdue-II 0.9508 (0.0036) 0.9540 (0.0028) 0.9356 (0.0171)
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Table 5.11 The HVRmetric values for Pareto-optimal sets obtained by MOGassimyuthree different run
times on both datasets for the three-objective subgraph gtask. The numbers in the brackets represent
the run times in seconds.

DatasetDataset Run 1Run 1 Run 2Run 2 Run 3Run 3

Chemical 0.0463[90]  0.0463[180]  0.5062 [450]
Scientogram  0.0615[587] 0.0617 [1174] 0.0617 [2935]

Table 5.12 The HVRmetric values corresponding to the best result producedéydifferent methods on
both datasets for the three-objective subgraph mining task.

Datasets Subdue-l  Subdue-ll  MOSubdue-l MOSubdue-ll M@gbas
Chemical 0.9708 0.6975 0.9879 0.9892 0.5062
Scientogram  0.7334 0.0620 0.9486 0.9540 0.0617

Table 5.13 Run time in seconds for the different Subdue methods on the claédutaset for three-objective
subgraph mining task. The numbers in the parentheses reptheestandard deviation.

beamWidthbeamWidth
MethodsMethods 55 1010 2020
Subdue-I 40.71 (-) 79.20 (-) 165.53 (-)
Subdue-II 10.36 (5.14) 15.78(7.79) 27.17 (13.37)
MOSubdue-I 19.80 (-) 48 (-) 89.38 (-)
MOSubdue-II 19.13(1.82) 42.46(3.73) 90.28 (7.69)

Table 5.14 Run time in seconds for the different Subdue methods on theitsgeam dataset for three-
objective subgraph mining task. The numbers in the parenthrepeesent the standard deviation.

beamWidthbeamWidth
MethodsMethods 55 1010 2020
Subdue-I 661.72 (-) 1289.62 (-) 5674.45 (-)
Subdue-Il 40.60 (22.05) 85.10 (47.27) 2438.18 (1388.57)
MOSubdue-I 132.55 () 681.10 (-) 197.50 (-)
MOSubdue-lI 262.29 (48.17) 587.28 (88.42) 587.98 (603.86)

to beamWidth= 20. On the scientogram dataset, they have improved thdwrp@ance cor-
responding tdeamWidth= 10, but they have shown a little drop in the performance when
beamWidthwas further increased to 20. However, this performance erap minimal as
compared to that suffered by Subdue-I and Il methods.

Comparison of th&lVR-metric values reported in Table 5.9 corresponding to tlereh
ical dataset shows that the best approximation obtainedibg®e-1 and Il haslVR-metric
values of 0.9708 and 0.6975, respectively, correspondingeamWidth =5. Both MO-
Subdue variants have generated their best approximatioesponding tdbeamWidth =
20 that has producedVR-metric values of 0.9879 and 0.9892, respectively. On the sc
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entogram dataset, Subdue-1 and Il have generated theipbdsrmance corresponding to
beamWidth =5 and 10 with thedVR-metric value equal to 0.7334 and 0.0620, respectively.
When we carry out a detailed analysis of tH&R-metric values produced by the differ-
ent Subdue methods on the chemical dataset, it reveals tBe8uddue-Il has produced
the best performance with thdVR-metric equal to 0.9892 correspondingtteamWidth =
20. MOSubdue-I has generated the second-best performaticthe’HVR-metric value of
0.9879 with respect tbeamWidth =20. The third-best result has shown by Subdue-I and
the last one was Subdue-II withiVR-metric values of 0.9708 and 0.6975, respectively, cor-
responding tdeamWidth =5. On the scientogram dataset, tH¢R-metric values reported

in Table 5.10 show that MOSubdue-Il has again secured thegpb&srmance with &VR-
metric value of 0.9540 corresponding beamWidth =10. The second-best performance
has been produced by MOSubdue-I with Hi¥¢R-metric value of 0.9486 corresponding to
beamWidth =10. This has followed by Subdue-I and Subdue-II witiR-metric values of
0.7334 and 0.0620 correspondingbeamWidth =5 and 10, respectively.

Table 5.11 shows thEVR-metric values associated to three different runs of MOGas-
ton on both datasets. On the chemical dataset, MOGastonah@esdcout three runs with
run times of 90, 180, and 450 seconds. On the scientograrsedathe algorithm has per-
formed three runs with execution times of 587, 1174, and 288%®nds. The run time on
the chemical dataset was based on the run time of 90.28 seconesponding to the best
HVR-metric value (0.9892, see Table 5.12) produced by MOSulbidigsee Table 5.13). The
run time on the scientogram dataset was estimated fromrtie387.28 seconds as reported
in Table 5.14 corresponding to MOSubdue-Il to generate tst Approximation (0.9540,
see Table 5.12). ThdVR-metric values in Table 5.11 indicate that MOGaston willchee
significantly larger amount of run time to produce good agprations.

The run time analysis of different methods is given in Talflgsl, 5.13, and 5.14. The
analysis on the chemical dataset reveals that Subdue-lldrayé produced their best ap-
proximation with run times of 40.71 and 10.36 seconds, repdy (see Table 5.13). The
run times for MOSubdue-1 and Il to obtain their best perfonce were 89.38 and 90.28
seconds, respectively (see Table 5.13). MOGaston has geddts best performance for a
given run time of 450 seconds. In comparison to the run tinggired by each of the Sub-
due methods to produce their best approximation, MOGasésntdken much more time
and produced a significantly worst approximation as can be 8em Table 5.12. The com-
parison of run times for the different Subdue methods shixas MOSubdue-II has taken
the highest run time of 90.28 seconds to produce its besbimeaice that happens to be the
best approximation than obtained by any applied methodsTable 5.12). The least run
time of 10.36 was required by Subdue-Il to obtain its bestaxmation (0.6975), which is
the worst one among the Subdue methods, but it is better tzrot MOGaston (0.5062,
see Table 5.12).

On the scientogram dataset, the run time analysis basedeovatbes reported in Ta-
bles 5.11 and 5.14 show that Subdue-I and Il have achieved#st performance requiring
run times of 661.72 and 85.10 seconds, respectively (sele Bab4). MOSubdue-I and Il
have obtained their best performance for run times of 68ari587.28 seconds, respec-
tively (see Table 5.14). The best performance of MOGastarblean that corresponding to
run time of 1174 seconds as reported in Table 5.11. Once agdiaston has taken the
highest run time and produced the worst performance as capdrefrom Table 5.12. The
run time analysis among the Subdue methods reveals that @@l has produced the
best result withHVR-metric value of 0.9540 as shown in Table 5.12 using a run tifne
587.28 as reported in Table 5.14. This run time is less thahrdguired by Subdue-I and
MOSubdue-II to produce their best performance. Subdue$l taken the least computa-
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tional time (85.10 seconds, see Table 5.14) to producssitseist results (0.0620), which is
the worst one among the Subdue methods, but it is still $jidiettter than that of MOGaston
(0.0617, see Table 5.12).

The final comparison is based on tH¥ R-metric values reported in Table 5.12 corre-
sponding to the best approximation produced by each me@®wtoth datasets, MOSubdue-
Il has produced the best approximation wiHlVR-metric values of 0.9892 and 0.9540, re-
spectively. On both datasets, the results show that tagkdimore complex problem with
three objectives has enabled the multiobjective beam keaftandle the selection pressure
far better as compared to that by single-objective beanthaarder the huge redundancy
in the candidate subgraph list. Figs. 5.3 and 5.4 show tleettiimensionalMieres plotting
of solutions corresponding to the best approximations ypeed by Subdue-1, MOSubdue-I,
and MOGaston, as well as to the aggregated set of solutidagek from the different runs
of MOSubdue-Il and Subdue-Il. The performance advantageotdf MOSubdue variants
with respect to the remaining algorithms can be clearly olegk

chemical scientogram

Subdue-l Subdue-I
PF O PF

Density Density

Subdue-ll = Subdue-Il
PF O PF

Fig. 5.3 A graphical representation of solutions correspondinghtoliest approximations produced by the
different methods with respect to tih#/R-metric for the three- objective subgraph mining task. Theudee
Pareto-optimal front is also shown as a reference.

We summarize that the proposed multiobjective beam seasthads, i.e., both MO-
Subdue variants, have outperformed the single-objectearbsearch (i.e., Subdue-I and I1)
and the exhaustive search, i.e., MOGaston, on both datdsgtarticular, MOSubdue-II
that has applies diversified selection has shown betteopeance than MOSubdue-I. This
indicates that an application of multiobjective beam dedor subgraph-seeds generation
has indeed guided the Subdue algorithm to find Pareto-opsinisgraphs in the subgraph
lattice space in a proper way. Besides, it should be noticatthe Pareto dominance-based
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Fig. 5.4 A graphical representation of solutions correspondinchtohiest approximations produced by the
different methods with respect to th#/R-metric for the three- objective subgraph mining task. Theuidee
Pareto-optimal front is also shown as a reference.

computation introduced in the Subdue algorithm only addsallscomplexity ofO(dk?)
to the theoretical complexity of standard Subdue [6].

6 Concluding Remarks and Future Work

We have proposed the use of a Pareto dominance-based statefysfor multiobjective
subgraph mining in relational graph databases. The appittasbeen customized using the
Subdue algorithm and has been called as MOSubude (Muléefib¢ subgraph mining by
Subdue). Two different MOSubdue variants based on the timbeof subgraph-seeds for
further expansion were proposed.
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The performance of MOSubdue has been analyzed using twovorld datasets, and
taking the original single-objective Subdue, a weightexfgrence-based Subdue, and a mul-
tiobjective extension of the exhaustive Gaston algoritisrhaselines. From the obtained re-
sults, we have found that MOSubdue is able to discover a $&mfto-optimal subgraphs in
a single run. The performance has been tested by computngrdximity of the generated
Pareto-optimal set to the pseudo Pareto-optimal set peating combining every result ob-
tained by any considered algorithm. For this purpose, we lesmployed the hypervolume
measure commonly applied in EMO studies. It is evident froméxperiments developed
that our proposal is clearly able to perform multiobjectstggraph search in the subgraph
lattice space, and that it is able to generate approximatiorthe Pareto-optimal front far
better than obtained by the considered baseline methodis \BOSubdue approaches were
able to obtain the Pareto-optimal set of subgraphs that gjoma diversity and closeness to
the Pareto-optimal front of the input graph dataset. Inipaldr, for the two-objective sub-
graph mining problem, MOSubdue-I showed the best perfoomam the chemical dataset,
while MOSubdue-II did so on the scientogram dataset. Feetubjective subgraph mining
problem, MOSubdue-Il was the best performer on both dataset

Several ideas for future developments arise from this wOrkthe one hand, at the start
of the search process, both variants of the MOSubdue ahgoiititially have a large num-
ber of subgraphs belonging to the first Pareto front, and itee & that front decreases as
the search progresses. This is due to the initializatiorhefdubgraph-seeds with the sin-
gle node subgraphs and the application of a constructivels&ubdue applies. MOSubdue
implements the multiobjective beam search with a fixed amtmtbeamWidthvalue that
discards some of the less promising subgraphs at the eadg sif expansion, thereby ter-
minating the possibility of expanding these less promisiniggraphs later in order to search
other promising subgraph search space regions. Thus, bearohsis a kind of heuristic
search in the state space of subgraphs lattice not allovénkgtiacking and hence may often
end up performing local search with suboptimal results. @ossible solution for this unde-
sired behavior could be to use an adapbeamWidthWe would initially keep a high value
of beamWidtrand decrease it using some adaptation scheme as the seagobsges. This
will allow exploring more subgraphs at the beginning of tearsh process, when the first
Pareto front is more populated, in order to discriminategbkection procedure in a more
aggressive way. On the other hand, the same problem coalth@lsolved by considering an
implementation of pure EMO method to directly perform mabijiective subgraph search in
the subgraph lattice. This is due to the fact that an EMO #lyorwould maintain a popula-
tion of subgraph-seeds and perform the subgraph-growtlffateht tree levels to generate
Pareto-optimal subgraphs. We aim to design such an EMCQdiaB®M method.

MOSubdue applies a diversification-based subgraph seteptocedure that computes
the diversity of solutions in the objective space. Howeitallpes not take into considera-
tion the diversity of solutions in the solution space. Apation of structural diversity of
subgraphs will help to generate subgraph-seeds that deratif from each other in the
solution space and thus will enable to explore the differegions of the multiobjective
subgraph search space. One such solution selection prectdi computes the diversity
of subgraph using the objective space as well as the solgpace has been recently ap-
plied in [43]. As a future study, this procedure can be appfi the diversified subgraph
selection in MOSubdue.

The Pareto dominance-based evaluation and search canlteglagith algorithms which
work on a set of subgraphs to generate new subgraphs. Bediiesapproach may be
utilized in subgraph mining algorithms, such as those in 289 whose subgraph-growth
method performs merging subgraph-seeds to generate ededigbgraphs. In such subgraph-
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growth methods, the selection @fobjective vector subgraph-seeds can be done using the
Pareto dominance-based approach to generate candidgmaghb for further expansion.
We will consider the latter as future extensions of our mdtiogy.
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