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Abstract

In a preceding contribution, we conducted a study considering a fuzzy multiclassifier system (MCS)
design framework based on Fuzzy Unordered Rule Induction Algorithm (FURIA). It served as the fuzzy
rule classification learning algorithm to derive the component classifiers considering bagging and feature
selection. In this work, we integrate this approach under the overproduce-and-choose strategy. A state-of-
the-art evolutionary multiobjective algorithm, namely NSGA-II, is used to provide a component classifier
selection and improve FURIA-based fuzzy MCS. We propose five different fitness functions based on
three different optimization criteria, accuracy, complexity, and diversity. Twenty UCI high dimensional
datasets were considered in order to conduct the experiments. A combination between accuracy and
diversity criteria provided very promising results, becoming competitive with classical MCS learning
methods.

Keywords: Fuzzy rule-based multiclassification systems, bagging, FURIA, genetic selection of individual
classifiers, diversity measures, evolutionary multiobjective optimization, NSGA-II

1. Introduction

Multiclassification systems (MCSs) (also called
multiclassifiers or classifier ensembles) have been
shown as very promising tools to improve the perfor-
mance of single classifiers when dealing with com-
plex, high dimensional classification problems in the
last few years [1]. This research topic has become
especially active in the classical machine learning
area, considering decision trees or neural networks
to generate the component classifiers, but also some
work has been done recently using different kinds of
fuzzy classifiers [2, 3, 4, 5, 6, 7, 8].

In our previous studies [9, 10, 11, 12], we pro-

posed a MCS methodology based on classical MCS
design techniques such as bagging and feature se-
lection with a fuzzy rule-based system (FRBCS) as
a base classifier. As a consequence, fuzzy rule-
based multiclassification systems (FRBMCSs) were
incorporated into an overproduce-and-choose strat-
egy (OCS) [13]. This MCS design algorithm is
based on the generation of a large number of com-
ponent classifiers, and a subsequent selection of the
subset of them best cooperating. As the main tool we
used a multicriteria genetic algorithm (GA) for static
component classifier selection guided by several fit-
ness functions based on training error and likeli-
hood, as well as bicriteria fitness functions based on
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training error and likelihood or diversity measures.
The resulting FRBMCS design approach thus be-
long to the genetic fuzzy systems (GFSs) family, one
of the most successful approaches to hybridize fuzzy
systems with learning and adaptation methods in the
last fifteen years [14, 15, 16].

In [17] we extended our previous developments
by proposing a fuzzy MCS framework based on
Fuzzy Unordered Rule Induction Algorithm (FU-
RIA) [18, 19] as the fuzzy rule classification learn-
ing algorithm to derive the component classifiers
considering bagging and feature selection. We con-
ducted comprehensive experiments with 20 datasets
taken from the UCI machine learning repository
and provided a deep study of the results obtained.
Several FURIA-based fuzzy MCS composition de-
signs were tested including bagging, feature selec-
tion, and the combination of bagging and feature
selection. We considered three different types of
feature selection algorithms: random subspace [20],
mutual information-based feature selection (MIFS)
[21], and the random-greedy feature selection based
on MIFS and the GRASP approach [22]. Finally,
our approach was compared against two state-of-
the-art MCS algorithms (random forests and bag-
ging decision trees) and also with an application of
the fuzzy MCS generation approach with other, less
powerful fuzzy classifier derivation method [23, 9].
From the obtained results, we drew the conclusion
that FURIA-based fuzzy MCSs were a very power-
ful tool for dealing with high dimensional classifica-
tion problems.

Even so, we think that the performance of the
latter FURIA-based MCS framework can be im-
proved with an OCS approach based on an evolu-
tionary multiobjective (EMO) algorithm [24] con-
sidering diversity measures. In the current work we
integrate FURIA-based fuzzy MCSs within the OCS
strategy. Since there are many optimization criteria
considered for MCS design such as accuracy, com-
plexity, and diversity measures [1, 25, 26, 27], the
use of a EMO algorithm came naturally to our mind.

In this paper, we study the behavior of FURIA-
based fuzzy MCSs with large size ensembles. To
do so, we consider the state-of-the-art NSGA-II al-
gorithm [28] to perform classifier selection. In-

troducing diversity and complexity measures com-
bined with error measures is an interesting ap-
proach, which has led to promising results in the
area [12, 25, 26, 27, 29, 30]. Hence, we have em-
bedded three measures of this kind in the objective
space of the fitness function combining them with
an accuracy index, which resulted in five different
bicriteria fitness functions.

We think that such GFS may lead to high quality
fuzzy MCSs with a good accuracy-complexity trade-
off. To check this assumption, we present experi-
ments on twenty high dimensional datasets from the
UCI machine learning repository.

This paper is set up as follows. In the next sec-
tion, a state of the art about MCSs, fuzzy MCSs, and
MCS selection is presented. Sec. 3 recalls FURIA
and our approach for designing FURIA-based fuzzy
MCSs, while Sec. 4 describes the proposed NSGA-
II for component classifier selection focusing on the
different two-objective fitness functions to be con-
sidered. The experiments developed and their anal-
ysis are shown in Sec. 5. Finally, Sec. 6 collects
some concluding remarks and future research lines.

2. Background and related work

This section explores the current literature related to
the generation of a FRBMCS. The techniques used
to generate MCSs and fuzzy MCSs are described in
Sec. 2.1 and 2.2, respectively. Some ways to reduce
the size of the ensembles are described in Sec. 2.3.
The use of GAs for this purpose is then explored in
Sec. 2.4.

2.1. Related work on MCSs

A MCS is the result of the combination of the out-
puts of a group of individually trained classifiers
in order to get a system that is usually more accu-
rate than any of its single components [1]. These
kinds of methods have gained a large acceptance in
the machine learning community during the last two
decades due to their high performance. Decision
trees are the most common classifier structure con-
sidered and much work has been done in the topic
[31, 32], although they can be used with any other
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type of classifiers (the use of neural networks is also
very extended, see for example [33]).

There are different ways to design a classifier en-
semble. On the one hand, there is a classical group
of approaches considering data resampling to ob-
tain different training sets to derive each individual
classifier. In bagging [34], they are independently
learnt from resampled training sets (“bags”), which
are randomly selected with replacement from the
original training data set. Boosting methods [35] se-
quentially generate the individual classifiers (weak
learners) by selecting the training set for each of
them based on the performance of the previous clas-
sifier(s) in the series. Opposed to bagging, the re-
sampling process gives a higher selection probabil-
ity to the incorrectly predicted examples by the pre-
vious classifiers.

On the other hand, a second group can be found
comprised by a more diverse set of approaches
which induct the individual classifier diversity using
some ways different from resampling [36]. Feature
selection plays a key role in many of them where
each classifier is derived by considering a different
subset of the original features [27, 37]. Random sub-
space [20], where each feature subset is randomly
generated, is one of the most representative methods
of this kind.

Finally, there are some advanced proposals that
can be considered as combinations of the two
groups, such as random forests [38].

The interested reader is referred to [32, 33] for
two reviews for the case of decision tree (both) and
neural network ensembles (the latter), including ex-
haustive experimental studies.

2.2. Previous Work on Fuzzy MCSs

Focusing on fuzzy MCSs, the use of boosting for
the design of fuzzy classifier ensembles has been
considered in some works [2, 3, 39, 40]. However,
only a few contributions for bagging fuzzy clas-
sifiers have been proposed considering fuzzy neu-
ral networks (together with feature selection) [41],
neuro-fuzzy systems [5], and fuzzy decision trees
[8, 7] as component classifier structures.

Especially worth mentioning is the contribution
[8]. This approach hybridizes Breimann’s idea of

random forests [38] with fuzzy decision trees [42].
Such resulting fuzzy random forest combines char-
acteristics of MCSs with randomness and fuzzy
logic in order to obtain a high quality system joining
robustness, diversity, and flexibility to not only deal
with traditional classification problems but also with
imperfect and noisy datasets. The results show that
this approach obtains good performance in terms of
accuracy for all the latter problem kinds.

Some advanced GFS-based contributions should
also be remarked. On the one hand, an FRBCS en-
semble design technique is proposed in [43] con-
sidering some niching GA-based feature selection
methods to generate the diverse component classi-
fiers, and another GA for classifier fusion by learn-
ing the combination weights. On the other hand,
another interval and fuzzy rule-based ensemble de-
sign method using a single- and multiobjective ge-
netic selection process is introduced in [44, 6]. In
this case, the coding scheme allows an initial set
of either interval or fuzzy rules, considering the use
of different features in their antecedents, to be dis-
tributed among different component classifiers try-
ing to make them as diverse as possible by means
of two accuracy and one entropy measures. Besides,
the same authors presented a previous proposal in
[45], where an EMO algorithm generated a Pareto
set of FRBCSs with different accuracy-complexity
tradeoffs to be combined into an ensemble.

2.3. Determination of the Optimal Set of
Component Classifiers in the MCS

Typically, an ensemble of classifiers is post-
processed in such a way only a subset of them are
kept for the final decision. It is a well known fact
that the size of this MCS is an important issue for its
tradeoff between accuracy and complexity [32, 33]
and that most of the error reduction occurs with the
first few additional classifiers [34, 33]. Furthermore,
the selection process also participates in the elimina-
tion of the duplicates or the poor-performing classi-
fiers.

While in the first studies on MCSs a very small
number (around ten) of component classifiers was
considered as appropriate to sufficiently reduce the
test set prediction error, later research on boosting
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(that also holds for bagging) suggested that error can
be significantly reduced by largely exceeding this
number [46]. This has caused the use of very large
ensemble sizes (for example comprised by 1,000 in-
dividual classifiers) in the last few years [32].

Hence, the determination of the optimal size of
the ensemble is an important issue for obtaining both
the best possible accuracy in the test data set without
overfitting it, and a good accuracy-complexity trade-
off. In pure bagging and boosting approaches, the
optimal ensembles are directly composed of all the
individual classifiers generated until a specific stop-
ping point, which is determined according to dif-
ferent means (validation data set errors, likelihood,
...). For example, in [32] it is proposed an heuristic
method to determine the optimal number guided by
the out-of-bag error.

However, there is the chance that the optimal en-
semble is not comprised by all the component clas-
sifiers first generated but on a subset of them carry-
ing a larger degree of disagreement/diversity. This is
why different classifier selection methods [47] have
been proposed. GAs have been commonly used for
this task as we will show in the following subsection.

2.4. Related work on genetic selection of MCSs

In general, the selection of a subset of classifiers is
done using the OCS strategy [13, 30], in which a
large set of classifiers is produced and then selected
to extract the best performing subset. GAs are a
popular technique within this strategy. In the liter-
ature, performance, complexity and diversity mea-
sures are usually considered as search criteria. Com-
plexity measures are employed to simplify the sys-
tem, whereas diversity measures are used to avoid
overfitting. The reader is referred to [10] for a re-
view on these genetic MCS selection approaches.

Among the different genetic OCS methods, we
can remark these most related to the current pro-
posal. On the one hand, we find EMO-based ap-
proaches such as that in [48], a hierarchical multiob-
jective GA algorithm, performing feature selection
at the first level and classifier selection at the sec-
ond level, is presented which outperforms classical
methods for two handwritten recognition problems.
The multiobjective GA allows both performance and

diversity to be considered for MCS selection. An-
other EMO proposal for classifier selection is pre-
sented in [29]. In that contribution, a comparison of
a single-objective GA and the NSGA-II EMO algo-
rithm for 14 different objective functions of the men-
tioned three families of criteria (12 diversity mea-
sures, the training error, and the number of classi-
fiers as a complexity measure). The authors applied
their study on only one dataset, a digit handwritten
recognition problem with 10 classes and 118,735 in-
stances. They concluded saying that the training er-
ror is the best criterion for a single GA and a combi-
nation of training error and one diversity measure is
the best criterion for an EMO algorithm, which sup-
ports the developments in the current contribution
(see Sec. 6). On the other hand, in [26] a genetic
classifier selection method was considered based on
a single performance index, either the diversity, in-
cluding 16 different measures, or the ensemble er-
ror. The best results were obtained with the accuracy
measure and a specific kind of diversity measures
correlated with the error.

3. Bagging FURIA-based fuzzy MCSs

In this section we will detail how the FURIA fuzzy
MCSs are designed [17]. A normalized dataset is
split into two parts, a training set and a test set.
The training set is submitted to an instance selec-
tion and a feature selection procedures in order to
provide individual training sets (the so-called bags)
to train FURIA classifiers. After the training, we get
an initial FURIA-based fuzzy MCS, which is vali-
dated using the training and the test errors, as well
as a measure of complexity based on the total num-
ber of component classifiers obtained from FURIA.
The whole procedure is graphically presented in Fig.
1. FURIA is reviewed in Sec. 3.1, while the instance
selection procedure is described in Sec. 3.2.

3.1. FURIA

Fuzzy Unordered Rules Induction Algorithm (FU-
RIA) [18, 19] is an extension of the state-of-the-art
rule learning algorithm called RIPPER [49], having
its advantages such like simple and comprehensible
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Figure 1: Our framework: after the instance and the feature selection procedures, the component classifiers
are derived by the FURIA learning method. Finally, the output is obtained using a voting-based combination
method.

fuzzy rule base, fast rule induction based on the de-
cision tree approach (it incorporates rule growing
and rule pruning leading to an internal feature se-
lection), and introducing new features. FURIA pro-
vides three different extensions of RIPPER:

• It takes an advantage of fuzzy rules instead of
crisp ones. Fuzzy rules of FURIA are composed
of a class C j and a certainty degree CD j in the
consequent. The final form of a rule is the follow-
ing:

Rule R j : If x1 is A j1 and . . . and xn is A jn

then Class C j with CD j; j = 1,2, ...,N.

The certainty degree of a given example x is de-
fined as follows:

CD j =
2 D

Cj
T

DT
+∑

x∈D
Cj
T

µ
C j
r (x)

2+∑x∈DT µ
C j
r (x)

(1)

where DT and DC j
T stands for the training set and

a subset of the training set belonging to the class
C j respectively. In this approach, each fuzzy rule
makes a vote for its consequent class. The vote
strength of the rule is calculated as the product of
the firing degree µ

C j
r (x) and the certainty degree

CD j. Hence, the fuzzy reasoning method used is
the so-called voting-based method [50, 51].

• It uses unordered rule sets instead of rule lists.
This change ommits a bias caused by the default
class rule, which is applied whenever there is an
uncovered example detected.

• It proposes a novel rule stretching method in order
to manage uncovered examples. The unordered
rule set introduces one crucial drawback, there
might appear a case when a given example is not
covered. Then, to deal with such situation, one
rule is generalized by removing its antecedents.
The information measure is proposed to verify
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which rule to ”stretch”.

The interested reader is referred to [18] for a full de-
scription of FURIA.

3.2. FURIA-based fuzzy MCS design approaches

In our previous contribution [17] we conducted com-
prehensive experiments considering FURIA-based
fuzzy MCSs. Since in [52] it was shown that a com-
bination between bagging and feature selection usu-
ally leads to good MCS designs, we decided to fol-
low that idea and we integrated FURIA into a frame-
work of that kind. We aimed to combine the diver-
sity induced by the MCS algorithms and the robust-
ness of the FURIA method in order to design good
performance fuzzy MCS for high dimensional prob-
lems. By doing so, we wanted to obtain FURIA-
based fuzzy MCSs with a good accuracy-complexity
tradeoff. We also tried a combination of FURIA
with bagging and feature selection separately.

Three different feature selection methods, ran-
dom subspace [20], mutual information-based fea-
ture selection (MIFS) [21], and the random-greedy
feature selection based on MIFS and the GRASP ap-
proach [22], were considered. For each feature se-
lection algorithm three different feature subsets of
different sizes, which were based on the initial num-
ber of features in the classification problem, were
tested. Finally, our experiments showed that out of
the three following MCS methodologies, that is bag-
ging, feature selection, and bagging with feature se-
lection, the former (see Fig. 1) obtained the best per-
formance when combined with FURIA-based FR-
BCSs.

Thus, in this contribution we are applying di-
rectly a bagging approach considering entire fea-
ture set in order to generate the initial FURIA-based
fuzzy MCSs, which will be later selected by the
EMO algorithm. Considering this approach, the
bags are generated with the same size as the origi-
nal training set, as commonly done.

Finally, no weights are considered to combine
the outputs of the component classifiers to take the
final MCS decision, but a pure voting combination
method is applied: the ensemble class prediction

will directly be the most voted class in the compo-
nent classifiers output set.

4. EMO-based MCS selection method

The second stage of our methodology is to con-
sider the OCS strategy. Our aim is to obtain a good
accuracy-complexity tradeoff in the FURIA-based
fuzzy MCSs when dealing with high dimensional
problems. That is, we aim to obtain fuzzy MCS
with a low number of base classifiers, which keep
a good accuracy. Thus, we have selected the state-
of-the-art NSGA-II EMO algorithm in order to gen-
erate good quality Pareto set approximations. Five
different biobjective fitness functions combining the
three existing kinds of optimization criteria (accu-
racy, complexity, and diversity) are proposed in or-
der to study the best setting. In a previous publica-
tion [53] we showed that the use of the out-of-bag
error [38] to select the final ensemble by GA does
not bring performance improvement when compar-
ing with the use of the entire training set for both
stages. Consequently, in this work we apply the lat-
ter approach. Fig. 2 shows the final structure of the
FURIA-based fuzzy MCS design methodology in-
cluding the OCS stage. The two subsections below
presents briefly the algorithm operation mode and its
main components.

4.1. Components of NSGA-II

NSGA-II [28] is based on a Pareto dominance depth
approach, where the population is divided into sev-
eral fronts and the depth of each front shows to
which front an individual belongs to. A pseudo-
dominance rank being assigned to each individual,
which is equal to the front number, is a metric used
for the selection of an individual.

We have used a standard binary coding in such
a way that a binary digit/value/gene is assigned to
each classifier. Then, when the variable takes value
1, it means that the current component classifier be-
longs to the final ensemble, while when the variable
is equal to 0, that classifier is discarded. This ap-
proach provides a low operation cost, which leads to
the high speed of the algorithm.
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Figure 2: Our framework: after the instance and the feature selection procedures, the component classifiers are
derived by the FURIA learning method. Finally, the output is obtained using a voting-based method.

We have used a generational approach and elitist
replacement strategy. The initial population is com-
posed of randomly generated individuals, keeping
one of them with the original fuzzy MCS composed
of all the existing classifiers. In each generation, to
introduce a high amount of diversity, a binary tour-
nament is performed. That means that two individ-
uals are randomly picked from the current popula-
tion and the best one is selected. The two winners
are crossed over to obtain a single offspring that di-
rectly substitutes the loser. We have considered the
classical two-point crossover and the simple bit-flip
mutation. Both operators crossover and mutation are
applied with different pre-specified probabilities.

4.2. The four used evaluation criteria for
two-objective NSGA-II

In this subsection we describe all the considered
optimization criteria. We will utilize measures of
three different kinds combined into five different

two-objective fitness functions:

• Accuracy. We use a standard accu-
racy measure, the training error (TE).
TE is computed as follows. Let h1(x), . . . ,hl(x)
be the outputs of the component classifiers
of the selected ensemble E for an input
value x = (x1, . . . ,xn). For a given sample
{(xk,Ck)}k∈{1...m}, the TE of that MCS is:

T E =
1
m
·#{k |Ck 6= arg max

j∈{1...|E|}
h j(xk)} (2)

with |E| being the number of classifiers in the se-
lected ensemble.

• Complexity. The complexity of the ensemble is
directly accounted by the number of classifiers in
the ensemble:

Complx = |E| (3)

• Diversity. It seems that obtaining a high diver-
sity between classifiers is the goal to be reached,
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when aiming to achieve performance improve-
ment of MCSs. In the last few years, a group of
researchers devoted their attention to the diversity
measures [25, 26, 27]. Two measures can be high-
lighted from the large amount of proposals in this
group: the difficulty (θ ) and the double fault (δ ):

1. The difficulty measure θ is computed as fol-
lows. Let X = {i/|E|}i∈{0,...,|E|} and Xk ∈ X
be the proportions of classifiers classifying
correctly the instance xk. Then, θ is:

θ =Var({X1, . . . ,Xk, . . . ,Xm}) (4)

2. The pairwise measure δ for two classifiers
hi and h j shows the following expression:

δi, j =
N00

i j

m
(5)

with N00
i j being the number of examples mis-

classified by both hi and h j. The global value
of the measure for the whole selected ensem-
ble is computed as:

δavg =
2

L(L−1)

L−1

∑
i=1

L

∑
j=i+1

δi, j (6)

with L= |E| being the number of component
classifiers in the ensemble.

From these four criteria we have formed five dif-
ferent two-objective fitness functions. A first option
is a standard combination of TE with Complx (from
now on called fitness function 2a).

In addition, the use of biobjective functions
based on diversity measures is justified by previous
findings in the specialized literature. Diversity mea-
sures have been deeply studied in [25, 26, 27, 29,
30]. The relationship between diversity measures
and accuracy is not clear. In [25], it was shown
how the ensemble accuracy and diversity is not as
strongly correlated as it could be expected. The au-
thors concluded that accuracy estimation can not be
substituted by diversity during the MCS design pro-
cess. These results were confirmed in [26] in our
same framework, classifier selection. In the experi-
mental study developed, the authors drew the con-
clusion that the use of a single-objective function

based on a diversity measure does not outperform
the direct use of an error rate. Hence, the combined
action of both kinds of measures can lead to a better
fuzzy MCS performance in our case. In particular,
we combined accuracy measures with the said two
diversity measures in [12], obtaining promising re-
sults. Hence, in this contribution we will use the
combination of TE with θ and δ (fitness functions
2b and 2c respectively) in the current contribution,
as in our opinion this may lead to an accuracy im-
provement, when keeping a low number of classi-
fiers.

Finally, we would like to put more stress on the
complexity aspect as proposed in [29, 30], so we
join diversity measures with complexity into the two
remaining two-objective fitness functions (2d and
2e). By doing so we would like to obtain simple
ensembles still having high quality in terms of per-
formance.

Table 1 summarizes the composition of the five
biobjective fitness functions proposed.

Table 1. The five fitness function proposed.

abbreviation 1st obj. 2nd obj.
2a TE Complx
2b TE θ

2c TE δ

2d θ Complx
2e δ Complx

5. Experiments and analysis of results

This section reports all the experiments per-
formed. Firstly, we introduce the experimental setup
(Sec. 5.1). Then, in Sec. 5.2 the performance of
NSGA-II with the considered five two-objective fit-
ness functions when tackling the classifier selection
tasks for FURIA-based fuzzy MCSs is analyzed.
Two multiobjective metrics, one unary and one bi-
nary [24, 54], are considered to do so. We also show
graphs of the obtained Pareto front approximations.
Furthermore, we study some representative individ-
ual solutions selected from the obtained Pareto sets
in Sec. 5.3. Finally, we compare the best single
values obtained against the result from the previ-
ous stage, that is FURIA-based fuzzy MCSs with
bagging not considering classifier selection, as well
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as against two state-of-the-art algorithms, random
forests [38] and bagging C4.5 MCSs [55], in Sec.
5.4.

5.1. Experimental setup

To evaluate the performance of the generated
FURIA-based fuzzy MCSs, we have selected 20
datasets with different characteristics concerning the
number of examples, features, and classes from
the UCI machine learning repository (see Table 2).
In order to compare the accuracy of the consid-
ered classifiers, we used Dietterichs 5×2-fold cross-
validation (5×2-cv), which is considered to be supe-
rior to paired k-fold cross validation in classification
problems [56].

Table 2. Data sets considered
Data set #examples #attr. #classes

abalone 4178 7 28
breast 700 9 2
glass 214 9 7
heart 270 13 2

ionosphere 352 34 2
magic 19020 10 2

optdigits 5620 64 10
pblocks 5474 10 5

pendigits 10992 16 10
phoneme 5404 5 2

pima 768 8 2
sat 6436 36 6

segment 2310 19 7
sonar 208 60 2

spambase 4602 57 2
texture 5500 40 11

waveform 5000 40 3
wine 178 13 3

vehicle 846 18 4
yeast 1484 8 10

The FURIA-based fuzzy MCSs generated are
initially comprised by 50 classifiers. NSGA-II for
the component classifier selection works with a pop-
ulation of 50 individuals and runs during 1000 gen-
erations. The crossover probability considered is 0.6
and the mutation probability is 0.1. A different run
is developed with each of the five fitness function
variants for each initial fuzzy MCS, thus resulting
in 10 different runs per dataset as a consequence of
the 5×2-cv cross validation procedure. All the ex-
periments have been run in a cluster at the Univer-
sity of Granada, Spain, on Intel quadri-core Pentium
2.4 GHz nodes with 2 GBytes of memory, under the
Linux operating system.

To compare the Pareto front approximations of
the global learning objectives (i.e. MCS test accu-
racy and complexity) we consider the two of usual
kinds of multiobjective metrics [24, 54]. The first
group measures the quality of a single nondominated
solution set returned by a multiobjective algorithm,
while the second group compares the performance
of two different multiobjective algorithms. We have
selected one metric for each group, hypervolume ra-
tio (HVR) [24] and C-measure [54], respectively.

An useful unary metric to compare Pareto sets
is the S metric, proposed by Zitzler [54], and called
hypervolume. It measures the volume enclosed by
the Pareto front Y ′. When there are only two objec-
tives, S(Y ′) measures the area covered by the Pareto
front by adding the areas covered by each individual
nondominated point. In the case of a minimization
problem, as ours, there is a need to define a refer-
ence point. Nevertheless, the relative value of the S
metric usually depends upon an arbitrary choice of
this point, getting unexpected metric values if it is
not correctly fixed [57]. Besides, when the dimen-
sion of the objectives is large, it is interesting to nor-
malise them. Alternatively, the hypervolume ratio
(HV R) [24] can be considered to avoid these draw-
backs. HV R is a very powerful metric, as it both
measures diversity and closeness. The HV R can be
simply calculated as follows:

HV R =
H1

H2
(7)

where H1 and H2 are the volume (S metric value) of
the Pareto front approximation and the true Pareto
front, respectively. When HV R equals 1, then the
Pareto front approximation and the true one are
equal. Thus, HV R values lower than 1 indicate a
generated Pareto front that is not as good as the true
Pareto front. In our case, as the truen Pareto fronts
are not known, we will consider an approximation (a
pseudo-optimal Pareto front) obtained by fusing all
the (approximate) Pareto fronts generated for each
problem instance by any algorithm variant in any
run.

As binary metric we will use the coverage, pro-
posed by Zitzler et al. in [54], which compares a pair
of non-dominated sets by computing the fraction of
each set that is covered by the other:
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C(X ′,X ′′) =
|{∀a′′ ∈ X ′′ ; ∃a′ ∈ X ′ : a′ ≺ a′′}|

|X ′′|
(8)

where a′ ≺ a′′ indicates that the solution a′ domi-
nates the solution a′′ in a minimization problem and
Y ′,Y ⊆Y are the sets of objective vectors that corre-
spond to X ′ and X (non-dominated decision vectors),
respectively.

Hence, the value C(X ′,X ′′) = 1 means that all the
solutions in X ′′ are dominated by or equal to solu-
tions in X ′. The opposite, C(X ′,X ′′) = 0, represents
the situation where none of the solutions in X ′′ are
covered by the set X ′. Note that both C(X ′,X ′′) and
C(X ′′,X ′) have to be considered, since C(X ′,X ′′) is
not necessarily equal to 1−C(X ′′,X ′).

Let us call P j
i the non-dominated solution set

returned by NSGA-II using the variant of fitness
function i in the j-th run for a specific problem in-
stance; Pi = P1

i
⋃

P2
i
⋃
. . .

⋃
P10

i , the union of the so-
lution sets returned by the ten runs obtained from
5x2cv of algorithm i, and finally Pi the set of all
non-dominated solutions in the Pi set∗(aggregated
Pareto fronts). As a complement to the analysis
of the results obtained in the two different multiob-
jective metrics, we will provide graphical represen-
tations of some of those aggregated Pareto fronts.
When graphically represented, these graphics offers
a visual information, not measurable, but sometimes
more useful than numeric values.

5.2. Analysis and comparison of the obtained
Pareto front approximations

This section is devoted to analyze the performance
of the proposed NSGA-II-based approach to classi-
fier selection in FURIA-based fuzzy MCS. First, the
quality of the obtained Pareto front approximations
considering the five fitness functions defined in Sec.
4.2 will be studied in Sec. 5.2.1. Then, a global com-
parison among the five methods is made by analyz-
ing their performance on the satisfaction of the two
final learning problem goals, the test accuracy and
the complexity of the obtained fuzzy MCSs.

On the one hand, regarding the former analy-
sis we draw a table with the minimum, maximum,
mean, and standard deviation values obtained for
each objective in the Pareto set derived for each of
the five fitness functions considered. On the other
hand, to compare the Pareto front approximations of
the global objectives we consider a table with the
same structure as above as well as statistics related
to the selected multiobjective metrics, HVR and C.
We also plot some of the aggregated Pareto front ap-
proximations in order to have a taste of their trends,
as drawing all of them would not be feasible.

5.2.1. Analysis of the original Pareto front
approximations

As the five two-objective fitness functions consid-
ered handle three different types of measures: accu-
racy, complexity, and diversity, its direct comparison
is practically impossible. Instead, in order to give a
flavor of the Pareto fronts obtained, we present their
characteristic values. We first gather them for all of
the folds out of 5x2cv and average them. We show
the statistics for each dataset in a different row in
Tables 3 to 5. For each fitness function we show
the cardinality of the Pareto set (called Car.) and
for each objective we present the minimum (called
Min.), maximum (called Max.), mean (called Avg.),
and standard deviation (called Dev.) of the averaged
5x2cv values. Let us recall the objectives of the all
fitness functions. Function 2a is composed of train-
ing error and complexity, while 2b and 2c combine
training error and the diversity measures, variance
and double fault, respectively. Finally, 2d and 2e as-
semble complexity with variance and double fault,
respectively. Furthermore, we show a visual repre-
sentation of the aggregated Pareto front approxima-
tions for one selected dataset. Figures 3 to 5 rep-
resent a visualization of the fronts obtained for the
abalone dataset by the five fitness functions.

A first very important conclusion is that, while
the first three fitness function variants, 2a, 2b, and
2c, work properly as they allow the multiobjective
genetic classifier selection method to derive a signif-

∗Notice that the pseudo-optimal Pareto front is the fusion of the Pi sets generated by every variant of the fitness function in all runs
developed.
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icant number of solutions in the Pareto set approx-
imations (cardinal), the other two, 2d and 2e, show
a deceptive behavior. On the one hand, function 2d
provided a single solution in 10 out of 20 cases and
1.1 solutions in another 5 out of 20 cases. On the
other hand, although function 2e allows us to ob-
tain many different solutions in the solution space
(Pareto set), all of them correspond to exactly the
same objective values (Pareto front). Thus, the latter
two fitness functions are not adequate for generating
diverse Pareto front approximations.

It can be noticed that the ranges of the objectives
vary depending on the dataset given. The training
error, which is the first objective of 2a, 2b, and 2c,
converges to 0 for several datasets, while growing
up to 0.605 overall. The complexity, which is the
second objective of 2a, 2d, and 2e lays in the range
between 2 and 21, thus showing significant reduc-
tion obtained by the multiobjective genetic compo-
nent classifier selection method (recall that the orig-
inal number of classifiers is 50). Besides, the vari-
ance, being the second objective of 2b and the first
of 2d, obtains a minimum value equal to 0 and grows
up to 1.202. The double fault, which is the second
objective of 2c and the first of 2e, lays in the range
between 0 and 4.722. In addition, the standard devi-
ation values of the training error vary for each fitness
function, 2a, 2b, and 2c variants, depending on the
dataset and it is hard to point the one being the most
stable. On the other hand, considering the standard
deviation of complexity, the lowest values are ob-
tained by both 2d and 2e variants, thus showing the
already mentioned deceptive behavior. The same re-
sults were obtained for diversity measures.

The combination of double fault and complexity
seems to be a special case to be considered. It is
a deceptive measure because either the two objec-
tives are not conflicting or there is a specific limit
condition where an optimal tradeoff is obtained. For
all the datasets, a single optimum of the biobjective
function was generated where complexity obtained
value 2 and double fault took value 0. Such pair of
values could be reasonable, since double fault is a
pair-wise metric and in general tends to small en-
semble sizes, the same as complexity. Nevertheless,
it clearly shows this biobjective fitness function def-

inition is not appropriate for the considered learning
task.

A similar case is the 2d variant combining vari-
ance with complexity, as for almost all datasets, 19
ouf of 20, it obtained complexity equal to 2. Be-
sides, apart from two datasets, abalone and optdigits,
it obtained cardinality equal or close to 1, as already
mentioned.

5.2.2. Performance analysis of the five variants in
the two global learning objectives

Since the individual objectives of the Pareto front
approximations presented in the previous subsection
are not comparable, we have considered two com-
mon objectives, namely test error and complexity,
in order to compare the results obtained by the five
fitness functions proposed. Notice that, these are
the actual learning goals that will be considered by
the designer in order to choose the final fuzzy MCS
structure.

The characteristic values of the Pareto front ap-
proximations of the two global learning goals are
presented in Tables 6 and 7. The structure of these
tables is similar to the ones in the previous subsec-
tion. The results are gathered for all of the folds out
of 5x2cv and averaged. We show the statistics for
each dataset and each fitness function in a different
row. For each fitness function we show cardinality
(called Car.) and for each objective we present min-
imum (called Min.), maximum (called Max.), mean
(called Avg.), and standard deviation (called Dev.) of
the averaged 5x2cv values.

In general, the highest cardinality is obtained by
the 2e variant, which combines double fault and
complexity objectives. However, we have consid-
ered it as a deceptive fitness function in the previous
subsection. On the other hand, the 2d variant, which
is composed of variance and complexity objectives,
almost always provides cardinality equal to 1 and
was also categorized as deceptive. Thus, both vari-
ants are tricky and do not constitute good approach
to provide high quality Pareto front approximations.

The other variants, 2a, 2b, and 2c, combining
training error with complexity, variance, and double
fault, respectively, seem to be performing well.
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Table 3: Statistics of the Pareto front approximations with the original objectives.
2a 2b

Obj. 1 - TE Obj. 2 - Complx Obj. 1 - TE Obj. 2 - θ

Car. Min. Max. Avg. Dev. Min. Max. Avg. Dev. Car. Min. Max. Avg. Dev. Min. Max. Avg. Dev.
abalone 14.5 0.505 0.605 0.532 0.029 2.000 17.700 8.821 4.757 58.6 0.509 0.599 0.546 0.025 0.113 0.128 0.119 0.004
breast 7.0 0.000 0.007 0.002 0.003 2.000 3.000 2.701 0.458 6.3 0.000 0.009 0.005 0.004 0.009 0.038 0.025 0.011
glass 8.9 0.004 0.113 0.034 0.036 2.000 6.800 4.395 1.631 11.1 0.007 0.113 0.060 0.036 0.100 0.410 0.258 0.087
heart 8.8 0.001 0.050 0.018 0.020 2.000 4.500 3.372 0.972 9.5 0.001 0.057 0.029 0.019 0.053 0.230 0.143 0.055

ionosphere 6.8 0.003 0.008 0.005 0.002 2.000 2.800 2.504 0.374 5.2 0.003 0.027 0.015 0.010 0.026 0.083 0.054 0.024
magic 4.3 0.097 0.113 0.102 0.008 2.000 6.600 4.250 2.024 11.1 0.098 0.107 0.102 0.003 0.096 0.189 0.152 0.026

optdigits 142.0 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000 196.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
pblocks 8.2 0.006 0.016 0.009 0.003 2.000 11.200 6.018 3.295 15.8 0.007 0.015 0.010 0.003 0.015 0.055 0.035 0.011

pendigits 17.2 0.000 0.010 0.002 0.002 2.000 9.300 5.839 2.169 22.7 0.000 0.011 0.004 0.003 0.011 0.082 0.040 0.017
phoneme 7.8 0.058 0.086 0.065 0.010 2.000 9.800 5.990 2.864 14.9 0.059 0.083 0.068 0.008 0.076 0.226 0.163 0.039

pima 10.6 0.022 0.084 0.044 0.021 2.000 10.200 5.568 2.875 19.3 0.024 0.100 0.057 0.023 0.090 0.382 0.239 0.074
sat 13.2 0.010 0.049 0.019 0.011 2.000 16.600 8.013 4.646 38.0 0.011 0.049 0.023 0.010 0.047 0.235 0.148 0.044

segment 14.2 0.000 0.012 0.003 0.004 2.000 6.600 4.782 1.534 12.8 0.000 0.015 0.007 0.005 0.014 0.070 0.041 0.017
sonar 7.9 0.000 0.037 0.011 0.016 2.000 3.300 2.853 0.565 7.5 0.000 0.062 0.029 0.023 0.058 0.220 0.148 0.058

spambase 7.8 0.015 0.033 0.020 0.007 2.000 9.400 5.141 2.703 17.3 0.015 0.029 0.020 0.004 0.029 0.122 0.078 0.024
texture 18.3 0.000 0.020 0.003 0.005 2.000 8.000 5.641 1.867 22.3 0.000 0.021 0.006 0.006 0.020 0.127 0.071 0.025
vehicle 17.0 0.002 0.099 0.023 0.026 2.000 13.400 7.669 3.536 24.9 0.003 0.104 0.043 0.029 0.093 0.421 0.277 0.083

waveform 22.8 0.001 0.059 0.011 0.014 2.000 21.000 10.311 5.517 53.3 0.002 0.067 0.021 0.016 0.062 0.411 0.232 0.081
wine 5.3 0.000 0.001 0.000 0.001 2.000 2.100 2.069 0.048 4.6 0.000 0.006 0.004 0.003 0.006 0.020 0.011 0.008
yeast 9.9 0.156 0.250 0.182 0.029 2.000 11.100 5.950 2.956 28.1 0.158 0.254 0.199 0.029 0.189 0.402 0.324 0.051

Table 4: Statistics of the Pareto front approximations with the original objectives.
2c 2d

Obj. 1 - TE Obj. 2 - δ Obj. 1 - θ Obj. 2 - Complx
Car. Min. Max. Avg. Dev. Min. Max. Avg. Dev. Car. Min. Max. Avg. Dev. Min. Max. Avg. Dev.

abalone 29.3 0.506 0.622 0.538 0.030 0.428 0.460 0.448 0.008 8.3 0.113 0.151 0.122 0.013 2.000 9.400 5.664 2.561
breast 6.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.3 0.018 0.018 0.018 0.000 2.000 2.000 2.000 0.000
glass 8.3 0.005 0.162 0.054 0.058 0.009 0.038 0.025 0.010 1.1 0.158 0.158 0.158 0.000 2.000 2.000 2.000 0.000
heart 6.8 0.000 0.064 0.019 0.024 0.000 0.009 0.005 0.003 1.1 0.093 0.093 0.093 0.000 2.000 2.000 2.000 0.000

ionosphere 57.9 0.004 0.004 0.004 0.000 0.000 0.000 0.000 0.000 1.2 0.045 0.045 0.045 0.000 2.000 2.000 2.000 0.000
magic 8.1 0.097 0.115 0.102 0.007 0.067 0.072 0.070 0.002 1.0 0.124 0.124 0.124 0.000 2.000 2.000 2.000 0.000

optdigits 196.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 145.7 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
pblocks 10.8 0.006 0.020 0.010 0.005 0.004 0.007 0.006 0.001 1.0 0.022 0.022 0.022 0.000 2.000 2.000 2.000 0.000

pendigits 83.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.0 0.020 0.020 0.020 0.000 2.000 2.000 2.000 0.000
phoneme 10.0 0.058 0.097 0.068 0.013 0.035 0.044 0.040 0.003 1.0 0.114 0.114 0.114 0.000 2.000 2.000 2.000 0.000

pima 11.7 0.021 0.103 0.046 0.026 0.018 0.037 0.029 0.006 1.0 0.145 0.145 0.145 0.000 2.000 2.000 2.000 0.000
sat 2.8 0.010 0.010 0.010 0.000 0.000 1.031 0.323 0.530 1.0 0.079 0.079 0.079 0.000 2.000 2.000 2.000 0.000

segment 69.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.1 0.024 0.024 0.024 0.000 2.000 2.000 2.000 0.000
sonar 4.5 0.000 0.011 0.003 0.003 0.000 0.001 0.001 0.000 1.1 0.101 0.101 0.101 0.000 2.000 2.000 2.000 0.000

spambase 2.4 0.015 0.015 0.015 0.000 0.000 0.550 0.110 0.246 1.1 0.046 0.046 0.046 0.000 2.000 2.000 2.000 0.000
texture 99.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.0 0.037 0.037 0.037 0.000 2.000 2.000 2.000 0.000
vehicle 15.2 0.002 0.118 0.030 0.031 0.015 0.034 0.027 0.005 1.0 0.155 0.155 0.155 0.000 2.000 2.000 2.000 0.000

waveform 19.3 0.001 0.001 0.001 0.000 0.000 0.643 0.214 0.371 1.0 0.108 0.108 0.108 0.000 2.000 2.000 2.000 0.000
wine 54.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.8 0.010 0.010 0.010 0.000 2.000 2.000 2.000 0.000
yeast 15.5 0.156 0.282 0.188 0.034 0.109 0.134 0.123 0.007 1.0 0.246 0.246 0.246 0.000 2.000 2.000 2.000 0.000

Having an insight to the results, we may empha-
size the 2c variant, as the one having the lowest Avg.
test error value for 10 out of 20 cases (+2 ties). No-
tice that the 2a variant is just slightly worse than the
other two approaches. Considering the complexity,
we may see that the 2e variant obtained the lowest
value in all of the cases, while the 2d variant was
not much worse with 19 out of 20 best values (19
ties with the 2e variant). The 2a and 2b variants ob-
tained only one best result (both ties with the 2d and
2e variants), placing the 2c variant in the last posi-
tion with no best value obtained.

Table 8 presents the results using the HVR met-
ric. Besides, we have used box-plots based on the
C metric that calculates the dominance degree of the
Pareto front approximations of every pair of algo-

rithms (see Fig. 6). Each rectangle contains ten
box-plots representing the distribution of the C val-
ues for a certain ordered pair of fitness functions in
the 20 problem instances (from abalone to yeast in
alphabetical order). Each box refers to algorithm A
in the corresponding row and algorithm B in the cor-
responding column and gives the fraction of B cov-
ered by A (C(A,B)). Consider for instance the top
right boxplots, which represent the fraction of so-
lutions of the 2e variant, considering the joint op-
timization of double fault and complexity, covered
by the non-dominated sets produced by the 2a vari-
ant, composed of the training error and complexity
measures. In each box, the minimum and maximum
values are the lowest and highest lines, the upper
and lower ends of the box are the upper and lower
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Table 5: Statistics of the Pareto front approximations with the original objectives.
2e

Obj. 1 - δ Obj. 2 - Complx
Car. Min. Max. Avg. Dev. Min. Max. Avg. Dev.

abalone 120.5 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
breast 86.1 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
glass 102.3 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
heart 94.5 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000

ionosphere 89.0 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
magic 136.9 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000

optdigits 145.7 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
pblocks 132.5 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000

pendigits 136.7 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
phoneme 137.1 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000

pima 124.6 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
sat 133.8 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000

segment 124.8 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
sonar 99.0 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000

spambase 132.1 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
texture 142.2 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
vehicle 126.9 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000

waveform 135.9 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
wine 73.3 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
yeast 131.4 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000

quartiles, and a thick line within the box shows the
median.

Our analysis of the HVR measure clearly points
out the best performing fitness function for the final
learning goal. The 2b variant, considering the joint
optimization of training error and variance, obtained
the highest value in 18 out of 20 cases. Neverthe-
less, it provided some instability for two remaining
datasets and thus a high standard deviation value.
For abalone and optdigits it obtained the worst val-
ues among the five fitness function designs. Func-
tion 2a, optimizing training error and complexity,
obtained two ties. Even being a deceptive fitness
function, the 2d, which joins variance and complex-
ity as objectives, and 2e variant, which combines
double fault and complexity, obtained one tie as well
as fitness function 2c, jointly optimizing training er-
ror and double fault.

Concerning the average value on the twenty
datasets considered, the order is 2b, 2e, 2a, 2d, 2c. It
is a surprising fact that the two deceptive functions
are not located in the two last positions but are able
to overcome almost all variants for 2e, and one other
variant for 2d. It seems that, although they are not
able to derive a diverse set of solutions, the selected
fuzzy MCSs obtained show a good performance in
the global learning objectives tradeoff curve. Any-
way, from all the latter analysis we may conclude
that the 2b fitness function seems to be the best per-
forming variant.

The analysis of the C-measure (see Fig. 6) high-

lights the 2a and the 2b variants, which clearly out-
perform the other fitness functions, especially the
latter. When comparing these two approaches be-
tween them, the 2b fitness function obtains better re-
sults. Notice that, comparisons with either 2d or 2e
variants provide deceptive results due to the small
number of solutions contained in their Pareto front
approximations.

Hence, considering the information provided by
the two multiobjective metrics we may clearly draw
the conclusion that the 2b fitness function is the best
performing approach.

Finally, in order to complement the latter analy-
sis, the aggregated Pareto fronts will be represented
graphically for three of the datasets: abalone, wave-
form, and magic (see Figs. 7, 8, and 9, respectively)
in order to allow an easy visual comparison of the
performance of the different variants of the fitness
functions. It can be seen how the graphs corrob-
orate the conclusions of the metrics analysis: the
2b fitness function obtained the worst HVR met-
ric value for the abalone dataset, while it obtained
the best performance, which is close to the pseudo-
optimal Pareto front, when looking at the waveform
and magic datasets. Notice how, the 2e variant ob-
tains a single nondominated solution in the three
problems but in all of them this solution is included
in the pseudo-optimal Pareto front, thus justifying
the good values obtained in the HVR and C met-
rics. That is not the case for function 2d whose
small number of nondominated solutions are usually
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far from the pseudo-optimal front. The bad perfor-
mance of the 2c variant is also clearly observed.

5.3. Analysis and comparison of single solutions
selected from the obtained Pareto front
approximations

In this section, we aim to analyze the final perfor-
mance of our proposal by imitating the process a
human designer will develop in order to select a de-
sired FURIA-based fuzzy MCS structure from those
available in the obtained accuracy-complexity non-
dominated fronts.

From each Pareto front approximation we have
selected four different solutions, the one having the
best value in the first objective in the considered fit-
ness function, the one with the best value in the sec-
ond objective in the considered fitness function, the
one with the best tradeoff value, and the one with
the best test error value. The tradeoff solution is se-
lected as follows: we compute 1000 random weights
w1 ∈ [0,1], take the average value of the aggrega-
tion function of both objectives Ob j1 and Ob j2:
(w1 ∗Ob j1 + (1−w1) ∗Ob j2), and select the so-
lution with the highest aggregated value. For each
solution we present the values of three global learn-
ing objectives, Training error (Tra), test error (Tst),
and complexity (Cmpl) in Tables 9 and 10. The av-
erage and standard deviation value for each of four
different solutions in the 20 problems is also pre-
sented in Table 11. We do not show the two diversity
measures values, since that was not the final learn-
ing objective. Note that we used diversity measures
combined with accuracy and complexity measures
in order to improve the accuracy-complexity trade-
off in the obtained FURIA-based fuzzy MCS.

From the results obtained we may draw follow-
ing conclusions:

• The best performance in terms of test accuracy
was obtained by the 2c variant. It outperforms
the other approaches in 6 out of 20 cases (+7 ties)
and also obtains the best average value. The 2b
approach was one step behind obtaining 5 best re-
sults (+6 ties) and the second best average value.
Of course, the 2d and 2e variants obtained the

worst results, since they directly do not include
accuracy in the objective space.

• Considering the complexity criterion the best re-
sults were obtained by 2a, 2d, and 2e variants. For
all datasets they obtained the lowest number of
classifiers equal to 2 and the lowest average value.
Note that we discard 2b as the best value, which
obtained number of classifiers equal to 1 15 times,
since it is not considered as a MCS, but as a single
classifier.

• It is rather hard to point a single approach finding
the best accuracy-complexity tradeoff. The 2d and
2e approaches should be rather discarded, since
for all of the solutions out of all datasets they pro-
vided the same complexity (equal to 2). Although
the 2c fitness function provided the best averaged
test accuracy, it should also be skipped, as this
good performance is obtained at the cost of the
highest complexity, with a very significant differ-
ence. Thus, the two left fitness functions are 2a
and 2b. The first one provides rather lower com-
plexity on average, whereas the latter one obtains
better averaged accuracy with a slightly higher
complexity. Furthermore, it seems that 2b verifies
the assumption in the MCS community that clas-
sifiers composing an ensemble must be accurate
and diverse (commit errors on different patterns)
in order to perform well.

To conclude, let us try to have an insight into
the influence of the relation between the two ob-
jectives and the final success in the learning prob-
lem. Combination of diversity measures with com-
plexity tends to produce small ensemble sizes. The
two fitness functions obtained ensembles composed
of only two classifiers. Consequently, these ensem-
bles do not have a high quality, they obtained rather
low accuracy. Combination of the training error with
complexity seems to be a good way to look for the
good balance between performance and the number
of classifiers in the ensemble. However, it seems to
overfit quite often. Our last proposal was a combi-
nation of training error with two diversity measures.
Such two fitness functions, 2b and 2c, lead to fi-
nally selected high quality ensembles with a good
accuracy-complexity tradeoff, as the ensembles are
kept quite small in most of the cases. Thus, we may
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conclude that the combination of training error and
diversity measures for genetic classifier selection in
FURIA-based fuzzy classifiers leads to the obtaining
good results and is a promising approach. Never-
theless, this is a quite subjective and user-dependent
decision.

5.4. Comparison between EMO-selected and
non-selected FURIA-based fuzzy MCSs

This subsection presents a final benchmarking of the
performance of NSGA-II combined with FURIA-
based fuzzy MCSs. The aim of this work is to
propose an advanced OCS framework, embedding
NSGA-II with five different two-objective fitness
function designs into FURIA-based fuzzy MCS. By
doing so, we would like to obtain a good accuracy-
complexity tradeoff. We present a comparison be-
tween the best results obtained from the geneti-
cally selected FURIA-based fuzzy MCSs, against
these ensembles obtained with a fixed ensemble
size. FURIA-based fuzzy MCSs are comprised by
7 or 10 classifiers, the small ensemble sizes pro-
viding the best results in our previous contribution
[17], and with 50 classifiers, the original structure of
the EMO-selected fuzzy MCSs in the previous sec-
tions. We also compare it with two state-of-the-art
algorithms, random forests [38] and bagging C4.5
MCSs [55], comprised by 7 or 10 classifiers. These
sizes are the best choices for these two state-of-the-
art algorithms from the ones with the fixed, small
ensembles size proposed in [17].

Table 12 presents test errors for all the datasets.
It may be clearly seen that our new approach ob-
tained the best performance overall. It outperformed
the others in 18 out of 20 cases (+1 tie). Considering
complexity, EMO-selected fuzzy MCSs keep a rea-
sonably low number of classifiers, obtaining value
2 (3 times) in the best case and value 26 (for the
optdigits dataset) in the worst case. Comparing to
the original small ensemble sizes it is enough to in-
crease the amount of classifier up to 2.5 times in
the worst case in order to obtain good performance.
Notice that in 11 out of 20 cases the EMO-selected
fuzzy MCSs obtained the lowest complexity of the
five MCS design variants considered. Thus, we may
draw the conclusion that NSGA-II combined with

FURIA-based fuzzy MCSs is a good approach to
obtain high quality, well performing ensembles with
a good accuracy-complexity tradeoff, when dealing
with high dimensional datasets.

6. Conclusions and future works

In this study, we extended our previously developed
methodology in which a bagging approach together
with a feature selection technique were used to train
Fuzzy Unordered Rules Induction Algorithm (FU-
RIA) in order to obtain a Fuzzy MCS, at a later
stage selected by an EMO-based algorithm NSGA-
II. Five biobjective fitness functions were tested. We
considered three optimization criteria such as accu-
racy, complexity, and diversity. Thereby, we have
embedded training error, complexity, and two diver-
sity measures in the objective space of the fitness
function, which resulted in five different bicriteria
fitness functions. By using the said techniques, we
aimed to obtain FURIA-based fuzzy MCSs properly
dealing with high dimensional data.

We have conducted comprehensive experiments
over 20 datasets taken from the UCI machine learn-
ing repository. It turned out that the two fitness func-
tions combining training error with diversity mea-
sures obtained very promising results. Opposite, the
combination between diversity measures and com-
plexity brought deceptive results.

Among the next steps to be considered we in-
clude the application of NSGA-II for the three ob-
jective problem using accuracy, complexity, and di-
versity measures. Moreover, we would like to exam-
ine more sophisticated fusion operators, to use of the
other fuzzy reasoning methods to combine the re-
sults of the individual members of the ensemble and
to combine base classifiers in a dynamic manner, in
a way that a classifier or a set of them is responsible
just for a particular data region. Furthermore, we
would like to study the influence of other parame-
ters (FURIA parameters, MCS parameters, etc.).
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Figure 3: The Pareto front approximation obtained for abalone using fitness function 2a (objective 1 stands for
training error and objective 2 for complexity) on the left, and fitness function 2b (Objective 1 stands for training
error and objective 2 for variance) on the right.

Figure 4: The Pareto front approximation obtained for abalone using fitness function 2c (objective 1 stands for
training error and objective 2 for double fault) on the left, and fitness function 2d (Objective 1 stands for variance
and objective 2 for complexity) on the right.
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Figure 5: The Pareto front approximation obtained for abalone using fitness function 2e (objective 1 stands for
double fault and objective 2 for complexity).
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Table 6: Statistics of the Pareto front approximations with the global learning objectives.
Obj. 1 - test error Obj. 2 - Complx

Car. Min. Max. Avg. Dev. Min. Max. Avg. Dev.
aba 2a 14.5 0.746 0.777 0.758 0.009 2.0 17.7 8.8 4.8

2b 58.6 0.741 0.763 0.752 0.005 9.3 25.0 17.2 4.2
2c 29.3 0.745 0.783 0.758 0.009 2.0 16.9 8.5 4.4
2d 8.3 0.752 0.791 0.767 0.013 2.0 9.4 5.7 2.6
2e 120.5 0.759 0.803 0.781 0.009 2.0 2.0 2.0 0.0

bre 2a 7.0 0.038 0.060 0.048 0.008 2.0 3.0 2.7 0.5
2b 6.3 0.037 0.057 0.046 0.007 1.0 3.7 2.5 1.1
2c 6.0 0.037 0.051 0.045 0.005 3.0 3.4 3.1 0.2
2d 1.3 0.050 0.051 0.051 0.001 2.0 2.0 2.0 0.0
2e 86.1 0.037 0.091 0.061 0.012 2.0 2.0 2.0 0.0

gla 2a 8.9 0.286 0.390 0.330 0.033 2.0 6.8 4.4 1.6
2b 11.1 0.288 0.396 0.331 0.033 1.0 8.9 4.0 2.3
2c 8.3 0.283 0.403 0.333 0.041 2.1 7.2 4.3 1.9
2d 1.1 0.360 0.363 0.361 0.002 2.0 2.0 2.0 0.0
2e 102.3 0.305 0.517 0.400 0.046 2.0 2.0 2.0 0.0

hea 2a 8.8 0.172 0.233 0.202 0.021 2.0 4.5 3.4 1.0
2b 9.5 0.170 0.231 0.200 0.020 1.0 5.6 3.0 1.4
2c 6.8 0.178 0.235 0.203 0.021 2.2 4.8 3.3 1.0
2d 1.1 0.201 0.203 0.202 0.001 2.0 2.0 2.0 0.0
2e 94.5 0.155 0.299 0.224 0.031 2.0 2.0 2.0 0.0

ion 2a 6.8 0.144 0.187 0.164 0.015 2.0 2.8 2.5 0.4
2b 5.2 0.145 0.191 0.166 0.020 1.0 3.0 2.0 0.9
2c 57.9 0.126 0.170 0.148 0.010 13.4 28.1 20.9 3.6
2d 1.2 0.156 0.160 0.158 0.003 2.0 2.0 2.0 0.0
2e 89.0 0.129 0.248 0.181 0.026 2.0 2.0 2.0 0.0

mag 2a 4.3 0.132 0.144 0.136 0.005 2.0 6.6 4.2 2.0
2b 11.1 0.132 0.143 0.136 0.003 1.0 8.2 4.1 2.1
2c 8.1 0.132 0.145 0.136 0.005 2.0 6.8 4.0 1.8
2d 1.0 0.146 0.146 0.146 0.000 2.0 2.0 2.0 0.0
2e 136.9 0.142 0.159 0.150 0.003 2.0 2.0 2.0 0.0

opt 2a 142.0 0.655 0.703 0.678 0.009 2.0 2.0 2.0 0.0
2b 196.7 0.625 0.641 0.633 0.003 18.0 37.0 25.9 3.3
2c 196.7 0.625 0.641 0.633 0.003 18.0 37.0 25.9 3.3
2d 145.7 0.654 0.704 0.678 0.009 2.0 2.0 2.0 0.0
2e 145.7 0.654 0.704 0.678 0.009 2.0 2.0 2.0 0.0

pbl 2a 8.2 0.028 0.035 0.031 0.003 2.0 11.2 6.0 3.3
2b 15.8 0.027 0.034 0.030 0.002 1.0 8.8 4.1 2.1
2c 10.8 0.027 0.038 0.031 0.003 2.0 10.9 5.6 3.0
2d 1.0 0.034 0.034 0.034 0.000 2.0 2.0 2.0 0.0
2e 132.5 0.031 0.047 0.038 0.003 2.0 2.0 2.0 0.0

pen 2a 17.2 0.016 0.032 0.020 0.004 2.0 9.3 5.8 2.2
2b 22.7 0.016 0.034 0.022 0.005 1.0 11.3 4.4 2.5
2c 83.0 0.014 0.018 0.016 0.001 15.8 26.7 21.5 2.5
2d 1.0 0.032 0.032 0.032 0.000 2.0 2.0 2.0 0.0
2e 136.7 0.029 0.042 0.035 0.003 2.0 2.0 2.0 0.0

pho 2a 7.8 0.125 0.152 0.133 0.009 2.0 9.8 6.0 2.9
2b 14.9 0.127 0.151 0.135 0.007 1.0 8.8 4.3 2.1
2c 10.0 0.125 0.160 0.136 0.011 2.0 10.0 5.2 2.7
2d 1.0 0.153 0.153 0.153 0.000 2.0 2.0 2.0 0.0
2e 137.1 0.144 0.183 0.162 0.008 2.0 2.0 2.0 0.0
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Table 7: Statistics of the Pareto front approximations with the global learning objectives.(cont.)
Obj. 1 - test error Obj. 2 - Complx

Car. Min. Max. Avg. Dev. Min. Max. Avg. Dev.
pim 2a 10.6 0.235 0.291 0.256 0.018 2.0 10.2 5.6 2.9

2b 19.3 0.233 0.296 0.261 0.016 1.0 11.6 4.4 2.7
2c 11.7 0.236 0.290 0.257 0.016 2.0 11.0 5.8 3.0
2d 1.0 0.277 0.277 0.277 0.000 2.0 2.0 2.0 0.0
2e 124.6 0.231 0.318 0.274 0.018 2.0 2.0 2.0 0.0

sat 2a 13.2 0.102 0.130 0.110 0.008 2.0 16.6 8.0 4.6
2b 38.0 0.101 0.132 0.111 0.007 1.0 17.2 6.3 3.8
2c 2.8 0.102 0.104 0.103 0.001 20.2 22.7 21.3 1.4
2d 1.0 0.129 0.129 0.129 0.000 2.0 2.0 2.0 0.0
2e 133.8 0.119 0.140 0.129 0.004 2.0 2.0 2.0 0.0

seg 2a 14.2 0.029 0.048 0.036 0.006 2.0 6.6 4.8 1.5
2b 12.8 0.029 0.051 0.038 0.006 1.0 6.8 3.4 1.6
2c 69.9 0.027 0.037 0.032 0.002 14.4 26.1 19.8 2.9
2d 1.1 0.047 0.047 0.047 0.000 2.0 2.0 2.0 0.0
2e 124.8 0.037 0.070 0.052 0.006 2.0 2.0 2.0 0.0

son 2a 7.9 0.203 0.284 0.245 0.031 2.0 3.3 2.9 0.6
2b 7.5 0.217 0.289 0.252 0.026 1.0 3.7 2.5 1.0
2c 4.5 0.213 0.271 0.242 0.022 2.8 3.3 3.0 0.1
2d 1.1 0.269 0.274 0.272 0.003 2.0 2.0 2.0 0.0
2e 99.0 0.188 0.406 0.292 0.047 2.0 2.0 2.0 0.0

spa 2a 7.8 0.057 0.072 0.061 0.005 2.0 9.4 5.1 2.7
2b 17.3 0.056 0.070 0.061 0.004 1.0 9.8 4.7 2.4
2c 2.4 0.056 0.058 0.057 0.001 11.9 13.8 12.8 1.1
2d 1.1 0.072 0.072 0.072 0.000 2.0 2.0 2.0 0.0
2e 132.1 0.065 0.090 0.077 0.005 2.0 2.0 2.0 0.0

tex 2a 18.3 0.032 0.065 0.040 0.009 2.0 8.0 5.6 1.9
2b 22.3 0.033 0.067 0.043 0.009 1.0 9.2 4.2 1.9
2c 99.8 0.028 0.035 0.032 0.001 17.2 30.4 23.8 3.0
2d 1.0 0.067 0.067 0.067 0.000 2.0 2.0 2.0 0.0
2e 142.2 0.058 0.087 0.071 0.005 2.0 2.0 2.0 0.0

veh 2a 17.0 0.257 0.302 0.275 0.012 2.0 13.4 7.7 3.5
2b 24.9 0.255 0.316 0.282 0.015 1.0 13.4 5.4 3.2
2c 15.2 0.260 0.308 0.278 0.014 2.0 14.1 7.0 3.6
2d 1.0 0.307 0.307 0.307 0.000 2.0 2.0 2.0 0.0
2e 126.9 0.270 0.350 0.310 0.017 2.0 2.0 2.0 0.0

wav 2a 22.8 0.148 0.195 0.158 0.011 2.0 21.0 10.3 5.5
2b 53.3 0.146 0.199 0.163 0.012 1.0 23.1 7.1 4.8
2c 19.3 0.146 0.152 0.149 0.002 24.0 29.3 26.5 1.8
2d 1.0 0.197 0.197 0.197 0.000 2.0 2.0 2.0 0.0
2e 135.9 0.181 0.213 0.196 0.006 2.0 2.0 2.0 0.0

win 2a 5.3 0.051 0.100 0.076 0.019 2.0 2.1 2.1 0.0
2b 4.6 0.054 0.091 0.074 0.014 1.0 2.3 1.6 0.7
2c 54.5 0.018 0.063 0.038 0.013 15.2 33.8 24.4 4.6
2d 1.8 0.065 0.076 0.071 0.006 2.0 2.0 2.0 0.0
2e 73.3 0.037 0.231 0.125 0.046 2.0 2.0 2.0 0.0

yea 2a 9.9 0.404 0.453 0.423 0.015 2.0 11.1 5.9 3.0
2b 28.1 0.396 0.467 0.424 0.016 1.0 10.9 4.8 2.6
2c 15.5 0.405 0.472 0.426 0.019 2.0 12.5 6.3 3.0
2d 1.0 0.445 0.445 0.445 0.000 2.0 2.0 2.0 0.0
2e 131.4 0.421 0.495 0.458 0.014 2.0 2.0 2.0 0.0
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Table 8: Comparison of Pareto fronts using HVR measure.
2a 2b 2c 2d 2e

aba 0.9973 0.5126 0.9973 0.9961 0.9962
bre 0.6632 0.9955 0.3321 0.6627 0.6644
gla 0.8455 0.9867 0.8314 0.8376 0.8469
hea 0.6582 0.9858 0.5915 0.6564 0.6625
ion 0.9437 0.9796 0.5294 0.9416 0.9464
mag 0.9323 0.9988 0.9324 0.9300 0.9307
opt 0.9952 0.3335 0.3335 0.9952 0.9952
pbl 0.8555 0.9983 0.8555 0.8547 0.8553
pen 0.9609 0.9992 0.4307 0.9580 0.9587
pho 0.9267 0.9978 0.9266 0.9224 0.9241
pim 0.8700 0.9944 0.8700 0.8650 0.8730
sat 0.9554 0.9988 0.1738 0.9510 0.9528
seg 0.9483 0.9982 0.3295 0.9452 0.9472
son 0.6544 0.9797 0.3927 0.6492 0.6597
spa 0.9071 0.9978 0.1542 0.9047 0.9060
tex 0.9587 0.9983 0.3518 0.9525 0.9542
veh 0.8523 0.9940 0.8520 0.8459 0.8521
wav 0.9638 0.9984 0.2068 0.9554 0.9585
win 0.9240 0.9893 0.1066 0.9213 0.9265
yea 0.9315 0.9947 0.9311 0.9256 0.9301
avg. 0.8450 0.8920 0.5299 0.8415 0.8870
dev. 0.2202 0.2682 0.3263 0.2194 0.1058
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Figure 6: Comparison of the Pareto fronts using C-measure by means of box-plots.
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Figure 7: The Pareto front approximations obtained for abalone using the five fitness functions. Objective 1
stands for test error and objective 2 for complexity. The pseudo-optimal Pareto front is also drawn for reference.



Multiobjective GAs for Classifier Selection in FURIA fuzzy MCSs

Figure 8: The Pareto front approximations obtained for waveform using the five fitness functions. Objective 1
stands for test error and objective 2 for complexity. The pseudo-optimal Pareto front is also drawn for reference.
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Figure 9: The Pareto front approximations obtained for magic using the five fitness functions. Objective 1 stands
for test error and objective 2 for complexity. The pseudo-optimal Pareto front is also drawn for reference.
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Table 9: Statistics of four single solutions selected from the Pareto fronts.
Best of 1st obj. Best of 2nd obj. Best tradeoff Best test

Tra Tst Cmpl Tra Tst Cmpl Tra Tst Cmpl Tra Tst Cmpl
aba 2a 0.505 0.751 17.700 0.605 0.776 2.000 0.605 0.776 2.000 0.512 0.746 14.400

2b 0.509 0.750 22.300 0.599 0.756 9.400 0.509 0.750 22.000 0.536 0.741 18.600
2c 0.506 0.750 16.800 0.622 0.780 2.000 0.506 0.750 20.000 0.511 0.745 13.900
2d 0.599 0.756 9.400 0.689 0.791 2.000 0.689 0.791 2.000 0.606 0.752 8.000
2e 0.611 0.773 2.000 0.611 0.773 2.000 0.611 0.773 2.000 0.649 0.759 2.000

bre 2a 0.000 0.039 3.000 0.007 0.054 2.000 0.007 0.054 2.000 0.001 0.038 2.900
2b 0.000 0.045 3.600 0.009 0.045 1.000 0.000 0.045 6.000 0.005 0.037 2.700
2c 0.000 0.038 3.000 0.000 0.038 3.000 0.000 0.038 3.000 0.000 0.037 3.000
2d 0.014 0.051 2.000 0.014 0.051 2.000 0.014 0.051 2.000 0.014 0.050 2.000
2e 0.010 0.052 2.000 0.010 0.052 2.000 0.010 0.052 2.000 0.023 0.037 2.000

gla 2a 0.004 0.309 6.800 0.113 0.364 2.000 0.113 0.364 2.000 0.015 0.286 5.600
2b 0.007 0.325 8.700 0.113 0.359 1.000 0.063 0.348 15.000 0.052 0.288 4.700
2c 0.005 0.300 7.200 0.162 0.397 2.100 0.066 0.323 7.000 0.021 0.283 5.500
2d 0.142 0.360 2.000 0.142 0.360 2.000 0.142 0.360 2.000 0.142 0.360 2.000
2e 0.133 0.372 2.000 0.133 0.372 2.000 0.133 0.372 2.000 0.193 0.305 2.000

hea 2a 0.001 0.184 4.500 0.050 0.199 2.000 0.050 0.199 2.000 0.013 0.172 3.700
2b 0.001 0.197 5.500 0.057 0.215 1.000 0.001 0.198 3.000 0.030 0.170 2.900
2c 0.000 0.185 4.800 0.064 0.214 2.200 0.000 0.185 5.000 0.010 0.178 3.900
2d 0.074 0.201 2.000 0.074 0.201 2.000 0.074 0.201 2.000 0.074 0.201 2.000
2e 0.059 0.204 2.000 0.059 0.204 2.000 0.059 0.204 2.000 0.100 0.155 2.000

ion 2a 0.003 0.153 2.800 0.008 0.149 2.000 0.008 0.149 2.000 0.006 0.144 2.500
2b 0.003 0.162 3.000 0.027 0.169 1.000 0.003 0.162 3.000 0.013 0.145 2.300
2c 0.004 0.126 18.700 0.004 0.126 18.700 0.004 0.126 16.000 0.004 0.126 18.700
2d 0.024 0.156 2.000 0.024 0.156 2.000 0.024 0.156 2.000 0.024 0.156 2.000
2e 0.014 0.162 2.000 0.014 0.162 2.000 0.014 0.162 2.000 0.034 0.129 2.000

mag 2a 0.097 0.133 6.600 0.113 0.144 2.000 0.113 0.144 2.000 0.097 0.132 5.600
2b 0.098 0.132 8.200 0.107 0.143 1.000 0.100 0.135 3.000 0.098 0.132 7.400
2c 0.097 0.133 6.600 0.115 0.144 2.000 0.108 0.140 2.000 0.098 0.132 5.600
2d 0.118 0.146 2.000 0.118 0.146 2.000 0.118 0.146 2.000 0.118 0.146 2.000
2e 0.116 0.145 2.000 0.116 0.145 2.000 0.116 0.145 2.000 0.119 0.142 2.000

opt 2a 0.401 0.686 2.000 0.401 0.686 2.000 0.401 0.686 2.000 0.452 0.655 2.000
2b 0.175 0.632 30.200 0.175 0.632 30.200 0.175 0.632 37.000 0.198 0.625 26.000
2c 0.175 0.632 30.200 0.175 0.632 30.200 0.175 0.632 37.000 0.198 0.625 26.000
2d 0.400 0.685 2.000 0.400 0.685 2.000 0.400 0.685 2.000 0.451 0.654 2.000
2e 0.400 0.685 2.000 0.400 0.685 2.000 0.400 0.685 2.000 0.451 0.654 2.000

pbl 2a 0.006 0.029 11.200 0.016 0.035 2.000 0.016 0.035 2.000 0.007 0.028 6.800
2b 0.007 0.028 8.600 0.015 0.032 1.000 0.010 0.030 3.000 0.009 0.027 4.800
2c 0.006 0.028 10.900 0.020 0.037 2.000 0.013 0.034 3.000 0.007 0.027 7.600
2d 0.017 0.034 2.000 0.017 0.034 2.000 0.017 0.034 2.000 0.017 0.034 2.000
2e 0.016 0.033 2.000 0.016 0.033 2.000 0.016 0.033 2.000 0.020 0.031 2.000

pen 2a 0.000 0.017 9.300 0.010 0.031 2.000 0.010 0.031 2.000 0.000 0.016 8.200
2b 0.000 0.017 11.300 0.011 0.033 1.000 0.005 0.024 2.000 0.000 0.016 8.700
2c 0.000 0.014 21.800 0.000 0.014 21.800 0.000 0.014 24.000 0.000 0.014 21.800
2d 0.011 0.032 2.000 0.011 0.032 2.000 0.011 0.032 2.000 0.011 0.032 2.000
2e 0.010 0.032 2.000 0.010 0.032 2.000 0.010 0.032 2.000 0.013 0.029 2.000

pho 2a 0.058 0.126 9.800 0.086 0.151 2.000 0.086 0.151 2.000 0.059 0.125 9.000
2b 0.059 0.127 8.800 0.083 0.150 1.000 0.059 0.127 9.000 0.061 0.127 7.600
2c 0.058 0.126 10.000 0.097 0.160 2.000 0.080 0.145 9.000 0.059 0.125 9.400
2d 0.089 0.153 2.000 0.089 0.153 2.000 0.089 0.153 2.000 0.089 0.153 2.000
2e 0.090 0.152 2.000 0.090 0.152 2.000 0.090 0.152 2.000 0.097 0.144 2.000
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Table 10: Statistics of four single solutions selected from the Pareto fronts.(cont.)
Best of 1st obj. Best of 2nd obj. Best tradeoff Best test

Tra Tst Cmpl Tra Tst Cmpl Tra Tst Cmpl Tra Tst Cmpl
pim 2a 0.027 0.245 10.200 0.087 0.283 2.000 0.087 0.283 2.000 0.033 0.235 6.900

2b 0.024 0.245 11.600 0.100 0.285 1.000 0.070 0.267 2.000 0.041 0.233 6.800
2c 0.021 0.247 11.000 0.103 0.287 2.000 0.054 0.266 12.000 0.033 0.236 7.000
2d 0.103 0.277 2.000 0.103 0.277 2.000 0.103 0.277 2.000 0.103 0.277 2.000
2e 0.090 0.279 2.000 0.090 0.279 2.000 0.090 0.279 2.000 0.128 0.231 2.000

sat 2a 0.010 0.103 16.600 0.049 0.130 2.000 0.049 0.130 2.000 0.013 0.102 11.600
2b 0.011 0.103 17.200 0.049 0.132 1.000 0.011 0.103 15.000 0.012 0.101 14.600
2c 0.010 0.102 21.400 0.010 0.102 21.600 0.010 0.102 17.000 0.010 0.102 21.200
2d 0.053 0.129 2.000 0.053 0.129 2.000 0.053 0.129 2.000 0.053 0.129 2.000
2e 0.050 0.130 2.000 0.050 0.130 2.000 0.050 0.130 2.000 0.060 0.119 2.000

seg 2a 0.000 0.031 6.600 0.012 0.047 2.000 0.012 0.047 2.000 0.001 0.029 5.500
2b 0.000 0.033 6.700 0.015 0.043 1.000 0.004 0.036 6.000 0.002 0.029 5.100
2c 0.000 0.027 17.600 0.000 0.027 17.600 0.000 0.027 20.000 0.000 0.027 17.600
2d 0.017 0.047 2.000 0.017 0.047 2.000 0.017 0.047 2.000 0.017 0.047 2.000
2e 0.013 0.048 2.000 0.013 0.048 2.000 0.013 0.048 2.000 0.019 0.037 2.000

son 2a 0.000 0.212 3.300 0.037 0.253 2.000 0.037 0.253 2.000 0.005 0.203 3.000
2b 0.000 0.228 3.700 0.062 0.252 1.000 0.000 0.228 3.000 0.015 0.217 3.200
2c 0.000 0.222 3.300 0.011 0.232 2.800 0.000 0.222 3.000 0.002 0.213 3.000
2d 0.064 0.274 2.000 0.064 0.274 2.000 0.064 0.274 2.000 0.065 0.269 2.000
2e 0.042 0.262 2.000 0.042 0.262 2.000 0.042 0.262 2.000 0.081 0.188 2.000

spa 2a 0.015 0.058 9.400 0.033 0.071 2.000 0.033 0.071 2.000 0.016 0.057 7.600
2b 0.015 0.057 9.800 0.029 0.070 1.000 0.015 0.057 11.000 0.018 0.056 6.800
2c 0.015 0.056 12.800 0.015 0.056 12.200 0.015 0.056 11.000 0.015 0.056 12.800
2d 0.034 0.072 2.000 0.034 0.072 2.000 0.034 0.072 2.000 0.034 0.072 2.000
2e 0.034 0.072 2.000 0.034 0.072 2.000 0.034 0.072 2.000 0.040 0.065 2.000

tex 2a 0.000 0.033 8.000 0.020 0.064 2.000 0.020 0.064 2.000 0.000 0.032 7.300
2b 0.000 0.034 9.200 0.021 0.062 1.000 0.001 0.035 14.000 0.001 0.033 7.800
2c 0.000 0.028 23.200 0.000 0.028 23.200 0.000 0.028 21.000 0.000 0.028 23.200
2d 0.024 0.067 2.000 0.024 0.067 2.000 0.024 0.067 2.000 0.024 0.067 2.000
2e 0.021 0.062 2.000 0.021 0.062 2.000 0.021 0.062 2.000 0.025 0.058 2.000

veh 2a 0.002 0.267 13.400 0.099 0.290 2.000 0.099 0.290 2.000 0.011 0.257 9.500
2b 0.003 0.272 13.400 0.104 0.303 1.000 0.058 0.289 2.000 0.023 0.255 7.500
2c 0.002 0.271 14.000 0.118 0.302 2.000 0.058 0.287 7.000 0.015 0.260 8.600
2d 0.112 0.307 2.000 0.112 0.307 2.000 0.112 0.307 2.000 0.112 0.307 2.000
2e 0.107 0.300 2.000 0.107 0.300 2.000 0.107 0.300 2.000 0.139 0.270 2.000

wav 2a 0.001 0.150 21.000 0.059 0.194 2.000 0.059 0.194 2.000 0.003 0.148 17.400
2b 0.002 0.149 23.100 0.067 0.192 1.000 0.010 0.159 7.000 0.003 0.146 18.700
2c 0.001 0.146 26.200 0.001 0.146 26.400 0.001 0.146 29.000 0.001 0.146 26.400
2d 0.064 0.197 2.000 0.064 0.197 2.000 0.064 0.197 2.000 0.064 0.197 2.000
2e 0.061 0.194 2.000 0.061 0.194 2.000 0.061 0.194 2.000 0.072 0.181 2.000

win 2a 0.000 0.052 2.100 0.001 0.054 2.000 0.001 0.054 2.000 0.000 0.051 2.100
2b 0.000 0.072 1.700 0.006 0.057 1.000 0.000 0.072 2.000 0.004 0.054 1.400
2c 0.000 0.021 17.400 0.000 0.021 17.400 0.000 0.021 17.000 0.000 0.018 18.700
2d 0.007 0.066 2.000 0.007 0.066 2.000 0.007 0.066 2.000 0.007 0.065 2.000
2e 0.007 0.058 2.000 0.007 0.058 2.000 0.007 0.058 2.000 0.022 0.037 2.000

yea 2a 0.156 0.406 11.100 0.250 0.452 2.000 0.250 0.452 2.000 0.158 0.404 10.100
2b 0.158 0.410 10.900 0.254 0.464 1.000 0.158 0.410 11.000 0.188 0.396 7.100
2c 0.156 0.412 12.500 0.282 0.467 2.000 0.156 0.412 13.000 0.159 0.405 10.800
2d 0.281 0.445 2.000 0.281 0.445 2.000 0.281 0.445 2.000 0.281 0.445 2.000
2e 0.260 0.453 2.000 0.260 0.453 2.000 0.260 0.453 2.000 0.291 0.421 2.000

Table 11: A comparison of the averaged performance of the four single solutions selected from the obtained
Pareto sets.

Best of 1st obj. Best of 2nd obj. Best tradeoff Best test
Tra Tst Cmpl Tra Tst Cmpl Tra Tst Cmpl Tra Tst Cmpl

2a avg. 0.064 0.199 8.770 0.103 0.221 2.000 0.103 0.221 2.000 0.047 0.193 7.085
dev. 0.140 0.207 5.373 0.152 0.210 0.000 0.152 0.210 0.000 0.116 0.202 4.135

2b avg. 0.054 0.201 10.875 0.095 0.220 2.880 0.063 0.205 8.800 0.056 0.191 8.235
dev. 0.120 0.200 7.337 0.134 0.202 6.698 0.118 0.201 8.752 0.122 0.197 6.411

2c avg. 0.053 0.193 14.470 0.090 0.210 10.660 0.062 0.198 13.800 0.047 0.189 13.235
dev. 0.119 0.203 7.681 0.148 0.214 10.212 0.118 0.204 9.518 0.116 0.200 7.878

2d avg. 0.112 0.223 2.370 0.117 0.225 2.000 0.117 0.225 2.000 0.083 0.221 2.300
dev. 0.150 0.206 1.655 0.166 0.211 0.000 0.166 0.211 0.000 0.064 0.202 1.342

2e avg. 0.107 0.223 2.000 0.107 0.223 2.000 0.107 0.223 2.000 0.000 0.200 2.000
dev. 0.153 0.210 0.000 0.153 0.210 0.000 0.153 0.210 0.000 0.000 0.203 0.000



Multiobjective GAs for Classifier Selection in FURIA fuzzy MCSs

Table 12: A comparison of the NSGA-II FURIA-based fuzzy MCSs against static FURIA-based MCS.
NSGA-II combined with FURIA-based MCSs.

aba bre gla hea ion mag opt pbl pen pho pim sat seg son spa tex veh wav win yea
test err. 0.741 0.037 0.283 0.170 0.126 0.132 0.625 0.027 0.014 0.125 0.231 0.101 0.027 0.188 0.056 0.028 0.255 0.146 0.018 0.396
fitness
func.

2b 2b 2c 2b 2c 2a 2b 2c 2c 2c 2e 2b 2c 2e 2b 2c 2b 2c 2c 2b

nr of cl. 18.6 2.7 5.5 2 18.7 5.6 26 4.8 21.8 9 2 14.6 17.6 2 6.8 23.2 7.5 18.7 18.7 7.1
FURIA-based MCSs algorithms Small ensemble sizes.

aba bre gla hea ion mag opt pbl pen pho pim sat seg son spa tex veh wav win yea
test err. 0.753 0.037 0.313 0.178 0.134 0.136 0.628 0.028 0.015 0.136 0.235 0.105 0.035 0.198 0.061 0.036 0.276 0.156 0.036 0.408
nr of cl. 10 10 7 7 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10

FURIA-based MCSs algorithms. Ensemble size 50.
aba bre gla hea ion mag opt pbl pen pho pim sat seg son spa tex veh wav win yea

test err. 0.748 0.041 0.287 0.182 0.145 0.135 0.630 0.028 0.016 0.135 0.241 0.102 0.034 0.226 0.059 0.031 0.275 0.149 0.035 0.400
C4.5 ensembles with bagging. Small ensemble sizes.

aba bre gla hea ion mag opt pbl pen pho pim sat seg son spa tex veh wav win yea
test err. 0.772 0.043 0.306 0.194 0.149 0.134 0.697 0.03 0.028 0.131 0.253 0.112 0.042 0.247 0.067 0.051 0.289 0.193 0.097 0.415
nr of cl. 10 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Random forests. Small ensemble sizes.
aba bre gla hea ion mag opt pbl pen pho pim sat seg son spa tex veh wav win yea

test err. 0.777 0.041 0.282 0.211 0.14 0.134 0.695 0.031 0.016 0.119 0.264 0.104 0.034 0.239 0.06 0.04 0.269 0.185 0.048 0.438
nr of cl. 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10


