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Abstract—Human gait modeling consists of studying the
biomechanics of this human movement. Its importance lies in
the fact that its analysis can help in the diagnosis of walking and
movement disorders or rehabilitation programs, among other
medical situations.

Fuzzy finite state machines can be used to model the temporal
evolution of this type of phenomenon. Nevertheless, the defini-
tion of details of the model in each particular case is a complex
task for experts. In this paper, we present an automatic method
for learning the model parameters based on the hybridization
of fuzzy finite state machines and genetic algorithms leading
to genetic fuzzy finite state machines. This new genetic fuzzy
system automatically learns the fuzzy rules and membership
functions of the fuzzy finite state machine while an expert
defines the possible states and allowed transitions.

Our final goal is to obtain a specific model for each person’s
gait in such a way that it can generalize well with different
gaits of the same person. The obtained model must become
an accurate and human friendly linguistic description of this
phenomenon, with the capability of identifying the relevant
phases of the process.

A complete experimentation is developed to test the perfor-
mance of the new proposal when dealing with datasets of 20
different people, comprising a detailed analysis of results which
shows the advantages of our proposal in comparison with some
other classical and computational intelligence techniques.

Index Terms—Human gait modeling, Fuzzy finite state ma-
chines, Fuzzy systems, Genetic algorithms, Genetic fuzzy sys-
tems.

I. INTRODUCTION

Human gait modeling consists of studying the biomechan-
ics of this human movement and can help in the detec-
tion of gait disorders, identification of balance factors, and
assessment of clinical gait interventions and rehabilitation
programs [1]. Typically, in human gait modeling there are
a huge number of variables obtained by means of different
measurement techniques such as height, limb length, walking
speed, acceleration along axes, foot forces, etc., thus making
the obtaining of an accurate model a very complex task.

Traditionally in system identification, engineers use differ-
ential equations to model the behavior of real-world systems
(white-box models) [2], [3], [4], [5]. However, when the
system grows in complexity, the number of variables and
equations becomes intractable. In the last forty years, Fuzzy
logic (FL)-based models [6], [7], [8], [9] have become a good
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alternative to deal with those systems where obtaining the
appropriate differential equations is difficult or impossible.

FL is widely recognized for its ability for linguistic
concept modeling and its use in system identification. On the
one hand, semantic expressiveness, using linguistic variables
[10] and rules [11], is quite close to natural language (NL)
which reduces the effort of expert knowledge extraction. On
the other hand, being universal approximators [12] fuzzy
inference systems are able to perform nonlinear mappings
between inputs and outputs. Thanks to these advantages, FL
has been successfully applied in classification [13], [14],
regression [15], [16], control [7], [17], [18], and system
modeling [8], [9] achieving a good interpretability accuracy
tradeoff.

Fuzzy finite state machines (FFSMs) are specially useful
tools for modeling dynamical processes which change in
time, becoming an extension of classical finite state machines
(FSMs) [19], [20]. The main advantage of FFSMs is that
their fuzziness allows them to handle imprecise and uncertain
data, which is inherent to real-world phenomena, in the
form of fuzzy states and transitions. The theoretical basics
of FFSMs were established by [21] and later developed by
[22], [23], [24]. In previous studies, we have learned that
FFSMs are suitable tools for modeling signals that follow
an approximately repetitive pattern. In [25], we explored
the possibilities of using a FFSM to create the linguistic
description of the temporal evolution of a signal by using
a skin conductivity meter and accelerometers to model the
activity of a person. Once we had checked the ability of
FFSMs to deal with temporal data, we analyzed the chance to
consider FFSMs for pattern recognition tasks such as human
gait recognition [26], [27] and gesture recognition [28]. Fi-
nally, in [29] we used a FFSM for fusing information related
to body posture and WiFi positioning [30], which consists
of recording and processing signal strength information of
WiFi networks to obtain the estimated position in indoor
environments.

As any fuzzy system, FFSMs require the definition of
a knowledge base (KB). It is well known that this is a
complex task for experts as it was the case in the previous
applications of FFSMs. In addition, the dynamic nature of
FFSMs increases the complexity of the process. For this
reason, in this contribution we consider the design of an
automatic learning method for the fuzzy KB of FFSMs. In
particular, we will take the use of genetic algorithms [31]
as a base, which have proven largely their effectiveness and
efficiency for this task during the last two decades in the
so-called genetic fuzzy systems (GFSs) area [32], [33], [34],
[35], [36].

In our approach, the fuzzy states and transitions will still
be defined by the expert in order to keep the knowledge that



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

she/he has over the whole system while the fuzzy rules and
membership functions regulating the state changes will be
derived automatically by the GFS, making a robust, accurate
and human friendly model called genetic FFSM from now
on. In addition, the use of this expert knowledge and the
prefixed structure of the FFSM allows us to learn only the
membership functions (MFs) and part of the rules to build
its fuzzy KB, dealing with a reduced search space.

In the application presented, we show how the expert can
combine her/his knowledge about human gait dynamics with
the numerical data of the acceleration signals in order to pro-
duce an accurate linguistic description of the phenomenon.
According to Licklider [37], our aim is to create a symbiotic
relationship between the user and the computer, in such a way
that human motivation and creativity is strengthened by the
computer’s greater memory storage and higher computational
performance.

In the experimental phase, we have worked with gaits of
20 different people. Regarding to the human gait modeling
problem, the goal is to obtain a specific model (FFSM) for
each person in such a way that this FFSM can generalize well
with different gaits of the same person. Each FFSM will be
composed of a small set of linguistic fuzzy if-then rules in
the transition function producing a linguistic description of
the gait of this person while identifying the relevant states
of the model. The design of the FFSM will be tackled in an
automatic fashion by the proposed GFS. The performance of
the obtained FFSMs will then be benchmarked against other
system identification approaches.

To our mind, the current research constitutes an innovative
application of fuzzy set theory as: i) up to our knowledge,
it is the first time that genetic algorithms are used to design
a FFSM, and thus it is also the first time that human gait
modeling is tackled by means of an intelligent system of
this kind, and ii) it outperforms other standard and non-
fuzzy computational intelligence techniques, allowing us to
produce a linguistic description of the human gait while iden-
tifying the relevant phases of the process with an accurate
and human friendly model.

The remainder of this paper is organized as follows.
Section II presents the human gait modeling problem. Section
III describes how to use FFSMs for modeling the temporal
evolution of a phenomenon. Section IV explains how to build
FFSMs for modeling the human gait. The automatic method
of learning the fuzzy KB of these FFSMs based on genetic
algorithms is presented in Section V. Section VI describes the
experimentation carried out, comparing the obtained results
with other system identification tools. Finally, Section VII
draws some conclusions and introduces some future research
works.

II. HUMAN GAIT MODELING

Human gait modeling consists of studying the biomechan-
ics of this human movement aimed at quantifying factors
governing the functionality of the lower extremities. Gait is a
complex integrated task which requires precise coordination
of the neural and musculoskeletal system to ensure correct
skeletal dynamics [38]. Therefore, its analysis can help in the
diagnosis and treatment of walking and movement disorders,
identification of balance factors, and assessment of clinical
gait interventions and rehabilitation programs [1], [39].

The gait cycle is a periodical phenomenon which is defined
as the interval between two successive events (usually heel
contact) of the same foot [40]. It is characterized by a stance
phase (60% of the total gait cycle), where at least one foot
is in contact with the ground, and a swing phase (40% of
the total gait cycle), during which one limb swings through
the next heel contact (see Fig. 1). These phases can be
quite different between individuals but when normalized to
a percentage of the gait cycle they maintain close similarity,
indicating the absence of disorders [41].

Typically, in human gait modeling there are a huge number
of variables obtained by means of different measurement
techniques. Most gait parameters can be categorized as
anthropometric data which include height, weight, or limb
length; spatiotemporal data comprising variables such as
walking speed, step length, or phases times; kinematic data
of measurements of joint angles, displacement, or accelera-
tion along axes; kinetic data variables including foot force
and torques; or electromyographic data which measures the
muscle activation levels.

Our approach consists of identifying the relevant phases
of the gait based on the accelerations produced during the
process, i.e., we will develop human gait modeling by means
of kinematic data. We have measured the accelerations using
an accelerometer placed in the waist and centered in the
back of the person, that provides us with the dorso-ventral
acceleration (ax), the medio-lateral acceleration (ay), and the
antero-posterior acceleration (az) at each instant of time. In
this contribution, we only use ax and ay because az has to
do with the walking speed and this speed can vary for the
same person.

Fig. 1 shows three different synchronized pictures. The
first one (at the top) illustrates the dorso-ventral acceleration
(ax) and the medio-lateral acceleration (ay) obtained from
the three-axial accelerometer. The middle picture plots a
sketch of a person representing the different phases of the
gait with the right limb boldfaced. Finally, the picture at the
bottom represents the time period from one event (usually
initial contact) of one foot to the subsequent occurrence of
initial contact of the same foot.

III. FUZZY FINITE STATE MACHINES

In system identification, designers can choose among sev-
eral paradigms to represent system models. One of the more
expressive model structures is the state space representation
[2]. In this approach, the designer must find out the necessary
and sufficient subset of state variables (x1, x2, . . . xn) to
represent the entire state X[t] of the system at the time instant
t.

The designer uses her/his creativity and personal experi-
ence to choose the adequate set of state variables regarding
the system goals. This set of variables emphasizes the
relevant aspects of the system and hides the irrelevant ones.

When the system evolves in time, the current state X[t]
follows a trajectory in the state space. The general form of
the model of a time-invariant discrete system in the state
space is formulated by the following set of equations [2]:{

X[t+ 1] = f(X[t], U [t])
Y [t] = g(X[t], U [t])

(1)

where:
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Fig. 1. One gait cycle illustrating the various phases and events and the
dorso-ventral (ax) and medio-lateral (ay) accelerations.

• U is the input vector of the system: (u1, u2, ..., unu),
with nu being the number of input variables.

• X is the state vector: (x1, x2, ..., xn), with n being the
number of states. X0 is the initial state of the system,
i.e., X0 = X[t = 0].

• Y is the output vector: (y1, y2, ..., yny ), with ny being
the number of output variables.

• f is the function which calculates the state vector at
time step t+ 1.

• g is the function which calculates the output vector at
time step t.

Unfortunately, for many systems in our environment, we
are unable, or it is very costly, to obtain the differential equa-
tions corresponding to the functions f and g. This situation is
described by the Zadeh’s Principle of Incompatibility: “as the
complexity of a system increases, our ability to make precise
and yet significant statements about its behavior diminishes
until a threshold is reached beyond which precision and
significance (or relevance) become almost mutually exclusive
characteristics” [6].

This is to say that, when systems to be modeled grow
in complexity, we have no other option but to work with
imprecise models. There have been several attempts to deal
with this type of problems by means of linguistic fuzzy
models, which are models where at least one variable is fuzzy
[42].

During the last years, FL-based models have grown in
complexity as a consequence of the modeling requirements
in terms of accuracy and interpretability. The number of
variables and the number of needed rules to create a fuzzy
model have grown up until making models difficult to
understand, and consequently, difficult to apply. Currently,
researchers in the field work to establish the formalism that

will make the designed fuzzy models more human friendly
[43], [44], [45], [46], [47].

In this work, we follow Zadeh’s computing with words and
perceptions paradigm [48]. The idea consists of extending
FL to create system models based on the way that humans
make descriptions using NL. The aim is the use of complex
structures of NL to make robust imprecise models of complex
systems.

As said, we will consider a FFSM to deal with the human
gait modeling problem. The initial concept of FFSM was
introduced by Santos [21] and developed by different authors
(see, e.g., [22]). This family of FFSMs was characterized by
having fuzzy states but crisp inputs. Later, this initial model
was extended to have fuzzy inputs [23], [24]. Although the
basic concept of FFSM used in this paper is much related
to the latter one, the initial conception is quite different. The
model of FFSM presented is inspired by the concepts of
fuzzy state and fuzzy system developed by Zadeh [49], [50].
More specifically, it can be considered an implementation
of the general idea of input-output fuzzy models of dynamic
systems proposed by Yager [51], where the set of Equations
1 is implemented using sets of fuzzy rules. In addition,
we focus our contribution on the practical challenge of
developing a mechanism for learning automatically the set
of rules and membership functions of the FFSM.

In this section, we introduce the main concepts and ele-
ments of our paradigm for system modeling allowing experts
to build comprehensible linguistic fuzzy models in an easier
way. In our framework, a FFSM is a tuple {Q,U, f, Y, g},
where:

• Q is the set of states of the system.
• U is the set of input vectors of the system.
• f is the transition function which calculates the set of

states of the system.
• Y is the set of output vectors of the system.
• g is the output function which calculates the set of

output vectors of the system.
Each of these components is described in detail in the

following subsections. The interested reader can refer to [26],
[27], [29] to find several previous applications of this FFSM
model.

A. Fuzzy states (Q)

Q is the set of states of the system, which is defined as
a linguistic variable [10] that takes its values in the set of
linguistic labels {q1, q2, . . . , qn}, with n being the number
of fuzzy states. Every fuzzy state represents the pattern
of a repetitive situation. The concept of fuzzy state was
introduced by Zadeh in [6]. Numerically, the state of the
FFSM is represented by a state activation vector:
S[t] = (s1[t], s2[t], . . . , sn[t]), where si[t] ∈ [0, 1].
S0 is defined as the initial value of the state activation vec-

tor, i.e., S0 = S[t = 0]. The FFSM implementation verifies
n∑

i=1

si[t] = 1 in such way that we maintain compatibility with

classical FSMs where only one state can be activated with
degree 1 at each time instant. Hence, in order to maintain the
latter characteristic in our FFSM model, the activation degree
of the states must sum up to 1 for any system input. This
restriction has been applied in previous fuzzy extensions of
crisp phenomena such as fuzzy clustering [52], [53] where
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the sum of the membership value of a pattern to the different
clusters must also sum up to 1. This decision of design is
easily implemented using Equation 2 as we will show in
Section III-C1.

B. Input vectors (U )

U is the set of input vectors: (u1, u2, ..., unu), with nu

being the number of input variables. U is a set of linguis-
tic variables obtained after fuzzification of numerical data.
Typically, ui can be directly obtained from sensor data or
by applying some calculations to the raw measures, e.g., the
derivative or integral of the signal, or the combination of
several signals.

The expert summarizes the domain of numerical values
representing them by a set of linguistic labels which define
all the possible values that ui can take:
Aui = {A1

ui
, A2

ui
, . . . , Ani

ui
}, with ni being the number of

linguistic labels of the linguistic variable ui.

C. Transition function (f )

f is the state transition function that calculates, at each
time instant, the next value of the state activation vector:
S[t+ 1] = f(U [t], S[t]).

This function is implemented by means of a fuzzy KB.
Once the expert has identified the relevant states in the model,
she/he must define the fuzzy rules that govern the temporal
evolution of the system among these states.

We can distinguish between rules Rii to remain in a state
qi, and rules Rij to change from state qi to state qj . Fuzzy
rules will only be associated to allowed transitions, i.e., if
a transition is forbidden in the FFSM, it will have no fuzzy
rules associated.

A generic expression of a rule Rij is formulated as
follows:

Rij : IF (S[t] is qi) AND Cij THEN S[t+ 1] is qj

where:
• The first term in the antecedent (S[t] is qi) involves the

computation of the degree of activation of the state qi
in the time instant t, i.e., si[t]. With this mechanism,
we only allow the FFSM to change from the state qi to
the state qj (or to remain in state qi, when i = j) if it
was previously in that state.

• The second term in the antecedent Cij describes the
constraints imposed on the input variables that are
required to change from the state qi to the state qj (or
to remain in state qi, when i = j). For example: Cij =
(u1[t] is A3

u1
) AND (u2[t] is A4

u2
OR A5

u2
)1.

• Finally, the consequent of the rule is the next value of
the state activation vector S[t+1]. It consists of a vector
with a zero value in all of its components but in sj [t],
where it takes value one.

1) Fuzzy reasoning mechanism: The next value of the
state activation vector is calculated as a weighted average
of the individual rules. The weight of a rule k is calculated
from its firing degree ωk. To calculate the value of ωk

we use the minimum t-norm (⊤min(a, b) = min{a, b}) for

1Notice that, this fuzzy rule structure corresponds to a disjunctive normal
form (DNF), which has been largely used in fuzzy modeling and fuzzy
classification [54], [55], [56], [57]

the AND operator and the bounded sum of Łukasiewicz
t-conorm (⊥Luk(a, b) = min{a + b, 1}) for the OR op-
erator [58], e.g., the constraint Ck = (u1 is A3

u1
) AND

(u2 is A4
u2

OR A5
u2

) will produce a firing degree ωk =
min

{
A3

u1
(u1),min {1, A4

u2
(u2) +A5

u2
(u2)}

}
.

As we have explained above, a certain output of a rule
k predicting state qi will be of the form (0, . . . , si[t] =
1, . . . , 0)k. To calculate the total output of the rules and
therefore, the state activation vector (S[t + 1]), a weighted
average of the individual outputs of each rule is computed
as defined in Equation 2:

S[t+ 1] =



#Rules∑
k=1

ωk·(s1,...,sn)k

#Rules∑
k=1

ωk

if
#Rules∑
k=1

ωk ̸= 0

S[t] if
#Rules∑
k=1

ωk = 0

(2)
This expression is a typical defuzzification mechanism

applied to a set of Mamdani-type fuzzy rules where the
linguistic labels of the consequent are singletons (see, e.g.,
[51]). With this fuzzy reasoning mechanism, the state acti-
vation vector always verifies the two constraints demanded

in Section III-A: si[t] ∈ [0, 1] and
n∑

i=1

si[t] = 1. Moreover, it

keeps the system in its previous state if no rule is fired.
Notice that, the similarity between the FFSM’s fuzzy

rule structure and a fuzzy classification rule can easily be
recognized. Among the three existing fuzzy classification
rule structures, which mainly differ on the composition of
the consequent, the simplest one is based on the use of
a single class (the other two variants either include the
class and a certainty degree or a certainty degree for each
possible class) [59], [14]. Besides, a significant relation can
be identified between the fuzzy reasoning mechanism used
by the FFSM and that usually applied in fuzzy-rule based
classification systems based on the latter kind of rules [59].
In fact, the computation of the next state for the FFSM can
be considered as a classification problem where the set of
possible fuzzy states are taken as the classes and the fuzzy
system provides a membership degree to each of them by
means of a single selection or an aggregation of the firing
degree of the fuzzy rules matching the class and the input
pattern. Nevertheless, the main difference between both fuzzy
reasoning mechanisms is that, while the membership degree
to all the possible fuzzy states must sum up to 1 in any case
in a FFSM, there is no such restriction for the existing class
labels in a fuzzy rule-based classification system.

D. Output vectors (Y )

Y is the set of output vectors: (y1, y2, ..., yny ), with ny

being the number of output variables. Y is a summary of the
characteristics of the system evolution that are relevant for
the application, e.g., each yi can be obtained as the average
of certain parameters of the system while the model remained
in state qi.

E. Output function (g)

g is the output function: Y [t] = g(U [t], S[t]). It calculates,
at each time instant, the value of the output vector Y (t).
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The most simple implementation of g is Y [t] = S[t] =
(s1[t], s2[t], . . . , sn[t]). In this contribution, the output is
the current fuzzy state of the system represented by the
state activation vector. An application example of a complex
output function can be found in [27].

IV. FUZZY FINITE STATE MACHINE FOR HUMAN GAIT
MODELING

This section presents the design of the main elements
needed to build a FFSM to model the human gait.

A. Fuzzy states

As stated in Section III-A, every state represents the
pattern of a repetitive situation. According to the diagram
at the bottom of Fig. 1 and using our own knowledge about
the process, we can define four different fuzzy states which
explain when double limb support, right limb single support,
or left limb single support are produced. Therefore, we can
easily define the possible set of fuzzy states as follows:

• q1 → The right foot is in stance phase and the left foot
is in stance phase (double limb support).

• q2 → The right foot is in stance phase and the left foot
is in swing phase (right limb single support).

• q3 → The right foot is in stance phase and the left foot
is in stance phase (double limb support but different of
q1 because the feet position).

• q4 → The right foot is in swing phase and the left foot
is in stance phase (left limb single support).

B. Input variables

As we have explained in Section II, we only use two
of the three available accelerations, ax and ay . Therefore,
the set of input variables is: U = {ax, ay}. We will build
two different FFSMs, where each input variable will have
three (FFSM 3) or five (FFSM 5) associated linguistic
labels because, as we will show in the experimental re-
sults, they are enough to achieve a good accuracy keep-
ing a high interpretability. The linguistic labels for each
linguistic variable in the FFSM 3 are: {Sax ,Max , Bax}
and {Say ,May , Bay}, where S, M and B are linguistic
terms representing small, medium, and big, respectively.
While the linguistic labels for each linguistic variable
in the FFSM 5 are: {V Sax , Sax ,Max , Bax , V Bax} and
{V Say , Say ,May , Bay , V Bay}, where the additional terms
V S, and V B are linguistic terms representing very small,
and very big, respectively.

C. Transition function

As showed in Section III-C, the only thing required to
determine the structure of the fuzzy rule base (RB) is the
definition of which transitions are allowed and which are
not. This is easily represented by means of a state diagram.
Fig. 2 shows the proposed state diagram of the FFSM for the
human gait cycle. This state diagram is very simple because
the accelerations produced during the human gait are quasi-
periodic, i.e., they are repeated with approximately similar
values and periods. Moreover, all the states are correlative,
i.e., they always follow the same activation order. Therefore,

Fig. 2. State diagram of the FFSM for the human gait cycle.

it is rather easy to define the allowed transitions and the
forbidden ones.

From the state diagram represented in Fig. 2 it can be
recognized that there are 8 fuzzy rules in total in the system,
4 rules to remain in each state and other 4 to change between
states. Therefore, the RB will have the following structure:

R11:IF (S[t] is q1) AND C11 THEN S[t+ 1] is q1
R22:IF (S[t] is q2) AND C22 THEN S[t+ 1] is q2
R33:IF (S[t] is q3) AND C33 THEN S[t+ 1] is q3
R44:IF (S[t] is q4) AND C44 THEN S[t+ 1] is q4
R12:IF (S[t] is q1) AND C12 THEN S[t+ 1] is q2
R23:IF (S[t] is q2) AND C23 THEN S[t+ 1] is q3
R34:IF (S[t] is q3) AND C34 THEN S[t+ 1] is q4
R41:IF (S[t] is q4) AND C41 THEN S[t+ 1] is q1

D. Output vector and output function

In the current contribution, we simply consider Y [t] =
S[t], i.e., the output of the FFSM is the degree of activation
of each state.

V. GENETIC FUZZY SYSTEM

Fuzzy systems have showed their ability to deal with a
huge number of applications. In most of cases, the key for
the success was the ability of fuzzy systems to incorporate
human expert knowledge [45], [60], [61]. However, the lack
of learning capabilities has generated a strong interest for the
study of fuzzy systems with added learning capabilities. One
of the most popular approaches is the hybridization between
fuzzy logic and artificial neural networks [62] leading to the
well known area of neuro-fuzzy systems [63], [64]. Another
very extended hybrid computational intelligence system is
based on the use of genetic algorithms (GAs) (and, in
general, evolutionary algorithms) to learn the components of
a fuzzy system leading to the field of GFSs [32], [33], [34],
[35], [36]. This section introduces a new fusion framework
of FFSMs, a fuzzy system type, and GAs, which will be
called genetic fuzzy finite state machines (GFFSMs) from
now on. Basically, a GFFSM is a FFSM augmented by a
learning process based on a GA. In particular, the current
section is devoted to present the GFS developed to learn the
KB of the FFSM designed for human gait modeling.

When using a GA for learning a rule-based system, we
can cover different levels of complexity according to the
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structural changes produced in the learning system by the
search algorithm [65], i.e., we can do parameter optimization
which is the simplest case or we can learn the complete
rule set of a fuzzy rule-based system (FRBS). The KB is
usually the object of study in the GFS framework. From the
view point of optimization, the task of finding an appropriate
KB for a particular problem is equivalent to parameterize
the KB and to find those parameter values that are optimal
with respect to the optimization criterion. The KB parameters
constitute the search space, which is transformed into a
suitable genetic representation on which the search process
operates [33], [35].

As seen in Section III, the FFSM is a fuzzy system
and, more specifically, a FRBS as the transition function is
implemented by means of fuzzy if-then rules. Therefore, we
can define a GFS to learn the main components of this fuzzy
system.

In our approach, we allow the expert to introduce her/his
own knowledge over the whole system by defining the states
and transitions and specifying the general structure of the
fuzzy rules defining the state transitions. The fuzzy rules
themselves and the MFs of the input variables’ linguistic
labels will be automatically derived by the GFS, thus making
a robust, accurate and human friendly model. Therefore,
according to the different approaches presented in [32], [33],
[35], we will develop a complete learning of the KB, i.e., our
GFS will learn the MF shapes associated with the linguistic
terms and the fuzzy rules simultaneously, although dealing
with a reduced search space thanks to the incorporated expert
knowledge.

The joint learning of the RB and the MFs associated with
the input variables in the data base (DB) can be used as a
cooperative way to obtain a FFSM that is not only accurate
but also compact. We have opted by this genetic learning
scheme since we consider that the joint learning of DB and
RB deals with the interactions existing between both KB
components in a better way than following a multi-stage
learning based on first deriving the RB and later refining the
preliminary DB definition [32], [33], [34], [35]. Moreover,
in real complex problems, most of the effort developed in
a RB learning problem is typically devoted to increase the
performance of some wrong rules rather than to improve
the performance of the overall system by performing a
complex MF parameter learning process [66]. Nevertheless,
learning the DB and the RB concurrently can make the search
space so large that suboptimal models are generated [67].
Fortunately, in our case the combination of the use of expert
knowledge and the prefixed structure of the FFSM allows us
to deal with a more reduced search space size, thus allowing
the derivation of good performing KBs.

The following subsections will describe in detail the
structure of the different components of our GFS to learn
the KB of FFSMs devoted to human gait modeling.

A. Representation scheme and initial population generation

Since we are developing a complete learning of the KB,
we have divided the representation scheme into two parts:
the RB part and the DB part. In the following, we explain
each of these representations.

1) RB part: Once we have the complete rule set defined in
Section IV-C, we codify the whole rule set in a chromosome

following the Pittsburgh approach [68] because the evaluation
of the FFSM requires a complete execution cycle. Moreover,
the fixed size and structure of the rules (where the consequent
and the first term of the antecedent are known) and the
predefined structure of the constraints imposed on the input
variables showed in Section III-C allow us to use the classical
disjunctive normal form (DNF) representation based on a
binary string coding [56], [57] to codify only the remaining
part of the antecedent. For each of the two input variables
ax and ay , the rule representation consists of a binary sub-
string of the same length as the number of labels that refers
to its linguistic term set. Each bit has a one (zero) which
denotes the presence (absence) of each linguistic term in
the rule. Moreover, the feature selection capability of this
representation is used since an input variable is omitted in
the rule if all of its bits in the representation become zeros
or ones.

As an example of how this representation is developed in
the GFFSM 3, let us define a rule Rk with the following
constraint over the input variables:
Ck = (ax[t] is Max ) AND (ay[t] is May OR Bay ).
Therefore, the representation of this DNF fuzzy rule will

be of the form: {010 : 011}, where in the first sub-string
the second digit indicates the presence of the linguistic term
Max

and the zeros indicate the absence of the terms Sax

and Bax . The second sub-string has ones in the second and
third positions indicating the presence of the linguistic terms
May and Bay , and a zero in the first position, indicating the
absence of the linguistic term Say .

The RB part of the chromosome will thus be composed
of 8 rules × 2 linguistic variables × l = 16 × l binary-
coded genes, being l the number of linguistic terms per input
variable.

2) DB part: Once we have decided the number of lin-
guistic terms for each input variable (see Section IV-B), we
can show how to represent the DB part of the KB, i.e., the
representation of the MFs definition.

We have used strong fuzzy partitions (SFPs) [52] to define
the fuzzy partitions. In a SFP, the membership degree forms
a partition of unity. SFPs allow us to reduce the number
of parameters to tune, in such way that the normalization
constraint is easily satisfied by only coding the modal points
of the MFs (one point for triangular MFs and two points for
trapezoidal shapes). Moreover, when we calculate the OR
between two linguistic labels using Łukasiewicz’s bounded
sum as explained in Section III-C1, the resulting linguistic
label will be a convex fuzzy set without sawtooth shapes
that would be produced if we use the maximum. From
the interpretability point of view, SFPs satisfy semantic
constraints and helps to get comprehensible fuzzy partitions
[45].

We have used trapezoidal SFPs that are defined in
the whole domain of discourse of the input variable.
Since the fuzzy partition of each input variable is
generically comprised by l linguistic labels, we have to code
2 × [(l − 2)× 2 + 2] real parameters, (l − 2) × 2 + 2 per
input variable where one parameter is enough to codify the
first and last linguistic labels and two parameters are needed
to codify each intermediate linguistic label. In particular,
working with 3 or 5 linguistic labels, the DB part of the
chromosome will be composed of 8 or 16 real-coded genes
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Fig. 3. Parameters that form all the linguistic labels of the linguistic variable
ax in the GFFSM 3, which are trapezoidal or triangular MFs.

respectively:

GFFSM 3

{
ax → {a1ax

, a2ax
, b2ax

, a3ax
}

ay → {a1ay
, a2ay

, b2ay
, a3ay

}

GFFSM 5

{
ax → {a1ax

, a2ax
, b2ax

, a3ax
, b3ax

, a4ax
, b4ax

, a5ax
}

ay → {a1ay
, a2ay

, b2ay
, a3ay

, b3ay
, a4ay

, b4ay
, a5ay

}

Fig. 3 shows the graphical representation of the fuzzy
partition related with the linguistic input variable ax in the
GFFSM 3. For the first linguistic label Sax we only need one
parameter a1ax

. The same stands for the last one Bax whose
parameter is a3ax

. For the intermediate linguistic label we
need two parameters a2ax

and b2ax
. Note that we have chosen

trapezoidal MFs because triangular MFs are a particular case
of trapezoidal MFs, e.g. the linguistic label Bax will be
triangular-shaped when the value a3ax

reaches the limits of
the domain of discourse of the input variable ax.

We should remark that this learning problem demands a
real-coded representation and, therefore, we have to imple-
ment real-coded crossover and mutation genetic operators.
Moreover, to define the variation interval of each allele we
have considered that each parameter can be only modified
within the interval defined by its previous and next pa-
rameter, e.g., in Fig. 3 the definition/variation interval of
parameter a2ax

is [a1ax
, b2ax

] while that of parameter a3ax
is

[b2ax
,max (ax)] (with max (ax) being the maximum value

taken by the input variable ax).
Hence, the final chromosome encoding a candidate prob-

lem solution will be comprised by 48+ 8 = 56 genes in the
GFFSM 3, and 80+ 16 = 96 genes in the GFFSM 5. Fig. 4
shows the shape of the complete chromosome encoding the
RB and DB part of the GFFSM 3.

We have initialized the first population by generating all
the individuals at random. However, in order to include our
previous knowledge about the problem, the DB part of the
first individual of the population will encode uniform fuzzy
partitions for both linguistic variables ax and ay . Then, the
following individuals are created at random to introduce
diversity.

B. Fitness function

The fitness function measures the quality of the candidate
problem solution encoded in each chromosome. In the case
of our GFFSM for human gait modeling, the dependence of

the next state on the previous state makes it strictly necessary
to test the FFSM over the whole data set and for each
chromosome, which is very computationally expensive. This
problem also appears when learning fuzzy logic controllers,
where the fitness measure must be evaluated by simulating
how the plant is controlled [69], [70], [71].

We have chosen the minimization of the mean absolute
error (MAE) defined in Equation 3 as fitness function:

MAE =
1

n
· 1
T

·
n∑

i=1

T∑
j=0

|si[j]− s∗i [j]| (3)

where:
• n is the number of states, i.e., n = 4 for the human gait

modeling problem (see Section IV).
• T is the dataset size (i.e., the considered time interval

duration).
• si[j] is the degree of activation of state qi at time t = j.
• s∗i [j] is the expected degree of activation of state qi at

time t = j.
The MAE is a very informative measure of the quality of

the candidate solution because it directly measures the dif-
ference between the expected state activation vector (S∗[t])
and the obtained one (S[t]). However, we need to define an
expected activation vector S∗[t] for each input data set that
we want to learn, i.e., a training data set in the context of a
supervised learning problem to design our human gait FFSM-
based model. This definition could be problematic and must
be done carefully because sometimes, must be defined at
each time instant more than one state, activated with certain
degree in the interval [0, 1]. In the following subsection, this
issue is explained in detail.

C. Defining the training data set

As described above in Section V-B, in order to learn a
FFSM for different gaits of the same person, there is a need
to define an expected activation vector S∗[t] for each one
of the gaits we want to learn. Hence, we have to create a
training vector which consists of ax[t], ay[t] and S∗[t], i.e.,
(ax[t], ay[t], s

∗
1[t], s

∗
2[t], s

∗
3[t], s

∗
4[t]).

To define the training vector, we have developed a user-
friendly graphical interface that allows the expert to select the
relevant points where each state starts and ends using her/his
knowledge about the human gait process. For instance, “the
double limb support that comes after the right single support
starts just after the heel contact” can be translated as “state
q1 must start when ax increases drastically and ay tends to
decrease” [72]. The fuzzy definition of the states is based on
the imprecision of the expert when defining the start and the
end of each state which she/he must identify and label within
the time series associated to the measured signals. We have
defined the training vectors for data sets which consist of
five complete cycles of the human gait. For each state qi, we
will have ten different points, five comprising the beginning
(bmi ) and another five comprising the end (emi ) of each state,
with m = 1, . . . , 5. In the current FFSM involving four fuzzy
states, the expert will have to tag each sample of five cycles
with 40 points: {b11, b21, . . . , e44, e54}.

As an example, let us consider the definition of the degree
of activation of state q2 specified by Equation 4. Between
the end time of q1 (em1 ) and the start time of q2 (bm2 ), the
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Fig. 4. Chromosome which codifies the RB and DB part of the GFFSM 3.
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Fig. 5. Construction of the vectors of training data based on the start and
end points given by the user.

activation of the state q2 is rising from 0 to 1. Between the
start (bm2 ) and the end time (em2 ) of q2 defined by the user,
the activation has the maximum of 1, and afterwards the
activation drops till zero at the start of q3 (bm3 ). Otherwise,
the activation is zero.

s∗2[t] =


t−em1

bm2 −em1
if em1 < t < bm2

1 if bm2 ≤ t ≤ em2
bm3 −t

bm3 −em2
if em2 < t < bm3

0 otherwise

(4)

Fig. 5 shows an example of how a part of the training
vector is labeled based on the beginning and the end points
given by the expert.

D. Genetic operators

The definition of the genetic operators considered in our
GFFSM for human gait modeling are showed as follows:

1) Selection mechanism: To select the parents that will
undergo crossover and mutation, a binary tournament selec-
tion is considered. This operator is very useful since it does
not require any global knowledge of the population [31]. The
idea is to select at random two parents and choose the best
one with respect to the fitness function, repeating this process
until a complete parents set is built.

2) Crossover: The classical two-point crossover has been
used for the RB (binary-coded) part of the chromosome and
BLX-α crossover [73] for the DB (real-coded) part. The
BLX-α crossover is applied twice over a pair of parents in
order to obtain a new pair of chromosomes. When a pair
of chromosomes is chosen for crossover based on a single

crossover probability, we separately crossover the binary
part and the real part. Notice that, the proposed genetic
operators can be independently applied in both chromosome
parts ensuring the obtaining of an offspring encoding a
coherent FFSM KB definition. That does not always happen
when working with GFSs learning the whole KB using a
representation scheme based on two information levels (the
DB and RB parts) since those two parts can be so related
that the action of a genetic operator in one of them can
cause the appearance of meaningless chromosomes because
the information encoded in the other part is no longer valid
(see, for example, [74], [75]). Nevertheless, that is not the
case in the current coding scheme.

3) Mutation: For the binary-coded RB part, the classical
bitwise mutation has been selected. For the real-coded DB
part, the corresponding mutation operator called uniform
mutation [31] has been chosen. It consists of changing the
allele value of each gene randomly within its definition
interval. As for the crossover, the same mutation probability
defined at gene level is considered for both chromosome
parts.

4) Replacement mechanism: In our approach, we directly
replace the current population by the offspring one (genera-
tional replacement) keeping elitism.

5) Termination condition: In this contribution, we have
implemented three different termination conditions. First,
the search is stopped when the algorithm has obtained a
fitness value equal to zero, which is the best value that the
fitness function can take. However, this condition is almost
impossible to be reached. Therefore, we have decided to set a
maximum number of evaluations and also to stop the search
when, for a certain number of evaluations, the fitness value
of the best individual is not improved.

VI. EXPERIMENTATION

This section presents the experimentation carried out to
validate our proposal. First, the experimental setup, which
comprises the data acquisition and the GFFSM parameter
values, is explained. The second subsection contains a brief
description of two alternative modeling approaches used
for human gait modeling. Finally, the third and fourth
subsections report the obtained results and their analysis,
respectively.

A. Experimental Setup

1) Data acquisition: To evaluate the proposed approach,
we have collected the acceleration signals of 20 different
people in order to create a specific FFSM to model the gait
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of each person. The group of people consisted of healthy
adults, 5 women and 15 men, with ages ranging between 23
and 52 years (with an average age of 30 years) and weights
between 45 and 97 Kg (with an average of 76 Kg).

We attached to a belt, centered in the back of the person,
a three-axial accelerometer with Bluetooth capabilities that
provided measurements of the three orthogonal accelerations
with a frequency of 100 Hz. We programmed a personal
digital agenda (PDA) to receive the data via a Bluetooth
connection and to record it with a timestamp. Therefore,
every record contained the information: (t, ax, ay, az) where
t is each instant of time, ax is the dorso-ventral acceleration,
ay is the medio-lateral acceleration, and az is the antero-
posterior acceleration. As explained in Section II, in this
work we only use ax and ay .

We asked each person to walk a certain distance at a self-
selected walking speed which comprises around ten complete
gait cycles in such a way that we were able to extract five
complete gait cycles discarding the first and last steps which
are not very stable. This process was repeated ten times
for each person producing a total of ten datasets of five
complete cycles for each person. These datasets were then
processed as explained in Section V-C in order to define all
the fuzzy states. Therefore, once we captured and tagged all
the signals, we had ten different datasets for each person with
the following components:

(ax[t], ay[t], s
∗
1[t], s

∗
2[t], s

∗
3[t], s

∗
4[t])

Where:
• ax[t] is the dorso-ventral acceleration at time instant t.
• ay[t] is the medio-lateral acceleration at time instant t.
• s∗1[t] is the expected degree of activation of state q1 at

time instant t.
• s∗2[t] is the expected degree of activation of state q2 at

time instant t.
• s∗3[t] is the expected degree of activation of state q3 at

time instant t.
• s∗4[t] is the expected degree of activation of state q4 at

time instant t.
2) Parameter values for the GFFSM: Two different gran-

ularity levels have been considered for the fuzzy partitions, 3
and 5 (noted as GFFSM 3 and GFFSM 5 respectively). The
parameter values used by both GFFSMs are as follows. Quite
standard values are considered and a preliminary experimen-
tation was developed to check their good performance.

• Population size → 100 individuals.
• Crossover probability → pc = 0.8.
• Value of alpha (BLX-α parameter) → α = 0.3.
• Mutation probability per bit → pm = 0.02.
• Termination conditions:

– Fitness value reached → MAE = 0.
– Maximum number of evaluations → 40000 for the

GFFSM 3 and 60000 for the GFFSM 5.
– Evaluations without improvement of the fitness

function → 10000.

B. Alternative modeling approaches

In order to compare the two GFFSM results with other
system identification approaches, we have considered two
different techniques commonly used in system modeling of

MODEL nA nB COMPLEXITY
ARX 1 1 1 0
ARX 2 2 2 0.010
ARX 3 5 5 0.040
ARX 4 10 10 0.091
ARX 5 20 20 0.192
ARX 6 25 25 0.242
ARX 7 50 50 0.495
ARX 8 75 75 0.747
ARX 9 80 80 0.798
ARX 10 100 100 1

TABLE I
PARAMETER VALUES CONSIDERED FOR THE DIFFERENT ARX MODELS

AND THEIR COMPLEXITY.

time-dependent systems: autoregressive linear models (ARX)
[3] and neural networks (NN) [62].

1) Autoregressive linear models (ARX): We have defined
a multiple-input multiple-output (MIMO) ARX model with
the structure defined by Equation 5.

Y [t] = A1 · Y [t− 1] + . . .+AnA · Y [t− nA]

+ B0 · U [t] + . . .+BnB
· U [t− nB ] (5)

where:
• Y [t] = (s1[t], s2[t], s3[t], s4[t]) is the current output

vector.
• Y [t− 1], . . . , Y [t−nA] are the previous output vectors

on which the current output vector depends.
• U [t] = (ax[t], ay[t]), . . . , U [t− nB] are the current and

delayed input vectors on which the current output vector
depends.

• nA is the number of previous output vectors on which
the current output vector depends.

• nB is the number of previous input vectors on which
the current output vector depends.

• A1, . . . , AnA
, B0, . . . , BnB

are the matrices that define
the models. They are estimated using the least squares
method.

We have tested the performance of this model for ten
different values of the parameters nA and nB in order to
obtain several models with a different accuracy-complexity
tradeoff.

For the first parameter values, we have selected a simple
model similar to the delay of our GFFSM, i.e., nA = nB = 1
resulting in the ARX model number 1 defined by Equation
6:

Y [t] = A1 · Y [t− 1] +B0 · U [t] (6)

Then, another nine different values (with a maximum delay
of 100) were used to progressively increase the complexity of
the model. A linear complexity index is defined in such a way
that the complexity of the basic model with nA = nB = 1
is zero and the complexity for the most complex model with
nA = nB = 100 is one. The different parameter values for
each model together with the model complexity are showed
in Table I.

2) Neural networks: As for the ARX models, we have
built ten different feed-forward NN architectures representing
different levels of complexity. The first and simplest one (NN
1) consists of 2 neurons in the input layer which represent
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the two input variables ax[t] and ay[t], one hidden layer,
and four output neurons in the output layer correspond-
ing to the four components of the state activation vector
(s1[t], s2[t], s3[t], s4[t]).

The other NN models, representing different levels of
complexity, are determined by the number of delayed input
variables. Moreover, in order to avoid NNs with a huge
number of input neurons (which leads to overfitting and big
training times), we have considered delayed input variables
separated by a fixed interval of ten samples. E.g., the second
NN architecture (NN 2) has ax[t], ax[t − 10], ay[t], and
ay[t−10] as inputs; while the most complex one (NN 10) has
twenty inputs that cover a delay of 90 samples: ax[t], ax[t−
10], . . . , ax[t− 90], and ay[t], ay[t− 10], . . . , ay[t− 90].

The NN weights have been estimated using the Levenberg-
Marquardt method during 500 epochs. The number of neu-
rons in the hidden layer was chosen to minimize the test
error of each specific architecture. The architectures of the
two extreme NNs are represented in Fig. 6.

Similarly to the ARX models, a complexity index is
defined in such a way that the complexity of the NN with
2 inputs (NN 1) is zero and the complexity of the NN with
20 inputs (NN 10) is one. The different models, their input
variables, and their complexity are showed in Table II.

C. Results

To test the performance of the two GFFSMs and the
alternative modeling approaches, we have done a leave-one-
out cross validation [76] for each of the 10 datasets of each
person. As an example, Table III shows the MAE obtained
for each fold of the leave-one-out corresponding to the first
person’s experiments. It also depicts the average value of the
MAE and its standard deviation for the ten folds.

As a global summary of the results obtained, Table IV
reports, for each of the leave-one-out applications for the 10
datasets of each person, the average (MEAN) and standard
deviation (STD) of the MAE for eight different models: those
two corresponding to our proposal (GFFSM 3 and GFFSM
5), three ARX models comprising a good tradeoff model
(ARX 4) and the two extreme ones (ARX 1 and ARX 10),
and three NN models comprising a good tradeoff model (NN
4) and the two extreme ones (NN 1 and NN 10).

To select the best accuracy-complexity tradeoff model for
both NN and ARX models we compute 1000 random weights
ωi ∈ [0, 1]. We calculate the average MAE for each model
for the 20 people (MAE) and normalize the resulting set
of MAEs in the interval [0, 1]. We take the average value
of the aggregation function of both the normalized MAE
(M̃AE) and the complexity index value (COMPLEXITY) of
each model as showed in Equation 7. Finally, the model with
the lowest aggregated value is selected as that with the best
tradeoff:

QMODEL =

1000∑
i=1

ωi · M̃AEMODEL

+ (1− ωi) · COMPLEXITYMODEL (7)

Moreover, since our final goal is to obtain a specific model
(FFSM) for each person’s gait, Table V shows the average
of the MAE for each one of the person’s models (FFSMs)

generated during the leave-one-out procedure when the input
data is the whole set of gaits of each person. The aim of these
results is to check if the generated models are significantly
fitted to the specific person’s gait than to the other persons’
gaits, as expected and desired.

As can be seen, that is clearly the case. For example,
notice that, the models GFFSM 3 and GFFSM 5 for the
first person (P1) corresponding to the first two rows get an
average MAE (boldfaced) of 0.088 and 0.076 respectively
with its own person’s gait (first row, first column) while they
get large average MAE values for the gaits of the rest of the
people (the rest of the columns in the first row). This fact
can also be checked for the models of the rest of the people.
In addition, the last column of the table (MEAN−) shows
boldfaced the average value of all the MAEs obtained by
each person’s FFSM model with the gaits of all the people
except its own input gaits. It can be easily seen that these
values are much greater than the ones obtained with the gaits
of each person’s model (boldfaced in the diagonal cells of
the table).

D. Discussion

This subsection aims to present a discussion about four
different issues of our proposed model: its accuracy, its
interpretability, its computational cost, and the importance
of the use of expert knowledge.

1) Accuracy analysis: The results given in Tables III and
IV show that the GFFSM models exhibit better accuracies
when compared to the simplest competing models, namely
ARX 1 and NN 1. Besides, it can be seen how the best
tradeoff model ARX 7 is able to outperform our proposal,
although it needs a big delay of 50 samples to do so. On
the opposite, the best tradeoff model NN 4 shows a similar
accuracy to our models. Its results are slightly better than
those of GFSSM 3 and slightly worse than those of GFFSM
5. In fact, the GFFSM 5 is better than the GFFSM 3 for the
majority of the people due to its higher granularity in the
number of linguistic labels, which provides it with additional
freedom degrees for the modeling task.

In order to assess whether significant differences exist
among the results of all models, we use the Wilcoxon signed-
rank test [77] for pairwise comparison between our models
(GFFSM 3 and GFSSM 5) and the rest of competing models.
We choose this test because it does not assume normal distri-
butions and because it has been commonly used to compare
performance of methods in computational intelligence [78],
[79]. To perform the test we use the standard confidence level
of α = 0.05.

We have run the Wilcoxon signed rank test for three
different hypotheses, if the average MAEs of our proposed
approaches (µGFFSM 3 and µGFFSM 5) are equal, less, or
greater than those obtained by the other modeling tech-
niques (µMOD). We conclude that our proposal is better
(denoted by [+]) if the test rejects both null hypotheses
H0 : µGFFSM > µMOD and H0 : µGFFSM = µMOD. We
conclude that our proposal is worse (denoted by [-]) if the
test rejects both null hypotheses H0 : µGFFSM < µMOD and
H0 : µGFFSM = µMOD. In all other cases we do not draw
any conclusion (denoted by [=]).

Table VI shows the obtained p-values and the drawn
conclusions. The results particularly indicate that GFFSM 3
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MODEL INPUT VARIABLES COMPLEXITY
NN 1 ax[t], ay[t] 0
NN 2 ax[t], ax[t− 10], ay [t], ay [t− 10] 0.111
NN 3 ax[t], ax[t− 10], ax[t− 20], ay [t], ay [t− 10], ay [t− 20] 0.222
NN 4 ax[t], ax[t− 10], . . . , ax[t− 30], ay[t], ay [t− 10], . . . , ay [t− 30] 0.333
NN 5 ax[t], ax[t− 10], . . . , ax[t− 40], ay[t], ay [t− 10], . . . , ay [t− 40] 0.444
NN 6 ax[t], ax[t− 10], . . . , ax[t− 50], ay[t], ay [t− 10], . . . , ay [t− 50] 0.556
NN 7 ax[t], ax[t− 10], . . . , ax[t− 60], ay[t], ay [t− 10], . . . , ay [t− 60] 0.667
NN 8 ax[t], ax[t− 10], . . . , ax[t− 70], ay[t], ay [t− 10], . . . , ay [t− 70] 0.778
NN 9 ax[t], ax[t− 10], . . . , ax[t− 80], ay[t], ay [t− 10], . . . , ay [t− 80] 0.889
NN 10 ax[t], ax[t− 10], . . . , ax[t− 90], ay[t], ay [t− 10], . . . , ay [t− 90] 1

TABLE II
THE TEN DIFFERENT NN ARCHITECTURES WITH THEIR INPUT VARIABLES AND COMPLEXITIES.

Fig. 6. Architectures of the simplest neural network (NN 1) and the most complex one (NN 10) designed for human gait modeling. All of them have a
single hidden layer and the difference arises in the number of (delayed) inputs.

FOLD GFFSM 3 ARX 1 ARX 2 ARX 3 ARX 4 ARX 5 ARX 6 ARX 7 ARX 8 ARX 9 ARX 10
1 0.089 0.337 0.316 0.293 0.262 0.201 0.172 0.068 0.065 0.066 0.068
2 0.066 0.340 0.316 0.293 0.261 0.192 0.154 0.058 0.051 0.051 0.058
3 0.135 0.341 0.320 0.296 0.267 0.224 0.162 0.060 0.044 0.044 0.060
4 0.108 0.343 0.318 0.291 0.256 0.212 0.166 0.054 0.049 0.048 0.054
5 0.133 0.337 0.320 0.298 0.259 0.217 0.215 0.054 0.039 0.040 0.053
6 0.078 0.338 0.315 0.300 0.258 0.184 0.169 0.059 0.056 0.057 0.058
7 0.101 0.345 0.316 0.299 0.256 0.219 0.182 0.058 0.051 0.048 0.058
8 0.149 0.345 0.317 0.298 0.274 0.234 0.164 0.107 0.105 0.105 0.107
9 0.086 0.340 0.311 0.288 0.253 0.241 0.221 0.117 0.117 0.115 0.116

10 0.081 0.335 0.313 0.291 0.259 0.195 0.196 0.070 0.079 0.079 0.070
MEAN 0.103 0.340 0.316 0.295 0.261 0.212 0.180 0.070 0.065 0.065 0.070

STD 0.028 0.003 0.003 0.004 0.006 0.019 0.023 0.023 0.027 0.026 0.023
FOLD GFFSM 5 NN 1 NN 2 NN 3 NN 4 NN 5 NN 6 NN 7 NN 8 NN 9 NN 10

1 0.107 0.218 0.138 0.098 0.084 0.077 0.076 0.065 0.061 0.060 0.059
2 0.081 0.209 0.114 0.087 0.068 0.067 0.057 0.056 0.048 0.049 0.046
3 0.077 0.221 0.125 0.089 0.072 0.065 0.056 0.051 0.053 0.043 0.041
4 0.085 0.219 0.123 0.096 0.084 0.070 0.066 0.053 0.054 0.058 0.050
5 0.085 0.221 0.132 0.092 0.074 0.073 0.060 0.061 0.055 0.050 0.051
6 0.063 0.219 0.146 0.110 0.087 0.084 0.069 0.060 0.062 0.055 0.058
7 0.083 0.209 0.123 0.088 0.078 0.070 0.063 0.061 0.061 0.054 0.051
8 0.142 0.236 0.144 0.113 0.085 0.089 0.079 0.073 0.075 0.068 0.074
9 0.076 0.212 0.131 0.107 0.085 0.077 0.074 0.074 0.066 0.057 0.065

10 0.080 0.207 0.119 0.080 0.067 0.062 0.057 0.056 0.050 0.045 0.046
MEAN 0.088 0.217 0.129 0.096 0.078 0.073 0.066 0.061 0.059 0.054 0.054

STD 0.022 0.009 0.011 0.011 0.008 0.009 0.008 0.008 0.008 0.008 0.010

TABLE III
MAE OF THE LEAVE-ONE-OUT FOR THE DATASETS OF THE FIRST PERSON, WITH THE AVERAGE (MEAN) AND STANDARD DEVIATION (STD) FOR

EACH OF THE EVALUATED MODELS.

model is significantly better than the first five ARX models
and the first two NNs (while for ARX 6, NN 3, and NN 4
the testings do not provide clear conclusions). The GFFSM 5
model is significantly better than the GFFSM 3, the first six
ARX models, and the first three NNs (while for NN 4, NN
5, NN 6, NN 7, NN 8, and NN 10 the testings do not provide
clear conclusions). In view of these results, the accuracy of
the GFFSMs, in particular that of GFFSM 5, is competitive
with almost every NN (all but NN 9) and the first six ARX
models.

The good accuracy of our model is also illustrated in Fig.
7. The vertical axis depicts each component of the state
activation vector for a gait of the first person obtained using

our proposal (S[t]GFFSM 3 and S[t]GFFSM 5), the THRIFT-
FFSM model (S[t]THRIFT , see later Section VI-D4), the
best tradeoff ARX model (ARX 7) (S[t]ARX 7), and the
best tradeoff NN architecture (NN 4) (S[t]NN 4). The actual
values (S∗[t]) are reported in the bottom line for comparison.
The activation value is represented by means of a gray
intensity scale (black means one and white means zero).
Notice that, both ARX 7 and NN 4 calculate the activation
vector after the first 0.5 and 0.3 seconds respectively due to
the fact that they need the first 50 and 30 samples to operate
(0.5 and 0.3 seconds with a sampling frequency of 100 Hz).
It can be seen how the GFFSM 3 and the GFFSM 5 are able
to follow the appropriate sequence of states with the correct
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PERSON
GFFSM 3 GFFSM 5 ARX 1 ARX 7 ARX 10 NN 1 NN 4 NN 10

MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD
1 0.103 0.028 0.088 0.022 0.340 0.003 0.070 0.023 0.070 0.023 0.217 0.009 0.078 0.008 0.054 0.010
2 0.063 0.025 0.055 0.020 0.379 0.011 0.064 0.027 0.064 0.027 0.194 0.007 0.061 0.009 0.053 0.008
3 0.091 0.018 0.077 0.022 0.331 0.007 0.103 0.041 0.102 0.041 0.238 0.010 0.080 0.010 0.053 0.008
4 0.150 0.100 0.143 0.040 0.328 0.006 0.110 0.050 0.109 0.050 0.257 0.007 0.118 0.012 0.078 0.011
5 0.071 0.047 0.055 0.031 0.254 0.006 0.071 0.016 0.071 0.016 0.248 0.005 0.093 0.008 0.063 0.010
6 0.106 0.030 0.117 0.022 0.323 0.014 0.107 0.040 0.106 0.040 0.258 0.006 0.115 0.014 0.077 0.011
7 0.170 0.045 0.159 0.034 0.355 0.008 0.074 0.021 0.074 0.021 0.255 0.009 0.094 0.012 0.052 0.007
8 0.065 0.019 0.067 0.034 0.352 0.004 0.065 0.020 0.065 0.020 0.211 0.003 0.072 0.005 0.048 0.006
9 0.098 0.041 0.121 0.075 0.319 0.009 0.115 0.076 0.115 0.076 0.243 0.010 0.120 0.020 0.088 0.016

10 0.121 0.056 0.098 0.050 0.382 0.012 0.088 0.030 0.088 0.030 0.237 0.005 0.108 0.008 0.068 0.008
11 0.101 0.039 0.110 0.032 0.376 0.004 0.094 0.018 0.090 0.025 0.221 0.003 0.109 0.012 0.088 0.010
12 0.303 0.143 0.229 0.131 0.339 0.002 0.078 0.018 0.076 0.028 0.301 0.021 0.261 0.048 0.257 0.065
13 0.281 0.104 0.263 0.126 0.348 0.022 0.083 0.046 0.086 0.059 0.282 0.029 0.268 0.085 0.296 0.094
14 0.059 0.020 0.066 0.044 0.370 0.005 0.070 0.029 0.066 0.026 0.204 0.005 0.062 0.011 0.046 0.014
15 0.279 0.125 0.209 0.127 0.339 0.020 0.089 0.028 0.080 0.030 0.290 0.026 0.249 0.075 0.253 0.082
16 0.059 0.038 0.066 0.064 0.233 0.009 0.085 0.069 0.070 0.020 0.238 0.010 0.093 0.012 0.055 0.007
17 0.215 0.135 0.153 0.120 0.333 0.004 0.114 0.038 0.124 0.051 0.297 0.034 0.233 0.110 0.233 0.124
18 0.088 0.046 0.070 0.015 0.343 0.006 0.069 0.026 0.073 0.020 0.210 0.009 0.077 0.009 0.052 0.008
19 0.105 0.029 0.106 0.041 0.384 0.007 0.101 0.044 0.104 0.044 0.243 0.006 0.110 0.012 0.080 0.012
20 0.142 0.053 0.120 0.036 0.366 0.018 0.117 0.056 0.101 0.039 0.270 0.005 0.099 0.012 0.062 0.007

MEAN 0.133 0.057 0.119 0.054 0.340 0.009 0.088 0.036 0.087 0.034 0.246 0.011 0.125 0.025 0.103 0.026

TABLE IV
AVERAGE (MEAN) AND STANDARD DEVIATION (STD) OF THE MAE FOR EACH ONE OF THE LEAVE-ONE-OUT FOR THE 10 DATASETS OF EACH

PERSON.

(s)
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

t

Fig. 7. Comparison of the state activation vector (s1[t], s2[t], s3[t], s4[t]) values obtained by means of the two GFFSMs, the THRIFT-FFSM, the ARX
7 model, the NN 4 model, with the actual values (s∗1[t], s

∗
2[t], s

∗
3[t], s

∗
4[t]) with respect to time.

activation degree.
2) Interpretability analysis: From the interpretability

point of view, both NNs and the ARX models are black-box
models difficult to be understood by human experts, even
more if they have a big number of delayed input variables or
a high number of inputs. Nevertheless, our GFFSMs are able
to describe and model the human gait phenomenon by means
of only eight linguistic fuzzy if-then rules (whose input
variables have only three or five associated linguistic labels)
achieving a good interpretability-accuracy tradeoff. As an
example of how our proposal is describing linguistically the
temporal evolution of the accelerations produced during the

human gait, a complete RB learned for the GFFSM 3 in one
of the executions of the GA is showed as follows:
R11: IF (S[t] is q1) AND (ax[t] is Sax )

THEN S[t + 1] is q1
R22: IF (S[t] is q2) AND (ax[t] is Bax ) AND (ay [t] is May OR Bay )

THEN S[t + 1] is q2
R33: IF (S[t] is q3) AND (ax[t] is Max ) AND (ay[t] is May )

THEN S[t + 1] is q3
R44: IF (S[t] is q4) AND (ax[t] is Sax OR Bax ) AND (ay [t] is Say OR May )

THEN S[t + 1] is q4
R12: IF (S[t] is q1) AND (ax[t] is Sax ) AND (ay [t] is Say OR May )

THEN S[t + 1] is q2
R23: IF (S[t] is q2) AND (ax[t] is Max ) AND (ay[t] is Say )

THEN S[t + 1] is q3
R34: IF (S[t] is q3) AND (ax[t] is Max OR Bax ) AND (ay[t] is May OR Bay )

THEN S[t + 1] is q4
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INPUT

MODEL P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 MEAN−

P1GFFSM 3 0.088 0.276 0.347 0.336 0.373 0.357 0.319 0.167 0.335 0.331 0.288 0.335 0.335 0.417 0.325 0.343 0.349 0.357 0.361 0.346 0.331
P1GFFSM 5 0.076 0.341 0.370 0.333 0.357 0.380 0.348 0.260 0.353 0.357 0.301 0.366 0.360 0.361 0.366 0.312 0.360 0.366 0.358 0.364 0.348
P2GFFSM 3 0.400 0.060 0.331 0.415 0.405 0.419 0.393 0.402 0.394 0.344 0.400 0.395 0.362 0.404 0.392 0.435 0.405 0.399 0.417 0.407 0.396
P2GFFSM 5 0.405 0.047 0.305 0.394 0.403 0.418 0.388 0.400 0.390 0.362 0.395 0.383 0.341 0.351 0.386 0.410 0.386 0.404 0.404 0.406 0.386
P3GFFSM 3 0.407 0.319 0.082 0.400 0.375 0.407 0.397 0.410 0.405 0.383 0.224 0.381 0.369 0.425 0.374 0.400 0.386 0.398 0.447 0.399 0.384
P3GFFSM 5 0.380 0.321 0.072 0.377 0.363 0.384 0.386 0.312 0.399 0.373 0.254 0.380 0.369 0.409 0.382 0.403 0.382 0.386 0.429 0.367 0.371
P4GFFSM 3 0.284 0.309 0.409 0.103 0.279 0.287 0.333 0.300 0.358 0.374 0.323 0.347 0.313 0.325 0.342 0.224 0.383 0.365 0.243 0.372 0.325
P4GFFSM 5 0.252 0.315 0.360 0.109 0.345 0.285 0.290 0.310 0.400 0.389 0.316 0.340 0.308 0.342 0.355 0.249 0.365 0.369 0.251 0.376 0.327
P5GFFSM 3 0.410 0.399 0.467 0.345 0.046 0.360 0.369 0.372 0.380 0.352 0.395 0.362 0.395 0.229 0.398 0.360 0.376 0.386 0.347 0.382 0.373
P5GFFSM 5 0.378 0.368 0.409 0.373 0.039 0.319 0.356 0.411 0.352 0.345 0.317 0.365 0.387 0.355 0.381 0.364 0.372 0.363 0.366 0.347 0.365
P6GFFSM 3 0.380 0.362 0.388 0.327 0.242 0.091 0.339 0.334 0.400 0.423 0.429 0.348 0.305 0.382 0.316 0.219 0.364 0.327 0.252 0.329 0.340
P6GFFSM 5 0.363 0.298 0.360 0.342 0.256 0.085 0.345 0.285 0.419 0.418 0.410 0.349 0.331 0.406 0.363 0.259 0.354 0.347 0.261 0.330 0.342
P7GFFSM 3 0.278 0.215 0.229 0.287 0.381 0.267 0.135 0.213 0.379 0.396 0.240 0.335 0.317 0.411 0.350 0.302 0.333 0.310 0.328 0.378 0.313
P7GFFSM 5 0.306 0.230 0.284 0.302 0.389 0.237 0.124 0.248 0.354 0.374 0.276 0.338 0.317 0.376 0.355 0.317 0.339 0.295 0.310 0.371 0.317
P8GFFSM 3 0.264 0.239 0.327 0.332 0.327 0.333 0.311 0.061 0.345 0.369 0.322 0.339 0.336 0.397 0.332 0.349 0.337 0.350 0.371 0.328 0.332
P8GFFSM 5 0.216 0.275 0.315 0.337 0.380 0.335 0.317 0.056 0.337 0.395 0.291 0.358 0.358 0.395 0.340 0.374 0.331 0.378 0.370 0.361 0.340
P9GFFSM 3 0.402 0.409 0.438 0.379 0.379 0.411 0.374 0.379 0.073 0.356 0.387 0.332 0.373 0.251 0.365 0.377 0.340 0.357 0.359 0.378 0.371
P9GFFSM 5 0.384 0.426 0.447 0.384 0.381 0.393 0.362 0.408 0.075 0.306 0.408 0.322 0.373 0.208 0.367 0.374 0.348 0.398 0.368 0.385 0.371
P10GFFSM 3 0.395 0.375 0.385 0.385 0.354 0.432 0.341 0.392 0.252 0.093 0.390 0.345 0.382 0.330 0.311 0.415 0.352 0.401 0.432 0.332 0.369
P10GFFSM 5 0.342 0.362 0.407 0.368 0.323 0.362 0.341 0.367 0.236 0.073 0.334 0.321 0.347 0.353 0.311 0.360 0.367 0.383 0.358 0.318 0.345
P11GFFSM 3 0.279 0.254 0.243 0.312 0.334 0.305 0.357 0.251 0.404 0.389 0.075 0.341 0.322 0.393 0.366 0.353 0.355 0.418 0.354 0.363 0.337
P11GFFSM 5 0.258 0.265 0.266 0.320 0.323 0.300 0.311 0.210 0.354 0.337 0.072 0.332 0.309 0.337 0.348 0.318 0.331 0.373 0.324 0.341 0.314
P12GFFSM 3 0.325 0.335 0.315 0.344 0.335 0.317 0.335 0.311 0.298 0.331 0.338 0.174 0.317 0.351 0.319 0.292 0.329 0.342 0.316 0.340 0.326
P12GFFSM 5 0.348 0.362 0.317 0.348 0.336 0.298 0.348 0.281 0.365 0.345 0.351 0.133 0.307 0.402 0.313 0.287 0.319 0.316 0.347 0.325 0.332
P13GFFSM 3 0.333 0.380 0.342 0.308 0.369 0.350 0.344 0.328 0.360 0.340 0.337 0.333 0.188 0.393 0.320 0.318 0.311 0.325 0.369 0.353 0.343
P13GFFSM 5 0.330 0.338 0.286 0.322 0.341 0.335 0.320 0.284 0.359 0.356 0.325 0.336 0.179 0.384 0.319 0.358 0.322 0.310 0.318 0.344 0.331
P14GFFSM 3 0.383 0.416 0.451 0.406 0.358 0.415 0.388 0.385 0.318 0.342 0.382 0.383 0.388 0.053 0.401 0.399 0.394 0.384 0.372 0.399 0.388
P14GFFSM 5 0.414 0.412 0.444 0.410 0.385 0.411 0.401 0.426 0.296 0.347 0.419 0.387 0.398 0.041 0.402 0.386 0.380 0.392 0.366 0.398 0.393
P15GFFSM 3 0.368 0.401 0.372 0.329 0.360 0.328 0.353 0.375 0.303 0.378 0.351 0.312 0.344 0.398 0.180 0.352 0.333 0.313 0.327 0.360 0.350
P15GFFSM 5 0.363 0.375 0.369 0.306 0.358 0.319 0.335 0.319 0.327 0.422 0.306 0.309 0.327 0.411 0.137 0.331 0.332 0.319 0.301 0.334 0.340
P16GFFSM 3 0.327 0.360 0.363 0.293 0.322 0.342 0.338 0.318 0.359 0.369 0.336 0.330 0.329 0.359 0.353 0.044 0.349 0.339 0.233 0.338 0.334
P16GFFSM 5 0.292 0.363 0.342 0.319 0.330 0.339 0.340 0.301 0.354 0.348 0.315 0.329 0.334 0.356 0.354 0.034 0.347 0.342 0.235 0.344 0.331
P17GFFSM 3 0.299 0.358 0.261 0.340 0.423 0.358 0.361 0.267 0.380 0.386 0.260 0.339 0.312 0.349 0.330 0.346 0.134 0.294 0.310 0.393 0.335
P17GFFSM 5 0.319 0.327 0.254 0.353 0.416 0.355 0.362 0.190 0.368 0.390 0.260 0.359 0.306 0.433 0.353 0.342 0.121 0.320 0.323 0.401 0.338
P18GFFSM 3 0.323 0.336 0.337 0.366 0.372 0.377 0.374 0.344 0.385 0.409 0.383 0.350 0.351 0.399 0.349 0.326 0.368 0.070 0.341 0.336 0.359
P18GFFSM 5 0.394 0.343 0.362 0.352 0.416 0.399 0.361 0.366 0.393 0.412 0.389 0.378 0.352 0.388 0.363 0.326 0.405 0.061 0.284 0.391 0.372
P19GFFSM 3 0.303 0.350 0.387 0.291 0.350 0.343 0.353 0.310 0.372 0.367 0.365 0.371 0.328 0.391 0.385 0.312 0.364 0.287 0.082 0.352 0.346
P19GFFSM 5 0.298 0.322 0.375 0.300 0.343 0.332 0.346 0.316 0.383 0.342 0.359 0.377 0.352 0.403 0.384 0.310 0.373 0.303 0.079 0.343 0.345
P20GFFSM 3 0.369 0.408 0.385 0.386 0.314 0.404 0.419 0.366 0.315 0.276 0.385 0.333 0.367 0.341 0.331 0.373 0.329 0.343 0.388 0.107 0.360
P20GFFSM 5 0.383 0.428 0.395 0.396 0.329 0.380 0.429 0.379 0.318 0.294 0.386 0.313 0.361 0.314 0.310 0.376 0.365 0.365 0.392 0.086 0.364

TABLE V
AVERAGE OF THE MAE FOR EACH ONE OF THE PERSON’S FFSM MODELS WHEN THE INPUT DATA IS THE WHOLE SET OF GAITS OF EACH PERSON.
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Fig. 8. MFs which comprise the learned DB compared with the original
uniformly distributed MFs.

R41: IF (S[t] is q4) AND (ax[t] is Sax OR Max ) AND (ay [t] is Bay )
THEN S[t + 1] is q1

Fig. 8 shows the graphical representation of the learned
DB associated with this RB. The initial DB is also plotted,
which consists of uniformly distributed MFs. In both cases,
the use of SFPs produce comprehensible fuzzy partitions
which allow us to get an interpretable fuzzy system.

As mentioned above, the main advantage of our model
of human gait is its interpretability. The chance to properly
understand the obtained model can report a large number
of benefits for the designer. For example, in [27], we took
advantage of this interpretability to create a model aimed
to compare the characteristics of different human gaits, a
different but related problem. With this aim, we elaborated
upon two relevant measures of human gait based on the
degree of activation and duration of successive states. We
called these measures symmetry and homogeneity. Symmetry
is a measure of the similarity among accelerations produced
by steps given by the right leg (states q1 and q2) and
accelerations produced by steps of the left leg (states q3
and q4). Homogeneity is a measure of how the same pattern
of accelerations is repeated on time, i.e., it is a measure of
similarity between each two steps and the following ones.
Empirically, we have observed that these measures are char-
acteristic of the style of walking of each person. In the paper
mentioned above, we showed how to use these parameters to
authenticate one person among 11 individuals (the interested
reader is referred to a research work with the same goal
but with a different approach in [80]). As in [1], [39], we
think that the model presented in that paper could be used to
detect and analyze pathological disorders in the gait in the
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GFFSM 3
ALG H0 : µGFFSM 3 = µMOD H0 : µGFFSM 3 < µMOD H0 : µGFFSM 3 > µMOD CONCLUSION

GFFSM 5 0.021 0.010 0.990 [-]
ARX 1 1.91 · 10−6 1 9.54 · 10−7 [+]
ARX 2 1.91 · 10−6 1 9.54 · 10−7 [+]
ARX 3 3.81 · 10−6 1 1.91 · 10−6 [+]
ARX 4 2.67 · 10−5 1 1.34 · 10−5 [+]
ARX 5 0.004 0.998 0.002 [+]
ARX 6 0.231 0.892 0.115 [=]
ARX 7 0.018 0.009 0.991 [-]
ARX 8 0.005 0.002 0.998 [-]
ARX 9 0.004 0.002 0.998 [-]

ARX 10 0.010 0.005 0.995 [-]
NN 1 1.20 · 10−4 1 6.01 · 10−5 [+]
NN 2 8.20 · 10−5 1 4.10 · 10−5 [+]
NN 3 0.121 0.939 0.061 [=]
NN 4 0.232 0.116 0.884 [=]
NN 5 0.022 0.011 0.989 [-]
NN 6 0.003 0.002 0.999 [-]
NN 7 0.002 8.01 · 10−4 0.999 [-]
NN 8 5.93 · 10−4 2.96 · 10−4 1 [-]
NN 9 1.68 · 10−4 8.39 · 10−5 1 [-]
NN 10 3.22 · 10−4 1.61 · 10−4 1 [-]

GFFSM 5
ALG H0 : µGFFSM 5 = µMOD H0 : µGFFSM 5 < µMOD H0 : µGFFSM 5 > µMOD CONCLUSION

GFFSM 3 0.021 0.990 0.010 [+]
ARX 1 1.91 · 10−6 1 9.54 · 10−7 [+]
ARX 2 1.91 · 10−6 1 9.54 · 10−7 [+]
ARX 3 8.84 · 10−5 1 4.42 · 10−5 [+]
ARX 4 8.84 · 10−5 1 4.42 · 10−5 [+]
ARX 5 2.10 · 10−4 1 1.05 · 10−4 [+]
ARX 6 0.040 0.980 0.020 [+]
ARX 7 0.033 0.017 0.983 [-]
ARX 8 0.005 0.003 0.997 [-]
ARX 9 0.005 0.002 0.998 [-]

ARX 10 0.016 0.008 0.992 [-]
NN 1 1.91 · 10−6 1 9.54 · 10−7 [+]
NN 2 1.91 · 10−6 1 9.54 · 10−7 [+]
NN 3 2.61 · 10−4 1 1.31 · 10−4 [+]
NN 4 0.179 0.911 0.089 [=]
NN 5 0.601 0.300 0.700 [=]
NN 6 0.255 0.127 0.873 [=]
NN 7 0.151 0.075 0.925 [=]
NN 8 0.073 0.037 0.963 [=]
NN 9 0.042 0.021 0.979 [-]
NN 10 0.090 0.045 0.959 [=]

TABLE VI
P-VALUES OBTAINED FOR THE THREE DIFFERENT WILCOXON SIGNED-RANK TESTS AND THEIR NULL HYPOTHESES.

same way. It seems evident that symmetry and homogeneity
will be affected by the presence of gait disorders, e.g., we
can check this point measuring the symmetry of gait when a
person is carrying a heavy bag in one hand and when she/he
is free of that heavy unbalancing load.

Focusing on the current contribution, the expert analysis
of the RB and the DB obtained of the human gait GFFSM
model constitutes another approach to detect gait disorders.
The antecedents of the learned rules in conjunction with the
MFs of each variable can provide relevant information about
the quality of the gait of a person, e.g., by showing abnormal
membership values of the dorso-ventral acceleration (ax) or
inconsistent rules not compatible with the expert’s knowl-
edge. Moreover, regarding to the topic of gait modeling, it
is worth noting that, the interpretability of the model allows
us to calculate relevant temporal features of the gait, i.e., the
duration of the states and their temporal sequence. With this
information, we can easily count the number of steps and
the duration of each of them and therefore the instantaneous
walking speed. This is a significant issue in gait disorder
analysis due to the fact that, e.g., patients tend to alter speed
in order to accommodate loads applied on the knee.

3) Computational cost analysis: We have already com-
pared the different algorithms in terms of the complexity and

accuracy. Nevertheless, it is also interesting to evaluate their
computational cost. The average times needed for building
a GFFSM 3 and a GFFSM 5 model were 4076 and 6022
seconds respectively, while the ARX 1, ARX 7 and ARX
10 models took 0.25, 72, and 630 seconds respectively. The
NN 1, NN 4 and NN 10 took 40, 118, and 314 seconds
respectively. All the methods were run in a single computer,
with 4 GB RAM and an Intel Core 2 Quad Q8400 with 2.66
GHz.

As expected, the GFFSMs spent a larger run time as they
do not only involve parameter estimation but also structure
identification. As said in Section V-B, the dependence of
the next state on the previous state in our GFFSM makes it
strictly necessary to test the FFSM over the whole data set
for each chromosome evaluation, which is very computation-
ally expensive. Nevertheless, the additional interpretability
advantage makes this computational cost increase worthy. In
addition, while NNs and ARX models are implemented in
well established and optimized libraries, the GFFSMs were
programmed in not optimized Matlab code (more refined
implementations could be done in the future).

4) Importance of the use of expert knowledge analysis:
Our GFFSMs are designed to take advantage from the
available expert knowledge, exploiting the power of fuzzy
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systems which are capable of integrating this knowledge
with machine learning techniques. The possibility of merging
expert information with the information derived from data
using GAs allows us to obtain a rough linguistic descrip-
tion of the gait, i.e., the final set of fuzzy rules obtained
provide a linguistic description of the phenomenon. In the
current GFFSMs, the designer has chosen a model of human
gait with four basic fuzzy states easily recognized when
we observe a walking person (see Fig. 1). Applying this
constraint in the model, the designer makes the model easily
understandable. Then, the GA explores possibilities into this
restricted framework to define the final model structure and
to estimate its parameters.

Even so, we have also decided to check whether the
proposed GFFSM method is powerful enough to handle the
overall learning problem, i.e., to extract the whole model
(fuzzy rule set) structure from scratch along with the relevant
labels and MFs in the case of 3 linguistic labels per input
variable. We have assumed full ignorance of the RB and
tried to build a FFSM using the classical genetic learning
method proposed by Thrift [81] to derive the RB of the FFSM
keeping the previous derivation of the DB based on a GA
with real-coded chromosomes (from now on, this method
will be called THRIFT-FFSM).

Thrift’s RB derivation method is based on encoding all the
cells of the complete decision table in the chromosomes. In
our case, we have three antecedents: the current state (with
four different possibilities corresponding to the number of
possible states, the only information provided by the expert
in the current experiment, together with the granularity of the
fuzzy partitions), the input variable ax (with three different
linguistic labels corresponding to Sax , Max , and Bax ), and
the input variable ay (with another three different linguistic
labels corresponding to Say , May , and Bay ). Therefore, the
decision table will be a three-dimensional structure of size
4×3×3 consisting of a total of 36 possible rules. Each cell
of the decision table will represent the output of each fuzzy
rule by means of an integer coding scheme represented by
the set {0, 1, 2, 3, 4}, where 0 indicates the absence of the
rule and 1, 2, 3 or 4 indicates that the next state will be q1,
q2, q3, or q4 respectively. Hence, we substitute the first part
of the chromosome in Fig. 4 (RB part), composed of 48
binary genes (see Section V-A), by an integer-coded array
of size 36, encoding the consequents for each possible rule.
The resulting coding scheme has thus 44 genes (36 for the
RB part plus 8 for the DB part).

We have used the same genetic operators for the GA
as explained in Section V and the same parameter values
showed in Section VI-A2, except the bitwise mutation (de-
signed for binary-coded chromosomes) which was replaced
by the original Thrift’s mutation operator that randomly adds
or subtracts 1 (with equal probability) to the current value
of the allele within the set {0, 1, 2, 3, 4}.

Table VII shows the MAE obtained for each fold of the
leave-one-out corresponding to the first and second person
using the Thrift’s RB derivation keeping the DB derivation
(THRIFT-FFSM) compared to our expert information-based
proposal (GFFSM 3). It also depicts the average value of the
MAE and its standard deviation for the ten folds. As it can be
seen, the lack of expert knowledge pays the cost of larger test
errors. Moreover, the average training time for each THRIFT-

FOLD PERSON 1 PERSON 2
THRIFT-FFSM GFFSM 3 THRIFT-FFSM GFFSM 3

1 0.115 0.089 0.054 0.049
2 0.085 0.066 0.091 0.072
3 0.115 0.135 0.072 0.065
4 0.102 0.108 0.107 0.047
5 0.205 0.133 0.092 0.072
6 0.172 0.078 0.107 0.037
7 0.083 0.101 0.169 0.048
8 0.111 0.149 0.051 0.066
9 0.152 0.086 0.079 0.124
10 0.083 0.081 0.121 0.046

MEAN 0.122 0.103 0.094 0.063
STD 0.041 0.028 0.035 0.025

TABLE VII
MAE OF THE LEAVE-ONE-OUT FOR THE DATASETS OF THE FIRST AND

SECOND PERSON, WITH THE AVERAGE (MEAN) AND STANDARD
DEVIATION (STD) FOR THE TWO EVALUATED MODELS.

FFSM model is 10855 seconds while the original GFFSM
takes an average of 4076.

We can also examine whether the RB extracted by the
THRIFT-FFSM model resembles to the expert knowledge
based one. As an example, the RB obtained for the seventh
fold of the first person (with a MAE of 0.083) is showed as
follows:

R1
11:IF (S[t] is q1) AND (ax[t] is Bax ) AND (ay [t] is Say )

THEN S[t+ 1] is q1
R2

11:IF (S[t] is q1) AND (ax[t] is Bax ) AND (ay [t] is May )
THEN S[t+ 1] is q1

R3
11:IF (S[t] is q1) AND (ax[t] is Sax ) AND (ay [t] is Bay )

THEN S[t+ 1] is q1
R4

11:IF (S[t] is q1) AND (ax[t] is Max ) AND (ay[t] is Bay )
THEN S[t+ 1] is q1

R5
22:IF (S[t] is q2) AND (ax[t] is Bax ) AND (ay [t] is May )

THEN S[t+ 1] is q2
R6

33:IF (S[t] is q3) AND (ax[t] is Bax ) AND (ay [t] is Bay )
THEN S[t+ 1] is q3

R7
33:IF (S[t] is q3) AND (ax[t] is Max ) AND (ay[t] is Say )

THEN S[t+ 1] is q3
R8

33:IF (S[t] is q3) AND (ax[t] is Bax ) AND (ay [t] is May )
THEN S[t+ 1] is q3

R9
33:IF (S[t] is q3) AND (ax[t] is Max ) AND (ay[t] is Bay )

THEN S[t+ 1] is q3
R10

33:IF (S[t] is q3) AND (ax[t] is Bax ) AND (ay [t] is Bay )
THEN S[t+ 1] is q3

R11
44:IF (S[t] is q4) AND (ax[t] is Sax ) AND (ay [t] is May )

THEN S[t+ 1] is q4
R12

12:IF (S[t] is q1) AND (ax[t] is Sax ) AND (ay [t] is Say )
THEN S[t+ 1] is q2

R13
14:IF (S[t] is q1) AND (ax[t] is Sax ) AND (ay [t] is May )

THEN S[t+ 1] is q4
R14

23:IF (S[t] is q2) AND (ax[t] is Sax ) AND (ay [t] is Say )
THEN S[t+ 1] is q3

R15
24:IF (S[t] is q2) AND (ax[t] is Bax ) AND (ay [t] is Bay )

THEN S[t+ 1] is q4
R16

34:IF (S[t] is q3) AND (ax[t] is Sax ) AND (ay [t] is May )
THEN S[t+ 1] is q4

R17
34:IF (S[t] is q3) AND (ax[t] is Sax ) AND (ay [t] is Bay )

THEN S[t+ 1] is q4
R18

41:IF (S[t] is q4) AND (ax[t] is Max ) AND (ay[t] is Bay )
THEN S[t+ 1] is q1

R19
41:IF (S[t] is q4) AND (ax[t] is Bax ) AND (ay [t] is Bay )

THEN S[t+ 1] is q1
R20

42:IF (S[t] is q4) AND (ax[t] is Bax ) AND (ay [t] is Say )
THEN S[t+ 1] is q2

R21
42:IF (S[t] is q4) AND (ax[t] is Bax ) AND (ay [t] is May )

THEN S[t+ 1] is q2
R22

42:IF (S[t] is q4) AND (ax[t] is Sax ) AND (ay [t] is Bay )
THEN S[t+ 1] is q2

It consists of 22 rules (14 rules were automatically dis-
carded) which, as can be seen in the state diagram showed
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Fig. 9. State diagram obtained with the Thrift’s RB derivation.

in Fig. 9, are not able to capture the expert knowledge
represented by the state diagram of the human gait showed in
Fig. 2. It presents some weird transitions as that represented
in rule number 13 from state q1 to state q4 or the transitions
between states q2 and q4 in rules 15, 20, 21, and 22. The
effects of these transitions are reflected in Fig. 7, where the
state activation vector corresponding with the THIRFT-FFSM
model (S[t]THRIFT ) activates q4 when going from state q1
to the state q2.

In summary, it is clear that the full consideration of the
expert knowledge is the best way to design a FFSM for the
human gait modeling problem by means of GAs.

VII. CONCLUDING REMARKS

We have presented a practical application where we de-
scribed how to build FFSMs to model the human gait of
a set of people by using GAs and expert knowledge. We
defined the principal elements of the human gait cycle and
developed a genetic learning procedure for FFSMs to model
the gait cycle for each person. It has been showed how
this GFS can obtain automatically the fuzzy rules and the
fuzzy MFs associated to the linguistic terms of the FFSM
while the states and transitions are defined by the expert,
thus maintaining the knowledge that she/he has about the
problem. To incorporate this expert knowledge, we have
designed a user-friendly graphical interface for defining the
fuzzy states of the human gait. The results obtained showed
the goodness of our proposal.

We have increased the capabilities of FFSMs with a novel
GA-based procedure for the automatic definition of its KB.
Therefore, a great number of opportunities arise. We can
set out new applications of system modeling by means
of GFFSMs. The ability of our proposal to combine the
available expert knowledge with the accuracy achieved by
the learning process can be used to study several signals
where the human interaction is demanded. Examples of
application could range from biomedical engineering (e.g.,
electroencephalogram or electrocardiogram signals) to other
time series analysis (e.g., econometrics or natural processes).

Our next research work in this direction consists of de-
veloping a model of the human gait where gait symmetry
and homogeneity can be analyzed in detail. This work will

include the automatic generation of linguistic reports about
the human gait quality.
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