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Craniofacial superimposition is a forensic identification technique where photographs or video shots of a
missing person are compared with a skull found in order to determine whether that is the same person.
The second stage of this complex forensic process, named skull-face overlay, aims to achieve the best
overlay of the skull 3D model and the 2D image of the face. In this paper, we aim to propose a new
skull-face overlay method based on the scatter search evolutionary algorithm. This new design exploits
problem-specific information in order to achieve faster and more robust solutions. The performance of
our proposal is compared to the current best performing approach in the field of automatic skull-face
overlay. Results on six real-world identification cases previously solved by the Physical anthropology
lab at the University of Granada (Spain) are considered in our experimental study. The proposed method
has shown a very accurate and robust performance when solving the latter six face-skull overlay problem

instances.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most outstanding research areas in forensic medicine
is human identification. When this task is done from the study of
some skeleton remains, we refer to the area of forensic anthropol-
ogy (Burns, 2007). In the last few decades, anthropologists have fo-
cused their attention on improving those techniques that allow a
more accurate identification. Hence, forensic identification has be-
come a very active research area nowadays.

Before making a decision on the identification, there is a need to
follow different procedures that let the forensic experts assign a sex,
age, human group, and height to the subject from the study of the
bones found. Once the sample of candidates for identification is con-
strained by these preliminary studies, a specific identification tech-
nique is applied. Among those available in the discipline, craniofacial
superimposition (Iscan, 1993; Krogman & Iscan, 1986; Stephan,
2009) is a forensic process where photographs or video shots of a
missing person are compared with the skull that is found. By project-
ing both photographs on top of each other (or, even better, matching
a scanned three-dimensional skull model against the face photo/ser-
ies of video shots), the forensic anthropologist can try to establish
whether that is the same person.

The craniofacial superimposition process is known to be one of
the most time consuming tasks for the forensic experts (it takes up
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to 24 h in many real world situations). In addition, there is not a
systematic methodology but every expert usually applies a partic-
ular process. Hence, there is a strong interest in designing auto-
matic methods to support the forensic anthropologist to put it
into effect (Ubelaker, 2000).

In our view, when considering an advanced 3D computer-based
craniofacial superimposition system, the whole process is com-
posed of the following three stages (Damas et al., in press):

1. The first stage involves achieving a digital model of the skull
and enhancing the image of the face. Obtaining of an accurate
3D model of the subject of the identification process, i.e. the
human skull, is nowadays an affordable and attainable activity.
To do so, a laser range scanner like the one used by our team
(Fig. 1), available in the Physical Anthropology Lab at the Uni-
versity of Granada (Spain), and a manual or automatic 3D
reconstruction procedure (Santamaria, Cordén, Damas, Aleman,
& Botella, 2007; Santamaria, Cordén, Damas, Garcia-Torres, &
Quirin, 2009) is considered. Concerning the image of the face,
the most recent systems use a 2D digital image and consider
the use of typical image processing algorithms (Gonzalez &
Woods, 2002) to enhance its quality.

2. The second stage is the skull-face overlay. It consists of search-
ing for the best overlay of the skull 3D model and the 2D image
of the face achieved during the first stage. This is usually done
by bringing to match some corresponding anthropometrical
landmarks on the skull and the face.
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Fig. 1. Acquisition of a skull 3D partial view using a Konica-Minolta™ laser range
scanner.

3. Finally, the third stage of the craniofacial superimposition pro-
cess corresponds to the decision making. Based on the skull-
face overlay achieved, the identification decision is made by
either judging the matching between the corresponding land-
marks in the skull and in the face, or by analyzing the respective
profiles.

The current paper focuses on the second stage of the craniofacial
superimposition process, the skull-face overlay. More in detail, we
try to exploit the benefits of applying scatter search (SS) (Laguna &
Marti, 2003) to develop this task in an automatic way (under the
supervision of the forensic experts). Our intention is to provide a
faster and more accurate algorithm than those in the literature. In
particular, we aim to ensure a faster approach (in terms of conver-
gence) than our previous proposal (Ibafiez, Ballerini, Cordén,
Damas, & Santamaria, 2009), based on the use of CMA-ES (Hansen
& Ostermeier, 2001), which is the current best performing approach
in the field of automatic skull-face overlay. In fact, CMA-ES is con-
sidered as the state-of-the-art evolutionary strategy and it has been
widely used in many real world applications (Gagné, Beaulieu,
Parizeau, & Thibault, 2008; Kimpf & Robinson, 2009; Tvrdik, 2009).

To do so, our SS design relies on: (i) the use of a population size
several times lower than the one typically defined with genetic

algorithms; (ii) the generation of an initial population spread
throughout the search space, in order to encourage diversification;
(iii) the initialization of the population based on the delimitation of
the rotation angles using problem-specific information (domain
knowledge), in order to reduce the search space, thus decreasing
the convergence time and increasing the robustness; (iv) the estab-
lishment of a systematic solution combination criterion to favor
the search space intensification; and (v) the use of local search to
achieve a faster convergence to promising solutions (see Section
3.3.3).

The proposed method has been validated over six different real-
world identification cases previously addressed by the staff of the
Physical Anthropology lab at the University of Granada in collabo-
ration with the Spanish scientific police, following a computer sup-
ported but manual approach for craniofacial superimposition. It
provided highly satisfactory results in terms of accuracy and con-
vergence in comparison with the existing CMA-ES-based approach.

The structure of this paper is as follows. In Section 2 we describe
the skull-face overlay problem and the methods considered in the
literature to solve it. Section 3 describes our proposal, which is
tested in Section 4 over six different skull-face overlay problem in-
stances. Finally, in Section 5 we present some conclusions and new
open lines for future works.

2. Skull-face overlay in craniofacial superimposition

The success of the overlay technique requires positioning the
skull in the same pose of the face as seen in the given photograph
(provided by the relatives of the missing/deceased person). The ori-
entation process is a very challenging and time-consuming part of
the craniofacial superimposition technique (Fenton, Heard, & Sauer,
2008).

Most of the existing skull-face overlay methods are guided by a
number of anthropometrical landmarks located in both the skull
and the photograph of the missing person (see Figs. 2 and 3,
respectively). The selected landmarks are placed in those parts
where the thickness of the soft tissue is low. The goal is to ease
their location when the anthropologist must deal with changes in
age, weight, and facial expressions.

Once these landmarks are available, the skull-face overlay pro-
cedure is based on searching for the skull orientation leading to the
best matching of the set of landmarks.

In view of the task to be performed, the relation of the desired
procedure with the image registration (IR) problem in computer
vision (Zitova & Flusser, 2003) can be clearly identified. In the
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Fig. 2. Principal craniometric landmarks: lateral (left) and frontal (right) views.
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Fig. 3. Principal facial landmarks: lateral (left) and frontal (right) views.

following subsection, we explain the reasons why the skull-face
overlay forensic task is modeled as an IR optimization problem,
and we summarize the existing approaches to deal with it.

2.1. Skull-face overlay as an image registration problem

IR (Zitova & Flusser, 2003) is a fundamental task in image anal-
ysis. It aims to find a correspondence (or transformation) among
two or more images taken under different conditions, i.e. at differ-
ent times, from different viewpoints, using different sensors, or a
combination of them. Thus, the key idea of the IR process is achiev-
ing the transformation (rotation, translation, etc.) that places dif-
ferent images in a common coordinate system bringing the
points as close together as possible. This is done by an optimization
process which aims to minimize the error of a given metric of
resemblance. Evolutionary algorithms (EAs) (Eiben & Smith,
2003) in general, and genetic algorithms (GAs) (Michalewicz,
1996) in particular, have been successfully applied to tackle differ-
ent IR problems (Cordén, Damas, & Santamaria, 2006; Cordén,
Damas, & Santamaria, 2007; Rouet, Jacq, & Roux, 2000; Silva,
Bellon, & Boyer, 2005; Yamany, Ahmed, & Farag, 1999).

In view of the latter, a sensible way to design an automatic skull-
face overlay procedure is through the use of a 3D-2D IR technique to
properly align the skull 3D model and the 2D image of the face in a
common coordinate frame. However, solving the skull-face overlay
problem in the latter fashion results in a really complex optimiza-
tion task, with a highly multimodal landscape, and forensic experts
demand highly robust and precise results. This complex landscape
leaded us to propose different evolutionary methods (Ibafiez et al.,
2009) such as CMA-ES (Hansen & Ostermeier, 2001) and different
real-coded GAs (Herrera, Lozano, & Verdegay, 1998), achieving
really good results (as we will show in the following section).

2.2. Problem solving methods

Most of the methods tackling the craniofacial superimposition
problem focus on the skull-face overlay stage. Some of these ap-
proaches were classified in a review by Aulsebrook, Iscan, Slabbert,
and Becker (1995) according to the technology they used, i.e. static
photographic transparency, video technology, and computer
graphics. In a previous paper (Damas et al., in press) we reviewed
craniofacial superimposition considering an up-to-date classifica-
tion criterion, related to the use of computers.

Recent papers confirm that some authors think the most ad-
vanced method is based on a manually performed digital superim-
position supported by the use of the imaging tools provided by the
Adobe Photoshop® and Corel Draw® software packages (Al-Amad,

McCullough, Graham, Clement, & Hill, 2006; Bilge, Kedici, Alakoc,
Ulkuer, & Ilkyaz, 2003; Ross, 2004). It is worth mentioning that
the forensic expert may even employ up to 24 h for each case,
working in the latter way.

Up to our knowledge, there are only three proposals perform-
ing skull-face overlay in a fully automatic way, based on the use
of neural networks (Ghosh & Sinha, 2001), binary-coded GAs
(Nickerson, Fitzhorn, Koch, & Charney, 1991), and real-coding
EAs (Ibafiez et al., 2009), respectively. However, as we will see
in the following, the former two are not suitable for forensic
experts.

The method proposed by Ghosh and Sinha Ghosh and Sinha
(2001) was an adaptation of their previous proposal for face recog-
nition problems (Sinha, 1998). The extended symmetry perceiving
adaptive neuronet (ESPAN) consisted of two neural networks to be
applied to two different parts of the overlaying. It allows the user
to select fuzzy facial features to account for ambiguities due to soft
tissue thickness. More in details, the system was able to implement
an objective assessment of the symmetry between two nearly front
images, the cranial image and the facial image, which were the in-
puts and played the role of the source and the target images,
respectively. The output was the mapped cranial image suitable
for superimposition. Two networks needed to be trained separately
because each of them was able to correctly map only a part of the
cranial image. Two limitations, already pointed out by the authors,
were the existence of a part of the cranial image that would never
be properly mapped and the need of a frontal view image. In addi-
tion, the method is only valid for 2D images, i.e., it is not able to
handle a 3D skull model but just a less informative 2D skull photo-
graph. Finally it was not fully applicable because of its long compu-
tation time and the need of separately applying two different
networks to the upper skull contour and to frontal view cranial fea-
tures. The skull-face overlay found by the first one could be dis-
rupted by the second.

Nickerson et al.’s method (Nickerson et al., 1991) used a binary-
coded GA (BCGA) to find the optimal parameters of the similarity
and perspective transformation that overlays the 3D skull model
on the face photograph. More in details, this method included
the following tasks:

o 2D digitalization of an antemortem facial photograph.

o 3D digitalization of the surface mesh of the skull.

o Application of digital filtering techniques to the 2D photo image
and the 3D model to reduce or eliminate systematic error.

o Selection of four landmark points on the digital facial image and
four equivalent non-coplanar landmarks on the skull surface
mesh.



1462 0. Ibdiiez et al./Expert Systems with Applications 39 (2012) 1459-1473

e Calculation of the near-optimal affine and perspective transfor-
mations required to map the skull surface mesh into two
dimensions and onto the image of the face.

o Joint solid rendering of the digital facial photograph and trans-
formed skull surface mesh for visual analysis.

A digital camera and a laser range scanner were used for 2D and
3D digitalizations, respectively. Well known image processing
algorithms were considered for image enhancement. Rendering
was done through computer graphics techniques, after polygonal
texture mapping of the 2D image. The automatic calculation of
the mapping of the skull surface mesh on the digital facial photo-
graph was achieved from the matching of the four landmarks pre-
viously identified both in the face and the skull.

Finally, in Ibafiez et al. (2009) we proposed a new formulation
(see Section 3.1 for more details) for the skull-face overlay task,
considering it as a numerical optimization problem with twelve
unknowns representing the geometric transformation underlying
the corresponding 3D-2D IR process. We also proposed and tested
four new evolutionary methods (including an adaption of Nicker-
son et al.’s proposal) to solve this optimization problem based on
the use of a BCGA, two real-coded GAs, and the CMA-ES. The best
results, achieved using CMA-ES, were really competitive in terms
of performance and robustness with the human-obtained superim-
positions. In contrast, Nickerson et al.’s method was not able to
achieve suitable results over none of the six real-world cases of
study presented in the paper.

3. A scatter search method for skull-face overlay

Our proposal tries to solve a 3D-2D skull-face overlay task as a
numerical optimization problem. The goal is to find a near-optimal
geometric transformation, competitive enough considering con-
vergency and accuracy criteria when comparing to the state-
of-the-art method, CMA-ES, which has shown to be competitive
with the forensic expert manual overlays (Ibafiez et al., 2009). To
do so, we will use an efficient stochastic optimization technique
named scatter search (Laguna & Marti, 2003), guided by the match-
ing of the two different sets of corresponding landmarks described
in Section 2.

The following subsections are denoted to respectively introduce
the problem formulation considered (taken from our previous
work Ibafiez et al., 2009), the basics of SS, and the specific design
considered for each of the SS components to solve our problem.

3.1. Problem formulation

Given two sets of 2D facial and 3D cranial landmarks (F and C,
respectively):

X Y 11 Xe, Yo Zc, 1

Xn Vg 11 X Yoo 2o 1
F = . . . . C =

X Vi, 11 Xey Yoy Zoy 1

we aim to solve the following system of equations with twelve un-
knowns (1, 1y, 7, dy, dy, d;, 0,5, ty, £y, t, ¢) that represents the geometric
transformation which maps every cranial landmark C; in the skull
3D model onto its corresponding facial landmark F; in the
photograph:

F=C-(A-D;-D,-0-D,' -D;'-A").S-T-P 1)

A brief description of the set of geometric transformations needed
to accomplish the overlay task follows (a more detailed description
is to be found in Ibafiez et al. (2009)). We should notice that a

detailed explanation of projective geometry is out of the scope of
this contribution, the interested reader is referred to Foley (1995).

« Rotation R. The first step to find the proper location of the skull
will involve applying a rotation to orient the skull in the same
pose of the photograph. In order to define a rotation, the direc-
tion of the rotation axis d = (d,dy,d;), the location of the rota-
tion axis with respect to the center of coordinates 7 = (r,1y,7;),
and the angle 0 must be given. This rotation process R is thus
given by:

R:<A~D1-D2~®~D2’1-D]’1-A’1> 2)
where:
1 0 0 O 1 0 0 o0
0 1 0 O 0 d,/v dy/v 0
A= D, =
0 0 1 0 0 —dy/v d;/v 0
—Iy -1, -1, 1 0 0 0 1
v 0 dy, O
1 0 O
D, =
7 l-d. 0 v 0
0 0 0 1
cos® —sin® 0 O
sin® cos® 0 O )
0= 0 0 10 v=/d, +d;
0 0 01

e Scaling S. The size of the skull model must be uniformly
adapted according to the size of the missing person in the pho-
tograph. Hence, the coordinates of each point of the skull model
will be resized considering a factor named s:

0 0O
s 00
0 s O
0 001

O O wn

o Translation T. The coordinates of the skull model are relative to
the origin defined by the range scanner. Thus, it must be trans-
lated according to T = (f,t,,t;) in order to be located in front of
the camera and reproduce the conditions when the photograph
of the missing person was taken. To do so, the following matrix
is considered:

1 0 0O
01 00
0 010

1

o Perspective projection P. In computer graphics, cameras per-
spective projection is modeled defining a frustum! of a rectan-
gular pyramid (Fig. 4, left). There are thus two planes, near
clipping plane (NCP) and far clipping plane (FCP), which are used
to delimit what is visible in the scene and what is consequently
represented in the computer (those parts between both planes).
In our case, once the previous transformations are applied, we
need to determine how far the camera is from the skull. This issue
has a strong connection to the angle of view (¢) of the camera,
which describes the angular extent of a given scene that is
imaged by a camera. Fig. 4 depicts this effect. Once the camera

1 A frustum is the portion of a solid -normally a cone or a pyramid- which lies
between two parallel planes cutting the solid.
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Far clipping plane
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-

Fig. 4. Camera configuration with angle of view ¢ (left) and the corresponding photograph (right).

is located in the proper position, all the rays connecting every 3D
landmark of the skull with its corresponding 2D landmark in the
photograph will converge in the center of projection.

The perspective transformation described is thus given by:

10 0 0
p_j01 0 0
0 0 tan(¢/2) tan(p/2)
00 0 1

3.2. Basis of scatter search
SS fundamentals were originally proposed by Fred Glover in

Glover (1977) and have been later developed in some texts like
(Laguna & Marti, 2003). The main idea of this technique is based

{ | Diversification Generation
i Method

on a systematic combination between solutions (instead of a ran-
domized one like that usually done in GAs) taken from a consider-
ably reduced evolved pool of solutions named Reference set
(between five and ten times lower than usual GA population sizes)
as well as on the typical use of a local optimizer. This way, an effi-
cient and accurate search process is encouraged thanks to the lat-
ter and to other innovative components we will describe later. The
general SS approach is graphically shown in Fig. 5:

3.3. Scatter search-based skull-face overlay method implementation

The fact that the mechanisms within SS are not restricted to a
single uniform design allows the exploration of strategic possibili-
ties that may prove effective in a particular implementation. Of the
five methods in the SS methodology, only four are strictly required.
The improvement method is usually needed if high quality

. | OO

Improvement
Method

ee_"@®

Iinprovement
Method

Reference Set

Update Method

Solution Combination
Method

R
Sop

© @

Subset Generation
Method

RefSet

Stop if no more
new solutions

Fig. 5. The control diagram of SS.
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P+ 0

While (|P| < PSize) do

Obtain a new solution z generated by the Diversification Generation Method

Improve  with the Improvement Method generating a solution z’

Ifz’ ¢ P Then P+ PU{z'}

Sort the solutions in P according to their objective function value (the best overall solution in P, that one with the
lowest F' value, is the first in such list). Add the first b solutions from P to RefSet

While (not reached the stop stopping condition) do

NewElements < True

Pool + 0

While (NewElements) and (not reached the stopping condition) do

Generate all the subsets of (pairs of) solutions s; = {zj,z} ({zj,zr} € Subsets | z;,zp €
Refset Nj,k={1,---,| RefSet |} Aj # k) with the Subset Generation Method

NewElements < False
While (Subsets # () do

Select the next subset s; (i = {1, -,

w})ﬁrom Subsets and delete it from Subsets

Apply the Solution Combination Method to the next pair of solutions {z;,z;} € s; that
were not previously combined in order to obtain a new solution =

If (F(z) < F(zj) OR F(z) < F(z})) Then

Apply the Improvement Method to the solution x to obtain the solution z’

Else 2/ + x
Add z’ to Pool

Apply the Reference Set Update Method selecting the best b solutions in RefSet U Pool

If (RefSet has at least one new solution) Then NewElements < True

If (not reached the stop criterion) Then

Build a new set P using the Diversification Generation Method

Replace the worst b — 1 solutions from RefSet with the best b — 1 solutions from P

Fig. 6. Pseudocode of the SS-based skull-face overlay optimizer.

outcomes are desired but a SS procedure can be implemented
without it. In the following subsections, we will briefly describe
the specific design of each component of our SS-based skull-face
overlay method outlined in Fig. 6, where P denotes the initial set
of solutions generated with the diversification generation method
(with Psize being the size of P), the reference set is noted as RefSet
(with b being its size, usually significantly lower than Psize), and
Pool is the set of trial solutions constructed with the Combination
and improvement methods each iteration.

3.3.1. Coding scheme and objective function

As seen, skull-face overlay can be formulated as a numerical
optimization problem with twelve unknowns in the framework
of IR. In Section 3.1 we described the geometric transformation f
for the 3D-2D IR problem underlying this forensic task. This trans-
formation f is determined fixing the said twelve unknowns. We
consider a coding scheme representing them in a vector of real
numbers to be evolved by means of the SS algorithm.

To measure the quality of the registration transformation en-
coded in a specific individual an objective function is needed.
Therefore, given C={C;,C,,...,Cy} and F={F,F,,...,Fy}, two sets
of 3D cranial and 2D facial landmarks respectively, we propose
the minimization of the following function:

ME:Zi\]:le(I\fl) _FIH (3)

with || - || being the 2D Euclidean distance, N being the number of
considered landmarks, F; being the positions of the 2D landmarks,
and f{C;) being the positions of the transformed 3D landmarks once
they have been spatially relocated and projected in the projection
plane.

3.3.2. Diversification generation method and advanced heuristic
initialization strategy

This method makes use of a controlled randomization based on
frequency memory to generate an initial set P of Psize diverse solu-
tions (Glover, Laguna, & Marti, 2003). We carry out this by dividing
the range of each variable (in our case, each one of the twelve geo-
metric transformation parameters) into four sub-ranges of equal
size. A solution will be constructed in two steps. First, a sub-range
is randomly selected for each variable, where the probability of
choosing a sub-range is inversely proportional to its frequency
count. Initially, the frequency count for each variable subrange is
set to one and the number of times a sub-range j has been chosen
to generate a value for variable i in a solution is accumulated in fre-
quency_count(i,j). Then, as second step, a value is randomly gener-
ated within the selected sub-range. Finally, the improvement
method is applied on the Psize solutions generated and the best b
of them compose the initial RefSet.

Using specific information derived from the characteristics of
the problem has demonstrated to be an important aid tackling IR
problems (Cordén, Damas, Marti, & Santamaria, 2008). In skull-face
overlay most of the photographs show a near-forntal pose of the
missing person. We found profile pictures in just few cases. We
know that we will never tackle a photograph where the missing
person is looking backwards. Hence, we propose an initialization
of the population based on the delimitation of the rotation angles
using the information from the domain knowledge. In order to
specify reduced values for the feasible ranges where the twelve
parameters will take values, we first orient the skull 3D model
towards the camera axis.? It is evident that we are only interested
in those transformations providing a near front view of the skull,
i.e. 0 € [-90°,90°] (see Fig. 7) . The advantages of this approach are

2 Notice that, we can not assume that the initial pose of the skull 3D model is
frontal. It may vary depending on the 3D digitalization process.
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Fig. 7. Search space constrained considering specific information of the problem.

twofold. On the one hand, we will only generate good quality solu-
tions for the initial population. On the other hand, the search space
dimension is reduced from 360° to 180°, thus decreasing the conver-
gence time.

To do so, we calculate the centroid, Z, of four non-coplanar cra-
nial landmarks, G (j€1,...,4), in order to estimate the current
skull orientation and to rotate properly the skull towards a front
view. We also use the maximum distance, r, from Z to the farthest
of the said four landmarks (r=||Z — G|, j={1,...,4}) for the proper
estimation of the valid ranges of values of the twelve parameters,
as follows:

relZi—r, Zi+r],
dy,d, € [-1, 1]

d, €0, 1]

0 € [-90°, 90°]

s €1]0.25, 2]

¢ € [10°, 150°]

ty € [~lengthg — (Zy + 1), lengthy — (Z, —1)]
ty € [~lengthy — (Z, + 1), lengthg — (Z, —1)]
t, € INCP — (Z, +71), FCP — (Z, —1)]

ic{xyz}

where FCP and NCP are the far and near clipping planes, respec-
tively; lengthFB is the length of the frustum base; and

lengthg, = 1 + FCP x tan (@)

In Section 4 we will experimentally demonstrate the benefits of
applying this initialization procedure in terms of convergence speed
and robustness.

3.3.3. Improvement method

The improvement method is based on XLS, which is a crossover-
based local search (LS) method that induces an LS on the neighbor-
hood of the parents solutions involved in crossover (Lozano, Herrera,
Krasnogor, & Molina, 2004; Noman et al., 1983). Given a solution to
be improved, called family father, L solutions are randomly selected
in the current population for mating with the previous one to gener-
ate new trial solutions in the father’s neighborhood by performing
crossover operations. Finally, a selection operation is carried out
for replacing the family father with the best solution of the L new
solutions only if this one is better than the former. Hence, it can be
called best point neighborhood strategy (Noman et al., 1983). This pro-
cedure is repeated until the considered stop criterion is reached.

In this work, we considered the PBX-o. crossover operator
(Lozano et al., 2004) (with o =0.5) to generate four neighboring
solutions every LS iteration.

3.3.4. Subset generation method

This method generates a collection of solution subsets (noted as
Subsets in Fig. 6) of the reference set as a basis for creating new
combined solutions. In our implementation, the subsets are com-
posed of all the possible pairs of solutions in RefSet, so @ differ-
ent subsets are generated at each iteration.

3.3.5. Solution combination method

It is based on the use of the BLX- crossover operator (Eshelman,
1993), commonly used in real-coded GAs. This combination mech-
anism obtains a trial solution, x= (hy,...,h,...,h) (with [=12
being the number of parameters of the geometric transformation
and hy being a given value for such kth variable) from the two par-
ent solutions x! = (c{,...,c¢/) and x* = (c2,...,¢}) composing a
given subset s (see Fig. 6). The offsprings is obtained by uniformly
generating a random value for each variable hy in the interval
[Crmin — I+ 0L,Cmax + I - o], With Cmey = max (c}, ¢2), Cmin = min (c}, c3),
and I = Cpyax — Cmin. Hence, the parameter o allows us to make this
crossover as disruptive as desired. Such combination method was
successfully incorporated to SS in Santamaria et al. (2007),
Santamaria et al. (2009), Herrera, Lozano, and Molina (2006).

In our real-world application, we think that applying the
improvement method to every trial solution could excessively
decrease the exploratory capabilities of the global search strategies
of the SS. Indeed, as stated in Krasnogor and Smith (2005), “The
majority of memetic algorithms in the literature (in this case, SS)
apply local search to every individual in every generation of the
evolutionary algorithm, our model makes it clear that this is not
mandatory”. Hence, we have considered a particular selective
application criteria for the improvement method. It is easy to
implement and we have recently obtained promising results tack-
ling the IR problem using it in Santamaria et al. (2009). This crite-
rion considers a deterministic scheme, in which the trial solution
will be improved using the Improvement Method only if it is better
than any of its parents. It has been demonstrated that this strategy
is more suitable than others based on random schemes
(Santamaria et al., 2009).

3.3.6. Reference set update method

A static strategy for updating the RefSet is carried out: first, the
Pool set is built by solution combination of all the pairs of solutions
being considered and next, the RefSet is updated with the solutions
of the Pool set according to quality criterion.

4. Experiments

This section is devoted to develop an experimental study allow-
ing us to validate the performance of the new SS-based skull-face
overlay process proposed in this contribution. To do so, we first
introduce the six different real-world skull-face overlay problems
to be tackled, and then we show the parameter setting considered
in the experiments. Next, we present the obtained results and their
analysis. A comparison with respect to CMA-ES, the state-of-the-
art method to solve the skull-face overlay forensic task, is carried
out.

4.1. Cases of study and experimental setup

Our experimental study will involve six different skull-face
overlay problem instances, corresponding to four real-world cases
previously addressed by the staff of the Physical Anthropology lab
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Fig. 8. Face photographs of the missing people. The three images in the first row correspond to the case study 1-poses 1 and 2, and case study 2 (a single photograph). In the
second row, from left to right, poses 1 and 2 of case study 3, and case study 4 (a single photograph).

at the University of Granada in collaboration with the Spanish sci-
entific police. Those four identification cases were solved following
a computer-supported but manual approach for craniofacial super-
imposition (see Section 2.2). We will consider the 2D photographs
of the missing people (Fig. 8) and their corresponding 3D skull
models (Fig. 9) acquired at the lab by using its Konica-Minolta®
3D Lasserscanner VI-910.

The first case of study happened in Cadiz, Spain. The two first
photographs shown in the first row of Fig. 8 belong to this first case
of study. They were provided by the family, that acquired them at
different moments and in different poses and conditions. Hence
this case consists of two distinct skull-face overlay problem
instances.

The forensic anthropologists manually selected a large set of 3D
landmarks on the skull. On the other hand, the 2D landmarks
selected on the face photographs were eight and twelve for poses
1 and 2, respectively. Indeed, not all the landmarks are visible in
all the poses. Of course, only the corresponding 3D-2D landmarks
are used for solving the two superimposition instances.

The second case of study is related with the skeleton remains of
an old man found in the surroundings of Granada, Spain. Only one

photograph, in a completely lateral pose was provided by the fam-
ily. The forensic experts identified seven 2D landmarks on it.

The third case of study happened in Granada, Spain. The two
photographs shown in the left-hand side of the second row of
Fig. 8, acquired at different moments, were provided by the family.
Hence, this case consists of two different skull-face overlay in-
stances for which, the forensic anthropologists manually selected
eight and fourteen 2D landmarks in the first and second photo-
graph, respectively.

The last case of study corresponds to a missing lady found in
Mallorca, Spain. Only one photograph® (the last one in the second
row of Fig. 8) where our forensic experts were able to locate six
2D landmarks, was provided by the family.

Regarding the experimental setup we will first study the perfor-
mance of the proposed SS algorithm considering different settings.
For that aim, we will start by analyzing its behavior when consider-
ing and not considering the advanced initialization approach pro-
posed in Section 3.3.2, i.e, applying and not applying the

3 Notice that, it has been processed due to legal reasons.
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Fig. 9. From left to right. 3D skull model of cases of study 1, 2, 3, and 4.

restriction of the rotation angles. Then, we will compare its perfor-
mance with that of CMA-ES in terms of accuracy, robustness, and
convergence speed. Different experiments were done considering
several values for the number of evaluations (30000,60000,
100000, 150000, and 300000) in order to compare convergence
speed.

For the SS, the initial diverse set P comprises Psize = 30 solutions
and the RefSet is composed of the b = 12 best ones of them. BLX-« is
applied with o =1 (Lozano, Herrera, Krasnogor, & Molina, 2004),
while the improvement method is selectively applied during 40 iter-
ations each time.

In the case of CMA-ES, the following values are taken for the dif-
ferent parameters:

Initial 6 (mutation distribution variance) = 0.1
J (population size, offspring number) = 100
1 (number of parents/points for recombination) = 15

In addition, the restart operator (Auger et al., 2005), which does
not increase the population size, is used every 25000 evaluations to
avoid the convergence of the algorithm to local minima. The rest of
the parameters are the default ones, reported in Hansen et al.
(1996).

In order to avoid execution dependence, thirty different runs for
each parameter setting have been performed and different statis-
tics (best result, worst result, mean, and standard deviation over
the thirty runs) are provided. All the methods are run on a PC with
an AMD Athlon 64 X2 Dual (2 core 2.59 GHz), 2 GB of RAM and
Linux CentOS. We considered the ME (see Eq. (3)) for the assess-
ment of the final superimposition results. Besides, some graphical

representations of the obtained overlays are also shown in order to
allow for a visual assessment.

4.2. Scatter search-based method results analysis

As it has been mentioned before, we will study the perfor-
mance of the proposed SS algorithm by comparing its behavior
applying and not applying the restriction of the rotation angles,
i.e., considering and not considering the advanced initialization
strategy, respectively. Tables 1-6 show the corresponding results
for each of the six different skull-face overlay cases (belonging to
four different real-world cases of study). For each algorithm (SS
and CMA-ES), the best (Min.), the worst (Max.), the mean
(Mean), and the standard deviation (St.Dev.) values for the fit-
ness function (see Eq. (3)) after thirty runs are showed. The best
minimum and mean results in each table are highlighted in
boldface.

In view of the results shown in the two top blocks of the tables,
we can observe how, in most of the cases, the best minimum result
obtained by the algorithm is the same regardless if the initializa-
tion strategy is considered or not. Only in one of the problem
instances, the first pose of case study 1, the minimum value finally
achieved by considering the initialization strategy is better than
that obtained without using it (0.015 vs. 0.018, see Table 1).
Besides, the derivation of this result requires only developing
30000 evaluations in comparison with the 100000 evaluations per-
formed by the latter SS variant (i.e., the SS variant including the
“intelligent” initialization is more than three times faster). In the
remaining five instances, the use of the advanced initialization
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Table 1

Case study 1, pose 1. Comparison between CMA-ES and SS results. Best minimum and mean values are highlighted in bold letters.
Case Algorithm Initialization Evals (thousands) Min. Max. Mean St.Dev.
1, Pose 1 SS No 30 0.021 0.133 0.095 0.036
1, Pose 1 SS No 60 0.019 0.123 0.052 0.031
1, Pose 1 SS No 100 0.018 0.097 0.033 0.013
1, Pose 1 SS No 150 0.018 0.037 0.030 0.005
1, Pose 1 SS No 300 0.018 0.037 0.028 0.006
1, Pose 1 SS Yes 30 0.015 0.126 0.063 0.041
1, Pose 1 SS Yes 60 0.015 0.110 0.037 0.023
1, Pose 1 SS Yes 100 0.015 0.043 0.027 0.011
1, Pose 1 SS Yes 150 0.015 0.043 0.027 0.011
1, Pose 1 SS Yes 300 0.015 0.043 0.024 0.010
1, Pose 1 CMA-ES No 30 0.015 0.121 0.069 0.035
1, Pose 1 CMA-ES No 60 0.015 0.120 0.067 0.032
1, Pose 1 CMA-ES No 100 0.015 0.057 0.027 0.012
1, Pose 1 CMA-ES No 150 0.015 0.040 0.023 0.009
1, Pose 1 CMA-ES No 300 0.015 0.036 0.020 0.007
1, Pose 1 CMA-ES Yes 30 0.035 0.114 0.069 0.025
1, Pose 1 CMA-ES Yes 60 0.035 0.114 0.069 0.023
1, Pose 1 CMA-ES Yes 100 0.035 0.098 0.049 0.016
1, Pose 1 CMA-ES Yes 150 0.035 0.082 0.046 0.014
1, Pose 1 CMA-ES Yes 300 0.035 0.044 0.038 0.002

Table 2

Case study 1, pose 2. Comparison between CMA-ES and SS results. Best minimum and mean values are highlighted in bold letters.
Case Algorithm Initialization Evals (thousands) Min. Max. Mean St.Dev.
1, Pose 2 SS No 30 0.022 0.157 0.032 0.024
1, Pose 2 SS No 60 0.022 0.038 0.024 0.003
1, Pose 2 SS No 100 0.022 0.027 0.023 0.001
1, Pose 2 SS No 150 0.022 0.027 0.023 0.001
1, Pose 2 SS No 300 0.022 0.027 0.023 0.001
1, Pose 2 SS Yes 30 0.022 0.060 0.025 0.008
1, Pose 2 SS Yes 60 0.022 0.033 0.022 0.002
1, Pose 2 SS Yes 100 0.022 0.024 0.022 0.000
1, Pose 2 SS Yes 150 0.022 0.023 0.022 0.000
1, Pose 2 SS Yes 300 0.022 0.023 0.022 0.000
1, Pose 2 CMA-ES No 30 0.022 0.171 0.071 0.060
1, Pose 2 CMA-ES No 60 0.022 0.171 0.069 0.058
1, Pose 2 CMA-ES No 100 0.022 0.039 0.024 0.004
1, Pose 2 CMA-ES No 150 0.022 0.053 0.024 0.006
1, Pose 2 CMA-ES No 300 0.022 0.046 0.022 0.004
1, Pose 2 CMA-ES Yes 30 0.064 0.165 0.104 0.038
1, Pose 2 CMA-ES Yes 60 0.063 0.161 0.089 0.031
1, Pose 2 CMA-ES Yes 100 0.063 0.143 0.070 0.018
1, Pose 2 CMA-ES Yes 150 0.063 0.098 0.065 0.006
1, Pose 2 CMA-ES Yes 300 0.063 0.064 0.063 0.000

Table 3

Case study 2. Comparison between CMA-ES and SS results. Best minimum and mean values are highlighted in bold letters.
Case Algorithm Initialization Evals (thousands) Min. Max. Mean St.Dev.
2 SS No 30 0.018 0.167 0.033 0.026
2 SS No 60 0.018 0.056 0.028 0.008
2 SS No 100 0.018 0.054 0.028 0.007
2 SS No 150 0.018 0.049 0.027 0.007
2 SS No 300 0.018 0.043 0.026 0.006
2 SS Yes 30 0.018 0.170 0.030 0.026
2 SS Yes 60 0.018 0.034 0.024 0.004
2 SS Yes 100 0.018 0.034 0.024 0.004
2 SS Yes 150 0.018 0.034 0.023 0.004
2 SS Yes 300 0.018 0.034 0.023 0.004
2 CMA-ES No 30 0.018 0.198 0.110 0.070
2 CMA-ES No 60 0.018 0.218 0.121 0.065
2 CMA-ES No 100 0.018 0.083 0.026 0.014
2 CMA-ES No 150 0.018 0.027 0.023 0.004
2 CMA-ES No 300 0.018 0.027 0.020 0.004
2 CMA-ES Yes 30 0.103 0.193 0.168 0.022
2 CMA-ES Yes 60 0.090 0.186 0.145 0.021
2 CMA-ES Yes 100 0.072 0.178 0.123 0.030
2 CMA-ES Yes 150 0.070 0.162 0.109 0.022
2 CMA-ES Yes 300 0.068 0.125 0.088 0.017
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Table 4

Case study 3, pose 1. Comparison between CMA-ES and SS results. Best minimum and mean values are highlighted in bold letters.
Case Algorithm Initialization Evals (thousands) Min. Max. Mean St.Dev.
3, Pose 1 SS No 30 0.042 0.057 0.046 0.004
3, Pose 1 SS No 60 0.042 0.057 0.046 0.004
3, Pose 1 SS No 100 0.042 0.057 0.046 0.004
3, Pose 1 SS No 150 0.042 0.057 0.045 0.004
3, Pose 1 SS No 300 0.042 0.057 0.045 0.004
3, Pose 1 SS Yes 30 0.042 0.061 0.046 0.003
3, Pose 1 SS Yes 60 0.042 0.060 0.046 0.003
3, Pose 1 SS Yes 100 0.042 0.060 0.045 0.003
3, Pose 1 SS Yes 150 0.042 0.060 0.045 0.003
3, Pose 1 SS Yes 300 0.042 0.060 0.045 0.003
3, Pose 1 CMA-ES No 30 0.042 0.284 0.186 0.107
3, Pose 1 CMA-ES No 60 0.042 0.285 0.189 0.111
3, Pose 1 CMA-ES No 100 0.042 0.239 0.078 0.066
3, Pose 1 CMA-ES No 150 0.042 0.218 0.068 0.050
3, Pose 1 CMA-ES No 300 0.042 0.256 0.053 0.040
3, Pose 1 CMA-ES Yes 30 0.076 0.284 0.184 0.090
3, Pose 1 CMA-ES Yes 60 0.076 0.286 0.190 0.089
3, Pose 1 CMA-ES Yes 100 0.066 0.273 0.094 0.042
3, Pose 1 CMA-ES Yes 150 0.059 0.186 0.081 0.021
3, Pose 1 CMA-ES Yes 300 0.060 0.098 0.076 0.007

Table 5

Case study 3, pose 2. Comparison between CMA-ES and SS results. Best minimum and mean values are highlighted in bold letters.
Case Algorithm Initialization Evals (thousands) Min. Max. Mean St.Dev.
3, Pose 2 SS No 30 0.058 0.069 0.063 0.003
3, Pose 2 SS No 60 0.058 0.068 0.062 0.003
3, Pose 2 SS No 100 0.058 0.068 0.062 0.003
3, Pose 2 SS No 150 0.058 0.068 0.062 0.003
3, Pose 2 SS No 300 0.058 0.068 0.062 0.003
3, Pose 2 SS Yes 30 0.058 0.069 0.059 0.002
3, Pose 2 SS Yes 60 0.058 0.064 0.059 0.001
3, Pose 2 SS Yes 100 0.058 0.063 0.059 0.001
3, Pose 2 SS Yes 150 0.058 0.063 0.059 0.001
3, Pose 2 SS Yes 300 0.058 0.063 0.059 0.001
3, Pose 2 CMA-ES No 30 0.058 0.331 0.256 0.101
3, Pose 2 CMA-ES No 60 0.058 0.330 0.243 0.118
3, Pose 2 CMA-ES No 100 0.058 0.318 0.101 0.079
3, Pose 2 CMA-ES No 150 0.058 0.302 0.105 0.067
3, Pose 2 CMA-ES No 300 0.058 0.149 0.070 0.026
3, Pose 2 CMA-ES Yes 30 0.161 0.331 0.290 0.053
3, Pose 2 CMA-ES Yes 60 0.156 0.331 0.293 0.062
3, Pose 2 CMA-ES Yes 100 0.141 0.328 0214 0.062
3, Pose 2 CMA-ES Yes 150 0.142 0.323 0.219 0.066
3, Pose 2 CMA-ES Yes 300 0.141 0.299 0.177 0.038

Table 6

Case study 4. Comparison between CMA-ES and SS results. Best minimum and mean values are highlighted in bold letters.
Case Algorithm Initialization Evals (thousands) Min. Max. Mean St.Dev.
4 SS No 30 0.010 0.043 0.019 0.008
4 SS No 60 0.010 0.042 0.019 0.008
4 SS No 100 0.010 0.042 0.019 0.008
4 SS No 150 0.010 0.042 0.019 0.008
4 SS No 300 0.010 0.042 0.019 0.008
4 SS Yes 30 0.010 0.031 0.017 0.006
4 SS Yes 60 0.010 0.029 0.017 0.006
4 SS Yes 100 0.010 0.029 0.017 0.005
4 SS Yes 150 0.010 0.029 0.017 0.005
4 SS Yes 300 0.010 0.029 0.016 0.005
4 CMA-ES No 30 0.063 0.284 0.261 0.051
4 CMA-ES No 60 0.032 0.285 0.233 0.081
4 CMA-ES No 100 0.029 0.275 0.105 0.087
4 CMA-ES No 150 0.029 0.271 0.102 0.083
4 CMA-ES No 300 0.029 0.251 0.069 0.055
4 CMA-ES Yes 30 0.264 0.287 0.283 0.004
4 CMA-ES Yes 60 0.265 0.287 0.283 0.005
4 CMA-ES Yes 100 0.142 0.284 0.244 0.045
4 CMA-ES Yes 150 0.139 0.283 0.231 0.044
4 CMA-ES Yes 300 0.137 0.280 0.204 0.045
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strategy has no influence (neither positive nor negative) over the
quality of the best minimum result.

Nevertheless, the fact that the initialization allows the algo-
rithm to become more robust can be easily checked in view of
the mean and standard deviation values of the thirty runs per-
formed collected in the six result tables. Notice that, the SS variant
with initialization outperforms the variant not considering it in
terms of mean results in all the problem instances considered. This
performance advantage is also supported by the fact that it also
achieves lower standard deviation values in all the cases but one
(case study 1-pose 1, see Table 1). Nevertheless, we should note
that only standard deviation loss is justified by an important
reduction in the mean value.

Furthermore, the SS variant considering the initialization strat-
egy has also shown to converge more quickly than its counterpart
which does not make use of this component. We should highlight
that the best mean value achieved for the latter SS variant after

300000 evaluations is always outperformed by the initialization-
based SS taking a significantly lower number (and thus a shorter
run time). This value is reduced to 100000 evaluations in two
instances (case 1-pose 1, and case 3-pose 1), 60000 evaluations
in two instances (case 1-pose 2, and case 2), and even to 30000
evaluations in the other two instances (case 3-pose 2, and case 4).

In view of these results, we can assert that the inclusion of ini-
tialization strategy performing a restriction on the rotation angles
in the SS method implies a more robust behavior and a faster
convergence.

4.3. Comparison with respect to the state-of-the-art results

In this second experimental study we focus on comparing the
performance of the proposed SS algorithm with respect to that
achieved by CMA-ES, which has shown as the best existing
technique to solve the problem up to now (Ibafiez et al., 2009).

0.042398

Fig. 10. Best skull-face overlay results for all the cases but case 4 (we are not able to publish it due to legal reasons). From left to right, overlay results over case 1-poses 1 and
2, and case 2 are depicted in the first row. Case 3-poses 1 and 2 overlay results are depicted in the second row. For all the cases, the first image corresponds to the CMA-ES

result and the second to SS.
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For this aim, we take into account the best configuration for CMA-
ES and for SS. As it was demonstrated in Section 4.2, SS works bet-
ter when the initialization strategy based on the rotation angles
restriction is considered. Hance, in order to develop a fair compar-
ison, we have incorporated that novel component to the CMA-
ES-based skull-face overlay method proposed in Ibafiez et al.
(2009). We have thus studied the behavior of CMA-ES algorithm
with and without this initialization. Nevertheless, on the contrary
to the SS case, this mechanism to reduce the search space does
not manage to improve CMA-ES results, as can be seen in the
two bottom blocks of Tables 1-6. Indeed, the algorithm’s perfor-
mance gets worse once we included the delimitation of the rota-
tion angles. It seems that, although the advanced initialization
induces an appropiate intensification-diversification trade-off
within the SS design, that is not the case for CMA-ES which shows
a less flexible structure.

Tables 1-6 show CMA-ES and SS results for the six cases of study.
Due to the reasons cited in the paragraph before, we directly com-
pare CMA-ES without initialization against SS with initialization.

On one hand, the best minimum values achieved by both algo-
rithms are exactly the same for five of the six cases considered.
They are only significantly different in case 4, where SS clearly out-
performs CMA-ES (0.010 vs. 0.029, see Table 3).

On the other hand, if we focus on the mean values of the thirty
runs, SS improves CMA-ES results, for all the tested number of
evaluations, in three cases: case 3-poses 1, 2 and case 4 (see Tables
4-6). In the other three cases (case 1-poses 1, 2; and case 2) SS
improves all CMA-ES results excepting for the case of 300000 eval-
uations. This results lead us to assert that SS converge more quickly
than CMA-ES, despite the fact that when the number of evaluations
is high (from 300000 evaluations), there are some cases where
CMA-ES finally achieves a slightly better mean accuracy than SS.

Fig. 11. Worst skull-face overlay results for all the cases but case 4 (we are not able to publish it due to legal reasons). From left to right, overlay results over case 1-poses 1
and 2, and case 2 are depicted in the first row. Case 3-poses 1 and 2 overlay results are depicted in the second row. For all the cases, the first image corresponds to the CMA-ES

result and the second to SS.
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Besides, we should notice the low standard deviation values ob-
tained by SS, which are an additional proof of its robustness.

Finally, to allow for a visual inspection of the obtained overlays,
Figs. 10 and 11 graphically represent best and worst skull-face
overlay results obtained by the two algorithms in the thirty runs
performed. These overlays correspond to the best configuration
of CMA-ES and SS, after 300000 evaluations. In all the cases, the
best overlays are almost the same. In contrast, the worst overlays
obtained by SS are usually better than those provided by CMA-
ES. The CMA-ES result is only better for case 1-pose 1. On the con-
trary, the SS results are slightly better in SS for case 1-pose 2 and
case 3-pose 1, as well as much better for case 3-pose 2. In the
remainder instance (case 2), both results could be considered as
showing a similar low quality.

5. Concluding remarks and future works

In this paper, we have introduced the use of a novel metaheuris-
tic framework, SS, as a new 3D-2D IR optimizer for the skull-face
overlay task in forensic identification by craniofacial superimposi-
tion. Having in mind the interesting properties and the recent suc-
cessful outcomes achieved by the former technique in other global
optimization problems (Laguna & Marti, 2003), our starting point
was focused on the suitable design of the SS components and the
way they were assembled, in order to achieve faster and more
robust solutions to the skull-face overlay problem.

We have proposed a method to properly initialize the algorithm
and to restrict the parameter ranges using problem-specific infor-
mation (domain knowledge). That “intelligent” initialization is
based on the orientation of the skull to a frontal pose and the cor-
responding limitation of the rotation angles, which results in a sig-
nificant reduction of the solution space, thus easing the problem
solving.

We have presented and discussed skull-face overlay results ob-
tained on six real-world identification cases. A sound experimental
study to compare the robustness and convergence speed regarding
the use of the proposed initialization has been performed. We have
demonstrated the benefits (faster convergence and higher robust-
ness) of including this advanced strategy in the proposed SS algo-
rithm. Besides, we have shown how it does not properly cooperate
with the existing CMA-ES design to solve the problem. The main
experimentation dealt with a comparison between the proposed
SS and our previous CMA-ES-based skull-face overlay procedure.
Despite both algorithms have a really good behavior, achieving
similar minima, our new proposal has been shown to converge fas-
ter than CMA-ES and to behave more robustly in view of the mean
values obtained in the thirty runs developed.

These are really important issues in a real-world application.
Regarding robustness we have to ensure accurate skull-face over-
lay results considering just a single run. Regarding velocity of con-
vergence, a fast approach will be desirable in future developments
as well. Indeed, considering different sources of uncertainty (see
Ibafiez, Cordén, Damas, & Santamaria, 2009) will lead to more com-
plex fitness function definitions that will demand more computing
resources for their evaluation. Furthermore, a fast and robust ap-
proach allows a high number of reliable skull-face overlays in a
short period of time. Thus, this method would be useful for the
identification in image data bases of missing people.

For future work, we should consider that we are dealing with
real-world craniofacial superimposition cases, where the thickness
of the soft tissue, as well as the uncertainty of localizing landmarks,
influence the final results of our automatic metaheuristic
approach. Due to this reason, adding fuzzy logic to the process, a
quite common action in environments where there is any source
of inherent uncertainty like medicine (Yardimci, 2009), seems to

be a good approach for future developments. Indeed, we have
started working in this line proposing a first approach to the loca-
tion uncertainty problem (Ibafiez et al., 2009) and we are planning
to tackle the matching uncertainty in the short future using fuzzy
distance measures (Guha & Chakraborty, 2010) by means of both
the CMA-ES and the SS-based approaches.

Moreover, we aim to consider a higher number of real cases of
identification provided and solved by the Physical Anthropology
lab at the University of Granada, as well as negative cases.
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