
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012 463

A Review on Ensembles for the Class Imbalance
Problem: Bagging-, Boosting-, and

Hybrid-Based Approaches
Mikel Galar, Alberto Fernández, Edurne Barrenechea, Humberto Bustince, Member, IEEE,

and Francisco Herrera, Member, IEEE

Abstract—Classifier learning with data-sets that suffer from im-
balanced class distributions is a challenging problem in data min-
ing community. This issue occurs when the number of examples
that represent one class is much lower than the ones of the other
classes. Its presence in many real-world applications has brought
along a growth of attention from researchers. In machine learning,
the ensemble of classifiers are known to increase the accuracy of
single classifiers by combining several of them, but neither of these
learning techniques alone solve the class imbalance problem, to
deal with this issue the ensemble learning algorithms have to be
designed specifically. In this paper, our aim is to review the state
of the art on ensemble techniques in the framework of imbalanced
data-sets, with focus on two-class problems. We propose a taxon-
omy for ensemble-based methods to address the class imbalance
where each proposal can be categorized depending on the inner
ensemble methodology in which it is based. In addition, we develop
a thorough empirical comparison by the consideration of the most
significant published approaches, within the families of the taxon-
omy proposed, to show whether any of them makes a difference.
This comparison has shown the good behavior of the simplest ap-
proaches which combine random undersampling techniques with
bagging or boosting ensembles. In addition, the positive synergy
between sampling techniques and bagging has stood out. Further-
more, our results show empirically that ensemble-based algorithms
are worthwhile since they outperform the mere use of preprocess-
ing techniques before learning the classifier, therefore justifying
the increase of complexity by means of a significant enhancement
of the results.

Index Terms—Bagging, boosting, class distribution, classifica-
tion, ensembles, imbalanced data-sets, multiple classifier systems.

I. INTRODUCTION

C LASS distribution, i.e., the proportion of instances belong-
ing to each class in a data-set, plays a key role in classi-

fication. Imbalanced data-sets problem occurs when one class,

Manuscript received January 12, 2011; revised April 28, 2011 and June 7,
2011; accepted June 23, 2011. Date of publication August 8, 2011; date of
current version June 13, 2012. This work was supported in part by the Spanish
Ministry of Science and Technology under projects TIN2008-06681-C06-01 and
TIN2010-15055. This paper was recommended by Associate Editor M. Last.

M. Galar, E. Barrenechea, and H. Bustince are with the Department of Au-
tomática y Computación, Universidad Pública de Navarra, 31006 Navarra, Spain
(e-mail: mikel.galar@unavarra.es; edurne.barrenechea@unavarra.es).

A. Fernández is with the Department of Computer Science, University of
Jaén, 23071 Jaén, Spain (e-mail: alberto.fernandez@ujaen.es).

F. Herrera is with the Department of Computer Science and Artifi-
cial Intelligence, University of Granada, 18071 Granada, Spain (e-mail:
herrera@decsai.ugr.es).

Digital Object Identifier 10.1109/TSMCC.2011.2161285

usually the one that refers to the concept of interest (positive
or minority class), is underrepresented in the data-set; in other
words, the number of negative (majority) instances outnumbers
the amount of positive class instances. Anyway, neither uniform
distributions nor skewed distributions have to imply additional
difficulties to the classifier learning task by themselves [1]–[3].
However, data-sets with skewed class distribution usually tend
to suffer from class overlapping, small sample size or small dis-
juncts, which difficult classifier learning [4]–[7]. Furthermore,
the evaluation criterion, which guides the learning procedure,
can lead to ignore minority class examples (treating them as
noise) and hence, the induced classifier might lose its classifica-
tion ability in this scenario. As a usual example, let us consider
a data-set whose imbalance ratio is 1:100 (i.e., for each example
of the positive class, there are 100 negative class examples). A
classifier that tries to maximize the accuracy of its classification
rule, may obtain an accuracy of 99% just by the ignorance of
the positive examples, with the classification of all instances as
negatives.

In recent years, class imbalance problem has emerged as one
of the challenges in data mining community [8]. This situation
is significant since it is present in many real-world classifica-
tion problems. For instance, some applications are known to
suffer from this problem, fault diagnosis [9], [10], anomaly de-
tection [11], [12], medical diagnosis [13], e-mail foldering [14],
face recognition [15], or detection of oil spills [16], among oth-
ers. On account of the importance of this issue, a large amount of
techniques have been developed trying to address the problem.
These proposals can be categorized into three groups, which
depend on how they deal with class imbalance. The algorithm
level (internal) approaches create or modify the algorithms that
exist, to take into account the significance of positive exam-
ples [17]–[19]. Data level (external) techniques add a prepro-
cessing step where the data distribution is rebalanced in or-
der to decrease the effect of the skewed class distribution in
the learning process [20]–[22]. Finally, cost-sensitive methods
combine both algorithm and data level approaches to incorpo-
rate different misclassification costs for each class in the learning
phase [23], [24].

In addition to these approaches, another group of techniques
emerges when the use of ensembles of classifiers is consid-
ered. Ensembles [25], [26] are designed to increase the accu-
racy of a single classifier by training several different classifiers
and combining their decisions to output a single class label.
Ensemble methods are well known in machine learning and their

1094-6977/$26.00 © 2011 IEEE

464 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

application range over a large number of problems [27]–[30].
In the literature, the term “ensemble methods” usually refers to
those collection of classifiers that are minor variants of the same
classifier, whereas “multiple classifier systems” is a broader cat-
egory that also includes those combinations that consider the hy-
bridization of different models [31], [32], which are not covered
in this paper. When forming ensembles, creating diverse classi-
fiers (but maintaining their consistency with the training set) is a
key factor to make them accurate. Diversity in ensembles has a
thorough theoretical background in regression problems (where
it is studied in terms of bias-variance [33] and ambiguity [34]
decomposition); however, in classification, the concept of di-
versity is still formally ill-defined [35]. Even though, diversity
is necessary [36]–[38] and there exist several different ways to
achieve it [39]. In this paper, we focus on data variation-based
ensembles, which consist in the manipulation of the training
examples in such a way that each classifier is trained with a dif-
ferent training set. AdaBoost [40], [41] and Bagging [42] are the
most common ensemble learning algorithms among them, but
there exist many variants and other different approaches [43].

Because of their accuracy-oriented design, ensemble learn-
ing algorithms that are directly applied to imbalanced data-sets
do not solve the problem that underlay in the base classifier
by themselves. However, their combination with other tech-
niques to tackle the class imbalance problem have led to several
proposals in the literature, with positive results. These hybrid
approaches are in some sense algorithm level approaches (since
they slightly modify the ensemble learning algorithm), but they
do not need to change the base classifier, which is one of their ad-
vantages. The modification of the ensemble learning algorithm
usually includes data level approaches to preprocess the data
before learning each classifier [44]–[47]. However, other pro-
posals consider the embedding of the cost-sensitive framework
in the ensemble learning process [48]–[50].

In general, algorithm level and cost-sensitive approaches are
more dependent on the problem, whereas data level and en-
semble learning methods are more versatile since they can be
used independently of the base classifier. Many works have
been developed studying the suitability of data preprocessing
techniques to deal with imbalanced data-sets [21], [51], [52].
Furthermore, there exist several comparisons between different
external techniques in different frameworks [20], [53], [54]. On
the other hand, with regard to ensemble learning methods, a
large number of different approaches have been proposed in
the literature, including but not limited to SMOTEBoost [44],
RUSBoost [45], IIVotes [46], EasyEnsemble [47], or SMOTE-
Bagging [55]. All of these methods seem to be adequate to deal
with the class imbalance problem in concrete frameworks, but
there are no exhaustive comparisons of their performance among
them. In many cases, new proposals are compared with respect
to a small number of methods and by the usage of limited sets
of problems [44]–[47]. Moreover, there is a lack of a unification
framework where they can be categorized.

Because of these reasons, our aim is to review the state of
the art on ensemble techniques to address a two-class imbal-
anced data-sets problem and to propose a taxonomy that defines
a general framework within each algorithm can be placed. We

consider different families of algorithms depending on which
ensemble learning algorithm they are based, and what type of
techniques they used to deal with the imbalance problem. Over
this taxonomy, we carry out a thorough empirical comparison
of the performance of ensemble approaches with a twofold ob-
jective. The first one is to analyze which one offers the best
behavior among them. The second one is to observe the suit-
ability of increasing classifiers’ complexity with the use of en-
sembles instead of the consideration of a unique stage of data
preprocessing and training a single classifier.

We have designed the experimental framework in such a way
that we can extract well-founded conclusions. We use a set of
44 two-class real-world problems, which suffer from the class
imbalance problem, from the KEEL data-set repository [56],
[57] (http://www.keel.es/dataset.php). We consider C4.5 [58]
as base classifier for our experiments since it has been widely
used in imbalanced domains [20], [59]–[61]; besides, most of
the proposals we are studying were tested with C4.5 by their
authors (e.g., [45], [50], [62]). We perform the comparison by
the development of a hierarchical analysis of ensemble methods
that is directed by nonparametric statistical tests as suggested
in the literature [63]–[65]. To do so, according to the imbalance
framework, we use the area under the ROC curve (AUC) [66],
[67] as the evaluation criterion.

The rest of this paper is organized as follows. In Section II, we
present the imbalanced data-sets problem that describes several
techniques which have been combined with ensembles, and dis-
cussing the evaluation metrics. In Section III, we recall different
ensemble learning algorithms, describe our new taxonomy, and
review the state of the art on ensemble-based techniques for
imbalanced data-sets. Next, Section IV introduces the experi-
mental framework, that is, the algorithms that are included in
the study with their corresponding parameters, the data-sets, and
the statistical tests that we use along the experimental study. In
Section V, we carry out the experimental analysis over the most
significant algorithms of the taxonomy. Finally, in Section VI,
we make our concluding remarks.

II. INTRODUCTION TO CLASS IMBALANCE PROBLEM

IN CLASSIFICATION

In this section, we first introduce the problem of imbalanced
data-sets in classification. Then, we present how to evaluate
the performance of the classifiers in imbalanced domains. Fi-
nally, we recall several techniques to address the class imbalance
problem, specifically, the data level approaches that have been
combined with ensemble learning algorithms in previous works.

Prior to the introduction of the problem of class imbalance,
we should formally state the concept of supervised classifica-
tion [68]. In machine learning, the aim of classification is to learn
a system capable of the prediction of the unknown output class of
a previously unseen instance with a good generalization ability.
The learning task, i.e., the knowledge extraction, is carried out
by a set of n input instances x1 , . . . , xn characterized by i fea-
tures a1 , . . . , ai ∈ A, which includes numerical or nominal val-
ues, whose desired output class labels yj ∈ C = {c1 , . . . , cm},
in the case of supervised classification, are known before to the

GALAR et al.: REVIEW ON ENSEMBLES FOR THE CLASS IMBALANCE PROBLEM 465

Fig. 1. Example of difficulties in imbalanced data-sets. (a) Class overlapping.
(b) Small disjuncts.

learning stage. In such a way, the system that is generated by
the learning algorithm is a mapping function that is defined over
the patterns A

i → C, and it is called classifier.

A. The Problem of Imbalanced Data-sets

In classification, a data-set is said to be imbalanced when
the number of instances which represents one class is smaller
than the ones from other classes. Furthermore, the class with
the lowest number of instances is usually the class of interest
from the point of view of the learning task [22]. This prob-
lem is of great interest because it turns up in many real-world
classification problems, such as remote-sensing [69], pollution
detection [70], risk management [71], fraud detection [72], and
especially medical diagnosis [13], [24], [73]–[75].

In these cases, standard classifier learning algorithms have
a bias toward the classes with greater number of instances,
since rules that correctly predict those instances are positively
weighted in favor of the accuracy metric, whereas specific rules
that predict examples from the minority class are usually ig-
nored (treating them as noise), because more general rules are
preferred. In such a way, minority class instances are more of-
ten misclassified than those from the other classes. Anyway,
skewed data distribution does not hinder the learning task by
itself [1], [2], the issue is that usually a series of difficulties
related to this problem turn up.

1) Small sample size: Generally imbalanced data-sets do not
have enough minority class examples. In [6], the authors
reported that the error rate caused by imbalanced class
distribution decreases when the number of examples of
the minority class is representative (fixing the ratio of
imbalance). This way, patterns that are defined by positive
instances can be better learned despite the uneven class
distribution. However, this fact is usually unreachable in
real-world problems.

2) Overlapping or class separability [see Fig. 1(a)]: When it
occurs, discriminative rules are hard to induce. As a con-
sequence, more general rules are induced that misclassify
a low number of instances (minority class instances) [4]. If
there is no overlapping between classes, any simple clas-
sifier could learn an appropriate classifier regardless of the
class distribution.

3) Small disjuncts [see Fig. 1(b)]: The presence of small dis-
juncts in a data-set occurs when the concept represented by

TABLE I
CONFUSION MATRIX FOR A TWO-CLASS PROBLEM

the minority class is formed of subconcepts [5]. Besides,
small disjuncts are implicit in most of the problems. The
existence of subconcepts also increases the complexity of
the problem because the amount of instances among them
is not usually balanced.

In this paper, we focus on two-class imbalanced data-sets,
where there is a positive (minority) class, with the lowest number
of instances, and a negative (majority) class, with the highest
number of instances. We also consider the imbalance ratio (IR)
[54], defined as the number of negative class examples that are
divided by the number of positive class examples, to organize
the different data-sets.

B. Performance Evaluation in Imbalanced Domains

The evaluation criterion is a key factor both in the assessment
of the classification performance and guidence of the classifier
modeling. In a two-class problem, the confusion matrix (shown
in Table I) records the results of correctly and incorrectly rec-
ognized examples of each class.

Traditionally, the accuracy rate (1) has been the most com-
monly used empirical measure. However, in the framework of
imbalanced data-sets, accuracy is no longer a proper measure,
since it does not distinguish between the numbers of correctly
classified examples of different classes. Hence, it may lead to
erroneous conclusions, i.e., a classifier that achieves an accuracy
of 90% in a data-set with an IR value of 9, is not accurate if it
classifies all examples as negatives.

Acc =
TP + TN

TP + FN + FP + TN
. (1)

For this reason, when working in imbalanced domains, there are
more appropriate metrics to be considered instead of accuracy.
Specifically, we can obtain four metrics from Table I to measure
the classification performance of both, positive and negative,
classes independently.

1) True positive rate TPrate = T P
T P +F N is the percentage of

positive instances correctly classified.
2) True negative rate TNrate = T N

F P +T N is the percentage of
negative instances correctly classified.

3) False positive rate FPrate = F P
F P +T N is the percentage of

negative instances misclassified.
4) False negative rate FNrate = F N

T P +F N is the percentage
of positive instances misclassified.

Clearly, since classification intends to achieve good quality
results for both classes, none of these measures alone is adequate
by itself. One way to combine these measures and produce an
evaluation criterion is to use the receiver operating characteristic
(ROC) graphic [66]. This graphic allows the visualization of
the trade-off between the benefits (TPrate) and costs (FPrate);
thus, it evidences that any classifier cannot increase the number

466 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

Fig. 2. Example of an ROC plot. Two classifiers’ curves are depicted: the
dashed line represents a random classifier, whereas the solid line is a classifier
which is better than the random classifier.

of true positives without the increment of the false positives.
The area under the ROC curve (AUC) [67] corresponds to the
probability of correctly identifying which one of the two stimuli
is noise and which one is signal plus noise. AUC provides a
single measure of a classifier’s performance for the evaluation
that which model is better on average. Fig. 2 shows how to
build the ROC space plotting on a two-dimensional chart, the
TPrate (Y -axis) against the FPrate (X-axis). Points in (0, 0) and
(1, 1) are trivial classifiers where the predicted class is always
the negative and positive, respectively. On the contrary, (0, 1)
point represents the perfect classification. The AUC measure is
computed just by obtaining the area of the graphic:

AUC =
1 + TPrate − FPrate

2
. (2)

C. Dealing With the Class Imbalance Problem

On account of the importance of the imbalanced data-sets
problem, a large amount of techniques have been developed
to address this problem. As stated in the introduction, these
approaches can be categorized into three groups, depending on
how they deal with the problem.

1) Algorithm level approaches (also called internal) try to
adapt existing classifier learning algorithms to bias the
learning toward the minority class [76]–[78]. These meth-
ods require special knowledge of both the corresponding
classifier and the application domain, comprehending why
the classifier fails when the class distribution is uneven.

2) Data level (or external) approaches rebalance the class
distribution by resampling the data space [20], [52], [53],
[79]. This way, they avoid the modification of the learn-
ing algorithm by trying to decrease the effect caused by
imbalance with a preprocessing step. Therefore, they are
independent of the classifier used, and for this reason,
usually more versatile.

3) Cost-sensitive learning framework falls between data and
algorithm level approaches. It incorporates both data level
transformations (by adding costs to instances) and algo-
rithm level modifications (by modifying the learning pro-
cess to accept costs) [23], [80], [81]. It biases the classifier
toward the minority class the the assumption higher mis-
classification costs for this class and seeking to minimize
the total cost errors of both classes. The major drawback
of these approaches is the need to define misclassification
costs, which are not usually available in the data-sets.

In this work, we study approaches that are based on ensemble
techniques to deal with the class imbalance problem. Aside
from those three categories, ensemble-based methods can be
classified into a new category. These techniques usually consist
in a combination between an ensemble learning algorithm and
one of the techniques above, specifically, data level and cost-
sensitive ones. By the addition of a data level approach to the
ensemble learning algorithm, the new hybrid method usually
preprocesses the data before training each classifier. On the other
hand, cost-sensitive ensembles instead of modifying the base
classifier in order to accept costs in the learning process guide
the cost minimization via the ensemble learning algorithm. This
way, the modification of the base learner is avoided, but the
major drawback (i.e., costs definition) is still present.

D. Data Preprocessing Methods

As pointed out, preprocessing techniques can be easily em-
bedded in ensemble learning algorithms. Hereafter, we recall
several data preprocessing techniques that have been used to-
gether with ensembles, which we will analyze in the following
sections.

In the specialized literature, we can find some papers about
resampling techniques that study the effect of changing class
distribution to deal with imbalanced data-sets, where it has been
empirically proved that the application of a preprocessing step
in order to balance the class distribution is usually a positive
solution [20], [53]. The main advantage of these techniques,
as previously pointed out, is that they are independent of the
underlying classifier.

Resampling techniques can be categorized into three groups.
Undersampling methods, which create a subset of the origi-
nal data-set by eliminating instances (usually majority class
instances); oversampling methods, which create a superset of
the original data-set by replicating some instances or creating
new instances from existing ones; and finally, hybrids methods
that combine both sampling methods. Among these categories,
there exist several different proposals; from this point, we only
center our attention in those that have been used in combination
with ensemble learning algorithms.

1) Random undersampling: It is a nonheuristic method
that aims to balance class distribution through the ran-
dom elimination of majority class examples. Its major
drawback is that it can discard potentially useful data,
which could be important for the induction process.

2) Random oversampling: In the same way as random un-
dersampling, it tries to balance class distribution, but in

GALAR et al.: REVIEW ON ENSEMBLES FOR THE CLASS IMBALANCE PROBLEM 467

this case, randomly replicating minority class instances.
Several authors agree that this method can increase the
likelihood of occurring overfitting, since it makes exact
copies of existing instances.

3) Synthetic minority oversampling technique (SMOTE)
[21]: It is an oversampling method, whose main idea is
to create new minority class examples by interpolating
several minority class instances that lie together. SMOTE
creates instances by randomly selecting one (or more de-
pending on the oversampling ratio) of the k nearest neigh-
bors (kNN) of a minority class instance and the generation
of the new instance values from a random interpolation of
both instances. Thus, the overfitting problem is avoided
and causes the decision boundaries for the minority class
to be spread further into the majority class space.

4) Modified synthetic minority oversampling technique
(MSMOTE) [82]: It is a modified version of SMOTE.
This algorithm divides the instances of the minority class
into three groups, safe, border and latent noise instances
by the calculation of the distances among all examples.
When MSMOTE generates new examples, the strategy to
select the nearest neighbors is changed with respect to
SMOTE that depends on the group previously assigned to
the instance. For safe instances, the algorithm randomly
selects a data point from the kNN (same way as SMOTE);
for border instances, it only selects the nearest neighbor;
finally, for latent noise instances, it does nothing.

5) Selective preprocessing of imbalanced data (SPIDER)
[52]: It combines local oversampling of the minority class
with filtering difficult examples from the majority class. It
consists in two phases, identification and preprocessing.
The first one identifies which instances are flagged as noisy
(misclassified) by kNN. The second phase depends on the
option established (weak, relabel, or strong); when weak
option is settled, it amplifies minority class instances; for
relabel, it amplifies minority class examples and relabels
majority class instances (i.e., changes class label); finally,
using strong option, it strongly amplifies minority class
instances. After carrying out these operations, the remain-
ing noisy examples from the majority class are removed
from the data-set.

III. STATE OF THE ART ON ENSEMBLES TECHNIQUES

FOR IMBALANCED DATA-SETS

In this section, we propose a new taxonomy for ensemble-
based techniques to deal with imbalanced data-sets and we re-
view the state of the art on these solutions. With this aim, we start
recalling several classical learning algorithms for constructing
sets of classifiers, whose classifiers properly complement each
other, and then we get on with the ensemble-based solutions to
address the class imbalance problem.

A. Learning Ensembles of Classifiers: Description and
Representative Techniques

The main objective of ensemble methodology is to try to
improve the performance of single classifiers by inducing sev-

eral classifiers and combining them to obtain a new classifier
that outperforms every one of them. Hence, the basic idea is
to construct several classifiers from the original data and then
aggregate their predictions when unknown instances are pre-
sented. This idea follows the human natural behavior that tends
to seek several opinions before making any important decision.
The main motivation for the combination of classifiers in redun-
dant ensembles is to improve their generalization ability: each
classifier is known to make errors, but since they are different
(e.g., they have been trained on different data-sets or they have
different behaviors over different part of the input space), mis-
classified examples are not necessarily the same [83]. Ensemble-
based classifiers usually refer to the combination of classifiers
that are minor variants of the same base classifier, which can
be categorized in the broader concept of multiple classifier sys-
tems [25], [31], [32]. In this paper, we focus only on ensembles
whose classifiers are constructed by manipulating the original
data.

In the literature, the need of diverse classifiers to compose an
ensemble is studied in terms of the statistical concepts of bias-
variance decomposition [33], [84] and the related ambiguity
[34] decomposition. The bias can be characterized as a measure
of its ability to generalize correctly to a test set, whereas the
variance can be similarly characterized as a measure of the
extent to which the classifier’s prediction is sensitive to the
data on which it was trained. Hence, variance is associated
with overfitting, the performance improvement in ensembles is
usually due to a reduction in variance because the usual effect of
ensemble averaging is to reduce the variance of a set of classifiers
(some ensemble learning algorithms are also known to reduce
bias [85]). On the other hand, ambiguity decomposition shows
that, taking the combination of several predictors is better on
average, over several patterns, than a method selecting one of
the predictors at random. Anyway, these concepts are clearly
stated in regression problems where the output is real-valued
and the mean squared error is used as the loss function. However,
in the context of classification, those terms are still ill-defined
[35], [38], since different authors provide different assumptions
[86]–[90] and there is no an agreement on their definition for
generalized loss functions [91].

Nevertheless, despite not being theoretically clearly defined,
diversity among classifiers is crucial (but alone is not enough) to
form an ensemble, as shown by several authors [36]–[38]. Note
also that, the measurement of the diversity and its relation to
accuracy is not demonstrated [43], [92], but this is probably due
to the measures of diversity rather than for not existing that rela-
tion. There are different ways to reach the required diversity, that
is, different ensemble learning mechanisms. An important point
is that the base classifiers should be weak learners; a classifier
learning algorithm is said to be weak when low changes in data
produce big changes in the induced model; this is why the most
commonly used base classifiers are tree induction algorithms.

Considering a weak learning algorithm, different techniques
can be used to construct an ensemble. The most widely used
ensemble learning algorithms are AdaBoost [41] and Bagging
[42] whose applications in several classification problems have
led to significant improvements [27]. These methods provide a

468 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

way in which the classifiers are strategically generated to reach
the diversity needed, by manipulating the training set before
learning each classifier.

From this point, we briefly recall Bagging (including the
modification called pasting small votes with importance sam-
pling) and Boosting (AdaBoost and its variants AdaBoost.M1
and AdaBoost.M2) ensemble learning algorithms, which have
been then integrated with previously explained preprocessing
techniques in order to deal with the class imbalance problem.

1) Bagging: Breiman [42] introduced the concept of boot-
strap aggregating to construct ensembles. It consists in
training different classifiers with bootstrapped replicas of
the original training data-set. That is, a new data-set is
formed to train each classifier by randomly drawing (with
replacement) instances from the original data-set (usually,
maintaining the original data-set size). Hence, diversity
is obtained with the resampling procedure by the usage
of different data subsets. Finally, when an unknown in-
stance is presented to each individual classifier, a majority
or weighted vote is used to infer the class. Algorithm 1
shows the pseudocode for Bagging.

Pasting small votes is a variation of Bagging originally
designed for large data-sets [93]. Large data-sets are parti-
tioned into smaller subsets, which are used to train differ-
ent classifiers. There exist two variants, Rvotes that creates
the data subsets at random and Ivotes that create consec-
utive data-sets based on the importance of the instances;
important instances are those that improve diversity. The
way used to create the data-sets consists in the usage of a
balanced distribution of easy and difficult instances. Dif-
ficult instances are detected by out-of-bag classifiers [42],
that is, an instance is considered difficult when it is mis-
classified by the ensemble classifier formed of those clas-
sifiers which did not use the instance to be trained. These
difficult instances are always added to the next data subset,
whereas easy instances have a low chance to be included.
We show the pseudocode for Ivotes in Algorithm 2.

2) Boosting: Boosting (also known as ARCing, adaptive re-
sampling and combining) was introduced by Schapire in
1990 [40]. Schapire proved that a weak learner (which is
slightly better than random guessing) can be turned into a
strong learner in the sense of probably approximately cor-
rect (PAC) learning framework. AdaBoost [41] is the most
representative algorithm in this family, it was the first ap-
plicable approach of Boosting, and it has been appointed as
one of the top ten data mining algorithms [94]. AdaBoost

is known to reduce bias (besides from variance) [85], and
similarly to support vector machines (SVMs) boosts the
margins [95]. AdaBoost uses the whole data-set to train
each classifier serially, but after each round, it gives more
focus to difficult instances, with the goal of correctly clas-
sifying examples in the next iteration that were incorrectly
classified during the current iteration. Hence, it gives more
focus to examples that are harder to classify, the quan-
tity of focus is measured by a weight, which initially is
equal for all instances. After each iteration, the weights
of misclassified instances are increased; on the contrary,
the weights of correctly classified instances are decreased.
Furthermore, another weight is assigned to each individ-
ual classifier depending on its overall accuracy which is
then used in the test phase; more confidence is given to
more accurate classifiers. Finally, when a new instance is
submitted, each classifier gives a weighted vote, and the
class label is selected by majority.

In this work, we will use the original two-class Ad-
aBoost (Algorithm 3) and two of its very well-known
modifications [41], [96] that have been employed in
imbalanced domains: AdaBoost.M1 and AdaBoost.M2.
The former is the first extension to multiclass classi-
fication with a different weight changing mechanism
(Algorithm 4); the latter is the second extension to mul-
ticlass, in this case, making use of base classifiers’ confi-
dence rates (Algorithm 5). Note that neither of these algo-
rithms by itself deal with the imbalance problem directly;
both have to be changed or combined with another tech-
nique, since they focus their attention on difficult examples
without differentiating their class. In an imbalanced data-
set, majority class examples contribute more to the accu-
racy (they are more probably difficult examples); hence,
rather than trying to improve the true positives, it is eas-
ier to improve the true negatives, also increasing the false
negatives, which is not a desired characteristic.

GALAR et al.: REVIEW ON ENSEMBLES FOR THE CLASS IMBALANCE PROBLEM 469

B. Addressing Class Imbalance Problem
With Classifier Ensembles

As we have stated, in recent years, ensemble of classifiers
have arisen as a possible solution to the class imbalance problem
attracting great interest among researchers [45], [47], [50], [62].
In this section, our aim is to review the application of ensemble
learning methods to deal with this problem, as well as to present
a taxonomy where these techniques can be categorized. Further-
more, we have selected several significant approaches from each
family of our taxonomy to develop an exhaustive experimental
study that we will carry out in Section V.

To start with the description of the taxonomy, we show
our proposal in Fig. 3, where we categorize the different ap-
proaches. Mainly, we distinguish four different families among
ensemble approaches for imbalanced learning. On the one hand,
cost-sensitive boosting approaches, which are similar to cost-
sensitive methods, but where the costs minimization is guided

by the boosting algorithm. On the other hand, we difference
three more families that have a characteristic in common; all of
them consist in embedding a data preprocessing technique in
an ensemble learning algorithm. We categorize these three fam-
ilies depending on the ensemble learning algorithm they use.
Therefore, we consider boosting- and bagging-based ensem-
bles, and the last family is formed by hybrids ensembles. That
is, ensemble methods that apart from combining an ensemble
learning algorithm and a preprocessing technique, make use of
both boosting and bagging, one inside the other, together with
a preprocessing technique.

Next, we look over these families, reviewing the existing
works and focusing in the most significant proposals that we
use in the experimental analysis.

1) Cost-sensitive Boosting: AdaBoost is an accuracy-
oriented algorithm, when the class distribution is uneven, this
strategy biases the learning (the weights) toward the major-
ity class, since it contributes more to the overall accuracy. For
this reason, there have been different proposals that modify the
weight update of AdaBoost (Algorithm 3, line 10 and, as a
consequence, line 9). In such a way, examples from different
classes are not equally treated. To reach this unequal treatment,
cost-sensitive approaches keep the general learning framework
of AdaBoost, but at the same time introduce cost items into the
weight update formula. These proposals usually differ in the
way that they modify the weight update rule, among this fam-
ily AdaCost [48], CSB1, CSB2 [49], RareBoost [97], AdaC1,
AdaC2, and AdaC3 [50] are the most representative approaches.

1) AdaCost: In this algorithm, the weight update is modi-
fied by adding a cost adjustment function ϕ. This func-
tion, for an instance with a higher cost factor increases
its weight “more” if the instance is misclassified, but de-
creases its weight “less” otherwise. Being Ci the cost

470 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

Fig. 3. Proposed taxonomy for ensembles to address the class imbalance problem.

of misclassifying the ith example, the authors provide
their recommended function as ϕ+ = −0.5Ci + 0.5 and
ϕ− = 0.5Ci + 0.5. The weighting function and the com-
putation of αt are replaced by the following formulas:

Dt+1(i) = Dt(i) · e−αt yi ht (x i)ϕ s ig n (h t (x i) , y i) (3)

αt =
1
2

ln
1 +

∑
i Dt(i) · e−αt yi ht (x i)ϕ s ig n (h t (x i) , y i)

1 −
∑

i Dt(i) · e−αt yi ht (x i)ϕ s ig n (h t (x i) , y i)
(4)

2) CSB: Neither CSB1 nor CSB2 use an adjustment function.
Moreover, these approaches only consider the costs in
the weight update formula, that is, none of them changes
the computation of αt . CSB1 because it does not use αt

anymore (αt = 1) and CSB2 because it uses the same αt

computed by AdaBoost. In these cases, the weight update
is replaced by

Dt+1(i) = Dt(i)Csign(ht (x i),yi) · e−αt yi ht (x i) (5)

where C+ = 1 and C− = Ci ≥ 1 are the costs of misclas-
sifying a positive and a negative example, respectively.

3) RareBoost: This modification of AdaBoost tries to tackle
the class imbalance problem by simply changing αt’s
computation (Algorithm 3, line 9) making use of the con-
fusion matrix in each iteration. Moreover, they compute
two different αt values in each iteration. This way, false
positives (FPt is the weights’ sum of FP in the tth itera-
tion) are scaled in proportion to how well they are distin-
guished from true positives (TPt), whereas false negatives
(FNt) are scaled in proportion to how well they are dis-
tinguished from true negatives (TNt). On the one hand,
αp

t = TPt/FPt is computed for examples predicted as
positives. On the other hand, αn

t = TNt/FNt is com-
puted for the ones predicted as negatives. Finally, the
weight update is done separately by the usage of both
factors depending on the predicted class of each instance.
Note that, despite we have include RareBoost in cost-
sensitive boosting family, it does not directly make use

of costs, which can be an advantage, but it modifies Ad-
aBoost algorithm in a similar way to the approaches in this
family. Because of this fact, we have classified into this
group. However, this algorithm has a handicap, TPt and
TNt are reduced, and FPt and FTt are increased only if
TPt > FPt and TNt > FNt , that is equivalent to require
an accuracy of the positive class greater than 50%:

TPt/(TPt + FPt) > 0.5. (6)

This constraint is not trivial when dealing with the class
imbalance problem; moreover, it is a strong condition.
Without satisfying this condition, the algorithm will col-
lapse. Therefore, we will not include it in our empirical
study.

4) AdaC1: This algorithm is one of the three modifications
of AdaBoost proposed in [50]. The authors proposed dif-
ferent ways in which the costs can be embedded into the
weight update formula (Algorithm 3, line 10). They de-
rive different computations of αt depending on where they
introduce the costs. In this case, the cost factors are intro-
duced within the exponent part of the formula:

Dt+1(i) = Dt(i) · e−αt Ci ht (x i)yi (7)

where Ci ∈ [0,+∞). Hence, the computation of the clas-
sifiers’ weight is done as follows:

αt = 1
2 ln

1+
∑

i , y i = h t (x i)
Ci Dt (i)−

∑
i , y i �= h t (x i)

Ci Dt (i)

1−
∑

i , y i = h t (x i)
Ci Dt (i)+

∑
i , y i �= h t (x i)

Ci Dt (i)
.

(8)
Note that AdaCost is a variation of AdaC1 where there
is a cost adjustment function instead of a cost item inside
the exponent. Though, in the case of AdaCost, it does not
reduce to the AdaBoost algorithm when both classes are
equally weighted (contrary to AdaC1).

5) AdaC2: Likewise AdaC1, AdaC2 integrates the costs in
the weight update formula. But the procedure is different;

GALAR et al.: REVIEW ON ENSEMBLES FOR THE CLASS IMBALANCE PROBLEM 471

the costs are introduced outside the exponent part:

Dt+1(i) = CiDt(i) · e−αt ht (x i)yi . (9)

In consequence, αt’s computation is changed:

αt =
1
2

ln

∑
i,yi =ht (x i) CiDt(i)

∑
i,yi �=ht (x i) CiDt(i)

. (10)

6) AdaC3: This modification considers the idea of AdaC1
and AdaC2 at the same time. The weight update formula is
modified by introducing the costs both inside and outside
the exponent part:

Dt+1(i) = CiDt(i) · e−αt Ci ht (x i)yi . (11)

In this manner, over again αt changes:

αt=1
2 ln

∑
i

C i D t (i)+
∑

i , y i= h t (x i)
C 2

i
D t (i)−

∑
i , y i �= h t (x i)

C 2
i

D t (i)
∑

i
C i D t (i)−

∑
i , y i=h t (x i)

C 2
i

D t (i)+
∑

i , y i �= h t (x i)
C 2

i
D t (i)

.

(12)
2) Boosting-based Ensembles: In this family, we have in-

cluded the algorithms that embed techniques for data prepro-
cessing into boosting algorithms. In such a manner, these meth-
ods alter and bias the weight distribution used to train the next
classifier toward the minority class every iteration. Inside this
family, we include SMOTEBoost [44], MSMOTEBoost [82],
RUSBoost [45], and DataBoost-IM [98] algorithms.

a) SMOTEBoost and MSMOTEBoost: Both methods in-
troduce synthetic instances just before Step 4 of Ad-
aBoost.M2 (Algorithm 2), using the SMOTE and
MSMOTE data preprocessing algorithms, respectively.
The weights of the new instances are proportional to the
total number of instances in the new data-set. Hence, their
weights are always the same (in all iterations and for
all new instances), whereas original data-set’s instances
weights are normalized in such a way that they form a
distribution with the new instances. After training a clas-
sifier, the weights of the original data-set instances are
updated; then another sampling phase is applied (again,
modifying the weight distribution). The repetition of this
process also brings along more diversity in the training
data, which generally benefits the ensemble learning.

b) RUSBoost: In other respects, RUSBoost performs simi-
larly to SMOTEBoost, but it removes instances from the
majority class by random undersampling the data-set in
each iteration. In this case, it is not necessary to assign
new weights to the instances. It is enough with simply
normalizing the weights of the remaining instances in the
new data-set with respect to their total sum of weights.
The rest of the procedure is the same as in SMOTEBoost.

c) DataBoost-IM: This approach is slightly different to the
previous ones. Its initial idea is not different, it combines
AdaBoost.M1 algorithm with a data generation strategy.
Its major difference is that it first identifies hard exam-
ples (seeds) and then carries out a rebalance process,
always for both classes. At the beginning, the Ns in-
stances (as many as misclassified instances by the cur-
rent classifier) with the largest weights are taken as seeds.
Considering that Nmin and Nmaj are the number of in-

stances of the minority and majority class, respectively;
whereas Nsmin and Nsma j are the number of seed in-
stances of each class; ML = min(Nmaj/Nmin , Nsma j)
and MS = min((Nmaj · ML)/Nmin , Nsmin) minority and
majority class instances are used as final seeds. Each seed
produce Nmaj or Nmin new examples, depending on its
class label. Nominal attributes’ values are copied from the
seed and the values of continuous attributes are randomly
generated following a normal distribution with the mean
and variance of class instances. Those instances are added
to the original data-set with a weight proportional to the
weight of the seed. Finally, the sums of weights of the
instances belonging to each class are rebalanced, in such a
way that both classes’ sum is equal. The major drawback of
this approach is its incapability to deal with highly imbal-
anced data-sets, because it generates an excessive amount
of instances which are not manageable for the base classi-
fier (i.e., Nmaj = 3000 and Nmin = 29 with Err = 15%,
there will be 100 seed instances, where 71 have to be
from the majority class and at least 71 · 3000 = 213000
new majority instances are generated in each iteration).
For this reason, we will not analyze it in the experimental
study.

3) Bagging-based Ensembles: Many approaches have been
developed using bagging ensembles to deal with class imbal-
ance problems due to its simplicity and good generalization
ability. The hybridization of bagging and data preprocessing
techniques is usually simpler than their integration in boosting.
A bagging algorithm does not require to recompute any kind
of weights; therefore, neither is necessary to adapt the weight
update formula nor to change computations in the algorithm. In
these methods, the key factor is the way to collect each bootstrap
replica (Step 2 of Algorithm 1), that is, how the class imbalance
problem is dealt to obtain a useful classifier in each iteration
without forgetting the importance of the diversity.

We distinguish four main algorithms in this family, OverBag-
ging [55], UnderBagging [99], UnderOverBagging [55], and
IIVotes [46]. Note that, we have grouped several approaches
into OverBagging and UnderBagging due to their similarity as
we explain hereafter.

a) OverBagging: An easy way to overcome the class imbal-
ance problem in each bag is to take into account the classes
of the instances when they are randomly drawn from the
original data-set. Hence, instead of performing a random
sampling of the whole data-set, an oversampling process
can be carried out before training each classifier (OverBag-
ging). This procedure can be developed in at least two
ways. Oversampling consists in increasing the number of
minority class instances by their replication, all majority
class instances can be included in the new bootstrap, but
another option is to resample them trying to increase the
diversity. Note that in OverBagging all instances will prob-
ably take part in at least one bag, but each bootstrapped
replica will contain many more instances than the original
data-set.

On the other hand, another different manner to over-
sample minority class instances can be carried out by the

472 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

usage of the SMOTE preprocessing algorithm. SMOTE-
Bagging [55] differs from the use of random oversampling
not only because the different preprocessing mechanism.
The way it creates each bag is significantly different. As
well as in OverBagging, in this method both classes con-
tribute to each bag with Nmaj instances. But, a SMOTE
resampling rate (a%) is set in each iteration (ranging from
10% in the first iteration to 100% in the last, always be-
ing multiple of 10) and this ratio defines the number of
positive instances (a% · Nmaj) randomly resampled (with
replacement) from the original data-set in each iteration.
The rest of the positive instances are generated by the
SMOTE algorithm. Besides, the set of negative instances
is bootstrapped in each iteration in order to form a more
diverse ensemble.

b) UnderBagging: On the contrary to OverBagging, Under-
Bagging procedure uses undersampling instead of over-
sampling. However, in the same manner as OverBagging,
it can be developed in at least two ways. The undersam-
pling procedure is usually only applied to the majority
class; however, a resampling with replacement of the mi-
nority class can also be applied in order to obtain a priori
more diverse ensembles. Point out that, in UnderBagging it
is more probable to ignore some useful negative instances,
but each bag has less instances than the original data-set
(on the contrary to OverBagging).

On the one hand, the UnderBagging method has been
used with different names, but maintaining the same func-
tional structure, e.g., Asymmetric Bagging [101] and Qua-
siBagging [100]. On the other hand, roughly-balanced
Bagging [102] is quite similar to UnderBagging, but it
does not bootstrap a totally balanced bag. The number
of positive examples is kept fixed (by the usage of all of
them or resampling them), whereas the number of nega-
tive examples drawn in each iteration varies slightly fol-
lowing a negative binomial distribution (with q = 0.5 and
n = Nmin). Partitioning [103], [104] (also called Bagging
Ensemble Variation [105]) is another way to develop the
undersampling, in this case, the instances of the majority
class are divided into IR disjoint data-sets and each clas-
sifier is trained with one of those bootstraps (mixed with
the minority class examples).

c) UnderOverBagging:UnderBagging to OverBagging fol-
lows a different methodology from OverBagging and Un-
derBagging, but similar to SMOTEBagging to create each
bag. It makes use of both oversampling and undersampling
techniques; a resampling rate (a%) is set in each iteration
(ranging from 10% to 100% always being multiple of 10);
this ratio defines the number of instances taken from each
class (a% · Nmaj instances). Hence, the first classifiers are
trained with a lower number of instances than the last ones.
This way, the diversity is boosted.

d) IIVotes:Imbalanced IVotes is based on the same combina-
tion idea, but it integrates the SPIDER data preprocessing
technique with IVotes (a preprocessing phase is applied in
each iteration before Step 13 of Algorithm 2). This method
has the advantage of not needing to define the number of

bags, since the algorithm stops when the out-of-bag error
estimation no longer decreases.

4) Hybrid Ensembles: The main difference of the algorithms
in this category with respect to the previous ones is that they
carry out a double ensemble learning, that is, they combine
both bagging and boosting (also with a preprocessing tech-
nique). Both algorithms that use this hybridization were pro-
posed in [47], and were referred to as exploratory undersampling
techniques. EasyEnsemble and BalanceCascade use Bagging as
the main ensemble learning method, but in spite of training a
classifier for each new bag, they train each bag using AdaBoost.
Hence, the final classifier is an ensemble of ensembles.

In the same manner as UnderBagging, each balanced bag
is constructed by randomly undersampling instances from the
majority class and by the usage of all the instances from the
minority class. The difference between these methods is the way
in which they treat the negative instances after each iteration, as
explained in the following.

a) EasyEnsemble: This approach does not perform any op-
eration with the instances from the original data-set after
each AdaBoost iteration. Hence, all the classifiers can be
trained in parallel. Note that, EasyEnsemble can be seen as
an UnderBagging where the base learner is AdaBoost, if
we fix the number of classifiers, EasyEnsemble will train
less bags than UnderBagging, but more classifiers will be
assigned to learn each single bag.

b) BalanceCascade: BalanceCascade works in a supervised
manner, and therefore the classifiers have to be trained
sequentially. In each bagging iteration after learning the
AdaBoost classifier, the majority class examples that are
correctly classified with higher confidences by the current
trained classifiers are removed from the data-set, and they
are not taken into account in further iterations.

IV. EXPERIMENTAL FRAMEWORK

In this section, we present the framework used to carry out
the experiments analyzed in Section V. First, we briefly de-
scribe the algorithms from the proposed taxonomy that we have
included in the study and we show their set-up parameters in
Subsection IV-A. Then, we provide details of the real-world
imbalanced problems chosen to test the algorithms in Subsec-
tion IV-B. Finally, we present the statistical tests that we have
applied to make a proper comparison of the classifiers’ results
in Subsection IV-C. We should recall that we are focusing on
two-class problems.

A. Algorithms and Parameters

In first place, we need to define a baseline classifier which we
use in all the ensembles. With this goal, we will use C4.5 de-
cision tree generating algorithm [58]. Almost all the ensemble
methodologies we are going to test were proposed in combi-
nation with C4.5. Furthermore, it has been widely used to deal
with imbalanced data-sets [59]–[61], and C4.5 has also been
included as one of the top-ten data-mining algorithms [94]. Be-
cause of these facts, we have chosen it as the most appropriate
base learner. C4.5 learning algorithm constructs the decision

GALAR et al.: REVIEW ON ENSEMBLES FOR THE CLASS IMBALANCE PROBLEM 473

TABLE II
PARAMETER SPECIFICATION FOR C4.5

tree top-down by the usage of the normalized information gain
(difference in entropy) that results from choosing an attribute
for splitting the data. The attribute with the highest normal-
ized information gain is the one used to make the decision. In
Table II, we show the configuration parameters that we have
used to run C4.5. We acknowledge that we could consider the
use of a classification tree algorithm, such as Hellinger distance
tree [106], that is specifically designed for the solution of im-
balanced problems. However, in [106], the authors show that
it often experiences a reduction in performance when sampling
techniques are applied, which is the base of the majority of the
studied techniques; moreover, being more robust (less weak)
than C4.5 in the imbalance scenario, the diversity of the ensem-
bles could be hindered.

Besides the ensemble-based methods that we consider, we
include another nonensemble technique to be able to analyze
whether the use of ensembles is beneficial, not only with respect
to the original base classifier, but also to outperform the results
of the classifier trained over preprocessed data-sets. To do so,
before learning the decision trees, we use SMOTE preprocessing
algorithm to rebalance the data-sets before the learning stage
(see Section II-D). Previous works have shown the positive
synergy of this combination leading to significant improvements
[20], [53].

Regarding ensemble learning algorithms, on the one hand,
we include classic ensembles (which are not specifically de-
veloped for imbalanced domains) such as Bagging, AdaBoost,
AdaBoot.M1, and AdaBoost.M2. On the other hand, we in-
clude the algorithms that are designed to deal with skewed class
distributions in the data-sets which, following the taxonomy
proposed in Section III-B, are distinguished into four families:
Cost-sensitive Boosting, Boosting-based, Bagging-based, and
Hybrid ensembles.

Concerning the cost-sensitive boosting framework, a thor-
ough empirical study was presented in [50]. To avoid the repe-
tition of similar experiments, we will follow the results where
AdaC2 algorithm stands out with respect to the others. Hence,
we will empirically study this algorithm among the ones from
this family in the experimental study.

Note that in our experiments we want to analyze which is
the most robust method among ensemble approaches, that is,
given a large variety of problems which one is more capable
of assessing an overall good (better) performance in all the
problems. Robustness concept also has an implicit meaning of
generality, algorithms whose configuration parameters have to
be tuned depending on the data-set are less robust, since changes
in the data can easily worsen their results; hence, they have more
difficulties to be adapted to new problems.

Recall from Section II-C that cost-sensitive approaches’
weakness is the need of costs definition. These costs are not
usually presented in classification data-sets, and on this account,
they are usually set ad-hoc or found conducting a search in the
space of possible costs. Therefore, in order to execute AdaC2,
we set the costs depending on the IR of each data-set. In other
words, we set up an adaptive cost strategy, where the cost of
misclassifying a minority class instance is always Cmin = 1,
whereas that of misclassifying a majority class instance is in-
versely proportional to the IR of the data-set (Cmaj = 1/IR).

The Boosting-based ensembles that are considered in our
study are RUSBoost, SMOTEBoost and MSMOTEBoost. As
we have explained, DataBoost-IM approach is not capable of
dealing with some of the data-sets that are used in the study
(more details in Subsection IV-B).

With respect to Bagging-based ensembles, we include from
the OverBagging group, OverBagging (which uses random
oversampling) and SMOTEBagging due to the great difference
in their way to perform the oversampling to create each bag.
In the same manner that we use MSMOTEBoost, in this case,
we have also developed a MSMOTEBagging algorithm, whose
unique difference with SMOTEBagging is the use of MSMOTE
instead of SMOTE. Hence, we are able to analyze the suitability
of their integration in both Boosting and Bagging. Among Un-
derBagging methods, we consider the random undersampling
method to create each balanced bag. We discard rest of the ap-
proaches (e.g., roughly balanced bagging or partitioning) given
their similarity; hence, we only develop the more general ver-
sion. For UnderBagging and OverBagging, we incorporate their
both possible variations (resampling of both classes in each bag
and resampling of only one of them), in such a way that we can
analyze their influence in the diversity of the ensemble. The set
of Bagging-based ensembles ends with UnderOverBagging and
the combination of SPIDER with IVotes, for IIVotes algorithm
we have tested the three configurations of SPIDER.

Finally, we consider both hybrid approaches, EasyEnsemble,
and BalanceCascade.

For the sake of clarity for the reader, Table III summarizes
the whole list of algorithms grouped by families, we also show
the abbreviations that we will use along the experimental study
and a short description.

In our experiments, we want all methods to have the same
opportunities to achieve their best results, but always without
fine-tuning their parameters depending on the data-set. Gen-
erally, the higher the number of base classifiers, the better the
results we achieve; however, this does not occur in every method
(i.e., more classifiers without spreading diversity could worsen
the results and they could also produce overfitting). Most of the
reviewed approaches employ ten base classifiers by default, but
others such as EasyEnsemble and BalanceCascade need more
classifiers to make sense (since they train each bag with Ad-
aBoost). In that case, the authors use a total of 40 classifiers
(four bagging iterations and ten AdaBoost iterations per bag).
On this account, we will first study which configuration is more
appropriate for each ensemble method and then we will fol-
low with the intrafamily and interfamily comparisons. Table IV
shows the rest of the parameters required by the algorithms we

474 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

TABLE III
ALGORITHMS USED IN THE EXPERIMENTAL STUDY

have used in the experiments, which are the parameters recom-
mended by their authors. All experiments have been developed
using the KEEL1 software [56], [57].

B. Data-sets

In the study, we have considered 44 binary data-sets from
KEEL data-set repository [56], [57], which are publicly avail-
able on the corresponding web-page,2 which includes general
information about them. Multiclass data-sets were modified to
obtain two-class imbalanced problems so that the union of one
or more classes became the positive class and the union of one
or more of the remaining classes was labeled as the negative
class. This way, we have different IRs: from low imbalance to
highly imbalanced data-sets. Table V summarizes the proper-
ties of the selected data-sets: for each data-set, the number of

1http://www.keel.es
2http://www.keel.es/dataset.php

TABLE IV
CONFIGURATION PARAMETERS FOR THE ALGORITHMS USED IN THE

EXPERIMENTAL STUDY

TABLE V
SUMMARY DESCRIPTION OF THE IMBALANCED DATA-SETS USED IN THE

EXPERIMENTAL STUDY

GALAR et al.: REVIEW ON ENSEMBLES FOR THE CLASS IMBALANCE PROBLEM 475

examples (#Ex.), number of attributes (#Atts.), class name of
each class (minority and majority), the percentage of examples
of each class and the IR. This table is ordered according to this
last column in the ascending order.

We have obtained the AUC metric estimates by means of a
5-fold cross-validation. That is, the data-set was split into five
folds, each one containing 20% of the patterns of the data-
set. For each fold, the algorithm is trained with the examples
contained in the remaining folds and then tested with the current
fold. The data partitions used in this paper can be found in
KEEL-dataset repository [57] so that any interested researcher
can reproduce the experimental study.

C. Statistical Tests

In order to compare different algorithms and to show whether
there exist significant differences among them, we have to give
the comparison a statistical support [108]. To do so, we use
nonparametric tests according to the recommendations made
in [63]–[65], [108], where a set of proper nonparametric tests for
statistical comparisons of classifiers is presented. We need to use
nonparametric tests because the initial conditions that guarantee
the reliability of the parametric tests may not be satisfied causing
the statistical analysis to lose its credibility [63].

In this paper, we use two types of comparisons: pairwise
(between a pair of algorithms) and multiple (among a group of
algorithms).

1) Pairwise comparisons: we use Wilcoxon paired signed-
rank test [109] to find out whether there exist significant
differences between a pair of algorithms.

2) Multiple comparisons: we first use the Iman–Davenport
test [110] to detect statistical differences among a group of
results. Then, if we want to check out if a control algorithm
(usually the best one) is significantly better than the rest
(1 × n comparison), we use the Holm post-hoc test [111].
Whereas, when we want to find out which algorithms are
distinctive among an n × n comparison, we use the Shaf-
fer post-hoc test [112]. The post-hoc procedures allow us
to know whether a hypothesis of comparison of means
could be rejected at a specified level of significance α
(i.e., there exist significant differences). Besides, we com-
pute the p-value associated with each comparison, which
represents the lowest level of significance of a hypothesis
that results in a rejection. In this manner, we can also know
how different two algorithms are.

These tests are suggested in different studies [63]–[65], where
their use in the field of machine learning is highly recommended.
Any interested reader can find additional information on the
Website http://sci2s.ugr.es/sicidm/, together with the software
for applying the statistical tests.

Complementing the statistical analysis, we also consider the
average ranking of the algorithms in order to show at a first
glance how good a method is with respect to the rest in the
comparison. The rankings are computed by first assigning a
rank position to each algorithm in every data-set, which consists
in assigning the first rank in a data-set (value 1) to the best per-
forming algorithm, the second rank (value 2) to the second best

algorithm, and so forth. Finally, the average ranking of a method
is computed by the mean value of its ranks among all data-sets.

V. EXPERIMENTAL STUDY

In this section, we carry out the empirical comparison of the
algorithms that we have reviewed. Our aim is to answer several
questions about the reviewed ensemble learning algorithms in
the scenario of two-class imbalanced problems.

1) In first place, we want to analyze which one of the ap-
proaches is able to better handle a large amount of imbal-
anced data-sets with different IR, i.e., to show which one
is the most robust method.

2) We also want to investigate their improvement with respect
to classic ensembles and to look into the appropriateness
of their use instead of applying a unique preprocessing
step and training a single classifier. That is, whether the
trade-off between complexity increment and performance
enhancement is justified or not.

Given the amount of methods in the comparison, we cannot
afford it directly. On this account, we develop a hierarchical
analysis (a tournament among algorithms). This methodology
allows us to obtain a better insight on the results by discarding
those algorithms which are not the best in a comparison. We
divided the study into three phases, all of them guided by the
nonparametric tests presented in Section IV-C:

1) Number of classifiers: In the first phase, we analyze which
configuration of how many classifiers is the best for the
algorithms that are configurable to be executed with both
10 and 40 classifiers. As we explained in Section IV-A, this
phase allows us to give all of them the same opportunities.

2) Intra-family comparison: The second phase consists in
analyzing each family separately. We investigate which of
their components has the best (or only a better) behavior.
Those methods will be then considered to take part on the
final phase (representatives of the families).

3) Inter-family comparison: In the last phase, we develop a
comparison among the representatives of each family. In
such a way, our objective is to analyze which algorithm
stands out from all of them as well as to study the behavior
of ensemble-based methods to address the class imbal-
ance problem with respect to the rest of the approaches
considered.

Following this methodology, at the end, we will be able to
account for the questions that we have set out. We divide this
section into three subsections according to each one of the goals
of the study, and a final one (Subsection V-D) where we discuss
and sum up the results obtained in this study.

Before starting with the analysis, we show the overall train
and test AUC results (± for standard deviation) in Table VI. The
detailed test results of all methods and data-sets are presented
in the Appendix.

A. Number of Classifiers

We start investigating the configuration of the number of clas-
sifiers. This parameter is configurable in all except nonensem-
bles, hybrids, and IIVotes methods.

476 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

TABLE VI
MEAN AUC TRAIN AND TEST RESULTS FOR ALL THE ALGORITHMS IN THE

EXPERIMENTAL STUDY (± FOR STANDARD DEVIATION)

Since we compare pairs of result sets, we use the Wilcoxon
signed-rank test to find out whether there are significant differ-
ences between the usage of one or another configuration, and
if not, to select the set-up which reaches the highest amount of
ranks. This does not mean that the method is significantly better,
but that it has an overall better behavior among all the data-sets,
so we will use it in further comparisons.

Table VII shows the outputs of the Wilcoxon tests. We append
a “1” to the algorithm abbreviation to refer that it uses ten
classifiers and we do the same with a “4” whenever it uses 40
classifiers. We show the ranks for each method and whether the
hypothesis is rejected with a significance value of α = 0.05, but

TABLE VII
WILCOXON TESTS TO DECIDE THE NUMBER OF CLASSIFIERS

also the p-value which give us important information about the
differences. The last column shows the configuration that we
have selected for the next phase depending on the rejection of
the hypothesis or if is not rejected, depending on the ranks.

Looking at Table VII, we observe that classic boosting meth-
ods have different behaviors; ADAB and M1 have better per-
formance with 40 classifiers, whereas M2 is slightly better with
10. Classic bagging, as well as most of the bagging-based ap-
proaches (except UOB), has significantly better results using 40
base classifiers. The cost-sensitive boosting approach obtains
a low p-value (close to 0.05) in favor of the configuration of
40 classifiers; hence, it benefits this strategy. With respect to
boosting-based ensembles, RUS performance clearly outstands
when only ten classifiers are used; on the other hand, the con-
figuration of SBO and MBO is quite indifferent. As in the case
of cost-sensitive boosting, for both SBAG and MBAG the p-
value is quite low and the sum of ranks stresses the goodness
of the selection of 40 classifiers in these ensemble algorithms.
Bagging-based approaches that use random oversampling (OB,
OB2, and UOB) have not got so big differences, but UOB is
the unique that works globally better with the low number of
classifiers.

B. Intrafamily Comparison

In this subsection, we develop the comparisons in order to
select the best representatives of the families. When we only
have a pair of algorithms in a family, we use the Wilcoxon
signed-rank test; otherwise, we use the Iman–Davenport test
and we follow with Holm post-hoc if it is necessary.

We divided this subsection into five parts, one for the analysis
of each family. We have to recall that we do not analyze cost-
sensitive Boosting approaches since we are only considering
AdaC2 approach; hence, it will be their representative in the last
phase. Therefore, first we get on with nonensemble and classic
ensemble techniques and then, we go through the remaining
three families of ensembles especially designed for imbalanced
problems.

1) Nonensemble Techniques: Firstly, we execute the
Wilcoxon test between the results of the two non-ensemble

GALAR et al.: REVIEW ON ENSEMBLES FOR THE CLASS IMBALANCE PROBLEM 477

TABLE VIII
WILCOXON TESTS FOR NONENSEMBLE METHODS

Fig. 4. Average rankings of classic ensembles.

techniques we are considering, C45 and SMT, that is, C4.5 de-
cision tree alone and C4.5 trained over preprocessed data-sets
(using SMOTE). The result of the test is shown in Table VIII.

We observe that the performance of C45 is affected by the
presence of class imbalance. The Wilcoxon test shows, in con-
cordance with previous studies [20], [53], that making use of
SMOTE as a preprocessing technique significantly outperforms
C4.5 algorithm alone. The overall performance of SMT is bet-
ter, achieving higher ranks and rejecting the null hypotheses of
equivalence with a p-value of 0.00039. For this reason, SMT
will be the algorithm representing the family of nonensembles.

2) Classic Ensembles: Regarding classic ensembles, Boost-
ing (AdaBoost, AdaBoost.M1 and AdaBoost.M2) and Bagging,
we carry out Iman–Davenport test to find out whether they are
statistically different in the imbalance framework. Fig. 4 shows
the average rankings of the algorithms computed for the Iman–
Davenport test.

We observe that the ranking of BAG4 is higher than the rest,
which means that is the worst performer, whereas the rankings
of Boosting algorithms are similar, which is understandable be-
cause of their common idea. However, the absolute differences
of ranks are really low, this is confirmed by the Iman–Davenport
test which obtains a p-value of 0.49681. Hence, we will select
as representative of the family M14 for having the lowest aver-
age rank, but notice that in spite of selecting M14, there are not
significant differences in this family.

3) Boosting-based Ensembles: This kind of ensembles in-
cludes RUSBoost, SMOTEBoost, and MSMOTEBoost ap-
proaches. We show the rankings computed to carry out the test
in Fig. 5. In this case, Iman–Davenport test rejects the null hy-
pothesis with a p-value of 2.97E − 04. Hence, we execute the
Holm post-hoc test with RUS1 as control algorithm since it has
the lowest ranking.

Holm test shows that RUS1 is significantly better than MBO4,
whereas the same significance is not reached with respect to
SBO1 (the results are shown in Table IX).

We want to better analyze the relation between RUS1 and
SBO1, so we execute Wilcoxon test for this pair. The result
is shown in Table X, RUS1 has a better overall behavior as
expected, the p-value returned by the comparison is low, but
despite this situation neither significant differences are attained.

Fig. 5. Average rankings of boosting-based ensembles.

TABLE IX
HOLM TABLE FOR BOOSTING-BASED METHODS

TABLE X
WILCOXON TESTS TO SHOW DIFFERENCES BETWEEN SBO1 AND RUS1

TABLE XI
WILCOXON TESTS FOR BAGGING-BASED ENSEMBLES REDUCTION

RUS1 will represent this family in the next phase due to its
better general performance.

4) Bagging-based Ensembles: Because of the number of
Bagging-based approaches, we start making a preselection be-
fore to the comparison between the family members. On the one
hand, we will make a reduction between similar approaches such
as UB/UB2, OB/OB2, and SBAG/MBAG. On the other hand,
we will select the best IIVotes ensemble comparing the three
ways to develop the SPIDER preprocessing inside the IVotes
iterations.

To get on with the first part, we use the Wilcoxon test to
investigate which one of each pair of approaches is more ade-
quate. The results of these tests are shown in Table XI. Between
UnderBagging approaches, UB4 (which always uses all the mi-
nority class examples without resampling) obtains higher ranks.
This result stresses that the diversity is no more exploited when
minority class examples are also bootstrapped, this can be be-
cause not using all the minority class instances could make more
difficult to learn the positive concept in some of the classifiers
of the ensemble. In the case of OverBagging, the use of re-
sampling of the majority class (OB2) clearly outperforms OB,
this makes sense since the diversity of OB2 is a priori higher
than the one of OB. In addition, between synthetic oversampling
approaches, the original SMOTEBagging is significantly better
than its modification with MSMOTE, which seems not to work
as well as the original. Therefore, only UB4, OB24, and SBAG4
are selected for the next phase.

478 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

Fig. 6. Average rankings of IIVotes-based ensembles.

Fig. 7. Average rankings of bagging-based ensembles.

TABLE XII
HOLM TABLE FOR BEST BAGGING-BASED METHODS

Regarding IIVotes methods, we start the multiple compar-
isons by executing the Iman–Davenport test which returns a
p-value of 0.1208. Therefore, the hypothesis of equivalence is
not rejected. However, as Fig. 6 shows, the rankings obtained
by SPr are higher than the ones of the other two methods. Fol-
lowing these results, we will only take into account SPr in the
following phase.

Once we have reduced the number of Bagging-based algo-
rithms, we can develop the proper comparison among the re-
maining methods. The Iman–Davenport test executed for this
group of algorithms returns a p-value of 0.00172, which means
that there exist significant differences (in Fig. 7, we show the
average rankings).

Hence, we apply the Holm post-hoc procedure to com-
pare SBAG4 (the one with the best ranking) with the rest of
the Bagging-based methods. Observing the results shown in
Table XII, SBAG4 clearly outperforms the other methods (ex-
cept for UB4) with significant differences.

Regarding UB4, and given its similar behavior to SBAG4 with
respect to the rest, we will carry out a Wilcoxon test (Table XIII)
in order to check whether there are any significant differences
between them. From this test we conclude that, when both algo-
rithms are confronted one versus the other, they are equivalent.
On the contrary to the rankings computed among the group of
algorithms, the ranks in this case are nearly the same. This oc-
curs because SBAG4 has a good overall behavior among more
data-sets, whereas UB4 stands out more in some of them and
less in others. As a consequence, when they are put together
with other methods, UB4 ranking decreases, whereas SBAG4
excels in spite of UB4 mean test result is slightly higher than

TABLE XIII
WILCOXON TESTS TO SHOW DIFFERENCES BETWEEN SBAG4 AND UB4

TABLE XIV
WILCOXON TESTS FOR NONENSEMBLE METHODS

TABLE XV
REPRESENTATIVE METHODS SELECTED FOR EACH FAMILY

SBAG4. Knowing that both algorithms achieve similar perfor-
mances, we will use as representative SBAG4 because its overall
behavior when the comparison has included more methods has
been better.

5) Hybrid Ensembles: This last family only has two meth-
ods; hence, we execute Wilcoxon signed-rank test to find out
possible differences. Table XIV shows the result of the test,
both methods are quite similar, but EASY attains higher ranks.
This result is in accordance with previous studies [47], where
the advantage of BAL is its efficiency when dealing with large
data-sets without highly decreasing the performance with re-
spect to EASY. Following the same methodology as in previous
families, we will use EASY as representative.

C. Interfamily Comparison

We have selected a representative for every family, so now
we can proceed with the global study of the performance. First,
we recall the selected methods from the intrafamily comparison
in Table XV.

We have summarized the results for the test partitions of these
methods in Fig. 8 using the box plot as representation scheme.
Box plots proved a most valuable tool in data reporting, since
they allow the graphical representation of the performance of
the algorithms, indicating important features such as the median,
extreme values and spread of values about the median in the form
of quartiles. We can observe that the RUS1 box is compact,
as well as the SBAG4 box, both methods have similar results
(superior to the rest), but the RUS1 median value is better. On
the other hand, SMT seemsto be inferior to the other approaches
with the exception of M14, which variance is the highest.

Starting with the comparison itself, we use the Iman–
Davenport test to find out significant differences among these
methods. The rankings computed to carry out the test are de-
picted in Fig. 9. The p-value returned by the test is very low
(1.27E − 09); hence, there exist differences among some of

GALAR et al.: REVIEW ON ENSEMBLES FOR THE CLASS IMBALANCE PROBLEM 479

Fig. 8. Box-plot of AUC results of the families’ representatives.

Fig. 9. Average rankings of the representatives of each family.

TABLE XVI
HOLM TABLE FOR BEST INTERFAMILY ANALYSIS

TABLE XVII
WILCOXON TESTS TO SHOW DIFFERENCES BETWEEN SBAG4 AND RUS1

these algorithms and we continue with the Holm post-hoc test.
The results of this test are shown in Table XVI.

The Holm test brings out the dominance of SBAG4 and RUS1
over the rest of the methods. SBAG4 significantly outperforms
all algorithms except RUS1. We have two methods which behave
similarly with respect to the rest, SBAG4 and RUS1; therefore,
we will get them into a pairwise comparison via a Wilcoxon test.
In such a way, our aim is to obtain a better insight on the behav-
ior of this pair of methods (in Table XVII, we show the result).
The Wilcoxon test neither indicates the existence of statistical
differences; moreover, both algorithms are similar in terms of
ranks, SBAG4 has an advantage and hence, apparently a better
overall behavior, but we cannot support this fact with this test.
Therefore, SBAG4 is the winner of the hierarchical analysis in
terms of ranks, but it is closely followed by RUS1 and UB4

TABLE XVIII
SHAFFER TESTS FOR INTERFAMILY COMPARISON

(as we have shown in Section V-B4). However, despite SBAG4
wins in terms of ranks, since there does not exist any statisti-
cal difference, we may also pay attention to the computational
complexity of each algorithm in order to establish a preference.
In this sense, RUS1 undoubtedly stands out with respect to both
SBAG4 and UB4. RUS1 and UB4 classifiers’ building time is
lower than that of SBAG4’s classifiers; this is due to the un-
dersampling process they develop instead of the oversampling
that is carried out by SBAG4, in such a way, the classifiers are
trained with much less instances. Moreover, RUS1 only uses ten
classifiers against the 40 classifiers that are used by SBAG4 and
UB4, which apart from resulting in a less complex and more
comprehensible ensemble, needs four times less time than UB4
to be constructed.

To end and complete the statistical study, we carry out another
post-hoc test for the interfamily comparison in order to show the
relation between all representatives, that is, a n × n comparison.
To do so, we execute the Shaffer post-hoc test and we show the
results in Table XVIII. In this table, a “+” symbol implies that
the algorithm in the row is statistically better than the one in
the column, whereas “−” implies the contrary; “=” means that
the two algorithms that are compared have no significant differ-
ences. In brackets, the adjusted p-value that is associated with
each comparison is shown. In this table, we can also observe the
superiority of SBAG4 and RUS1 against the remaining algo-
rithms and besides, the similarity (almost equivalence) between
both approaches.

D. Discussion: Summary of the Results

In order to summarize the whole hierarchical analysis devel-
oped in this section, we include a scheme showing the global
analysis in Fig. 10. Each algorithm is represented by a gray tone
(color). For Wilcoxon tests, we show the ranks and the p-value
returned; for Iman–Davenport tests, we show the rankings and
whether the hypothesis has been rejected or not by the usage of
the Holm post-hoc test. This way, the evolution of the analysis
can be easily followed.

Summarizing the results of the hierarchical analysis, we point
out the main conclusions that we have extracted from the exper-
imental study afterwards:

1) The methods with the best (the most robust) behavior are
SMOTEBagging, RUSBoost, and UnderBagging. Among
them, in terms of ranks, SMOTEBagging stands out
obtaining slightly better results. Anyway, this triple of
algorithms outperforms statistically the others considered
in this study, but they are statistically equivalent; for this
reason, we should take the computational complexity into

480 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

Fig. 10. Global analysis scheme. A gray tone (color) represents each al-
gorithm. Rankings and p-values are shown for Wilcoxon tests whereas only
rankings and the hypothesis results are shown for Iman–Davenport and Holm
tests.

account, in such a manner, RUSBoost excels as the most
appropriate ensemble method (Item 5 extends this issue).

2) More complex methods does not perform better than sim-
pler ones. It must be pointed out that the performance
of two of the simplest approaches (RUSBoost and Un-
derBagging), with the usage of a random and easy-to-
develop strategy, achieve better results than many other
approaches. The positive synergy between random under-
sampling and ensemble techniques has stood out look-
ing at the experimental analysis. This sampling technique
eliminates different majority class examples in each iter-
ation; this way, the distribution of the class overlapping
differs in all data-sets, and this causes the diversity to
be boosted. In addition, in contrast with the mere use of
an undersampling process before learning a nonensemble
classifier, carrying it out in every iteration when construct-
ing the ensemble allows the consideration of most of the
important majority patterns that can be defined by con-

TABLE XIX
DETAILED TEST RESULTS TABLE OF NONENSEMBLE METHODS AND CLASSIC

ENSEMBLE ALGORITHMS

TABLE XX
DETAILED TEST RESULTS TABLE FOR COST-SENSITIVE BOOSTING,

BOOSTING-BASED, AND HYBRID ENSEMBLES

crete instances which using a unique classifier could be
lost.

3) Bagging techniques are not only easy to develop, but also
powerful when dealing with class imbalance if they are
properly combined. Their hybridization with data prepro-
cessing techniques has shown competitive results, the key

GALAR et al.: REVIEW ON ENSEMBLES FOR THE CLASS IMBALANCE PROBLEM 481

TABLE XX1
DETAILED TEST RESULTS TABLE FOR BAGGING-BASED ALGORITHMS

issue of these methods resides in properly exploiting the
diversity when each bootstrap replica is formed.

4) Clearly, the trade-off between complexity and perfor-
mance of ensemble learning algorithms adapted to han-
dle class imbalance is positive, since the results are sig-
nificantly improved. They are more appropriate than the
mere use of classic ensembles or data preprocessing tech-
niques. In addition, extending the results of the last part
of the experimental study, base classifier’s results are out-
performed.

5) Regarding the computational complexity, even though our
analysis is mainly devoted to algorithms’ performance,
we should highlight that RUSBoost is competing against
SMOTEBagging and UnderBagging with only ten classi-
fiers (since it achieves better performance with less classi-
fiers). The reader might also note that, RUSBoost’s classi-
fiers are much faster in building time, since less instances
are used to construct each classifier (due to the undersam-
pling process); besides, the ensemble is more comprehen-
sible, containing only ten smaller trees. On the other hand,
SMOTEBagging constructs larger trees (due to the over-
sampling mechanism). Likewise, UnderBagging is com-
putationally harder than RUSBoost, in spite of obtaining
comparable size trees, it uses four times more classifiers.

VI. CONCLUDING REMARKS

In this paper, the state of the art on ensemble methodologies
to deal with class imbalance problem has been reviewed. This
issue hinders the performance of standard classifier learning
algorithms that assume relatively balanced class distributions,

and classic ensemble learning algorithms are not an exception.
In recent years, several methodologies integrating solutions to
enhance the induced classifiers in the presence of class imbal-
ance by the usage of ensemble learning algorithms have been
presented. However, there was a lack of framework where each
one of them could be classified; for this reason, a taxonomy
where they can be placed has been presented. We divided these
methods into four families depending on their base ensemble
learning algorithm and the way in which they address the class
imbalance problem.

Once that the new taxonomy has been presented, thorough
study of the performance of these methods in a large number of
real-world imbalanced problems has been performed, and these
approaches with classic ensemble approaches and nonensemble
approaches have been compared. We have performed this study
developing a hierarchical analysis over the taxonomy proposed,
which was guided by nonparametric statistical tests.

Finally, we have concluded that ensemble-based algorithms
are worthwhile, improving the results that are obtained by the
usage of data preprocessing techniques and training a single
classifier. The use of more classifiers makes them more com-
plex, but this growth is justified by the better results that can
be assessed. We have to remark the good performance of ap-
proaches such as RUSBoost or UnderBagging, which despite be-
ing simple approaches, achieve higher performances than many
other more complex algorithms. Moreover, we have shown
the positive synergy between sampling techniques (e.g., un-
dersampling or SMOTE) and Bagging ensemble learning algo-
rithm. Particularly noteworthy is the performance of RUSBoost,
which is the computationally least complex among the best
performers.

482 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

APPENDIX

DETAILED RESULTS TABLE

In this appendix, we present the AUC test results for all the
algorithms in all data-sets. Table XIX shows the results for
nonensembles and classic ensembles. In Table XX we show
the test results for cost-sensitive boosting, boosting-based and
hybrid ensembles, whereas Table XXI shows the test results for
bagging-based ones. The results are shown in ascending order
of the IR. The last row in each table shows the average result of
each algorithm. We stress with bold-face the best results among
all algorithms in each data-set.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their valu-
able comments and suggestions that contributed to the improve-
ment of this work.

REFERENCES

[1] Y. Sun, A. C. Wong, and M. S. Kamel, “Classification of imbalanced data:
A review,” Int. J. Pattern Recogn., vol. 23, no. 4, pp. 687–719, 2009.

[2] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[3] N. V. Chawla, “Data mining for imbalanced datasets: An overview,” in
Data Mining and Knowledge Discovery Handbook, 2010, pp. 875–886.

[4] V. Garcı́a, R. Mollineda, and J. Sánchez, “On the k-nn performance in a
challenging scenario of imbalance and overlapping,” Pattern Anal. App.,
vol. 11, pp. 269–280, 2008.

[5] G. M. Weiss and F. Provost, “Learning when training data are costly: The
effect of class distribution on tree induction,” J. Artif. Intell. Res., vol. 19,
pp. 315–354, 2003.

[6] N. Japkowicz and S. Stephen, “The class imbalance problem: A systematic
study,” Intell. Data Anal., vol. 6, pp. 429–449, 2002.

[7] D. A. Cieslak and N. V. Chawla, “Start globally, optimize locally, predict
globally: Improving performance on imbalanced data,” in Proc. 8th IEEE
Int. Conf. Data Mining, 2009, pp. 143–152.

[8] Q. Yang and X. Wu, “10 challenging problems in data mining research,”
Int. J. Inf. Tech. Decis., vol. 5, no. 4, pp. 597–604, 2006.

[9] Z. Yang, W. Tang, A. Shintemirov, and Q. Wu, “Association rule mining-
based dissolved gas analysis for fault diagnosis of power transformers,”
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 39, no. 6, pp. 597–610,
2009.

[10] Z.-B. Zhu and Z.-H. Song, “Fault diagnosis based on imbalance modified
kernel fisher discriminant analysis,” Chem. Eng. Res. Des., vol. 88, no. 8,
pp. 936–951, 2010.

[11] W. Khreich, E. Granger, A. Miri, and R. Sabourin, “Iterative boolean
combination of classifiers in the roc space: An application to anomaly
detection with hmms,” Pattern Recogn., vol. 43, no. 8, pp. 2732–2752,
2010.

[12] M. Tavallaee, N. Stakhanova, and A. Ghorbani, “Toward credible eval-
uation of anomaly-based intrusion-detection methods,” IEEE Trans.
Syst., Man, Cybern. C, Appl. Rev, vol. 40, no. 5, pp. 516–524,
Sep. 2010.

[13] M. A. Mazurowski, P. A. Habas, J. M. Zurada, J. Y. Lo, J. A. Baker,
and G. D. Tourassi, “Training neural network classifiers for medical deci-
sion making: The effects of imbalanced datasets on classification perfor-
mance,” Neural Netw., vol. 21, no. 2–3, pp. 427–436, 2008.

[14] P. Bermejo, J. A. Gámez, and J. M. Puerta, “Improving the performance of
naive bayes multinomial in e-mail foldering by introducing distribution-
based balance of datasets,” Expert Syst. Appl., vol. 38, no. 3, pp. 2072–
2080, 2011.

[15] Y.-H. Liu and Y.-T. Chen, “Total margin-based adaptive fuzzy support
vector machines for multiview face recognition,” in Proc. IEEE Int. Conf.
Syst., Man Cybern., 2005, vol. 2, pp. 1704–1711.

[16] M. Kubat, R. C. Holte, and S. Matwin, “Machine learning for the detection
of oil spills in satellite radar images,” Mach. Learn., vol. 30, pp. 195–215,
1998.

[17] J. R. Quinlan, “Improved estimates for the accuracy of small disjuncts,”
Mach. Learn., vol. 6, pp. 93–98, 1991.

[18] B. Zadrozny and C. Elkan, “Learning and making decisions when costs
and probabilities are both unknown,” in Proc. 7th ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, New York, 2001, pp. 204–213.

[19] G. Wu and E. Chang, “KBA: kernel boundary alignment considering
imbalanced data distribution,” IEEE Trans. Knowl. Data Eng., vol. 17,
no. 6, pp. 786–795, Jun. 2005.

[20] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, “A study of the
behavior of several methods for balancing machine learning training data,”
SIGKDD Expl. Newslett., vol. 6, pp. 20–29, 2004.

[21] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16,
pp. 321–357, 2002.

[22] N. V. Chawla, N. Japkowicz, and A. Kolcz, Eds., Special Issue Learning
Imbalanced Datasets, SIGKDD Explor. Newsl., vol. 6, no. 1, 2004.

[23] N. Chawla, D. Cieslak, L. Hall, and A. Joshi, “Automatically countering
imbalance and its empirical relationship to cost,” Data Min. Knowl.
Discov., vol. 17, pp. 225–252, 2008.

[24] A. Freitas, A. Costa-Pereira, and P. Brazdil, “Cost-sensitive decision trees
applied to medical data,” in Data Warehousing Knowl. Discov. (Lecture
Notes Series in Computer Science), I. Song, J. Eder, and T. Nguyen, Eds.,
Berlin/Heidelberg, Germany: Springer, 2007, vol. 4654, pp. 303–312.

[25] R. Polikar, “Ensemble based systems in decision making,” IEEE Circuits
Syst. Mag., vol. 6, no. 3, pp. 21–45, 2006.

[26] L. Rokach, “Ensemble-based classifiers,” Artif. Intell. Rev., vol. 33, pp. 1–
39, 2010.

[27] N. C. Oza and K. Tumer, “Classifier ensembles: Select real-world appli-
cations,” Inf. Fusion, vol. 9, no. 1, pp. 4–20, 2008.

[28] C. Silva, U. Lotric, B. Ribeiro, and A. Dobnikar, “Distributed text clas-
sification with an ensemble kernel-based learning approach,” IEEE
Trans. Syst., Man, Cybern. C, vol. 40, no. 3, pp. 287–297, May.
2010.

[29] Y. Yang and K. Chen, “Time series clustering via RPCL network ensemble
with different representations,” IEEE Trans. Syst., Man, Cybern. C, Appl.
Rev., vol. 41, no. 2, pp. 190–199, Mar. 2011.

[30] Y. Xu, X. Cao, and H. Qiao, “An efficient tree classifier ensemble-based
approach for pedestrian detection,” IEEE Trans. Syst., Man, Cybern. B,
Cybern, vol. 41, no. 1, pp. 107–117, Feb. 2011.

[31] T. K. Ho, J. J. Hull, and S. N. Srihari, “Decision combination in multiple
classifier systems,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 1,
pp. 66–75, Jan. 1994.

[32] T. K. Ho, “Multiple classifier combination: Lessons and next steps,”
in Hybrid Methods in Pattern Recognition, Kandel and Bunke, Eds.
Singapore: World Scientific, 2002, pp. 171–198.

[33] N. Ueda and R. Nakano, “Generalization error of ensemble estimators,”
in Proc. IEEE Int. Conf. Neural Netw., 1996, vol. 1, pp. 90–95.

[34] A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation,
and active learning,” in Proc. Adv. Neural Inf. Process. Syst., 1995, vol. 7,
pp. 231–238.

[35] G. Brown, J. Wyatt, R. Harris, and X. Yao, “Diversity creation methods:
A survey and categorization,” Inf. Fusion, vol. 6, no. 1, pp. 5–20, 2005
(diversity in multiple classifier systems).

[36] K. Tumer and J. Ghosh, “Error correlation and error reduction in ensemble
classifiers,” Connect. Sci., vol. 8, no. 3–4, pp. 385–404, 1996.

[37] X. Hu, “Using rough sets theory and database operations to construct a
good ensemble of classifiers for data mining applications,” in Proc. IEEE
Int. Conf. Data Mining, 2001, pp. 233–240.

[38] L. I. Kuncheva, “Diversity in multiple classifier systems,” Inf. Fusion,
vol. 6, no. 1, pp. 3–4, 2005 (diversity in multiple classifier systems).

[39] L. Rokach, “Taxonomy for characterizing ensemble methods in classifi-
cation tasks: A review and annotated bibliography,” Comput. Stat. Data
An., vol. 53, no. 12, pp. 4046–4072, 2009.

[40] R. E. Schapire, “The strength of weak learnability,” Mach. Learn., vol. 5,
pp. 197–227, 1990.

[41] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, 1997.

[42] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, pp. 123–140,
1996.

[43] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms.
New York: Wiley-Interscience, 2004.

[44] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “SMOTEBoost:
Improving prediction of the minority class in boosting,” in Proc. Knowl.
Discov. Databases, 2003, pp. 107–119.

GALAR et al.: REVIEW ON ENSEMBLES FOR THE CLASS IMBALANCE PROBLEM 483

[45] C. Seiffert, T. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “Rusboost:
A hybrid approach to alleviating class imbalance,” IEEE Trans. Syst.,
Man, Cybern. A, Syst., Humans, vol. 40, no. 1, pp. 185–197, Jan. 2010.

[46] J. Błaszczyński, M. Deckert, J. Stefanowski, and S. Wilk, “Integrating se-
lective pre-processing of imbalanced data with ivotes ensemble,” in Rough
Sets and Current Trends in Computing (Lecture Notes in Computer Sci-
ence Series 6086), M. Szczuka, M. Kryszkiewicz, S. Ramanna, R. Jensen,
and Q. Hu, Eds. Berlin/Heidelberg, Germany: Springer-Verlag, 2010,
pp. 148–157.

[47] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for class-
imbalance learning,” IEEE Trans. Syst., Man, Cybern. B, Appl. Rev,
vol. 39, no. 2, pp. 539–550, 2009.

[48] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan, “Adacost: Misclassification
cost-sensitive boosting,” presented at the 6th Int. Conf. Mach. Learning,
pp. 97–105, San Francisco, CA, 1999.

[49] K. M. Ting, “A comparative study of cost-sensitive boosting algorithms,”
in Proc. 17th Int. Conf. Mach. Learning, Stanford, CA, 2000, pp. 983–990.

[50] Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, “Cost-sensitive boosting
for classification of imbalanced data,” Pattern Recog., vol. 40, no. 12,
pp. 3358–3378, 2007.

[51] A. Estabrooks, T. Jo, and N. Japkowicz, “A multiple resampling method
for learning from imbalanced data sets,” Comput. Intell., vol. 20, no. 1,
pp. 18–36, 2004.

[52] J. Stefanowski and S. Wilk, “Selective pre-processing of imbalanced
data for improving classification performance,” in Data Warehousing and
Knowledge Discovery (Lecture Notes in Computer Science Series 5182),
I.-Y. Song, J. Eder, and T. Nguyen, Eds., 2008, pp. 283–292.

[53] A. Fernández, S. Garcı́a, M. J. del Jesus, and F. Herrera, “A study of
the behaviour of linguistic fuzzy-rule-based classification systems in the
framework of imbalanced data-sets,” Fuzzy Sets Syst., vol. 159, no. 18,
pp. 2378–2398, 2008.

[54] A. Orriols-Puig and E. Bernadó-Mansilla, “Evolutionary rule-based sys-
tems for imbalanced data sets,” Soft Comp., vol. 13, pp. 213–225, 2009.

[55] S. Wang and X. Yao, “Diversity analysis on imbalanced data sets by using
ensemble models,” in IEEE Symp. Comput. Intell. Data Mining, 2009,
pp. 324–331.

[56] J. Alcalá-Fdez, L. Sánchez, S. Garcı́a, M. J. del Jesus, S. Ventura, J.
M. Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas, J. Fernández,
and F. Herrera, “KEEL: A software tool to assess evolutionary algorithms
for data mining problems,” Soft Comp., vol. 13, no. 3, pp. 307–318, 2008.

[57] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. Garcı́a, L. Sánchez,
and F. Herrera, “KEEL data-mining software tool: Data set repository,
integration of algorithms and experimental analysis framework,” J. Mult.-
Valued Logic Soft Comput., vol. 17, no. 2–3, pp. 255–287, 2011.

[58] J. R. Quinlan, C4.5: Programs for Machine Learning, 1st ed. San Mateo,
CA: Morgan Kaufmann Publishers, 1993.

[59] C.-T. Su and Y.-H. Hsiao, “An evaluation of the robustness of MTS for im-
balanced data,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 10, pp. 1321–
1332, Oct. 2007.

[60] D. Drown, T. Khoshgoftaar, and N. Seliya, “Evolutionary sampling and
software quality modeling of high-assurance systems,” IEEE Trans.
Syst., Man, Cybern. A, Syst., Humans., vol. 39, no. 5, pp. 1097–1107,
Sep. 2009.

[61] S. Garcı́a, A. Fernández, and F. Herrera, “Enhancing the effectiveness
and interpretability of decision tree and rule induction classifiers with
evolutionary training set selection over imbalanced problems,” Appl. Soft
Comput., vol. 9, no. 4, pp. 1304–1314, 2009.

[62] J. Van Hulse, T. Khoshgoftaar, and A. Napolitano, “An empirical com-
parison of repetitive undersampling techniques,” in Proc. IEEE Int. Conf.
Inf. Reuse Integr., 2009, pp. 29–34.

[63] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1–30, 2006.

[64] S. Garcı́a and F. Herrera, “An extension on “statistical comparisons of
classifiers over multiple data sets for all pairwise comparisons,” J. Mach.
Learn. Res., vol. 9, pp. 2677–2694, 2008.

[65] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera, “Advanced non-
parametric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: Experimental analysis of
power,” Inf. Sci., vol. 180, pp. 2044–2064, 2010.

[66] A. P. Bradley, “The use of the area under the ROC curve in the evaluation
of machine learning algorithms,” Pattern Recog., vol. 30, no. 7, pp. 1145–
1159, 1997.

[67] J. Huang and C. X. Ling, “Using AUC and accuracy in evaluating learning
algorithms,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 3, pp. 299–310,
Mar. 2005.

[68] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
New York: Wiley, 2001.

[69] D. Williams, V. Myers, and M. Silvious, “Mine classification with imbal-
anced data,” IEEE Geosci. Remote Sens. Lett., vol. 6, no. 3, pp. 528–532,
Jul. 2009.

[70] W.-Z. Lu and D. Wang, “Ground-level ozone prediction by support vector
machine approach with a cost-sensitive classification scheme,” Sci. Total.
Enviro., vol. 395, no. 2-3, pp. 109–116, 2008.

[71] Y.-M. Huang, C.-M. Hung, and H. C. Jiau, “Evaluation of neural networks
and data mining methods on a credit assessment task for class imbalance
problem,” Nonlinear Anal. R. World Appl., vol. 7, no. 4, pp. 720–747,
2006.

[72] D. Cieslak, N. Chawla, and A. Striegel, “Combating imbalance in network
intrusion datasets,” in IEEE Int. Conf. Granular Comput., 2006, pp. 732–
737.

[73] K. Kiliç, Özge Uncu and I. B. Türksen, “Comparison of different strategies
of utilizing fuzzy clustering in structure identification,” Inf. Sci., vol. 177,
no. 23, pp. 5153–5162, 2007.

[74] M. E. Celebi, H. A. Kingravi, B. Uddin, H. Iyatomi, Y. A. Aslandogan,
W. V. Stoecker, and R. H. Moss, “A methodological approach to the
classification of dermoscopy images,” Comput. Med. Imag. Grap., vol. 31,
no. 6, pp. 362–373, 2007.

[75] X. Peng and I. King, “Robust BMPM training based on second-order cone
programming and its application in medical diagnosis,” Neural Netw.,
vol. 21, no. 2–3, pp. 450–457, 2008.

[76] B. Liu, Y. Ma, and C. Wong, “Improving an association rule based clas-
sifier,” in Principles of Data Mining and Knowledge Discovery (Lecture
Notes in Computer Science Series 1910), D. Zighed, J. Komorowski, and
J. Zytkow, Eds., 2000, pp. 293–317.

[77] Y. Lin, Y. Lee, and G. Wahba, “Support vector machines for classification
in nonstandard situations,” Mach. Learn., vol. 46, pp. 191–202, 2002.

[78] R. Barandela, J. S. Sánchez, V. Garcı́a, and E. Rangel, “Strategies for
learning in class imbalance problems,” Pattern Recog., vol. 36, no. 3,
pp. 849–851, 2003.

[79] K. Napierała, J. Stefanowski, and S. Wilk, “Learning from Imbalanced
data in presence of noisy and borderline examples,” in Rough Sets Curr.
Trends Comput., 2010, pp. 158–167.

[80] C. Ling, V. Sheng, and Q. Yang, “Test strategies for cost-sensitive decision
trees,” IEEE Trans. Knowl. Data Eng., vol. 18, no. 8, pp. 1055–1067, 2006.

[81] S. Zhang, L. Liu, X. Zhu, and C. Zhang, “A strategy for attributes selection
in cost-sensitive decision trees induction,” in Proc. IEEE 8th Int. Conf.
Comput. Inf. Technol. Workshops, 2008, pp. 8–13.

[82] S. Hu, Y. Liang, L. Ma, and Y. He, “MSMOTE: Improving classifica-
tion performance when training data is imbalanced,” in Proc. 2nd Int.
Workshop Comput. Sci. Eng., 2009, vol. 2, pp. 13–17.

[83] J. Kittler, M. Hatef, R. Duin, and J. Matas, “On combining classifiers,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3, pp. 226–239, Mar.
1998.

[84] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the
bias/variance dilemma,” Neural Comput., vol. 4, pp. 1–58, 1992.

[85] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a
statistical view of boosting,” Ann. Statist., vol. 28, pp. 337–407, 1998.

[86] E. B. Kong and T. G. Dietterich, “Error-correcting output coding corrects
bias and variance,” in Proc. 12th Int. Conf. Mach. Learning, 1995, pp. 313–
321.

[87] R. Kohavi and D. H. Wolpert, “Bias plus variance decomposition for
zero-one loss functions,” in Proc. 13th Int. Conf. Mach. Learning, 1996.

[88] L. Breiman, “Bias, variance, and arcing classifiers,” University of Cali-
fornia, Berkeley, CA, Tech. Rep. 460, 1996.

[89] R. Tibshirani, “Bias, variance and prediction error for classification rules,”
University of Toronto, Toronto, Canada, Dept. of Statistic, Tech. Rep.
9602, 1996.

[90] J. H. Friedman, “On bias, variance, 0/1-loss, and the curse-of-
dimensionality,” Data Min. Knowl. Disc, vol. 1, pp. 55–77, 1997.

[91] G. M. James, “Variance and bias for general loss functions,” Mach.
Learning, vol. 51, pp. 115–135, 2003.

[92] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy,” Mach.
Learning, vol. 51, pp. 181–207, 2003.

[93] L. Breiman, “Pasting small votes for classification in large databases and
on-line,” Mach. Learn., vol. 36, pp. 85–103, 1999.

[94] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.
J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D.
J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl.
Inf. Syst., vol. 14, pp. 1–37, 2007.

484 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

[95] C. Rudin, I. Daubechies, and R. E. Schapire, “The dynamics of AdaBoost:
Cyclic behavior and convergence of margins,” J. Mach. Learn. Res., vol. 5,
pp. 1557–1595, 2004.

[96] R. E. Schapire and Y. Singer, “Improved boosting algorithms using
confidence-rated predictions,” Mach. Learn., vol. 37, pp. 297–336, 1999.

[97] M. Joshi, V. Kumar, and R. Agarwal, “Evaluating boosting algorithms to
classify rare classes: Comparison and improvements,” in Proc. IEEE Int.
Conf. Data Mining, 2001, pp. 257–264.

[98] H. Guo and H. L. Viktor, “Learning from imbalanced data sets with
boosting and data generation: The DataBoost-IM approach,” SIGKDD
Expl. Newsl., vol. 6, pp. 30–39, 2004.

[99] R. Barandela, R. M. Valdovinos, and J. S. Sánchez, “New applications of
ensembles of classifiers,” Pattern Anal. App., vol. 6, pp. 245–256, 2003.

[100] E. Chang, B. Li, G. Wu, and K. Goh, “Statistical learning for effective
visual information retrieval,” in Proc. Int. Conf. Image Process., 2003,
vol. 3, no. 2, pp. 609–612.

[101] D. Tao, X. Tang, X. Li, and X. Wu, “Asymmetric bagging and random
subspace for support vector machines-based relevance feedback in im-
age retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 7,
pp. 1088–1099, Jul. 2006.

[102] S. Hido, H. Kashima, and Y. Takahashi, “Roughly balanced bagging for
imbalanced data,” Stat. Anal. Data Min., vol. 2, pp. 412–426, 2009.

[103] P. K. Chan and S. J. Stolfo, “Toward scalable learning with non-uniform
class and cost distributions: A case study in credit card fraud detection,”
in Proc. 4th Int. Conf. Knowl. Discov. Data Mining (KDD-98), 1998,
pp. 164–168.

[104] R. Yan, Y. Liu, R. Jin, and A. Hauptmann, “On predicting rare classes
with SVM ensembles in scene classification,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 2003, vol. 3, pp. 21–24.

[105] C. Li, “Classifying imbalanced data using a bagging ensemble variation
(BEV),” in Proc. 45th Annual Southeast Regional Conference (Associa-
tion of Computing Machinery South East Series 45). New York: ACM,
2007, pp. 203–208.

[106] D. A. Cieslak and N. V. Chawla, “Learning decision trees for unbalanced
data,” in Machine Learning and Knowledge Discovery in Databases (Lec-
ture Notes in Computer Science Series 5211), W. Daelemans, B. Goethals,
and K. Morik, Eds., 2008, pp. 241–256.

[107] F. Provost and P. Domingos, “Tree induction for probability-based rank-
ing,” Mach. Learn., vol. 52, pp. 199–215, 2003.

[108] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera, “A study of statis-
tical techniques and performance measures for genetics-based machine
learning: Accuracy and interpretability,” Soft Comp., vol. 13, no. 10,
pp. 959–977, 2009.

[109] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bull., vol. 1, no. 6, pp. 80–83, 1945.

[110] D. Sheskin, Handbook of Parametric and Nonparametric Statistical Pro-
cedures, 2nd ed. London, U.K.: Chapman & Hall/CRC, 2006.

[111] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scand. J. Stat., vol. 6, pp. 65–70, 1979.

[112] J. P. Shaffer, “Modified sequentially rejective multiple test procedures,”
J. Am. Stat. Assoc., vol. 81, no. 395, pp. 826–831, 1986.

Mikel Galar received the M.Sc. degree in computer
sciences from the Public University of Navarra, Pam-
plona, Spain, in 2009. He is working toward the Ph.D.
degree with the department of Automatics and Com-
putation, Universidad Pública de Navarra, Navarra,
Spain.

He is currently a Teaching Assistant in the De-
partment of Automatics and Computation. His re-
search interests include data-minig, classification,
multi-classification, ensemble learning, evolutionary
algorithms and fuzzy systems.

Alberto Fernández received the M.Sc. and Ph.D.
degrees in computer science in 2005 and 2010, both
from the University of Granada, Granada, Spain.

He is currently an Assistant Professor in the De-
partment of Computer Science, University of Jaén,
Jaén, Spain. His research interests include data min-
ing, classification in imbalanced domains, fuzzy
rule learning, evolutionary algorithms and multi-
classification problems.

Edurne Barrenechea received the M.Sc. degree in
computer science at the Pais Vasco University, San
Sebastian, Spain, in 1990. She obtained the Ph.D.
degree in computer science from Public Univer-
sity of Navarra, Navarra, Spain, in 2005, on the
topic interval-valued fuzzy sets applied to image
processing.

She an Assistant Lecturer at the Department of
Automatics and Computation, Public University of
Navarra. She worked in a private company (Bombas
Itur) as an Analyst Programmer from 1990 to 2001,

and then she joined the Public University of Navarra as an Associate Lec-
turer. Her publications comprise more than 20 papers in international journals
and about 15 book chapters. Her research interests include fuzzy techniques
for image processing, fuzzy sets theory, interval type-2 fuzzy sets theory and
applications, decision making, and medical and industrial applications of soft
computing techniques.

Dr. Barrenechea is a Member of the board of the European Society for Fuzzy
Logic and Technology.

Humberto Bustince (M’08) received the Ph.D.
degree in mathematics from Public University of
Navarra, Navarra, Spain, in 1994.

He is a Full Professor at the Department of
Automatics and Computation, Public University of
Navarra. His research interests include fuzzy logic
theory, extensions of fuzzy sets (type-2 fuzzy sets,
interval-valued fuzzy sets, Atanassov’s intuitionistic
fuzzy sets), fuzzy measures, aggregation functions
and fuzzy techniques for Image processing. He is au-
thor of more than 65 published original articles and

involved in teaching artificial intelligence for students of computer sciences.

Francisco Herrera received the M.Sc. degree in
mathematics, in 1988, and the Ph.D. degree in mathe-
matics in 1991, both from the University of Granada,
Granada, Spain.

He is currently a Professor with the Department
of Computer Science and Artificial Intelligence at the
University of Granada. He acts as an Associate Edi-
tor of the journals: IEEE TRANSACTIONS ON FUZZY

SYSTEMS, Information Sciences, Mathware and Soft
Computing, Advances in Fuzzy Systems, Advances in
Computational Sciences and Technology, and Inter-

national Journal of Applied Metaheuristics Computing. He currently serves as
an Area Editor of the Journal Soft Computing (area of genetic algorithms and
genetic fuzzy systems), and he serves as member of several journal editorial
boards, among others: Fuzzy Sets and Systems, Applied Intelligence, Knowl-
edge and Information Systems, Information Fusion, Evolutionary Intelligence,
International Journal of Hybrid Intelligent Systems, Memetic Computation. He
has published more than 150 papers in international journals. He is the coauthor
of the book “Genetic Fuzzy Systems: Evolutionary Tuning and Learning of
Fuzzy Knowledge Bases” (World Scientific, 2001). As edited activities, he has
co-edited five international books and co-edited 20 special issues in international
journals on different Soft Computing topics. His current research interests in-
clude computing with words and decision making, data mining, data preparation,
instance selection, fuzzy-rule-based systems, genetic fuzzy systems, knowledge
extraction based on evolutionary algorithms, memetic algorithms, and genetic
algorithms.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

