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Abstract In real-life data, information is frequently lost in data mining, caused by the
presence of missing values in attributes. Several schemes have been studied to overcome the
drawbacks produced by missing values in data mining tasks; one of the most well known
is based on preprocessing, formerly known as imputation. In this work, we focus on a clas-
sification task with twenty-three classification methods and fourteen different imputation
approaches to missing values treatment that are presented and analyzed. The analysis involves
a group-based approach, in which we distinguish between three different categories of classi-
fication methods. Each category behaves differently, and the evidence obtained shows that the
use of determined missing values imputation methods could improve the accuracy obtained
for these methods. In this study, the convenience of using imputation methods for prepro-
cessing data sets with missing values is stated. The analysis suggests that the use of particular
imputation methods conditioned to the groups is required.

Keywords Approximate models · Classification · Imputation · Rule induction learning ·
Lazy learning · Missing values · Single imputation

1 Introduction

Many existing, industrial, and research data sets contain missing values (MVs). There are var-
ious reasons for their existence, such as manual data entry procedures, equipment errors, and
incorrect measurements. The presence of such imperfections usually requires a preprocessing
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stage in which the data are prepared and cleaned [48], in order to be useful to and sufficiently
clear for the knowledge extraction process. The simplest way of dealing with MVs is to
discard the examples that contain them. However, this method is practical only when the data
contain a relatively small number of examples with MVs and when analysis of the complete
examples will not lead to serious bias during the inference [34].

MVs make the performance of data analysis difficult. The presence of MVs can also pose
serious problems for researchers. In fact, inappropriate handling of the MVs in the analysis
may introduce bias and can result in misleading conclusions being drawn from a research
study and can also limit the generalizability of the research findings [60]. The following three
types of problem are usually associated with MVs in data mining [5]: (1) loss of efficiency;
(2) complications in handling and analyzing the data; and (3) bias resulting from differences
between missing and complete data.

In the particular case of classification, learning from incomplete data becomes even more
important. Incomplete data in either the training set or test set or in both sets affect the predic-
tion accuracy of learned classifiers [25]. The seriousness of this problem depends in part on
the proportion of MVs. Most classification algorithms cannot work directly with incomplete
data sets, and due to the high dimensionality of real problems (i.e. large number of cases), it
is possible that no valid (complete) cases would be present in the data set [23]. Therefore, it is
important to analyze which is the best technique or preprocessing considered in order to treat
the present MVs before applying the classification methods as no other option is possible.

Usually, the treatment of MVs in data mining can be handled in three different ways [18]:

• The first approach is to discard the examples with MVs in their attributes. Therefore,
deleting attributes with elevated levels of MVs is included in this category too.

• Another approach is the use of maximum likelihood procedures, where the parameters
of a model for the complete data are estimated, and later used for imputation by means
of sampling.

• Finally, the imputation of MVs is a class of procedures that aims to fill in the MVs with
estimated ones. In most cases, a data set’s attributes are not independent of each other.
Thus, through the identification of relationships among attributes, MVs can be determined

We will focus our attention on the use of imputation methods. A fundamental advantage of
this approach is that the MV treatment is independent of the learning algorithm used. For this
reason, the user can select the most appropriate method for each situation he faces. There is a
wide family of imputation methods, from simple imputation techniques like mean substitu-
tion, K-nearest neighbor, etc. to those which analyze the relationships between attributes such
as support vector machine-based, clustering-based, logistic regressions, maximum-likelihood
procedures, and multiple imputation [6,19].

The literature on imputation methods in data mining employs well-known machine learn-
ing methods for their studies, in which the authors show the convenience of imputing the
MVs for the mentioned algorithms, particularly for classification. The vast majority of MVs
studies in classification usually analyze and compare one imputation method against a few
others under controlled amounts of MVs and induce them artificially with known mechanisms
and probability distributions [1,6,19,28,33].

We want to analyze the effect of the use of a large set of imputation methods on all
the considered classifiers. Most of the considered classification methods have been used
previously in MVs studies. However, they have been considered all together. In this work,
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we will establish three groups of classifiers to categorize them, and we will examine the best
imputation strategies for each group. The former groups are as follows:

• The first group consists of the rule induction learning category. This group refers to
algorithms that infer rules using different strategies. Therefore, we can identify as belong-
ing to this category those methods that produce a set of more or less interpretable rules.
These rules include discrete and/or continuous features, which will be treated by each
method depending on their definition and representation. This type of classification meth-
ods has been the most used in case of imperfect data [49].

• The second group represents the approximate models. It includes artificial neural net-
works, support vector machines, and statistical learning. In this group, we include the
methods that act like a black box. Therefore, those methods that do not produce an
interpretable model fall under this category. Although the Naïve Bayes method is not
a completely black box method, we have considered that this is the most appropriate
category for it.

• The third and last group corresponds to the lazy learning category. This group includes
methods that do not create any model, but use the training data to perform the classifica-
tion directly. This process implies the presence of measures of similarity of some kind.
Thus, the methods that use a similarity function to relate the inputs to the training set are
considered as belonging to this category.

In order to perform the analysis, we use a large bunch of data sets, twenty-one in total.
All the data sets have their proper MVs, and we do not induce them, as we want to stay as
close to the real-world data as possible. First, we analyze the use of the different imputation
strategies versus case deletion and the total lack of MVs treatment, for a total of fourteen
imputation methods, for each data set. All the imputation and classification algorithms are
publicly available in the KEEL software1 [2]. These results are compared using the Wilcoxon
Signed Rank test [13,24] in order to obtain the best method(s) for each classifier. With this
information, we can extract the best imputation method for the three groups and indicate the
best global option using a set of average rankings.

We have also analyzed two metrics related to the data characteristics, formerly known as
Wilson’s noise ratio and mutual information. Using these measures, we have observed the
influence of the imputation procedures on the noise and on the relationship of the attributes
with the class label as well. This procedure tries to quantify the quality of each imputation
method independently of the classification algorithm and to observe the theoretical advanta-
ges of the imputation methods a priori.

The obtained results will help us to explain how imputation may be a useful tool to over-
come the negative impact of MVs and the most suitable imputation method for each classifier,
each group and all the classification methods together.

The rest of the paper is organized as follows. In Sect. 2, we present the basis of the applica-
tion of the imputation methods, the description of the imputation methods we have used, and
a brief review of the current state of the art in imputation methods. In Sect. 3, the experimen-
tal framework, the classification methods, and the parameters used for both imputation and
classification methods are presented. In Sect. 4, the results obtained are analyzed. In Sect. 5,
we use two measures to quantify the influence of the imputation methods in the data sets, both
in the instances and in the features. Finally, in Sect. 6, we make some concluding remarks.

1 http://keel.es.
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2 Imputation background

In this section, we first set the basis of our study in accordance with the MV literature. The
rest of this section is organized as follows: In Sect. 2.1, we show a brief snapshot of the latest
advances in imputation methods for classification, and in Sect. 2.2, we have summarized the
imputation methods that we have used in our study.

A more extensive and detailed description of these methods can be found on the web page
http://sci2s.ugr.es/MVDM, and a PDF file with the original source paper descriptions is pres-
ent on the web page formerly named “Imputation of Missing Values. Methods’ Description”.
A more complete bibliography section is also available on the mentioned web page.

It is important to categorize the mechanisms, which lead to the introduction of MVs [34].
The assumptions we make about the missingness mechanism and the MVs pattern of MVs
can affect which imputation method could be applied, if any. As Little and Rubin (1987)
stated, there are three different mechanisms for MVs induction.

1. Missing completely at random (MCAR), when the distribution of an example having a
missing value for an attribute does not depend on either the observed data or the MVs.

2. Missing at random (MAR), when the distribution of an example having a missing value
for an attribute depends on the observed data, but does not depend on the MVs.

3. Not missing at random (NMAR), when the distribution of an example having a missing
value for an attribute depends on the MVs.

In case of the MCAR mode, the assumption is that the underlying distributions of missing
and complete data are the same, while for the MAR mode they are different, and the MVs
can be predicted using the complete data [34]. These two mechanisms are assumed by the
imputation methods so far. As Farhangfar et al. [19] and Matsubara et al. [36] state, it is only
in the MCAR mechanism case where the analysis of the remaining complete data (ignor-
ing the incomplete data) could give a valid inference (classification in our case) due to the
assumption of equal distributions. That is, case and attribute removal with MVs should be
applied only if the MVs are MCAR, as both of the other mechanisms could potentially lead
to information loss that would lead to the generation of a biased/incorrect classifier (i.e., a
classifier based on a different distribution).

Another approach is to convert the MVs to a new value (encode them into a new numerical
value), but such a simplistic method was shown to lead to serious inference problems [54].
On the other hand, if a significant number of examples contain MVs for a relatively small
number of attributes, it may be beneficial to perform imputation (filling-in) of the MVs.
In order to do so, the assumption of MAR randomness is needed, as Little and Rubin [34]
observed in their analysis.

In our case, we will use single imputation methods, due to the large time requirements
of the multiple imputation schemes, and the assumptions they make regarding data distribu-
tion and MV randomness, that is, that we should know the underlying distributions of the
complete data and MVs prior to their application. In addition to this, Gheyas and Smith [25]
indicate that the single imputation methods are able to show better prediction capabilities than
multiple imputation ones for a wide range of data sets due to the lower overfitting responses
of the former ones.

2.1 An overview of the analysis of imputation methods in the literature for classification

The use of imputation methods for MVs is a task with a well-established background. It is
possible to track the first formal studies to several decades ago. The work of Little and Rubin
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[34] laid the foundation of further works in this topic, specially in statistics, as we have seen
in the introduction to this section. From their work, imputation techniques based on sampling
from estimated data distributions followed, distinguishing between single imputation proce-
dures (like Expectation-Maximization procedures [53]) and multiple imputation ones [54],
being the latter more reliable and powerful but more difficult and restrictive to be applied.

These imputation procedures became very popular for quantitative data, and therefore,
they were easily adopted in other fields of knowledge, like bioinformatics [29,42,57], cli-
matic science [55], medicine [59], etc. The imputation methods proposed in each field are
adapted to the common characteristics of the data analyzed in it. With the popularization of
the data mining field, many studies in the treatment of MVs arose in this topic, particularly in
the classification task. Some of the existent imputation procedures of other fields are adapted
to be used in classification, for example adapting them to treat with qualitative data, while
many specific approaches are proposed.

In this sense, we can refer to the initial comparisons of [27] who compare the performance
of the LERS classification method with the application of nine different methods for MVs: the
C4.5 probability-based mechanism, the mean/mode substitution (MC, CMC), LEM2 based,
Eventcovering (EC), and assigning all possible values. Their results state that the use of these
imputation methods shows that, on average, imputation helps to improve classification accu-
racy, and the best imputation for LERS was achieved with the C4.5 internal “imputation”
method. Batista and Monard [6] tested the classification accuracy of two popular classifiers
(C4.5 and CN2) considering the proposal of K-NN as an imputation (KNNI) method and
MC. Both CN2 and C4.5 (like [27]) algorithms have their own MV estimation. From their
study, KNNI results in good accuracy, but only when the attributes are not highly correlated
with each other. Related to this work, Acuna and Rodriguez [1] have investigated the effect
of four methods that deal with MVs. As in [6], they use KNNI and two other imputation
methods (MC and median imputation). They also use the K-NN and Linear Discriminant
Analysis classifiers. The results of their study show that no significant harmful effect in
accuracy is obtained from the imputation procedure. In addition to this, they state that the
KNNI method is more robust in the increment in MVs in the data set in respect of the other
compared methods.

The idea of using machine learning or soft computing techniques as imputation methods
spreads from this point on. Li et al. [33] use a fuzzy clustering method: the Fuzzy K-means
(FKMI). They compare the FKMI with mean substitution and KMI (K-means imputation).
Using a Root Mean Square Error error analysis, they state that the basic KMI algorithm out-
performs the MC method. Experiments also show that the overall performance of the FKMI
method is better than that of the basic KMI method, particularly when the percentage of MVs
is high. Feng et al. [21] use an SVM for filling in MVs (SVMI) but they do not compare this
with any other imputation methods. Furthermore, they state that we should select enough
complete examples where there is no MVs as the training data set in this case.

We can find more recent analysis and proposals of imputation methods, which considers
an increasing number of techniques compared:

• Hruschka et al. [28] propose two imputation methods based on Bayesian networks. They
compare them with 4 classical imputation methods: EM, Data Augmentation, C4.5, and
the CMC method, using 4 nominal data sets from the UCI repository [3] with natural MVs
(but inducing MVs in them as well). In their analysis, they employ 4 classifiers as follows:
one-rule, Naïve-Bayes, C4.5, and PART. As performance measures, the authors measure
the prediction value (i.e., the similarity of the imputed value to the original removed
one) and the classification accuracy obtained with the four mentioned models. From the
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results, the authors state that better prediction results do not imply better classification
results.

• Farhangfar et al. [18] take as the objective of their paper to develop a unified framework
supporting a host of imputation methods. Their study inserts some imputation methods
into their framework (Naïve-Bayes and Hot Deck) and compares this with other basic
methods: mean, Linear Discriminant Analysis, Logreg, etc. All their experimentation is
based on discrete data, so they use the “accuracy” of imputed values against randomly
generated MVs. The relation of this imputation accuracy to classification accuracy is not
studied. In Farhangfar et al. [19], the previous study is extended using discrete data, com-
paring with more classical imputation methods. This study uses a representative method
of several classifiers’ types as follows: decision trees, instance-based learning, rule-based
classifier, probabilistic methods, and SVMs by means of boosting [51]. The MVs are
produced artificially in a wide-ranging amount for each of the data sets, and the results
obtained from the classification of imputed data are compared with the ones with MVs.
This study shows that the impact of the imputation varies among different classifiers and
that imputation is beneficial for most amounts of MVs above 5% and that the amount of
improvement does not depend on the amount of MVs. The performed experimental study
also shows that there is no universally best imputation method.

• Song et al. [56] study the relationship between the use of the KNNI method and the
C4.5 performance (counting with its proper MV technique) over 6 data sets of software
projects. They emphasize the different MVs’ mechanisms (MCAR, MAR, and NMAR)
and the amount of MVs introduced. From their analysis, they found results that agree
with Batista and Monard [6]: KNNI can improve the C4.5 accuracy. They ran a Mann–
Whitney statistical test to obtain significant differences in this statement. They also show
that the missingness mechanism and pattern affect the classifier and imputation method
performance.

• Twala [58] empirically analyzes 7 different procedures to treat artificial MVs for decision
trees over 21 real data sets. From the study, it can be concluded that listwise deletion is
the worst choice, while the multiple imputation strategy performs better than the rest of
the imputation methods (particularly those with high amounts of MVs), although there
is no outstanding procedure.

• García-Laencina et al. [23] evaluate the influence of imputing MVs into the classification
accuracy obtained by an artificial neural network (multilayer perceptron). Four imputa-
tion techniques are considered as follows: KNNI, SOM imputation, MLP imputation, and
EM over one synthetic and two real data sets, varying the amount of MVs introduced.
They conclude that in real-life scenarios a detailed study is required in order to evaluate
which MVs estimation can help to enhance the classification accuracy.

• Luengo et al. [35] study several imputation methods for RBFNs classifiers, both for nat-
ural and artificial (MCAR) MVs. From their results can be seen that the EC method has
a good synergy with respect to the RBFN methods, as it provides better improvements in
classification accuracy.

• Ding and Simonoff [14] investigate eight different missingness patterns, depending on
the relationship between the missingness and three types of variables, the observed pre-
dictors, the unobserved predictors (the missing values), and the response variable. They
focus on the case of classification trees for binary data (C4.5 and CART) using a model-
ing bankruptcy database, showing that the relationship between the missingness and the
dependent variable, as well as the existence or non-existence of MVs in the testing data,
is the most helpful criterion to distinguish different MVs methods.
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• Gheyas and Smith [25] propose a single imputation method and a multiple imputation
method, both of them based on a generalized regression neural network (GRNN). Their
proposal is compared with 25 imputation methods of different natures, from machine
learning methods to several variants of GRNNs. Ninty-eight data sets are used in order
to introduce MVs with MCAR, MAR, and NMAR mechanisms. Then, the results of the
imputation methods are compared by means of 3 different criteria, using the following
three classifiers: MLP, logistic regression, and a GRNN-based classifier, showing the
advantages of the proposal.

Recently, the treatment of MVs has been considered in conjunction with other hot topics
in classification, like imbalanced data sets, semi-supervised learning, temporal databases,
scalability, and the presence of noisy data. Nogueira et al. [41] presented a comparison of
techniques used to recover values in a real imbalanced database, with a massive occurrence
of MVs. This makes the process of obtaining a set of representative records, used for the
recovering techniques, difficult. They used C4.5, Naïve-Bayes, K-NN, and multilayer per-
ceptron as classifiers. To treat the MVs, they applied several techniques as follows: default
value substitution or related attribute recovery. The latter tries to obtain the missing value
from the information of another attribute. In addition to this, cleaning of instances/attributes
with too many MVs was also carried out.

Saar-Tsechansky and Provost [52] compare several different methods (predictive value
imputation, the distribution-based imputation used by C4.5 and using reduced models) for
applying classification trees to instances with missing values. They distinguish between MVs
in “training” (usual MVs) and MVs in “prediction” time (i.e., test partition) and adapt the
novel-reduced models to this scenario. The results show that for the predictive value impu-
tation and C4.5 distribution based, both can be preferable under different conditions. Their
novel technique (reduced models) consistently outperforms the other two methods based on
their experimentation.

Matsubara et al. [36] present an adaptation of a semi-supervised learning algorithm for
imputation. They impute the MV using the C4.5 and Naïve-Bayes classifiers by means of
a ranking aggregation to select the best examples. They compare the method with three
qualitative UCI [3] data sets applying artificial MVs and perform a similar study to the one
presented by Batista and Monard [6], comparing with the KNNI and MC methods. Using a
non-parametric statistical test, they demonstrate the better performance of the new method
over the other two in some cases.

Merlin et al. [38] propose a a new method for the determination of MVs in temporal
databases based on self-organizing maps. Using two classifiers for the spatial and tempo-
ral dependencies, improvements in respect of the EM method in a hedge fund problem are
shown.

We can appreciate heterogeneity from the mentioned studies. There are many different
approaches for the treatment of MVs, which use many different methods (to classify and to
impute MVs), but they produce similar conclusions about the convenience of using imputa-
tion methods. Therefore, in spite of the variety of studies presented, the necessity of using
imputation methods for MVs is demonstrated. However, there is not an overall approximation
to the selection of the best imputation technique for a wide range of classification methods.

2.2 Description of the imputation methods

In this subsection, we briefly describe the imputation methods that we have used that are the
most representative and used in the literature presented in the previous subsection.
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• Do Not Impute (DNI). As its name indicates, all the MVs remain unreplaced, so the
networks must use their default MVs strategies. The objective is to verify whether impu-
tation methods allow the classification methods to perform better than when using the
original data sets. As a guideline, in [27], a previous study of imputation methods is
presented.

• Case deletion or Ignore Missing (IM). Using this method, all instances with at least one
MV are discarded from the data set.

• Global Most Common Attribute Value for Symbolic Attributes, and Global Average Value
for Numerical Attributes (MC) [26]. This method is very simple: For nominal attributes,
the MV is replaced with the most common attribute value, and numerical values are
replaced with the average of all values of the corresponding attribute.

• Concept Most Common Attribute Value for Symbolic Attributes, and Concept Average
Value for Numerical Attributes (CMC) [26]. As stated in MC, the MV is replaced by the
most repeated one if nominal or the mean value is numerical, but considering only the
instances with the same class as the reference instance.

• Imputation with K-Nearest Neighbor (KNNI) [6]. Using this instance-based algorithm,
every time an MV is found in a current instance, KNNI computes the k nearest neighbors
and a value from them is imputed. For nominal values, the most common value among
all neighbors is taken, and for numerical values, the average value is used. Therefore,
a proximity measure between instances is needed for it to be defined. The Euclidean
distance (it is a case of a L p norm distance) is most commonly used in the literature.

• Weighted Imputation with K-Nearest Neighbor (WKNNI) [57]. The weighted K-nearest
neighbor method selects the instances with similar values (in terms of distance) to a con-
sidered one, so it can impute as KNNI does. However, the estimated value now takes into
account the different distances from the neighbors, using a weighted mean or the most
repeated value according to the distance.

• K-means Clustering Imputation (KMI) [33]. Given a set of objects, the overall objective
of clustering is to divide the data set into groups based on the similarity of objects and to
minimize the intra-cluster dissimilarity. KMI measures the intra-cluster dissimilarity by
the addition of distances among the objects and the centroid of the cluster which they are
assigned to. A cluster centroid represents the mean value of the objects in the cluster. Once
the clusters have converged, the last process is to fill in all the non-reference attributes for
each incomplete object based on the cluster information. Data objects that belong to the
same cluster are taken to be nearest neighbors of each other, and KMI applies a nearest
neighbor algorithm to replace MVs, in a similar way to KNNI.

• Imputation with Fuzzy K-means Clustering (FKMI) [1,33]. In fuzzy clustering, each
data object has a membership function, which describes the degree to which this data
object belongs to a certain cluster. In the process of updating membership functions and
centroids, FKMI only takes into account complete attributes. In this process, the data
object cannot be assigned to a concrete cluster represented by a cluster centroid (as is
done in the basic K-mean clustering algorithm), because each data object belongs to all
K clusters with different membership degrees. FKMI replaces non-reference attributes
for each incomplete data object based on the information about membership degrees and
the values of cluster centroids.

• Support Vector Machines Imputation (SVMI) [21] is an SVM regression-based algo-
rithm to fill in MVs, i.e., set the decision attributes (output or classes) as the condition
attributes (input attributes) and the condition attributes as the decision attributes, so SVM
regression can be used to predict the missing condition attribute values. In order to do
that, first SVMI selects the examples in which there are no missing attribute values. In
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the next step, the method sets one of the condition attributes (input attribute), some of
those values that are missing, as the decision attribute (output attribute), and the decision
attributes as the condition attributes by contraries. Finally, an SVM regression is used to
predict the decision attribute values.

• Event Covering (EC) [62]. Based on the work of Wong et al., a mixed-mode probability
model is approximated by a discrete one. First, EC discretizes the continuous components
using a minimum loss of information criterion. Treating a mixed-mode feature n-tuple as
a discrete-valued one, a new statistical approach is proposed for the synthesis of knowl-
edge based on cluster analysis. The main advantage of this method is that it does not
require either scale normalization or the ordering of discrete values. By synthesizing the
data into statistical knowledge, the EC method involves the following processes: (1) syn-
thesize and detect from data inherent patterns which indicate statistical interdependency;
(2) group the given data into inherent clusters based on this detected interdependency; and
(3) interpret the underlying patterns for each cluster identified. The method of synthesis
is based on the author’s event–covering approach. With the developed inference method,
EC is able to estimate the MVs in the data.

• Regularized Expectation-Maximization (EM) [55]. MVs are imputed with a regularized
expectation maximization (EM) algorithm. In an iteration of the EM algorithm, given
estimates of the mean and of the covariance matrix are revised in three steps. First, for
each record with MVs, the regression parameters of the variables with MVs among the
variables with available values are computed from the estimates of the mean and of
the covariance matrix. Second, the MVs in a record are filled in with their conditional
expectation values given the available values and the estimates of the mean and of the
covariance matrix, the conditional expectation values being the product of the available
values and the estimated regression coefficients. Third, the mean and the covariance
matrix are re-estimated, the mean as the sample mean of the completed data set and the
covariance matrix as the sum of the sample covariance matrix of the completed data set
and an estimate of the conditional covariance matrix of the imputation error. The EM
algorithm starts with initial estimates of the mean and of the covariance matrix and cycles
through these steps until the imputed values and the estimates of the mean and of the
covariance matrix stop changing appreciably from one iteration to the next.

• Singular Value Decomposition Imputation (SVDI) [57]. In this method, singular value
decomposition is used to obtain a set of mutually orthogonal expression patterns that can
be linearly combined to approximate the values of all attributes in the data set. In order
to do that, first SVDI estimates the MVs within the EM algorithm, and then it computes
the singular value decomposition and obtains the eigenvalues. Now, SVDI can use the
eigenvalues to apply a regression to the complete attributes of the instance and to obtain
an estimation of the MV itself.

• Bayesian Principal Component Analysis(BPCA) [42]. This method is an estimation
method for MVs, which is based on Bayesian principal component analysis. Although
the methodology that a probabilistic model and latent variables are estimated simulta-
neously within the framework of Bayesian inference is not new in principle, actual BPCA
implementation that makes it possible to estimate arbitrary missing variables is new in
terms of statistical methodology. The missing value estimation method based on BPCA
consists of three elementary processes. They are (1) principal component (PC) regres-
sion, (2) Bayesian estimation, and (3) an expectationf́bmaximization (EM)-like repetitive
algorithm.

• Local Least Squares Imputation (LLSI) [29]. With this method, a target instance that has
MVs is represented as a linear combination of similar instances. Rather than using all
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available genes in the data, only similar genes based on a similarity measure are used. The
method has the “local” connotation. There are two steps in the LLSI. The first step is to
select k genes by the L2-norm. The second step is regression and estimation, regardless
of how the k genes are selected. A heuristic k parameter selection method is used by the
authors.

3 Experimental framework

When analyzing imputation methods, a wide range of setups can be observed. The data sets
used, their type (real or synthetic), the origin, and amount of MVs, etc. must be carefully
described, as the results will strongly depend on them. All these aspects are described in
Sect. 3.1.

The good or bad estimations performed by the imputation method will be analyzed
with regard to the accuracy obtained by many classification methods. They are presented
in Sect. 3.2, grouped in the different families that we have considered, so that we can extract
specialized conclusions relating the imputation results to similar classification methods.

Not all the classification methods are capable of managing the MVs on their own. It is
important to indicate which methods can and the strategy that we follow when the contrary
case occurs. In Sect. 3.3, we tackle the different situations that appear when using Do Not
Impute.

The results obtained by the classification methods depend on the previous imputation
step, but also on the parameter configuration used by both the imputation and the classifica-
tion methods. Therefore, they must be indicated in order to be able to reproduce any results
obtained. In Sect. 3.4, the parameter configurations used by all the methods considered in
this study are presented.

3.1 Data sets description

The experimentation has been carried out using 21 benchmark data sets from the UCI repos-
itory [3]. Each data set is described by a set of characteristics such as the number of data
samples, attributes, and classes, summarized in Table 1. In this table, the percentage of MVs is
indicated as well: the percentage of values which are missing and the percentage of instances
with at least one MV.

We have not any knowledge about the MV generation mechanism in the considered data
sets. As stated in the previous analysis, it is reasonable to assume that they are distributed in
an MAR way. Therefore, the application of the imputation methods is feasible.

Most of the previous studies in Sect. 2.1 discard any previous natural MVs, if any, and then
generate random MVs for their experiments with different percentages and MV distributions.

In our study, we want to deal with the original MVs and therefore obtain the real accuracy
values of each data set with the imputation methods. The amount of data sets we have used
is large enough to allow us to draw significant conclusions and is larger than the majority of
studies presented in Sect. 2.1. In addition to this, we use all kinds of data sets, which includes
nominal data sets, numeric data sets, and data sets with mixed attributes.

In order to carry out the experimentation, we have used a 10-fold cross-validation scheme.
All the classification algorithms use the same partitions, to perform fair comparisons. We
take the mean accuracy of training and test of the 10 partitions as a representative measure
of the method’s performance.
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Table 1 Data sets used

Data set Acronym # Instances # Attributes # Classes % MV % Inst. with MV

Cleveland CLE 303 14 5 0.14 1.98

Wisconsin WIS 699 10 2 0.23 2.29

Credit CRX 689 16 2 0.61 5.37

Breast BRE 286 10 2 0.31 3.15

Autos AUT 205 26 6 1.11 22.44

Primary tumor PRT 339 18 21 3.69 61.06

Dermatology DER 365 35 6 0.06 2.19

House-votes-84 HOV 434 17 2 5.3 46.54

Water-treatment WAT 526 39 13 2.84 27.76

Sponge SPO 76 46 12 0.63 28.95

Bands BAN 540 40 2 4.63 48.7

Horse-colic HOC 368 24 2 21.82 98.1

Audiology AUD 226 71 24 1.98 98.23

Lung-cancer LUN 32 57 3 0.27 15.63

Hepatitis HEP 155 20 2 5.39 48.39

Mushroom MUS 8124 23 2 1.33 30.53

Post-operative POS 90 9 3 0.37 3.33

Echocardiogram ECH 132 12 4 4.73 34.09

Soybean SOY 307 36 19 6.44 13.36

Mammographic MAM 961 6 2 2.81 13.63

Ozone OZO 2534 73 2 8.07 27.11

All these data sets have natural MVs, and we have imputed them with the following scheme.
With the training partition, we apply the imputation method, extracting the relationships
between the attributes and filling in this partition. Next, with the information obtained, we
fill in the MVs in the test partition. Since we have 14 imputation methods, we will obtain 14
instances of each partition of a given data set once they have been preprocessed. All these
partitions will be used to train the classification methods used in our study, and then, we will
perform the test validation with the corresponding test partition. If the imputation method
works only with numerical data, the nominal values are considered as a list of integer values,
starting from 1 to the amount of different nominal values in the attribute.

3.2 Classification methods

In order to test the performance of the imputation methods, we have selected a set of rep-
resentative classifiers. We can group them in three subcategories. In Table 2, we summarize
the classification methods we have used, organized in these three categories. The description
of the former categories is as follows:

• The first group is the rule induction learning category. This group refers to algorithms
that infer rules using different strategies.

• The second group represents the approximate models. It includes the following: artificial
neural networks, support vector machines, and statistical learning.
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Table 2 Classifiers used by
categories

Method Acronym Reference

Rule induction learning

C4.5 C4.5 [50]

Ripper Ripper [10]

CN2 CN2 [9]

AQ-15 AQ [39]

PART PART [22]

Slipper Slipper [11]

Scalable rule induction induction SRI [45]

Rule induction two in one Ritio [63]

Rule extraction system version 6 Rule-6 [44]

Approximate models

Multilayer perceptron MLP [40]

C-SVM C-SVM [17]

ν-SVM ν-SVM [17]

Sequential minimal optimization SMO [47]

Radial basis function network RBFN [8]

RBFN decremental RBFND [8]

RBFN incremental RBFNI [46]

Logistic LOG [32]

Naïve-Bayes NB [15]

Learning vector quantization LVQ [7]

Lazy learning

1-NN 1-NN [37]

3-NN 3-NN [37]

Locally weighted learning LWL [4]

Lazy learning of Bayesian rules LBR [64]

• The third and last group corresponds to the lazy learning category. This group incorpo-
rates methods which do not create any model but use the training data to perform the
classification directly.

Many of these classifiers appear in the previous studies mentioned in Sect. 2.1. We have
included an increased number of methods in our study (classical and currently most used),
so we can generalize better from the obtained results.

On the other hand, some methods do not work with numerical attributes (CN2, AQ and
Naïve-Bayes). In order to discretize the numerical values, we have used the well-known
discretizer proposed by Fayyad and Irani [20].

For the SVM methods (C-SVM, ν-SVM, and SMO), we have applied the usual prepro-
cessing in the literature to these methods [17]. This preprocessing consists of normalizing
the numerical attributes to the [0, 1] range and binarizing the nominal attributes.

3.3 Particular missing values treatment of the classification methods

Some of the presented classification methods in the previous section have their own MVs
treatment:
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• C4.5 uses a probabilistic approach to handling MVs. If there are MVs in an attribute X ,
C4.5 uses the subset with all known values of X to calculate the information gain. Once a
test based on an attribute X is chosen, C4.5 uses a probabilistic approach to partition the
instances with MVs in X . If the instance has an unknown value, this instance is assigned
to all partitions with different weights for each one. The weight for the partition Ti is the
probability that the instance belongs to Ti . This probability is estimated to be the sum of
the weights of instances in T known to satisfy the test with outcome Oi , divided by the
sum of weights of the cases in T with known values in the attribute X .

• CN2 algorithm uses a rather simple imputation method to treat MVs. Every missing value
is filled in with its attribute’s most common known value, before calculating the entropy
measure.

Therefore, when using the DNI method, both C4.5 and CN2 will use their imputation abilities
to treat the MVs. Therefore, we can compare their internal MVs treatment methods against
the rest of the imputation methods from Sect. 2.2.

In case of neural networks (MLP and RBFN variants), there are some interesting propos-
als for this case. Ennett, Frize, and Walker [16] proposed in their study to replace the MVs
with “normal” values (i.e., replaced by zero). This means that the MVs do not trigger the
corresponding neuron which the MV is applied to, and the network can be trained on data
with MVs, and evaluate instances with MVs as well.

The previously mentioned methods can handle the MVs in case of the DNI method. On
the other hand, the rest of the classification methods cannot handle the MVs. Thus, we set the
training and test accuracy to zero, as the method cannot build a model or compute a distance
to the test instance.

3.4 Parameters used by the imputation and classification methods

In Table 3, we show the parameters used by each imputation method described in Sect. 2.2, in
cases where the method needs a parameter. Please refer to their respective papers for further
descriptions of the parameters’ meaning.

The values chosen are those recommended by their respective authors, as they have ana-
lyzed of the best parameter configuration in each case. Nevertheless, some indications must
be made to this respect attending to the nature of the imputation method considered.

In case of neighbor-based imputation methods, i.e., KNNI, WKNNI, KMI, and FKMI,
increments in the K value do not significantly improve the results but increase the amount
of time needed to impute the values. This is specially critical for the FKMI method, which
becomes very slow with small increments in K . The LLSI method is not very sensitive to
the maximum number of neighbors, as this parameter is adjusted dynamically depending on
the data set.

The EC method is also sensible to the T parameter. Incrementing it makes the imputation
process faster but less clusters are created, and therefore, a worse imputation is obtained
as only few reference clusters centers are used to impute. On the other hand, decrementing
it will significantly increase the running time. SVMI is subject to the parameter adjusting
procedure followed in SVM for classification. The EM procedure is not significantly affected
by their parameters except the number of iterations. In our experimentation, we have checked
that 30 iterations allow EM to converge to the stagnation limit desired. This is also relevant
to the SVDI imputation method which uses EM as an initial imputation guess.

In Table 4, the parameters used by the different classification methods are presented. All
these parameters are the recommended ones that have been extracted from the respective
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Table 3 Methods Parameters Method Parameters

SVMI Kernel = RBF

C = 1.0

Epsilon = 0.001

Shrinking = No

KNNI, WKNNI K = 10

KMI K = 10

Iterations = 100

Error = 100

FKMI K = 3

Iterations = 100

Error = 100

m = 1.5

EC T = 0.05

EM Iterations = 30

Stagnation tolerance = 0.0001

Inflation factor = 1

Regression type = multiple ridge regression

SVDI Iterations = 30

Stagnation tolerance = 0.005

Inflation factor = 1

Regression type = multiple ridge regression

Singular vectors = 10

LLSI Max number of nearest neighbor = 200

publications of the methods. Please refer to the associated publications listed in Table 2 to
obtain the meaning of the different parameters.

4 Experimental results

In this section, we analyze the experimental results obtained. We have created an associated
web page with all the results related to our analysis. The reason for this is to avoid long appen-
dices, due to the size of the combination of all the imputation methods with the classification
methods. The address is http://sci2s.ugr.es/KAIS-MVDM/. We have also included on this
web page the partitions of the used data sets for further comparisons. In order to compare the
algorithms and MV methods, we have used the Wilcoxon Signed Rank test, to support our
analysis with a statistical test that provides us with statistical evidence of the good behavior
of any approach. Therefore, the mentioned web page contains the following two documents:

• A document with all the accuracy results in both training and test for all the classification
methods, each one with the 14 imputation methods.

• A document with a table summarizing the Wilcoxon test for all the imputation methods
in respect of a determined classification method. The outcomes of the tables are based
directly on the test accuracy results of the previous document.
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Table 4 Parameters used by the classification methods

Method Parameters

C4.5 Prune = true, confidence = 0.25, instances per leaf = 2

Ripper Grow percentage = 0.66, K = 2

CN2 Percentage ex. To cover = 0.95, star size = 5, disjunt selectors = no

AQ Star size = 5, disjunt selector = no

PART Confidence = 0.25, intemsets per leaf = 2

Slipper Grow percentage = 0.66, K = 2

SRI Beam width = 8, min positives = 2, min negatives = 1

Ritio –

Rule-6 Beam width = 5, min positives = 2, min negatives = 1

MLP Hidden layers = 1, neurons per layer = 10

C-SVM Kernel = poly., C = 100, eps = 0.001, degree = 1, gamma = 0.01, coef 0 = 0, p = 1,
shrink = yes

Nu-SVM Kernel = poly., nu = 0.1, eps = 0.001, degree = 1, gamma = 0.01, coef 0 = 0, p = 1,
shrink = yes

SMO C = 1,tolerance = 0.001, eps = 1e-12, Kernel = polynomial, exp = 1, lowerOrder = no

RBFN Neurons = 50

RBFND Percent = 0.1, initial neurons = 20, alpha = 0.3

RBFNI Epsilon = 0.1, alpha = 0.3, delta = 0.5

LOG Ridge = 1e-8, iteration limit = none

NB –

LVQ Iterations = 100, neurons = 20,alpha = 0.3,nu = 0.8

1-NN K = 1, Distance function = euclidean

3-NN K = 3, Distance function = euclidean

LWL K = 3, Kernel function = constant

LBR –

The rest of the analysis is organized into two parts. First, we analyze all the methods
together, without differentiating the groups. This approach is similar to the previous studies
on the topic. Then, we have analyzed the methods organized by the different groups, obtaining
different results. Therefore, the rest of this section is organized as follows:

• In Sect. 4.1, we introduce the comparison methodology used in the subsequent
subsections.

• In Sect. 4.2, we show first the global results of the imputation methods for all the classifiers
together.

• In Sect. 4.3, we study the behavior of the rule induction learning classification methods.
• In Sect. 4.4, we analyze the approximate methods.
• In Sect. 4.5, we compare the results of the imputation methods for the lazy learning

algorithms.
• In Sect. 4.6, we summarize the suitability and performance of the imputation methods

restricted to each group. In this way, we intend to extract the best imputation method for
each type of classifier and analyze whether there is any kind of relation between them.
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4.1 Comparison methodology

In order to appropriately analyze the imputation and classification methods, we use the Wil-
coxon tables directly from the web page. These tables provide us with an average ranking
for each imputation method. The content of the tables and its interpretation are as follows:

1. We create an n × n table for each classification method. In each cell, the outcome of the
Wilcoxon Signed Rank test is shown.

2. In the aforementioned tables, if the p-value obtained by the Wilcoxon tests for a pair of
imputation methods is higher than our α level, formerly 0.1, then we establish that there
is a tie in the comparison (no significant difference was found), represented by a D.

3. If the p-value obtained by the Wilcoxon tests is lower than our α level, formerly 0.1, then
we establish that there is a win (represented by a W) or a loss (represented by an L) in
the comparison. If the method presented in the row has a better ranking than the method
presented in the column in the Wilcoxon test, then there is a win, otherwise there is a
loss.

With these columns, we have produced an average ranking for each classifier. We have
computed the number of times that an imputation methods wins and the number of times
that an imputation method wins and ties. Then, we obtain the average ranking by putting
those imputation methods which have a higher “wins + ties” sum first among the rest of the
imputation methods. If a draw is found for “wins + ties”, we use the “wins” to establish the
rank. If some methods obtain a draw for both “wins + ties” and “wins”, then an average
ranking is assigned to all of them.

In order to compare the imputation methods for the classification methods considered in
each situation (global or family case), we have added two more final columns in the tables
contained in the next subsections. In the first new column, we compute the mean of the
rankings for each imputation method across all the classifiers of the correspondent group
(column “Avg.”), that is, the mean of every row. By doing so, we can obtain a new rank
(final column RANKS), in which we propose a new ordering for the imputation methods
for a given classifier’s group, using the values of the column “Avg.” to sort the imputation
methods.

4.2 Results for all the classification methods

In this section, we analyze the different imputation approaches for all the imputation methods
as a first attempt to obtain an “overall best” imputation method. Following the indications
given in the previous subsection, in Table 5, the obtained average ranks and final imputation
methods’ rankings can be seen.

When comparing all the classifiers together, we find that it is difficult to establish differ-
ences between the imputation methods and to select the best one. The FKMI method obtains
the best final ranking. However, the EC method has a very similar average ranking (5.70 for
EC, 5.26 for FKMI). There are some additional methods that obtain a very similar average
ranking, and they are not far from FKMI and EC. SVMI, KMI, MC, and CMC have an aver-
age ranking between 6.09 and 6.28. Therefore, we cannot firmly establish one best method
from among all of them, and in this initial case, we must consider a range of good possible
imputation methods for the treatment of the MVs from the mentioned ones.

We can relate the obtained results with the previous studies that consider together some
of the imputation and classification methods analyzed here. Farhangfar et al. [19] conclude
that imputation is beneficial for K-NN, SVM, and Ripper classifiers and that C4.5 and NB
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Table 5 Average ranks for all the classifiers

RBFN RBFND RBFNI C4.5 1-NN LOG LVQ MLP NB ν-SVM C-SVM Ripper

IM 9 6.5 4.5 5 5 6 3.5 13 12 10 5.5 8.5

EC 1 1 1 2.5 9.5 3 7 8.5 10 13 1 8.5

KNNI 5 6.5 10.5 9 2.5 9 7 11 6.5 8 5.5 2.5

WKNNI 13 6.5 4.5 11 4 10 10 4.5 6.5 4.5 5.5 2.5

KMI 3.5 2 7 5 12 3 11 3 4.5 8 5.5 2.5

FKMI 12 6.5 10.5 7.5 6 3 1.5 4.5 11 4.5 5.5 2.5

SVMI 2 11.5 2.5 1 9.5 7.5 3.5 1.5 13 8 11 5.5

EM 3.5 6.5 13 13 11 12 12.5 10 4.5 4.5 10 12

SVDI 9 6.5 7 11 13 11 12.5 8.5 3 11.5 12 11

BPCA 14 14 14 14 14 13 7 14 2 2 13 13

LLSI 6 6.5 10.5 11 7.5 7.5 7 6.5 9 4.5 5.5 5.5

MC 9 6.5 10.5 7.5 7.5 3 7 6.5 8 11.5 5.5 8.5

CMC 9 13 2.5 5 1 3 1.5 1.5 14 14 5.5 8.5

DNI 9 11.5 7 2.5 2.5 14 14 12 1 1 14 14

PART Slipper 3-NN AQ CN2 SMO LBR LWL SRI Ritio Rule-6 Avg. RANKS

1 4 11 6.5 10 5.5 5 8 6.5 6 5 6.83 7

6.5 1 13 6.5 5.5 2 9 8 6.5 6 1 5.70 2

6.5 11 5.5 11 5.5 5.5 9 8 11.5 11 11 7.76 10

6.5 7 5.5 6.5 1 5.5 9 8 11.5 6 11 6.96 8

6.5 3 5.5 6.5 5.5 9 9 2.5 9.5 12 7.5 6.24 5

6.5 10 1.5 2 5.5 3 9 2.5 1 2 3 5.26 1

6.5 7 9 1 5.5 9 3 8 6.5 6 2 6.09 3

6.5 7 5.5 12 13 11.5 9 2.5 3 6 4 8.37 11

6.5 12 12 10 12 11.5 1 12 9.5 10 11 9.72 12

13 7 14 13 14 13 13 13 13 13 13 11.87 14

6.5 7 5.5 6.5 11 9 9 8 3 6 7.5 7.22 9

6.5 2 1.5 6.5 5.5 5.5 3 2.5 3 6 7.5 6.11 4

12 13 5.5 3 5.5 1 3 8 6.5 1 7.5 6.28 6

14 14 10 14 5.5 14 14 14 14 14 14 10.61 13

are robust against MVs using only nominal data. Our experiments show this fact as well,
considering numerical and mixed data as well (and that C4.5 behaves better with SVMI as we
have aforementioned). Although they stress that MC and CMC are the less useful approaches,
our results indicate that in case of K-NN the contrary is verified when analyzing more data
sets. On the other hand, Hruschka et al. [28] obtain that the best imputation method depends
on the data set for C4.5, PART, and NB. However, due to the limited number of data sets
used, these results are not as general as ours.

It is important to point out that the DNI and IM methods do not obtain a good rank. In
particular, the DNI method obtains a very high ranking (10.61) only exceeded by the BPCA
imputation method which performs very badly. The IM method has an average rank, and it
is situated in the middle of the ranking. Thus, we can consider discarding the examples with
MVs, or not processing them, to be inadvisable, as expected from the results presented in the
previous studies.
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Table 6 Average ranks for the rule induction learning methods

C45 Ripper PART Slipper AQ CN2 SRI Ritio Rules-6 Avg. RANKS

IM 5 8.5 1 4 6.5 10 6.5 6 5 5.83 4
EC 2.5 8.5 6.5 1 6.5 5.5 6.5 6 1 4.89 3
KNNI 9 2.5 6.5 11 11 5.5 11.5 11 11 8.78 11
WKNNI 11 2.5 6.5 7 6.5 1 11.5 6 11 7.00 8
KMI 5 2.5 6.5 3 6.5 5.5 9.5 12 7.5 6.44 6
FKMI 7.5 2.5 6.5 10 2 5.5 1 2 3 4.44 1
SVMI 1 5.5 6.5 7 1 5.5 6.5 6 2 4.56 2
EM 13 12 6.5 7 12 13 3 6 4 8.50 10
SVDI 11 11 6.5 12 10 12 9.5 10 11 10.33 12
BPCA 14 13 13 7 13 14 13 13 13 12.56 14
LLSI 11 5.5 6.5 7 6.5 11 3 6 7.5 7.11 9
MC 7.5 8.5 6.5 2 6.5 5.5 3 6 7.5 5.89 5
CMC 5 8.5 12 13 3 5.5 6.5 1 7.5 6.89 7
DNI 2.5 14 14 14 14 5.5 14 14 14 11.78 13

We must point out that the results obtained by the IM method should be considered with
caution. Since several instances are discarded, the test and training partitions tend to be
smaller than the original ones. This allows the classifiers to obtain better results in training,
since there are less instances and less noise from the MVs. In tests, the classifier can achieve
better results for some data sets if the remaining instances are well separated in the feature
space, since a hit in the test partition counts for more in accuracy than in the other imputation
methods (with complete test partitions).

From these results, it is clear that we need to reduce the amount of classifiers when trying
to obtain the best imputation method. In the following subsections, we have focused on the
different types of classification methods in order to avoid the high ranking variation observed
in Table 5.

4.3 Results for the rule induction learning methods

In this section, we present the results of the rule induction classification methods. In Table 6,
we show the ranking for each classification method belonging to this group. This table’s
structure is the same as that described in Sect. 4.1. Therefore, we only perform the average
between the rankings obtained for the classification algorithms belonging to this group.

We can observe that, for the rule induction learning classifiers, the imputation methods
FKMI, SVMI, and EC perform best. The differences between these three methods in average
rankings are low. Thus, we can consider that these three imputation methods are the most
suitable for this kind of classifier. They are well separated from the other imputation methods,
and we cannot choose a best method from among these three. This is in contrast to the global
results presented in Sect. 4.2, where little differences could be found among the first ranked
imputation methods. Both FKMI and EC methods were also considered among the best in
the global first approach presented in the previous subsection. Initially, Batista and Monard
[6] indicated that C4.5 and CN2 benefit from the use of KNNI imputation method. However,
it can be seen that C4.5 behaves better with SVMI and EC imputation methods when more
data sets are considered, while CN2 works better with WKNNI.

On the other hand, BPCA and DNI are the worst methods. The BPCA method usually
performs badly for all the classifiers. As DNI is also a bad option, this means that the rule
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Table 7 Average ranks for the approximate methods

RBFN RBFND RBFNI LOG LVQ MLP NB ν-SVM C-SVM SMO Avg. RANKS

IM 9 6.5 4.5 6 3.5 13 12 10 5.5 5.5 7.55 10

EC 1 1 1 3 7 8.5 10 13 1 2 4.75 1

KNNI 5 6.5 10.5 9 7 11 6.5 8 5.5 5.5 7.45 9

WKNNI 13 6.5 4.5 10 10 4.5 6.5 4.5 5.5 5.5 7.05 6

KMI 3.5 2 7 3 11 3 4.5 8 5.5 9 5.65 2

FKMI 12 6.5 10.5 3 1.5 4.5 11 4.5 5.5 3 6.20 3

SVMI 2 11.5 2.5 7.5 3.5 1.5 13 8 11 9 6.95 5

EM 3.5 6.5 13 12 12.5 10 4.5 4.5 10 11.5 8.80 11

SVDI 9 6.5 7 11 12.5 8.5 3 11.5 12 11.5 9.25 12

BPCA 14 14 14 13 7 14 2 2 13 13 10.60 14

LLSI 6 6.5 10.5 7.5 7 6.5 9 4.5 5.5 9 7.20 7

MC 9 6.5 10.5 3 7 6.5 8 11.5 5.5 5.5 7.30 8

CMC 9 13 2.5 3 1.5 1.5 14 14 5.5 1 6.50 4

DNI 9 11.5 7 14 14 12 1 1 14 14 9.75 13

induction learning algorithms would greatly benefit from the use of the imputation methods,
despite some of them being capable of dealing with MVs on their own.

The rest of the imputation methods spans between an average rank of 5.8 to 9, with a
great difference between BPCA and DNI methods in ranking. The IM method is fourth,
which could mean that the rule induction learning algorithms perform better with complete
instances in training and test, but they do not work well with test instances with imputed
MVs. However, avoiding test cases with MVs is not always possible.

4.4 Results for the approximate methods

In this section, we present the obtained results for the approximate models. In Table 7, we
can observe the rankings associated with the methods belonging to this group. Again, this
table structure is the same as described in Sect. 4.1.

In case of the approximate models, the differences between imputation methods are even
more evident. We can select the EC method as the best solution, as it has a difference of
ranking of almost 1 with KMI, which stands as the second best. This difference increases
when considering the third best, FKMI. No other family of classifiers present this gap in
the rankings. Therefore, in this family of classification methods, we could, with some con-
fidence, establish the EC method as the best choice. This is in contrast to the global results,
from which there is no outstanding method.

In [35], the analysis of several imputation methods with respect to RBFNs considering
data set with both natural and induced MVs yielded that EC was the best imputation method.
Therefore, these results can be extended to a larger number of approximate classification
methods.

The DNI and IM methods are among the worst. This means that for the approximate
methods the use of some kind of MV treatment is mandatory, whereas the EC method is the
most suitable one. As with the rule induction learning methods, the BPCA method is the
worst choice, with the highest ranking.
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Table 8 Average ranks for the
lazy learning methods

1-NN 3-NN LBR LWL Avg. RANKS

IM 5 11 5 8 7.25 7

EC 9.5 13 9 8 9.88 12

KNNI 2.5 5.5 9 8 6.25 4

WKNNI 4 5.5 9 8 6.63 5

KMI 12 5.5 9 2.5 7.25 8

FKMI 6 1.5 9 2.5 4.75 3

SVMI 9.5 9 3 8 7.38 9

EM 11 5.5 9 2.5 7.00 6

SVDI 13 12 1 12 9.50 11

BPCA 14 14 13 13 13.50 14

LLSI 7.5 5.5 9 8 7.50 10

MC 7.5 1.5 3 2.5 3.63 1

CMC 1 5.5 3 8 4.38 2

DNI 2.5 10 14 14 10.13 13

4.5 Results for the lazy learning methods

The results for the last group are presented in Table 8. Again, this table structure is the same
as described in Sect. 4.1.

For the lazy learning models, the MC method is the best with the lowest average ranking.
The CMC method, which is relatively similar to MC, also obtains a low rank very close to
MC’s. Only the FKMI method obtains a low enough rank to be compared with the MC and
CMC methods. The rest of the imputation methods is far from these lowest ranks with almost
two points of difference in the ranking. This situation is similar to the rule induction learning
methods’ family, in which we could find three outstanding methods with a difference of 1
between the third and fourth ones. On the other hand, Acuna and Rodriguez [1] analyzed
the benefits of KNNI for K-NN classifiers with respect to IM. In our experimentations, this
benefit is clear, but considering additional imputation methods it can be seen that CMC and
MC imputation methods are the best for 1-NN and 3-NN.

Again, the DNI and IM methods obtain high rankings. The DNI method is one of the
worst, with only the BPCA method performing worse. As with the approximate models, the
imputation methods produce a significant improvement in the accuracy of these classification
methods and they should always be considered prior to their application.

4.6 Summary of the group-based results

In the previous Sect. 4.3, 4.4, and 4.5, we have observed that when comparing the imputa-
tion methods to similar classifiers, more significant information about the best ones can be
extracted. In this section, we summarize these best imputation methods for each group, and
we analyze the similarity between them. For the Wilcoxon tables with their rankings from
Sects. 4.3 to 4.5, we have built Table 9 with the best three methods of each group. We have
stressed in bold those rankings equal to or below three.

From Table 9, we can observe some interesting aspects:

• The rule induction learning category and the approximate models share the EC and FKMI
methods in their top 3 best imputation algorithms.
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Table 9 Best imputation
methods for each group

The three best rankings per
column are stressed in bold

Ranking

Rule I. learning Approx. models Lazy L. models

EC 3 1 12

KMI 6 2 8

FKMI 1 3 3

SVMI 2 5 9

MC 5 8 1

CMC 7 4 2

• The lazy learning models only share the FKMI method in common with the rest. This
means that the best method obtained in the general analysis in Sect. 4.2 is the only one
present in all of the three groups as one of the best.

• The CMC and MC methods do not perform outstandingly in the rule induction learning
methods and approximate models. Thus, we can consider that such a simple imputation
strategy is only useful when we do not have to build any model from the data.

From these results, we can finally point out a set of imputation methods for each group
that represent the best option(s) for them, that is:

• When using a rule induction learning classification method, the FKMI, SVMI, and EC
imputation methods are the best choices.

• In case of the approximate models, the EC method is the best option with considerable
difference. KMI and FKMI can be good choices as well.

• The lazy learning models benefit most from simple approaches as MC and CMC methods.

Therefore, we can establish that the consideration of different imputation methods is required
in each case. Notice that the results for all of the three groups do not correspond to the global
result from the previous section. If no information about the type of classification method is
available, the FKMI imputation method is a good option no matter the classification method
chosen. The consideration of the EC algorithm is advisable in this case as well.

It is also important to remark that DNI and IM methods are never the best or among the
best imputation methods for any group. Only in case of the rule induction learning methods
does the IM imputation method obtain a relatively low rank (4th place) as we have pre-
viously mentioned. This fact indicates that the imputation methods usually outperform the
non-imputation strategies.

As a final remark, we can state that the results obtained in our study cohere with those
mentioned in Sect. 2.1 and particularly with Acuna and Rodriguez [1], Batista and Monard
[6], Farhangfar et al. [19], Feng 25 et al. [21], García-Laencina et al. [23], Twala [58], and
Li et al. [33], that is

• The imputation methods that fill in the MVs outperform the case deletion (IM method)
and the lack of imputation (DNI method).

• There is no universal imputation method that performs best for all classifiers.

Please note that we have tackled the second point by adding a categorization and a wide
benchmark bed, obtaining a group of recommended imputation methods for each family.
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5 Influence of the imputation on the instances and individual features

In the previous section, we have analyzed the relationship between the use of several impu-
tation methods with respect to the classifiers’ accuracy. However, it would be interesting to
relate the influence of the imputation methods to the performance obtained by the classifica-
tion method based on the information contained in the data set. In order to study this influence
and the benefits/drawbacks of using the different imputation methods, we have considered
the use of two different measures. They are described as follows:

• Wilson’s Noise Ratio: This measure proposed by Wilson [61] observes the noise in the
data set. For each instance of interest, the method looks for the K nearest neighbors (using
the Euclidean distance) and uses the class labels of such neighbors in order to classify
the considered instance. If the instance is not correctly classified, then the variable noise
is increased by one unit. Therefore, the final noise ratio will be

Wilson’s Noise = noise

# instances in the data set

In particular, we only compute the noise for the imputed instances considering K = 5.
• Mutual information: Mutual information (MI) is considered to be a good indicator of

relevance between two random variables [12]. Recently, the use of the MI measure in
feature selection has become well known and seen to be successful [31,30,43]. The use
of the MI measure for continuous attributes has been tackled by [30], allowing us to
compute the MI measure not only in nominal-valued data sets.
In our approach, we calculate the MI between each input attribute and the class attribute,
obtaining a set of values, one for each input attribute. In the next step, we compute the
ratio between each one of these values, considering the imputation of the data set with
one imputation method in respect of the not imputed data set. The average of these ratios
will show us if the imputation of the data set produces a gain in information:

Avg. MI Ratio =
∑

xi ∈X
M Iα(xi )+1
M I (xi )+1

|X |
where X is the set of input attributes, M Iα(i) represents the MI value of the i th attribute in
the imputed data set, and M I (i) is the MI value of the i th input attribute in the not imputed
data set. We have also applied the Laplace correction, summing 1 to both numerator and
denominator, as an MI value of zero is possible for some input attributes.
The calculation of M I (xi ) depends on the type of attribute xi . If the attribute xi is nominal,
the MI between xi and the class label Y is computed as follows:

M Inominal(xi ) = I (xi ; Y ) =
∑

z∈xi

∑

y∈Y

p(z, y) log2
p(z, y)

p(z)p(y)
.

On the other hand, if the attribute xi is numeric, we have used the Parzen window density
estimate as shown in [30] considering a Gaussian window function:

M Inumeric(xi ) = I (xi ; Y ) = H(Y ) − H(C |X);
where H(Y ) is the entropy of the class label

H(Y ) = −
∑

y∈Y

p(y) log2 p(y);
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and H(C |X) is the conditional entropy

H(Y |xi ) = −
∑

z∈xi

∑

y∈Y

p(z, y) log2 p(y|z).

Considering that each sample has the same probability, applying the Bayesian rule and
approximating p(y|z) by the Parzen window we get:

Ĥ(Y |xi ) = −
n∑

j=1

1

n

N∑

y=1

p̂(y|z j ) log2 p̂(y|z j )

where n is the number of instances in the data set, N is the total number of class labels,
and p̂(c|x) is

p̂(y|z) =
∑

i∈Ic
exp

(
− (z−zi )�

−1(z−zi )

2h2

)

∑N
k=1

∑
i∈Ik

exp
(
− (z−zi )�

−1(z−zi )

2h2

) .

In this case, Ic is the set of indices of the training examples belonging to class c, and �

is the covariance of the random variable (z − zi ).

Comparing with Wilson’s noise ratio, we can observe which imputation methods reduce
the impact of the MVs as a noise and which methods produce noise when imputing. In addi-
tion, the MI ratio allows us to relate the attributes to the imputation results. A value of the MI
ratio higher than 1 will indicate that the imputation is capable of relating more of the attributes
individually to the class labels. A value lower than 1 will indicate that the imputation method
is adversely affecting the relationship between the individual attributes and the class label.

In Table 10, we have summarized the Wilson’s noise ratio values for the 21 data sets con-
sidered in our study. We must point out that the results of Wilson’s noise ratio are related to
a given data set. Hence, the characteristics of the proper data appear to determine the values
of this measure.

In Table 11, we have summarized the average MI ratios for the 21 data sets. In the results,
we can observe that the average ratios are usually close to 1; that is, the use of imputation
methods appears to harm the relationship between the class label and the input attribute little
or not at all, even improving it in some cases. However, the mutual information considers
only one attribute at a time, and therefore, the relationships between the input attributes are
ignored. The imputation methods estimate the MVs using such relationships and can afford
improvements in the performance of the classifiers. Hence, the highest values of average MI
ratios could be related to those methods which can obtain better estimates for the MVs and
maintaining the relationship degree between the class labels and the isolated input attributes.
It is interesting to note that when analyzing the MI ratio, the values do not appear to be as
highly data dependant as Wilson’s noise ratio, as the values for all the data sets are more or
less close to each other.

If we count the methods with the lowest Wilson’s noise ratios in each data set in Table 10,
we find that the CMC method is first, with 12 times the lowest one, and the EC method is
second with 9 times the lowest one. If we count the methods with the highest mutual infor-
mation ratio in each data set in Table 11, the EC method has the highest ratio for 7 data sets
and is therefore the first one. The CMC method has the highest ratio for 5 data sets and is
the second one in this case. Considering the analysis of the previous Sect. 4.6 with these two
methods:
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Table 10 Wilson’s noise ratio values

Data set Imp. % Wilson’s Data set Imp. % Wilson’s Data set Imp. % Wilson’s
method Noise ratio method Noise ratio method Noise ratio

CLE MC 50.0000 HOV MC 7.9208 HEP MC 17.3333

CMC 50.0000 CMC 5.4455 CMC 16.0000

KNNI 50.0000 KNNI 7.4257 KNNI 20.0000

WKNNI 50.0000 WKNNI 7.4257 WKNNI 20.0000

KMI 50.0000 KMI 7.4257 KMI 20.0000

FKMI 50.0000 FKMI 7.9208 FKMI 17.3333

SVMI 50.0000 SVMI 6.9307 SVMI 17.3333

EM 66.6667 EM 11.8812 EM 22.6667

SVDI 66.6667 SVDI 8.9109 SVDI 21.3333

BPCA 50.0000 BPCA 6.9307 BPCA 21.3333

LLSI 50.0000 LLSI 4.9505 LLSI 18.6667

EC 33.3333 EC 7.4257 EC 16.0000

WIS MC 18.7500 WAT MC 31.5068 MUS MC 0.0000

CMC 12.5000 CMC 21.2329 CMC 0.0000

KNNI 12.5000 KNNI 27.3973 KNNI 0.0000

WKNNI 12.5000 WKNNI 27.3973 WKNNI 0.0000

KMI 12.5000 KMI 27.3973 KMI 0.0000

FKMI 12.5000 FKMI 31.5068 FKMI 0.0000

SVMI 12.5000 SVMI 23.9726 SVMI 0.0000

EM 12.5000 EM 46.5753 EM 0.0000

SVDI 12.5000 SVDI 49.3151 SVDI 0.0000

BPCA 12.5000 BPCA 26.0274 BPCA 0.0000

LLSI 12.5000 LLSI 25.3425 LLSI 0.0000

EC 12.5000 EC 22.6027 EC 0.0000

CRX MC 18.9189 SPO MC 27.2727 POS MC 33.3333

CMC 18.9189 CMC 22.7273 CMC 33.3333

KNNI 21.6216 KNNI 27.2727 KNNI 33.3333

WKNNI 21.6216 WKNNI 27.2727 WKNNI 33.3333

KMI 21.6216 KMI 27.2727 KMI 33.3333

FKMI 18.9189 FKMI 27.2727 FKMI 33.3333

SVMI 13.5135 SVMI 27.2727 SVMI 33.3333

EM 32.4324 EM 36.3636 EM 33.3333

SVDI 27.0270 SVDI 31.8182 SVDI 33.3333

BPCA 21.6216 BPCA 27.2727 BPCA 33.3333

LLSI 18.9189 LLSI 27.2727 LLSI 33.3333

EC 13.5135 EC 27.2727 EC 33.3333

BRE MC 55.5556 BAN MC 25.4753 ECH MC 40.0000

CMC 55.5556 CMC 24.3346 CMC 40.0000

KNNI 55.5556 KNNI 23.1939 KNNI 46.6667

WKNNI 55.5556 WKNNI 22.8137 WKNNI 44.4444

KMI 55.5556 KMI 25.4753 KMI 46.6667

FKMI 55.5556 FKMI 24.3346 FKMI 40.0000
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Table 10 continued

Data set Imp. % Wilson’s Data set Imp. % Wilson’s Data set Imp. % Wilson’s
method Noise ratio method Noise ratio method Noise ratio

SVMI 55.5556 SVMI 21.2928 SVMI 44.4444

EM 44.4444 EM 26.2357 EM 51.1111

SVDI 44.4444 SVDI 22.4335 SVDI 48.8889

BPCA 66.6667 BPCA 23.9544 BPCA 44.4444

LLSI 66.6667 LLSI 24.7148 LLSI 37.7778

EC 66.6667 EC 23.5741 EC 48.8889

AUT MC 45.6522 HOC MC 19.3906 SOY MC 2.4390

CMC 41.3043 CMC 10.2493 CMC 2.4390

KNNI 41.3043 KNNI 20.2216 KNNI 2.4390

WKNNI 41.3043 WKNNI 19.1136 WKNNI 2.4390

KMI 41.3043 KMI 21.8837 KMI 2.4390

FKMI 45.6522 FKMI 20.4986 FKMI 2.4390

SVMI 43.4783 SVMI 20.2216 SVMI 2.4390

EM 58.6957 EM 21.0526 EM 2.4390

SVDI 52.1739 SVDI 21.0526 SVDI 7.3171

BPCA 43.4783 BPCA 19.3906 BPCA 7.3171

LLSI 45.6522 LLSI 20.4986 LLSI 2.4390

EC 30.4348 EC 20.7756 EC 2.4390

PRT MC 71.0145 AUD MC 38.7387 MAM MC 21.3740

CMC 60.8696 CMC 32.8829 CMC 13.7405

KNNI 69.5652 KNNI 38.7387 KNNI 25.9542

WKNNI 69.5652 WKNNI 38.7387 WKNNI 25.9542

KMI 71.0145 KMI 38.7387 KMI 24.4275

FKMI 71.0145 FKMI 38.7387 FKMI 20.6107

SVMI 68.1159 SVMI 37.8378 SVMI 16.7939

EM 88.4058 EM 53.6036 EM 20.6107

SVDI 91.7874 SVDI 46.3964 SVDI 27.4809

BPCA 71.4976 BPCA 40.5405 BPCA 25.1908

LLSI 69.5652 LLSI 36.9369 LLSI 26.7176

EC 66.1836 EC 37.8378 EC 18.3206

DER MC 0.0000 LUN MC 80.0000 OZO MC 4.8035

CMC 0.0000 CMC 80.0000 CMC 3.6390

KNNI 0.0000 KNNI 80.0000 KNNI 4.3668

WKNNI 0.0000 WKNNI 80.0000 WKNNI 4.5124

KMI 0.0000 KMI 80.0000 KMI 4.9491

FKMI 0.0000 FKMI 80.0000 FKMI 4.0757

SVMI 0.0000 SVMI 80.0000 SVMI 3.7846

EM 0.0000 EM 20.0000 EM 4.8035

SVDI 0.0000 SVDI 40.0000 SVDI 4.8035

BPCA 0.0000 BPCA 80.0000 BPCA 4.3668

LLSI 0.0000 LLSI 80.0000 LLSI 4.2213

EC 0.0000 EC 80.0000 EC 4.8035

The best ranking per data set is stressed in bold
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Table 11 Average mutual information ratio

Data set Imp. Avg. MI Data set Imp. Avg. MI Data set Imp. Avg. MI
method ratio method ratio method ratio

CLE MC 0.998195 HOV MC 0.961834 HEP MC 0.963765

CMC 0.998585 CMC 1.105778 CMC 0.990694

KNNI 0.998755 KNNI 0.965069 KNNI 0.978564

WKNNI 0.998795 WKNNI 0.965069 WKNNI 0.978343

KMI 0.998798 KMI 0.961525 KMI 0.980094

FKMI 0.998889 FKMI 0.961834 FKMI 0.963476

SVMI 0.998365 SVMI 0.908067 SVMI 1.006819

EM 0.998152 EM 0.891668 EM 0.974433

SVDI 0.997152 SVDI 0.850361 SVDI 0.967673

BPCA 0.998701 BPCA 1.091675 BPCA 0.994420

LLSI 0.998882 LLSI 1.122904 LLSI 0.995464

EC 1.000148 EC 1.007843 EC 1.024019

WIS MC 0.999004 WAT MC 0.959488 MUS MC 1.018382

CMC 0.999861 CMC 0.967967 CMC 1.018382

KNNI 0.999205 KNNI 0.961601 KNNI 0.981261

WKNNI 0.999205 WKNNI 0.961574 WKNNI 0.981261

KMI 0.999322 KMI 0.961361 KMI 1.018382

FKMI 0.998923 FKMI 0.961590 FKMI 1.018382

SVMI 0.999412 SVMI 0.967356 SVMI 0.981261

EM 0.990030 EM 0.933846 EM 1.142177

SVDI 0.987066 SVDI 0.933040 SVDI 1.137152

BPCA 0.998951 BPCA 0.964255 BPCA 0.987472

LLSI 0.999580 LLSI 0.964063 LLSI 0.977275

EC 1.000030 EC 1.027369 EC 1.017366

CRX MC 1.000883 SPO MC 0.997675 POS MC 1.012293

CMC 1.000966 CMC 1.022247 CMC 1.012293

KNNI 0.998823 KNNI 0.999041 KNNI 1.012293

WKNNI 0.998870 WKNNI 0.999041 WKNNI 1.012293

KMI 1.001760 KMI 0.998464 KMI 1.012293

FKMI 1.000637 FKMI 0.997675 FKMI 1.012293

SVMI 0.981878 SVMI 1.015835 SVMI 1.012293

EM 0.985609 EM 0.982325 EM 1.012293

SVDI 0.976398 SVDI 0.979187 SVDI 1.014698

BPCA 0.999934 BPCA 1.006236 BPCA 1.012293

LLSI 1.001594 LLSI 1.004821 LLSI 1.018007

EC 1.008718 EC 1.018620 EC 0.997034

BRE MC 0.998709 BAN MC 1.012922 ECH MC 0.981673

CMC 0.998709 CMC 1.070857 CMC 0.995886

KNNI 0.992184 KNNI 0.940369 KNNI 0.997912

WKNNI 0.992184 WKNNI 0.940469 WKNNI 0.998134

KMI 0.998709 KMI 1.016101 KMI 0.967169

FKMI 0.998709 FKMI 1.020989 FKMI 0.983606
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Table 11 continued

Data set Imp. Avg. MI Data set Imp. Avg. MI Data set Imp. Avg. MI
method ratio method ratio method ratio

SVMI 0.998709 SVMI 1.542536 SVMI 0.987678

EM 1.013758 EM 1.350315 EM 0.967861

SVDI 0.999089 SVDI 1.365572 SVDI 0.935855

BPCA 1.000201 BPCA 1.010596 BPCA 0.972327

LLSI 1.000201 LLSI 1.015033 LLSI 0.988591

EC 1.001143 EC 1.102328 EC 0.970029

AUT MC 0.985610 HOC MC 0.848649 SOY MC 1.056652

CMC 0.991113 CMC 2.039992 CMC 1.123636

KNNI 0.986239 KNNI 0.834734 KNNI 1.115818

WKNNI 0.985953 WKNNI 0.833982 WKNNI 1.115818

KMI 0.985602 KMI 0.821936 KMI 1.056652

FKMI 0.984694 FKMI 0.849141 FKMI 1.056652

SVMI 0.991850 SVMI 0.843456 SVMI 1.772589

EM 0.970557 EM 0.775773 EM 1.099286

SVDI 0.968938 SVDI 0.750930 SVDI 1.065865

BPCA 0.986631 BPCA 0.964587 BPCA 1.121603

LLSI 0.985362 LLSI 0.926068 LLSI 1.159610

EC 1.007652 EC 0.911543 EC 1.222631

PRT MC 0.949896 AUD MC 0.990711 MAM MC 0.974436

CMC 1.120006 CMC 1.032162 CMC 1.029154

KNNI 0.976351 KNNI 0.993246 KNNI 0.965926

WKNNI 0.976351 WKNNI 0.993246 WKNNI 0.965926

KMI 0.949896 KMI 1.000235 KMI 0.966885

FKMI 0.949896 FKMI 0.990711 FKMI 0.974228

SVMI 1.038152 SVMI 1.007958 SVMI 1.272993

EM 0.461600 EM 1.129168 EM 0.980865

SVDI 0.485682 SVDI 1.065091 SVDI 1.052790

BPCA 0.987598 BPCA 1.156676 BPCA 0.978209

LLSI 1.016230 LLSI 1.061197 LLSI 0.994349

EC 1.053185 EC 1.209608 EC 1.269505

DER MC 1.000581 LUN MC 0.996176 OZO MC 0.982873

CMC 1.002406 CMC 1.008333 CMC 0.989156

KNNI 0.999734 KNNI 0.996176 KNNI 0.982759

WKNNI 0.999734 WKNNI 0.996176 WKNNI 0.982721

KMI 1.000581 KMI 0.996176 KMI 0.982495

FKMI 1.000581 FKMI 0.996176 FKMI 0.982951

SVMI 1.001566 SVMI 1.006028 SVMI 0.988297

EM 1.000016 EM 1.067844 EM 0.979977

SVDI 0.999691 SVDI 1.076334 SVDI 0.979958

BPCA 0.999633 BPCA 0.996447 BPCA 0.983318

LLSI 0.999170 LLSI 1.007612 LLSI 0.983508

EC 1.000539 EC 1.002385 EC 0.944747

The best ranking per data set is stressed in bold
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Table 12 Average rankings for
Wilson’s noise ratio and Mutual
information ratio

The best methods are stressed in
bold

Avg. rankings

Wilson’s Noise ratio Mutual information

MC 6.98 (8) 8.05 (11)

CMC 3.79 (1) 3.60 (1)

KNNI 6.43 (7) 7.69 (8)

WKNNI 6.17 (5) 7.79 (9)

KMI 7.38 (10) 7.60 (6)

FKMI 6.36 (6) 7.62 (7)

SVMI 4.67 (2) 4.90 (4)

EM 8.93 (12) 7.90 (10)

SVDI 8.86 (11) 8.48 (12)

BPCA 7.17 (9) 5.79 (5)

LLSI 5.98 (4) 4.74 (3)

EC 5.31 (3) 3.86 (2)

• The EC method is the best method obtained for the approximative models and the third
best for the rule induction learning methods. In the latter case, the average ranking of EC
is 4.89, very close to the average ranking 4.44 and 4.56 of FKMI and SVMI, respectively.

• The CMC method is the second best method for the lazy learning models and very close
to the first one (MC) with an average ranking of 3.63.

Next, we rank all the imputation methods according to the values presented in Tables 10
and 11. In order to do so, we have calculated the average rankings of each imputation method
for all the data sets, for both Wilson’s noise ratio and the mutual information ratio. The method
to compute this average ranking is the same as that presented in Sect. 4.2. In Table 12, we have
gathered together these average rankings, as well as their relative position in parentheses.

From the average rankings shown in Table 12, we can observe that the CMC method is
the first for both rankings. The EC method is the second for the mutual information ratio and
the third one for Wilson’s noise ratio. The SVMI method obtains the second lowest ranking
for Wilson’s noise ratio and the fourth lowest ranking for the MI ratio. The SVMI method
is the second best method for the rule induction learning algorithms with average rankings
close to EC.

With the analysis performed, we have quantified the noise induced by the imputation
methods and how the relationship between each input attribute and the class is maintained.
We have discovered that the CMC and EC methods show good behavior for these two mea-
sures, and they are two methods that provide good results for an important range of learning
methods, as we have previously analyzed. In short, these two approaches introduce less noise
and maintain the mutual information better. They can provide us with a first characterization
of imputation methods and a first step for providing us with tools for analyzing the imputation
method’s behavior.

6 Lessons learned

This study is a general comparison of classification methods not previously considered in
MV studies, arranged into three different groups, analyzing the best imputation choice by
means of non-parametric statistical test. The results obtained agree with the previous studies:
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• The imputation methods that fill in the MVs outperform the case deletion (IM method)
and the lack of imputation (DNI method).

• There is no universal imputation method that performs best for all classifiers.

From the results seen in Sect. 4.2, the use of the FKMI and EC imputation methods is the
best choice under general assumptions but showing little advantage with respect to the rest
of imputation methods analyzed.

According to the results in Sect. 4.6, the particular analysis of the MVs treatment methods
conditioned to the classification methods’ groups seems necessary. Thus, we can stress the
recommended imputation algorithms to be used based on the classification method’s type, as
in case of the FKMI imputation method for the rule induction learning group, the EC method
for the approximate models and the MC method for the lazy learning models. We can confirm
the positive effect of the imputation methods and the classifiers’ behavior and the presence
of more suitable imputation methods for some particular classifier categories than others.

In Sect. 5 we have analyzed the influence of the imputation methods in the data with
respect to two measures. These two measures are the Wilson’s noise ratio and the average
mutual information difference. The first one quantifies the noise induced by the imputation
method in the instances which contain MVs. The second one examines the increment or
decrement in the relationship of the isolated input attributes with respect to the class label.
We have observed that the CMC and EC methods are the ones which introduce less noise
and maintain the mutual information better.
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