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a b s t r a c t

Image registration (IR) aims to find a transformation between two or more images acquired under differ-

ent conditions. This problem has been established as a very active research field in computer vision dur-

ing the last few decades. IR has been applied to a high number of real-world problems ranging from

remote sensing to medical imaging, artificial vision, and computer-aided design. Recently, there is an

increasing interest on the application of the evolutionary computation paradigm to this field in order

to solve the ever recurrent drawbacks of traditional image registration methods as the iterated closest

point algorithm. Specially, evolutionary image registration methods have demonstrated their ability as

robust approaches to the problem. Unlike classical IR methods, they show the advantage of not requiring

a good initial estimation of the image alignment to proceed. In this contribution, we aim to review the

state-of-the-art image registration methods that lay their foundations on evolutionary computation.

Moreover, we aim to analyze the performance of some of the latter approaches when tackle a challenging

real-world application in forensic anthropology, the 3D modeling of forensic objects.

Ó 2011 Elsevier Inc. All rights reserved.

1. Introduction

Image registration (IR) [1–3] is a fundamental task in computer

vision (CV) used to finding either a spatial transformation (e.g,

rotation, translation, etc.) or a correspondence (matching of similar

image features) among two or more images acquired under differ-

ent conditions: at different times, using different sensors, from

different viewpoints, or a combination of them. IR aims to achieve

the best possible overlapping transforming those independent

images into a common one. Over the years, IR has been applied

to tackle many real-world problems ranging from remote sensing

to medical imaging, artificial vision, and computer-aided design

(CAD). Likewise, different techniques facing the IR problem have

been studied resulting in a large body of research. Several recent

contributions reviewing the state of the art on IR methods can be

found in [1–5].

In a nutshell, IR involves finding the optimal transformation

achieving the best fitting between typically two images, usually

called scene and model. They both are related by the said transfor-

mation and the degree of resemblance between them is measured

by a similarity metric. Such transformation estimation is usually

formulated as an optimization problem solved by an iterative pro-

cedure in order to properly explore the search space of candidate

solutions to the problem. The optimization process applied by

traditional IR methods is highly influenced by image noise, image

discretization, and orders of magnitude in the scale of the IR trans-

formation parameters, among other phenomena. Specially, that is

the case of the approaches based on the classical iterative closest

point (ICP) algorithm [6,7], which are likely to provide incorrect

registration transformation estimations. This is due to the fact that

those methods are usually prone to be trapped in local minima

[8–11] since they assume a rough prealignment of the images

typically provided by the user.

After a couple of decades, evolutionary computation (EC) [12]

has demonstrated its ability to deal with complex real-world prob-

lems in CV and image processing. As an example, several special is-

sues on the topic have been published in international journals in

the last few years [13–15]. In particular, evolutionary algorithms

(EAs) [12,16] have been successfully applied to tackle IR problems

without requiring a good initial estimation of the image alignment.

That advantage is mainly motivated by the global optimization

nature of evolutionary approaches, which allows them to perform

a robust search in complex and ill-defined search spaces.
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The first attempts to face the IR problem using EC can be found

in the eighties [17]. Since then, evolutionary IR (EIR) has become a

very active area and several well-known EAs have been considered

to tackle the IR optimization process, causing an outstanding

interest [18–28]. Nevertheless, those EIR methods have not been

covered by any of the IR surveys existing in the specialized litera-

ture. The aim of the current contribution is to bridge that gap in a

two-fold manner. On the one hand, by reviewing the extensive

literature in EIR. On the other hand, by developing an experimental

study on the performance of 12 EIR methods when tackling the 3D

modeling of some real-world forensic objects digitized by a laser

range scanner.

The structure of this contribution is as follows. Section 2

describes the IR problem. Next, Section 3 describes the key

concepts of he EC paradigm, it presents the first EIR methods and

it reviews the state-of-the-art EIR methods. Section 4 is devoted

to a deep experimental study developed on the said real-world

IR application. Finally, some conclusions are drawn in Section 5.

2. Image registration

There is not a universal design for a hypothetical IR method that

could be applicable to every real-world application [3]. However,

IR methods consist of the following four components:

� Two input Images named as scene Is ¼ f~p1;~p2; . . . ;~png andmodel

Im ¼ ~p0
1;~p

0
2; . . . ;~p0

m

� 	

, with ~pi and ~p0
j being image points.

� A Registration transformation f, relating the two images. Typ-

ically, it is a parametric function.

� A Similarity metric function F. It aims to measure a qualitative

value of closeness or degree of fitting between the transformed

scene image, noted by f0(Is), and the model image.

� An Optimizer. It is a method that seeks the optimal transforma-

tion f inside the defined solution search space.

Likewise, an iterative process is often followed (see Fig. 1). It

usually finishes when convergence is achieved, i.e., when the sim-

ilarity metric is bellow a given tolerance threshold. In this work,

we focused our attention on the optimizer component which is

of crucial importance in the success of any IR method. In particular,

two search approaches for optimization have been considered in

the IR literature [3]:

� On the one hand, we find the matching-based approach, where

the optimization problem is intended to look for a set of corre-

spondences of pairs of similar image features. Then, the regis-

tration transformation is derived from that set. This is the

case of the well-known ICP method [6,7], whose main drawback

is its sensitiveness to the initial transformation [8–11]. Thus,

ICP usually gets stuck in local optima.

� On the other hand, we find the parameter-based IR approach

which directly explores the values in the range of each transfor-

mation parameters.

A detailed description of the IR framework is out of the scope of

this contribution. We refer the interested reader to [1–3]. Likewise,

the formulation of the IR problem is dependent on the particular

environment it is involved (remote sensing, medical imaging,

CAD, etc.). Thus, in order to provide a more specific description

of the problem, we focused our attention on the particular applica-

tion we consider in our experiments: the IR of range images for 3D

modeling [5,29–31].

Range scanners are able to capture 3D images, named range

images, of the surface of the sensed object. Every range image is ac-

quired from a particular viewpoint and it models the geometry of

the scanned object partially. Thus, it is mandatory to consider a

reconstruction technique to perform the accurate integration of

the images in order to achieve a complete and reliable model of

the physical object. This framework is usually called 3D modeling

(see Fig. 2) and it is based on applying IR techniques to achieve the

integration of the range images [5,29–31].

The 3D model reconstruction procedure involves several pair-

wise alignments of two adjacent range images in order to obtain

the final 3Dmodel of the physical object. Therefore, every pair-wise

IR method aims to find the Euclidean motion that brings the scene

view (Is) into the best possible alignment with the model view (Im).

It is usually considered an Euclidean motion based on a 3D rigid

transformation (f) determined by seven real-coded parameters, that

is: a rotation R = (h,Axisx,Axisy,Axisz) and a translation~t ¼ ðtx; ty; tzÞ,

with h and Axis
!

being the angle and axis of rotation, respectively.

Then, the transformed points of the scene view are denoted by

f ð~piÞ ¼ Rð~piÞ þ~t; i ¼ 1 � � �NIs ð1Þ

Hence, the pair-wise IR task can be formulated as an optimization

problem developed to search for the Euclidean transformation f⁄

achieving the best alignment of both images according to the con-

sidered similarity metric F:

f � ¼ argmin
f

FðIs; Im; f Þ s:t: : f �ðIsÞ ffi Im ð2Þ

The median square error (MedSE) is usually considered the similar-

ity metric in 3D modeling [28,30]:

FðIs; Im; f Þ ¼ MedSEðdiÞ; 8i 2 f1; . . . ;NIsg ð3Þ

where MedSE() corresponds to the median di value. We define

di ¼ kf ð~piÞ ÿ~qclk
2 as the squared Euclidean distance between the

transformed scene point, f ð~piÞ, and its corresponding closest point,
~qcl, in the model view Im.

In order to speed up the computation of the closest point qcl of

Im, indexing structures as kd-trees [32] or the grid closest point

(GCP) transform proposed in [33] are often used. We will consider

the GCP scheme in the experimental study (Section 4). In addition,

we will follow a feature-based IR approach [3]. Such approaches

consider a feature extraction procedure as a preprocessing step,

previous to the application of the IR method. They are based on

the selection of a small subset of truly representative characteris-

tics of the images to be registered. In previous works [28,34–36],

it has been demonstrated that using such IR approach offers a fast

and a reliable IR result when range images are considered. InFig. 1. The IR optimization process.
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particular, we consider crest-lines as salient features [37,38] from

3D meshes of range images [39] in our feature-based IR approach.

3. Evolutionary IR methods

This section presents the development of the EIR research field

in the last decades. To do so, Section 3.1 provides some basics on

EC. Then, Section 3.2 is devoted to the description of the first EIR

methods and their most important strengths and pitfalls. Finally,

the state-of-the-art EIR methods are presented in Section 3.3.

3.1. Evolutionary computation

An extensive survey on every aspect related to the EC paradigm

is out of the scope of this contribution. Interested readers will find

a plenty of references reviewing this field [12,40–42]. Neverthe-

less, we would like to briefly describe the key concepts of EC in or-

der to achieve a better understanding of the basis of EIR.

Evolutionary computation (EC) [12] uses computational models

of evolutionary processes to evolve populations of solutions as

key elements in the design and implementation of computer-based

problem solving systems. EC is thus included into a wider family of

advanced heuristic search and optimization algorithms called

metaheuristics [43,44]. EC approaches constitute a very interesting

choice since they are able to achieve good quality outcomes when

global solutions of hard problems cannot be found with a reason-

able amount of computational effort, for instance.

There is a variety of EC models that have been proposed and

studied, which are referred as EAs [12]. Among them we refer to

four well-defined EAs which have served as the basis for much of

the activity in the field: genetic algorithms (GAs) [45,46], evolution

strategies (ES) [47], genetic programming (GP) [48], and evolution-

ary programming (EP) [49].

In particular, GAs are probably the most used EAs in the litera-

ture to face real-world optimization problems. Some other EAs

have been proposed in the last few years improving the state of

the art on this field by adopting more suitable optimization strat-

egies: CHC algorithm1 [50,51], differential evolution (DE) [52,53],

memetic algorithms (MAs) [54], and scatter search (SS) [55], among

others [42]. Moreover, other EC-based optimization algorithms fol-

lowing different evolutionary models have also been recently pro-

posed such as estimation distribution algorithms (EDAs) [56] and

particle swarm optimization (PSO) [57,58].

3.2. First evolutionary IR methods

The application of EAs to the IR optimization process has caused

an outstanding interest in the last few decades. Unlike traditional

ICP-based IR approaches, evolutionary ones need neither rough

nor near-optimal prealignment of the images to proceed. Thus,

they have become a more robust alternative to tackle complex IR

problems. Fig. 3 depicts the evolution of the interest of the scien-

tific community in this sort of approaches.2

Thanks to the global optimization nature of EAs, they aim to

solve the drawbacks described by the ICP-based schemes (see Sec-

tion 2). The first attempts to solve IR using EC approaches can be

found in the eighties. The size of data as well as the number of

parameters that are looked for prevent from an exhaustive search

of the solutions. An approach based on a GA was proposed in 1984

for the 2D case and applied to angiography images [17]. Later, in

1989, Mandava et al. [59] used a 64-bit structure to represent a

possible solution when trying to find the eight parameters of a

bilinear transformation through a binary GA. Brunnström and

Stoddart [60] proposed a new method based on the manual pre-

alignment of range images followed by an automatic IR process

using a novel GA that searches for solutions following the match-

ing-based approach. Tsang [61] used 48-bit chromosomes to en-

code three test points as a base for the estimation of the 2D

affine registration function by means of a binary-coded GA. In

the case of Yamany et al. [33] and Chalermwat et al. [62], the same

binary coding is found when dealing with 3D and 2D rigid transfor-

mations, respectively. Yamany et al. enforced a range of ±31° over

the angles of rotation and ±127 units in displacement by defining a

42-bit chromosome with eight bits for each translation parameter

Fig. 2. The 3D modeling procedure of forensic objects.

1 The CHC acronym stands for: Cross generational elitist selection, Heterogeneous

recombination, Cataclysmic mutation.

2 The graphs in Fig. 3 were directly obtained from Thomson Reuter’s Web of

Science using the query (Title OR Topic) =‘‘(image AND (registration OR alignment OR

matching) AND (evolution � OR swarm OR chc OR neural OR scatter OR annealing OR tabu

OR genetic))’’.
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and six bits for each rotation angle. Meanwhile, Chalermwat et al.

used twelve bits for the coding of the 2D rotation parameter to get

a search scope of ±20.48°, therefore allowing the use of a precision

factor for the discretization of the continuous rotation angle inter-

val. Other ten bits stored each of the two translation parameters

(±512 pixels).

All the latter approaches showed several pitfalls from an EC per-

spective. They make use of the basic binary coding to solve inher-

ently real coded problems, when it is well known that binary

coding suffers from discretization flaws (as problem solutions of

search space never visited) and requires transformations to real

values for each solution evaluation. Moreover, the kind of GA con-

sidered is usually based on the old-fashioned original proposal by

Holland [45,63], also named canonical GA (cGA). In this way, a

selection strategy based on fitness-proportionate selection proba-

bility assignment and the stochastic sampling with replacement,

as well as the classical one-point crossover and simple bit flipping

mutation, are used. On the one hand, it is well known that such

selection strategy causes a strong selective pressure, thus having

a high risk of premature convergence of the algorithm. On the

other hand, it has also been demonstrated that it is difficult for

the single-point crossover to create useful descendants as it is

excessively disruptive with respect to the building blocks [45].

Hence, the consideration of that old genetic framework is a clear

pitfall affecting the latter group of proposals.

3.3. State-of-the-art evolutionary IR methods

In the last two decades, an important number of EC and meta-

heuristic-based IR methods have been proposed to overcome the

pitfalls described in the previous section. Table 1 summarizes the

state of the art on EC and metaheuristic-based IR methods pro-

posed to date. First column identifies both the reference and the

year of publication of the algorithm. Second column refers to the

coding scheme of solutions: R (real coding), B (binary coding),

and I (integer coding). The third column concerns to the IR ap-

proach followed: P stands for a parameter-based approach while

M stands for a matching-based approach. The optimization

technique considered is shown in the fourth column. The family

such technique belongs to, either a metaheuristic (MH) or an

evolutionary (EA) approach, is also included in brackets in the

fourth column. The main application, image modality, and com-

puter architecture are reported in columns five, six, and seven,

respectively.

Next, we analyze in deep and chronologically those EIR

methods based on the use of more sophisticated evolutionary

approaches solving the said drawbacks. All of them will be

considered in our later experimental study. In our modest opinion,

they are the outstanding EIR methods proposed in the last few

years.

3.3.1. He and Narayana’s GA-based proposal

This IR method [19] is a slight improvement of the previously

reviewed Yamany et al.’s approach [33]. It considers a real coding

scheme that makes use of arithmetic crossover and uniform

mutation operators within an elitist generational model including

a restart mechanism. This EIR method deals with rigid transforma-

tions following a two-step technique. First, a coarse parameter

estimation is faced using a real-coded GA. Then, the obtained pre-

liminary solution is refined by means of a local search procedure

based on the dividing rectangle method. In the coarse resolution,

the ranges of the parameters were set to: ±20 voxels along x and

y directions, and ±40 voxels along z direction for the translation,

and rotations of ±10° around x and y axes, and ±20° around z axis.

However, the setting of the parameters range as well as the use of a

simple rigid transformation between both images may be a weak

point when trying to apply this method to some real-world

environments.

3.3.2. Chow et al.’s GA-based proposal

The authors proposed the same generational and proportionate-

fitness models for population reproduction than the latter method,

but they introduced the use of a crossover operator that randomly

selects the number of genes to be swapped [21]. The value to be

accumulated for a mutated gene is generated randomly within a

constant range for the rotation genes and dynamically computed

for the translation ones according to the fitness value of the chro-

mosome. They also make use of a GA with more suitable compo-

nents to the current EC framework such as a real coding scheme

and a sophisticated restart mechanism (named ‘‘dynamic bound-

ary’’). In spite of these improvements, there are some drawbacks

in terms of accuracy, due to the fact that the authors work with

a smaller, randomly selected data set from scene images with a

huge amount of data. Besides, although the algorithm aims to get

a quick registration estimation with the latter procedure, the effi-

ciency could be reduced since it needs to perform a sort operation

for each evaluation of the fitness function. As many of the men-

tioned proposals, it also has the limitation of only considering a ri-

gid transformation (translation and rotation). Finally, the restart

scheme assumes that, prior to its application, the population will

fall in a search space region that includes or is near to the global

optimum, which could be not always the case.

3.3.3. Wachowiak et al.’s PSO-based proposal

The authors contributed with a broad study on the performance

of particle swarm optimization (PSO) [57,58] algorithms for solving

the IR problem in biomedical applications [22]. In particular, they

consider registering single slices (2D images) of 3D volumes to

whole 3D volumes of medical images. Unlike typical EAs exploiting

the competitive characteristics of biological evolution (e.g., sur-

vival of the fittest), PSO exploits cooperative and social aspects,

Fig. 3. Scientific production (left) and citations (right) in EIR. Query date: September, 2010.
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such as fish schooling, birds flocking, and insects swarming [73,74].

However, both evolutionary and PSO approaches are considered

population-based schemes. In particular, PSO algorithms start with

a random population called swarm of individuals or particles. After

every iteration, they change their location in the search space

guided by a velocity vector. The authors addressed the IR problem

from the parameter-based approach, considering a rigid transfor-

mation and the mutual information (MI) [75] as similarity metric

to be maximized. The variant called PSO7 is the one achieving

the best performance. It refers to a basic PSO the velocity vector

update as follows:

miðtÞ ¼ v½miðt ÿ 1Þ þu1l1ðpi ÿ xiðt ÿ 1ÞÞ þu2l2ðg ÿ xiðt ÿ 1ÞÞ�

ð4Þ

where the optimization parameters take values j = 1.0, u1 = 2.1,

u2 = 1.3, and the constriction coefficient v = 0.7298.

Finally, the performance of the method depends on the initial

orientation of the images to be registered. An adequate initializa-

tion must be provided by the user.

3.3.4. Silva et al.’s GA-based proposal

This method [23,32] addressed the pair-wise IR problem of

range images acquired by 3D laser range scanners. The authors

tackled the problem from the parameter-based approach for rigid

transformations. The proposed approach is inspired in the stea-

dy-state evolutionary scheme of GAs (90% of the worst solutions

are replaced instead of the entire population as done in genera-

tional schemes) [76]. Tournament selection, uniform crossover

and random selection mutation operators are considered. More-

over, a hill-climbing algorithm is added to the GA in order to

achieve more accurate results. This hybrid GA performs two

well-defined pair-wise IR steps:

� Firstly, a coarse prealignment IR stage is accomplished by min-

imizing an objective function that makes use of a robust met-

ric (initially proposed for image segmentation problems) based

on Euclidean distances [77]. This stage takes 90% of the total

computation time of the whole method, i.e. first and second

stages.

� Next, a final refinement stage is performed during the remain-

ing 10% of runtime. The previous coarser objective function is

replaced by a new one that should be maximized. That func-

tion is called surface inter-penetration measure (SIM) and is

given by:

SIMðA;BÞ ¼
jCðA;BÞj

jAj
; ð5Þ

CðA;BÞ ¼ fp 2 A j½ðqi ÿ cÞnc�½ðqj ÿ cÞnc� < 0g ð6Þ

where A and B are the scene and the model images, respectively;

qi, qj are two of the Np = 25 closest scene points around the con-

sidered p 2 A scene point; c is the closest model point; and nc is

its normal vector.

The SIM metric reveals that more discriminating and accurate

results can be obtained compared to those results achieved by

metrics based on the Euclidean distances. However, the refinement

stage using the SIM assumes that the results achieved during the

prealignment stage will be really close to the global IR solution

and that is not always the case. Indeed, the range of parameter val-

ues along the refinement stage is only ±5° for rotation and ±3 for

translation from the optimal result achieved during the prealign-

ment. Furthermore, another important drawback of this metric is

the high computation time needed to evaluate it.

The authors used and extended this hybrid GA method to deal

with the multiview IR problem, increasing the dimensionality of

the solutions [78]. They used several range datasets obtained from

the SAMPL public-access database,3 each one considering adjacent

range images acquired every 20 rotation degrees of the turn table.

The higher the degree of rotation, the lower the amount of overlap-

ping existing between the images.

3.3.5. Lomonosov et al.’s GA-based proposal

Authors proposed a newmethod for the pair-wise IR problem of

range images [24]. They considered the parameter-based approach

using rigid transformations. The main novelties of this contribution

are the inclusion of a degree of overlapping parameter in the solu-

tion vector and the utilization of the trimmed squares metric as

objective function to be minimized. They constitute a different

schematic approach for the IR problem that offers correct coarse

IR results at overlaps under 50%. A random sampling procedure

is tackled in order to speed up the performance of the method.

The trimmed ICP variant (TrICP) is proposed as a fine-tuning

method.

The method is based on a generational GA performing search in

the seven dimensional space formed by three translation parame-

ters, three rotation parameters, and the newly added degree of

overlapping parameter. Authors used an integer coding representa-

tion of solutions which should be properly normalized onto the

corresponding real-value range. Simple one-point crossover was

employed and two mutation operators were introduced. Shift

mutation alters one parameter randomly by a value not exceeding

a 10% of the parameter range. Meanwhile, replacement mutation

substitutes a parameter with a random value. Tournament and

elitism were also employed. The authors dealt with three real-

world noisy measured datasets provided by their REPLICA laser

range scanner system and another two from the SAMPL public

database. Nevertheless, the considered datasets include adjacent

images acquired with up to 40° of rotation. Thus, the overlapping

region of the adjacent images considered was always above the

50%. Hence, their assumption about the good performance pro-

vided by the trimmed squared metric considering overlapping re-

gions below the 50% of the images is not sufficiently demonstrated.

3.3.6. Cordón et al.’s CHC-based proposal

This contribution used the sophisticated CHC EA adapted to the

parameter-based approach that showed a very good intensifica-

tion/diversification trade-off for the registration of MRIs [26].

Authors introduced two different variants of the method. First,

they made use of binary-coded solutions and the HUX crossover

[67], taking the original CHC structure as a base [50,51]. The second

variant of the CHC-based IR method extends the latter structure to

work in a real-coded fashion by considering a real to binary coding

translation mechanism as well as using different specific real-

coded genetic operators as the BLX-a crossover. Authors consid-

ered similarity transformations (rigid transformations with uni-

form scaling) for 3D medical IR. Therefore, eight-dimensional real

coded solutions were considered to encode the similarity transfor-

mation (four parameters for rotation, three for translation, and one

for uniform scaling). The fitness function is that one considered by

the authors in their previous proposal [25] using the GCP data

structure in order to tackle these particular scenarios.

3.3.7. De Falco et al.’s DE-based proposal

Authors proposed a new IR method based on the DE EA [27]. DE

is a parallel direct search method that has proved to be a promising

candidate to solve real-valued optimization problems [52,53]. DE

combines simple arithmetic operators with the classical crossover,

3 They were acquired with a Konica-Minolta Vivid 700Ó laser scanner. Resource

available at http://sampl.eng.ohio-state.edu

1344 J. Santamaría et al. / Computer Vision and Image Understanding 115 (2011) 1340–1354
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mutation, and selection genetic operators within an easy to imple-

ment scheme. It shows the advantage of considering few control

parameters, named mutation factor (F) and recombination rate

(CR). The fundamental idea of DE is a new scheme for generating

trial solutions by adding the weighted differenced vector between

two population members to a third one. The proposed method is

applied to two 2D IR problems: mosaicking and changes in time

of satellite images. Registration is carried out from the parame-

ter-based approach searching for the most suitable affine transfor-

mation (given by eleven real-coded parameters) in terms of

maximization of the MI similarity metric.

3.3.8. Cordón et al.’s SS-based proposal

This IR method is based on the SS EA and adopts a matching-

based approach [71]. Hence, a combinatorial optimization problem

is tackled. It exploits problem dependent information by taking

into account the curvature information extracted from MR and

CT images. Unlike the typical randomized combination of solutions

of GAs, the main idea behind SS [55,79] is a systematic combina-

tion between solutions taken from a considerably reduced evolved

pool named Reference Set (RefSet). Indeed, the RefSet is usually be-

tween five and ten times lower than usual GA population sizes).

The authors proposed new designs for three of the five SS compo-

nents—the generator of diverse solutions, and both the improve-

ment and the combination methods—to develop a proposal with

improved performance compared with the state of the art methods

following the matching-based approach. In particular, they suc-

ceeded at dealing with significant transformations between the

two registered images, one of the ICP’s pitfalls (see Section 2).

The main novelty of this feature-based IR method is that the

heuristic values of the features are used to guide the matching.

In particular, it exploits the information relative to local curvature

characterizing the set of crest-lines points [37,38] extracted as rel-

evant features of the scene and model images. Thus, the authors

propose an advanced coding scheme where a given point matching

is represented as a permutation. Besides, they define a function

merror(�) evaluating the goodness of the matching stored in a given

solution, p, by using the said curvature values:

merrorðpÞ ¼ Dk1 þ Dk2 where Dkj ¼
X

r

i¼1

ðk
i
j ÿ k

pi

j Þ2; j ¼ f1;2g ð7Þ

Dk1 and Dk2 measure the error related to the matching of scene and

model points with different values for the first and second principal

curvatures, respectively.

Meanwhile, the objective function of this IR method will include

both information regarding the usual IR measure g(p) (MSE of the

registration transformation resulting from the point matching en-

coded in p) and the previous criterion as follows:

min FðpÞ ¼ w1 � gðpÞ þw2 �merrorðpÞ ð8Þ

wherew1, w2 are weighting coefficients defining the relative impor-

tance of each term.

3.3.9. Santamaría et al.’s SS-based proposal

In [28], the authors proposed different memetic-based IR meth-

ods to tackle a real-world application focused on the 3D recon-

struction of forensic objects [69]. The parameter-based approach

was used with seven-dimensional real-coded individuals encoding

the rigid transformation (four parameters for rotation and three for

translation). The similarity metric given by the objective function

is:

FðIs; Im; f Þ ¼ Medianðd
2
i Þ ¼ Medianðkf ðpiÞ ÿ qclk

2Þ ð9Þ

where Median() corresponds to the computation of the median val-

ues of point-to-point squared Euclidean distances, d
2
i , between the

Nth
Is

transformed scene points, f(pi), and their model closest points,

qcl. The GCP data structure is used in order to speed up the compu-

tation of the closest point rule.

The authors performed a broad study about the performance

capabilities of different memetic-based IR methods. MAs are the

result of the conjunction of the global search capabilities of EAs

and the local search (LS) behavior of other low-cost heuristic proce-

dures [54,80]. They considered three existing EA-based IR methods

as the baseline algorithm: SS [25], CHC [26], and DE-based [27] IR

methods (see the previous subsections for their respective descrip-

tion). For each of the previous three techniques, they considered

the use of several LS algorithms (XLS [81], Solis and Wets [82],

and Powell [83]) as improvement method within an embedded ap-

proach. The obtained experimental results in the 3D reconstruction

of different human skull models, supported by a complementary

non-parametric statistical test, revealed that the SS variant that

made use of the deterministic LS application criterion and the

XLS LS algorithm offered the best performance among all the

developed memetic-based IR methods. It also outperformed the

authors’ previous methods based on the CHC and SS algorithms

[25,26].

4. Experimental study

In this section we aim to develop an experimental study on the

performance of the EIR methods described in Section 3. Salvi et al.

made a deep study on the accuracy of the IR results in [5] tackling

range IR problem instances. However, among the methods they re-

viewed and compared, only three are based on EC. Moreover, we

aim to extend the performance analysis drawing our attention to

the robustness of the methods, instead of constraining the study

to the most accurate results.

Asmentioned in Section 3, only themost sophisticated EIRmeth-

ods in Table 1 will be included in the current experimental study.

The selection of these advanced EIR methods was guided by two

main criteria. On the one hand, our experimental study should not

be biased by a particular evolutionary technique. Thus, we include

different evolutionary approaches in order to represent the wide

variety of techniques within the EC paradigm. On the other hand,

when parameter-based and matching-based approaches are found

in the literature for an evolutionary technique considered in our

study, both approaches will be represented by at least one method.

For benchmarking purposes, our study includes an IRmethod based

on the classical ICP algorithm proposed by Liu [10] (named Liu-ICP),

an extended ICP variant based on its hybridization with simulated

annealing [65] (named Luck-ICP+SA), and an advanced method

exploiting the capabilities of the iterated local searchmetaheuristic

following a matching-based approach [68] (named Cordón-ILS). In

summary, the consideredmethods are reviewed as follows (see Sec-

tion 3 for a description of the EIR approaches):

� GAs:

– Parameter-based approaches: Yamany-GABinary [33], He-GA

[19], Chow-GA [21], Lomonosov-GA [24], Silva-GA [23].

– Matching-based approaches: they are not considered in

this study.4

� Other EAs:

– Parameter-based approaches: Wachowiak-PSO [22],

Cordón-CHCBinary [67], Cordón-CHC [26], DeFalco-DE [27],

Santamaría-SS [28].

– Matching-based approach: Cordón-SS [71].

4 Up to our knowledge, the proposal by Brunnström and Stoddart [60] is the only

EIR method that could be classified in this category. However, we could obtain neither

the code from the authors nor a detailed description of the GA in order to implement

it on our own.
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� Other metaheuristics and hybrids:

– Parameter-based approach: Luck-ICP + SA [65].

– Matching-based approach: Cordón-ILS [68].

Every method in the previous list demonstrated an outstanding

behavior tackling a particular application field. Nevertheless, we

aim to compare the performance of these methods and that is only

possible when they tackle the same problem. Therefore, our exper-

imental study is based on a real-world 3D modeling application all

the selected methods will deal with.

Those fourteen IR methods are implemented in C++ and com-

piled with GNU/g++. We use a computer with an Intel Pentium

IV 2.6 MHz processor and 2GB RAM.

We consider the parameter values proposed by the authors in

their contributions. Nevertheless, we adapt the majority of the

methods by using the same transformation (f) and objective func-

tion (see Eq. 3 in Section 2) in order to accomplish a fair compari-

son. The only exceptions to the latter are Cordón-ILS and Cordón-SS

IR methods because their specific objective function designs are

strongly interrelated to the structure of the optimization algo-

rithms. Thus, we maintain their original objective functions.

As said in Section 2, a feature-based IR approach is considered

[1,3]. We use a 3D crest line algorithm [39] to obtain feature points

from 3D meshes of range images. These preprocessed images are

the ones that will be used by every IR method to estimate the reg-

istration transformation. Once the IR method has finished, the ori-

ginal raw images are considered to measure the quality of the final

results as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pr
i¼1jjf

0ð~xiÞ ÿ~x0ijj
2

r

s

ð10Þ

where f 0ð~xiÞ refers to the ith point of the scene image transformed

by the estimated rigid transformation f0, r is the scene image size,

and~x0i is the latter~xi scene point placed in its ground-truth location

provided by using a properly calibrated mechanical device like a

turn table (see Fig. 2 in Section 2).

In many real-world applications ground-truth locations are not

available and the quality of the final solution to the IR problem

cannot be evaluated. That is not the case of the current experimen-

tal study. Thus, the evaluation procedure in Eq. (10) allows us to

accomplish a more reliable analysis of the performance of the

methods under study.5

Fig. 4 illustrates the evaluation procedure. The left-hand picture

refers to the ground-truth image (the I1 range image of the SK(1)

dataset introduced in Section 4.1) and the other two show the IR

estimation obtained in two different runs of Yamany-GABinary [33]

method. In particular, the worst result (middle picture) has a RMSE

value of 13.7 cm while that associated to the last image takes value

5.3 cm. Notice that, these error values measure the distances from

the ground-truth position of each point to its location estimated by

the method under study (Yamany-GABinary in our example). The

right most picture also shows three a posteriori known matchings

and each correspondence links a transformed scene point and its

ground truth position in the model (f 0ð~xiÞ and ~x0i, respectively).

These are three of the r correspondences that contribute to the

computation of the registration error in Eq. (10).

4.1. Range image datasets

The Physical Anthropology Lab of the University of Granada

(Spain) provided us with three different range image datasets:

two human skulls and one human teeth6 named SK(1), SK(2) and

TH, respectively. Skull SK(1) corresponds to a pathological case

whose dimensions are clearly larger than usual (see Fig. 5). These

forensic objects were acquired using a Konica-MinoltaÓ 3D Laser

Scanner VI-910 using a 640 � 480 image resolution, 8 lm precision,

Table 1

Evolutionary and metaheuristic-based IR methods reviewed. See text for a detailed explanation.

Algorithm Representation Search space Optimization technique Application field Image modality Computer architecture

Refs. Year R B I P M

[17] 1984 U U cGA (EA) Medical imaging 2D Serial

[59] 1989 U U cGA (EA) Medical imaging 2D Serial

[64] 1995 U U cGA (EA) Medical imaging 3D Serial

[60] 1996 U U GA (EA) Reverse engineering 3D Serial

[61] 1997 U U cGA (EA) Non-specific 2D Serial

[33] 1999 U U cGA (EA) Medical imaging 3D Serial

[18] 2000 U U U GA (EA) Medical imaging 3D Serial

[65] 2000 U U U ICP+SA (MH) Modeling 3D Serial

[62] 2001 U U GA (EA) Remote sensing 2D Parallel

[66] 2001 U U TS (MH) Medical imaging 2D/3D Serial

[19] 2002 U U GA (EA) Medical imaging 3D Serial

[20] 2002 U U GA (EA) Modeling 3D Parallel

[67] 2003 U U CHC (EA) Medical imaging 3D Serial

[21] 2004 U U GA (EA) Modeling 3D Serial

[22] 2004 U U PSO (EA) Medical imaging 2D/3D Serial

[23] 2005 U U HGA (EA) Modeling 3D Serial

[32] 2005 U U MOGA (EA) Modeling 3D Serial

[24] 2006 U U GA (EA) Modeling 3D Serial

[68] 2006 U U ILS (MH) Medical imaging 3D Serial

[25] 2006 U U SS (EA) Medical imaging 3D Serial

[26] 2006 U U CHC (EA) Medical imaging 3D Serial

[69] 2007 U U SS (EA) Modeling 3D Serial

[70] 2007 U U GA (EA) Remote sensing 2D Serial

[27] 2008 U U DE (EA) Mosaicking 2D Serial

[71] 2008 U U SS (EA) Medical imaging 3D Serial

[28] 2009 U U SS (EA) Modeling 3D Serial

[72] 2009 U U SA (MH) Face Recognition 3D Serial

5 The final evaluation of the IR results is completely different to the evaluation of IR

solutions performed within the iterative optimization procedure. Therein no infor-

mation about the ground-truth solution is taken into account and every transformed

point of the scene is paired with its nearest neighbor in the model.
6 These are not public datasets because of the Spanish law for the protection of

personal data.
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and the middle lens of 14 mm. The scanner was also equipped with a

mechanical turn table for precise alignment of the images. As said,

the turn table gives us the chance to obtain a near optimal IR result

that we will consider as the ground-truth 3D model for each dataset.

The acquired images comprise around one hundred thousand points

each. In order to ease the work of the forensic experts, we have taken

into account important factors related to the scanning process like

time and storage demand.7 We consider two different rotation de-

grees of the turn table for acquisition purposes. In particular, the

skulls were scanned every 45°. Meanwhile the views of the human

teeth were acquired every 60° (see Fig. 6). The higher the rotation

value the lower the overlapping area of adjacent range images,

becoming a more complex IR problem. In the literature, these rota-

tion values are considered the upper bounds of any IR method aim-

ing to guarantee an acceptable result.

In order to follow a feature-based IR approach, we use a prepro-

cessing algorithm that accomplishes the extraction of feature

points from the range images by applying a 3D crest lines edge

detector [39]. The resulting datasets consist of approximately one

thousand points (see Table 2). Fig. 6 depicts one range image of

every dataset (SK(1), SK(2), and TH) together with the extracted

crest-line points.

4.2. Experimental design

The experimental design addresses six different pair-wise IR

scenarios. For the sake of simplicity, we have selected three repre-

sentative adjacent range images of each dataset (SK(1), SK(2), and

TH). They lead us to tackle two pair-wise IR problem instances in

each dataset. Given the sequence of adjacent range images I1, I2,

and I3, the said problem instances are defined by pairs of images

{I1, I2} and {I3, I2}. Notice that I2 is the model image in both problem

instances. Thus, the estimated transformations should be applied

to the scene images ({I1, I3}). As said, ground-truth locations are

available for every pair-wise IR problem instance.

On the other hand, the experimental design we consider is in-

spired by those ill-conditioned situations where forensic anthro-

pologists are only able to reconstruct an optimal 3D model

manually [28]. This situation is mainly motivated by the non exis-

tence of a mechanical device for scanner guidance, e.g. turn tables.

Thus, we aim to simulate an unsupervised scanning process where

there is no turn table available or the particular environment does

not allow the forensic experts to use it. Such situations are simu-

lated in each of the designed IR problem instance by generating

random transformations applied to the ground-truth range images.

Those random transformations should be estimated by every IR

method. In particular, for each of the six problem instances tackled

by the fourteen IR methods, 30 different runs are performed. Every

run considers a different random rigid transformation. Every rigid

transformation is randomly generated as follows: each of the three

rotation axis parameters will be in the range [ÿ1,1]; the rotation

angle will range in [0°,360°]; and the range of three translation

parameters is [ÿ40 mm,40 mm]. After a preliminary study, we no-

ticed that twenty seconds was a suitable stop criterion to let all the

algorithms converge properly.8 In order to perform a fair compar-

ison among the methods included in this study, we considered CPU

time as the stop criterion. To our mind, that is the best choice be-

cause we aim to compare the performance of methods with heter-

ogeneous designs. Different time limits were tested and 20 s was

determined as a good threshold allowing the methods to achieve

accurate solutions.

Finally, we adopt the usual two stage pair-wise IR approach

[32]. It consists of a prealignment algorithm that provides coarse

results, and a final refinement step that slightly adjusts them.

Every EIR method is used for the prealignment step and one

ICP-based IR algorithm is considered for the refinement.9 Since

the success of ICP-based IR methods highly depends on the initial

estimation, it is important to note that the result provided by the

Fig. 4. From left to right: the ground-truth image and two independent runs of the Yamany’s IR method. The right-most picture shows three known matchings between the

ground-truth and the estimated images.

Fig. 5. From left to right: dimensions of the three forensic objects considered. Two human skulls and a human teeth.

7 Notice that the Physical Anthropology Lab of the University of Granada is willing

to digitize hundreds of skulls and other skeletal remains.

8 We tested all the IR methods from 5 to 20 s and noticed how the gain of

performance from 15 to 20 s is not significant.
9 A detailed explanation of the refinement stage is out of the scope of this survey.

The interested reader is referred to [84].
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prealignment algorithm will be crucial to achieve an accurate 3D

model of the forensic object.

4.3. Analysis of results

Tables 3–5 show statistical results of the RMSE corresponding

to the 30 runs of the different IR scenarios. In particular, each entry

of these tables refer to the minimum, mean, and standard devia-

tion (in brackets) RMSE values. In each table, an additional column

is added in order to average the performance of the prealignment

stage. Thus, SK(1)(I1 ÿ I2) and SK(1)(I3 ÿ I2) RMSE values are aver-

aged in the last column of Table 3. SK(2)(I1 ÿ I2) and SK(2)(I3 ÿ I2)

RMSE values are averaged in the last column of Table 4. Finally,

TH(I1 ÿ I2) and TH(I3 ÿ I2) RMSE values are averaged in the last col-

umn of Table 5. The unit length of the data included in these tables

is millimeters.

Fig. 6. From left to right: one of the three range images of each dataset SK(1), SK(2), and TH. Extracted crest-lines are drawn.

Table 2

Number of points in every image before and after applying the crest line algorithm.

SK(1) SK(2) TH

I1 I2 I3 I1 I2 I3 I1 I2 I3

Original 76794 68751 91590 116617 98139 118288 59033 62240 61345

Crest lines 1181 986 1322 2106 1995 2066 1160 1387 1175

Table 3

IR results of the skull image dataset SK(1). Each entry corresponds to the minimum (top), mean (bottom), and standard deviation (in brackets) RMSE values obtained from the 30

different runs. The unit length is millimeters. The best minimum prealignment value and the best averaged mean prealignment value are in bold.

Code IR method – search space SK(1)(I1 ÿ I2) SK(1)(I3 ÿ I2) Average

Prealignment Refinement Prealignment Refinement

ICP-based IR method

A1 Liu-ICP [10] 12.63 – 48.90 – 30.77

Matching-based approach 82.19 (±52.76) – 96.88 (±44.14) – 89.54 (±7.35)

Other metaheuristic-based IR methods

B1 Luck-ICP + SA[65] 4.46 0.51 49.08 44.42 26.77

Matching-based approach 82.69(±59.85) 93.49(±53.09) 101.26(±44.68) 107.82(±38.73) 91.98(±9.29)

B2 Cordón-ILS[68] 73.55 73.55 55.51 55.51 64.53

Matching-based approach 116.56(±34.26) 116.56(±34.26) 126.68(±29.23) 126.68(±29.23) 121.62(±5.06)

EIR methods

C1 Yamany-GABinary[33] 3.70 0.26 12.39 6.11 8.05

Parameter-based approach 30.53(±30.86) 16.31 (±30.87) 42.78 (±29.35) 40.33 (±29.82) 36.66 (±6.13)

C2 He-GA [19] 3.06 0.16 8.69 2.08 5.88

Parameter-based approach 8.97 (±3.63) 1.65 (±1.28) 24.79 (±16.06) 22.69 (±17.75) 16.88 (±7.91)

C3 Cordón-CHCBinary[67] 3.52 0.20 8.84 6.56 6.18

Parameter-based approach 29.01(±29.34) 22.28 (±31.92) 41.62 (±22.89) 39.75(±24.13) 35.32(±6.31)

C4 Chow-GA [21] 6.57 0.27 10.84 4.36 8.71

Parameter-based approach 28.03(±14.95) 18.47 (±17.97) 48.14 (±19.84) 44.65 (±22.12) 38.09 (±10.06)

C5 Wachowiak-PSO [22] 4.53 0.18 2.98 1.65 3.76

Parameter-based approach 21.42 (±11.75) 10.86 (±13.76) 29.40 (±27.28) 25.82 (±28.28) 25.41 (±4)

C6 Silva-GA [23] 4.21 0.16 8.61 6.39 6.41

Parameter-based approach 27.99 (±24.16) 14.23 (±25.60) 38.81(±20.92) 35.97(±23.80) 33.4(±5.41)

C7 Cordón-CHC[26] 4.24 0.31 11.46 9.72 7.85

Parameter-based approach 10.83 (±11.45) 3.84 (±10.64) 32.41 (±19) 29.74 (±19.17) 21.62 (±10.79)

C8 Lomonosov-GA [24] 1.90 0.21 7.53 2 4.72

Parameter-based approach 10.63(±5.13) 2.24(±2.70) 22.81(±13.45) 19.74(±14.33) 16.72(±6.09)

C9 Cordón-SS [71] 68.59 68.59 54.92 54.92 61.76

Matching-based approach 78.23(±3.86) 78.23(±3.86) 88.89(±42.83) 88.89(±42.83) 83.56(±5.33)

C10 DeFalco-DE[27] 3.94 0.15 9.65 7.06 6.80

Parameter-based approach 9.29(±2.91) 1.94(±1.01) 27.78(±27.67) 25.15(±28.08) 18.54(±9.25)

C11 Santamaría-SS[28] 3.28 0.20 8.12 5.39 5.7

Parameter-based approach 8.20(±2.68) 1.73 (±0.98) 18.79(±6.02) 16.53(±6.34) 13.50(±5.30)

Numbers marked using bold font remark the best performance.
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Table 4

IR results of the skull image dataset SK(2). Each entry corresponds to the minimum (top), mean (bottom), and standard deviation (in brackets) RMSE values obtained from the 30

different runs. The unit length is millimeters. The best minimum prealignment value and the best averaged mean prealignment value are in bold.

Code IR method – search space SK(2)(I1 ÿ I2) SK(2)(I3 ÿ I2) Average

Prealignment Refinement Prealignment Refinement

ICP-based IR method

A1 Liu-ICP[10] 11.95 – 14.47 – 13.21

Matching-based approach 61.85(±37.39) – 68.36 (±38.29) – 65.11(±3.26)

Other metaheuristic-based IR methods

B1 Luck-ICP + SA[65] 4.18 1.01 4.76 1.06 4.47

Matching-based approach 53.74(±45.06) 58.92(±40.69) 66.92(±45.24) 72.34(±42.83) 60.33(±6.60)

B2 Cordón-ILS[68] 39.26 39.26 48.07 48.07 43.67

Matching-based approach 75.49(±20.93) 75.49(±20.93) 81.71(±26.52) 81.71(±26.52) 78.60(±3.11)

EIR methods

C1 Yamany-GABinary[33] 4.26 0.43 4.11 0.91 4.19

Parameter-based approach 38.85(±32.72) 36.81(±34.23) 40.41(±39.40) 37.87(±41.02) 39.63(±0.61)

C2 He-GA[19] 5.03 0.57 3 0.92 4.02

Parameter-based approach 17.57(±23.65) 10.53(±25.69) 11.28(±18.70) 6.16(±19.36) 14.43 (±3.15)

C3 Cordón-CHCBinary[67] 5.21 0.68 2.23 0.92 3.72

Parameter-based approach 36.15(±35.23) 33.29(±37.43) 36.58(±39.02) 33.59(±40.66) 36.37(±0.22)

C4 Chow-GA[21] 5.92 0.81 6.47 2.08 6.20

Parameter-based approach 43.65(±34.72) 41.65(±35.95) 52.23(±41.53) 50.06(±42.84) 47.94(±4.29)

C5 Wachowiak-PSO[22] 5.48 0.93 3.12 0.93 4.30

Parameter-based approach 38.42(±28.08) 36.42(±29.35) 36.21(±35.32) 31.76(±37.74) 37.32(±)

C6 Silva-GA[23] 5.54 0.63 2.85 0.91 4.20

Parameter-based approach 31.62(±23.47) 20.81(±28.03) 33.90(±32.54) 28.66(±35.63) 32.76(±1.14)

C7 Cordón-CHC [26] 4.68 0.48 3.56 1.14 4.12

Parameter-based approach 23.20(±27.01) 18.90(±29.17) 21.18(±33.83) 18.13(±35) 22.19(±1.06)

C8 Lomonosov-GA[24] 3.23 0.41 1.93 0.92 2.58

Parameter-based approach 20.39(±17.24) 17.22(±18.51) 24.65(±30.11) 20.34(±31.91) 22.52(±2.13)

C9 Cordón-SS[71] 37.14 40 47.50 47.50 42.32

Matching-based approach 40(±1.33) 40(±1.33) 52.47 (±3.71) 52.47(±3.71) 46.24(±6.24)

C10 DeFalco-DE[27] 4.35 0.42 3.82 0.98 4.09

Parameter-based approach 13.15(±15.50) 8.18(±17.15) 13.84(±28.76) 9.66(±29.57) 13.50 (±0.35)

C11 Santamaría-SS[28] 4.66 0.73 3.17 1.04 3.92

Parameter-based approach 9(±8.56) 3.36(±9.39) 8.69(±20.68) 5.27(±21.34) 8.85(±0.16)

Numbers marked using bold font remark the best performance.

Table 5

IR results of the teeth image dataset TH. Each entry corresponds to the minimum (top), mean (bottom), and standard deviation (in brackets) RMSE values obtained from the 30

different runs. The unit length is millimeters. The best minimum prealignment value and the best averaged mean prealignment value are in bold.

Code IR method – search space TH(I1 ÿ I2) TH(I3 ÿ I2) Average

Prealignment Refinement Prealignment Refinement

ICP-based IR method

1 Liu-ICP[10] 1.78 – 0.96 – 1.37

Matching-based approach 24.52(±13.42) – 25.20 (±15.57) – 24.86(±0.34)

Other metaheuristic-based IR methods

B1 Luck-ICP + SA[65] 0.76 0.63 1.08 0.85 0.92

Matching-based approach 24.97(±13.31) 25.71(±12.45) 22.95(±17.29) 24.04(±15.85) 23.96(±1.01)

B2 Cordón-ILS[68] 20.12 20.12 22.93 22.93 21.53

Matching-based approach 33.53(±4.59) 33.53(±4.59) 31.22(±4.56) 31.22(±4.56) 32.38(±1.16)

EIR methods

C1 Yamany-GABinary[33] 0.37 0.59 1.10 0.5 0.74

Parameter-based approach 22.08(±15.84) 21.81(±16.16) 14.72(±15.61) 14.19(±15.95) 18.40(±3.68)

C2 He-GA[19] 0.76 0.60 0.90 0.46 0.83

Parameter-based approach 18.50(±17.10) 18(±17.55) 16.24(±16.91) 15.53(±17.43) 17.37(±0.82)

C3 Cordón-CHCBinary[67] 0.84 0.54 1.17 0.68 1.01

Parameter-based approach 18.79(±15.09) 18.57(±15.33) 20.69(±17.32) 20.10(±17.85) 19.74(±0.95)

C4 Chow-GA[21] 11.80 11.49 3.91 2.61 2.86

Parameter-based approach 32.05(±9.44) 31.97(±9.51) 37.54(±11.70) 37.47(±11.94) 34.80(±2.75)

C5 Wachowiak-PSO[22] 0.82 0.58 0.73 0.43 0.78

Parameter-based approach 22.92(±15.97) 22.64(±16.29) 21.85(±18.32) 21.42(±18.79) 22.39(±0.29)

C6 Silva-GA[23] 0.77 0.57 0.95 0.61 0.86

Parameter-based approach 22.20(±14.04) 22.02(±14.30) 17.76(±15.90) 17.39(±16.23) 19.98(±2.13)

C7 Cordón-CHC[26] 0.78 0.60 1.12 0.70 0.95

Parameter-based approach 19.91(±17.21) 19.82(±17.30) 17.44(±17.49) 17.21(±17.67) 18.68(±1.24)

C8 Lomonosov-GA[24] 1.28 0.57 0.86 0.46 1.07

Parameter-based approach 17.99(±16.28) 17.34 (±16.86) 14.26(±17.47) 13.03(±18.18) 16.13 (±1.87)

C9 Cordón-SS[71] 19.72 19.72 32.93 32.93 26.33

Matching-based approach 24.94(±6.36) 24.94(±6.36) 33.32(±0.23) 33.32(±0.23) 29.13(±4.19)

C10 DeFalco-DE[27] 0.79 0.58 1.10 0.51 0.95

Parameter-based approach 10.63(±16.25) 10.36 (±16.40) 12.26(±16.39) 11.84(±16.65) 11.45 (±0.82)

C11 Santamaría-SS[28] 0.60 0.60 1.08 0.66 0.84

Parameter-based approach 15.70(±18.18) 15.57(±18.25) 9.11(±15.46) 8.75(±15.58) 12.41 (±3.30)

Numbers marked using bold font remark the best performance.
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On the one hand, we aim to analyze the robustness of the meth-

ods facing the prealignment stage of the six IR problems consid-

ered (see Tables 3–5 and Appendix A). On the other hand, we

aim to compare the performance of the methods. Figs. 7–9 show

Fig. 7. From left to right, RMSE distribution corresponding to the 30 runs of the IR problems SK(1)(I1 ÿ I2) and SK(1)(I3 ÿ I2).

Fig. 8. From left to right, RMSE distribution corresponding to the 30 runs of the IR problems SK(2)(I1 ÿ I2) and SK(2)(I3 ÿ I2).

Fig. 9. From left to right, RMSE distribution corresponding to the 30 runs of the IR problems TH(I1 ÿ I2) and TH(I3 ÿ I2).
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the RMSE distribution corresponding to the 30 runs of the two IR

problems tackled to achieve the 3D models related to the SK(1),

SK(2), and TH datasets, respectively.

The following three conclusions can be drawn according to the

robustness of every IR method facing the prealignment stage in the

six IR scenarios:

� All the matching-based methods but Cordón-SS (C9) are charac-

terized by their low robustness: Liu-ICP (A1), Luck-ICP + SA (B1),

and Cordón-ILS (B2).

� Differences in robustness between the matching-based and the

parameter-based IR approaches are significant. The latter dem-

onstrate the best behavior.

Fig. 10. Summary of the most remarkable results. From left to right: the top row shows the best two (pair-wise) prealignment IR results obtained by Wachowiak-PSO (C5)

and the reconstruction result (combining the previous two prealignments) of SK(1) after refinement. The bottom row depicts the distance deviation histogram comparing the

latter reconstruction result and the ground-truth 3D model.

Fig. 11. Summary of the most remarkable results. From left to right: the top row shows the best two (pair-wise) prealignment IR results obtained by Silva-GA (C6) and the

reconstruction result (combining the previous two prealignments) of SK(2) after refinement. The bottom row depicts the distance deviation histogram comparing the latter

reconstruction result and the ground-truth 3D model.
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� The most complex IR problem considered is the teeth (TH).

Since that image dataset was acquired considering a higher

rotation angle of the turn table, the size of the overlapping

region between adjacent acquisitions was smaller. Thus, the

complexity of the IR problem is increased. Nevertheless, DeFal-

co-DE (C10) and Santamaría-SS (C11) IR methods also maintain

their high robustness in this problem instance.

From the results depicted in Figs. 7–9 we can highlight that the

majority of the EIR methods following a parameter-based approach

achieve the best and the most robust performance along the 30 dif-

ferent runs. In particular, the four best IR methods facing the three

IR scenarios are: Santamaría-SS (C11), DeFalco-DE (C10), He-GA

(C2), and Lomonosov-GA (C8). Real-coded EIR methods obtain

the best results. Figs. 10–12 depict some of the more relevant IR re-

sults for the three IR scenarios considered.

We also noticed the poor performance obtained by the match-

ing-based methods. Among them, Cordón-SS (C9) provides the best

results.

In general, all the EIR methods considered but Liu-ICP (A1),

Luck-ICP + SA (B1), Cordón-ILS (B2), and Cordón-SS (C9) achieve

accurate results in at least two of the three IR scenarios. The accu-

racy of the four latter methods is significantly low according to the

minimum RMSE value in Tables 3–5.

Santamaría-SS (C11), Wachowiak-PSO (C5), He-GA (C2), and

Lomonosov-GA (C8) are the most accurate EIR methods. As said,

we focused our analysis on the prealignment stage of the IR pro-

cess. Nevertheless, if the solutions after prealignment are com-

pared with those achieved after refinement using ICP-based

methods, the importance of the prealignment stage is clearly

shown. Indeed, the prealignment stage will not be affected by local

optima only if the prealignment results are acceptable,10 thus lead-

ing to high quality solutions (see Figs. 10–12).

5. Conclusions

IR is a very active research field. The large number of publica-

tions related to IR shows the high relevance of this topic in com-

puter vision. In the last few decades, evolutionary approaches

have demonstrated their ability to tackle the IR problem thanks

to their robust behavior as global optimization techniques. Indeed,

EIR methods own the capability to perform a robust search in com-

plex search spaces. Unlike traditional IR methods as the ICP algo-

rithm, EIR methods do not need a good initial estimation of the

alignment to avoid local optima.

Several works review the state of the art in IR [1–5]. However,

they include just a few of the important number of works that

lay their foundations on EC [12]. With the aim of bridging this

gap, we proposed a survey including, in our modest opinion, the

outstanding evolutionary methods.

Furthermore, a broad experimentation considering a real-world

application was accomplished in order to facilitate the comparison

of the performance of the EIR methods. In particular, we faced the

3D modeling of forensic objects. The results demonstrate the good

behavior of most of the EIR methods. They outperformed classical

approaches based on the ICP algorithm. Specifically, the EIR meth-

ods considering a parameter-based approach provided the most

robust and accurate results. However, there is no general method

that is able to achieve the best results for all possible real-world

problems as it is stated by the No Free Lunch theorem [85]. Hence,

the selected method should always be adapted to the problem at

hand. Finally, future works on EIR should focus on using advanced

optimization strategies based on EC in order to improve the robust-

ness and accuracy of the state of the art. Likewise, there is a need of

new EIR approaches supplying improved capabilities regarding

speeding up the computation time, e.g. by using general-purpose

computing on graphics processing units (GPGPU) [86?].
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in

the on-line version of the journal, at ScienceDirect.com. Every

available image shows a pair of box-plots depicting the perfor-

mance of the IR methods tackling the two prealignment problems

for each dataset (SK(1), SK(2) and TH). These box-plots are derived

from the outcomes of the 30 runs summarized in Tables 3–5. Sup-

plementary data associated with this article can be found, in the

online version, at doi:10.1016/j.cviu.2011.05.006.
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